

- Know your SEATING and ROOM ASSIGNMENTS
- Bring your PUID card (must be presented when you turn in your exam)
- Bring a #2 pencil and a good eraser

Restrictions

- Closed book and notes
- Use of TI-30II XS calculator allowed
- Electronic devices may not be used
- Earphones/earbuds may not be worn
- Cell phones must be turned off and put away
- Caps may not be worn during the exam
- Makeup exams must be scheduled before the evening exam occurs – turn in an "Early Makeup Exam Request Form" (on course web site under Exam Information) at least one week prior to the scheduled exam

Learning Outcomes

A student who successfully fulfills the course requirements will have demonstrated:

- 1. an ability to analyze and design CMOS logic gates
- an ability to analyze and design combinational logic circuits
- 3. an ability to analyze and design sequential logic circuits
- 4. an ability to analyze and design computer logic circuits
- 5. an ability to realize, test, and debug practical digital circuits

Learning Outcome Assessment

- You will earn 1% bonus credit for each course outcome you successfully demonstrate
 - For Outcomes 1-4, basic competency will be assessed based on hourly exam questions, for which a minimum score of 60% will be required
 - For Outcome 5, a score of 60% on each lab experiment or a score of 60% on the Lab Practical Exam will be required for successful demonstration

Grade Determination	90% to 100%	A-, A, A+
	80% to 90%	B-, B, B+
	70% to 80%	C-, C, C+
	60% to 70%	D-, D, D+
	< 60%	F
Bonus Exercises "BON"		∆ ₁%
Class Participation (iClickers) "CLICK"		4.0%
Homework Exercises "HW" (13 @ 0.77%)		10.0%
Lab Experiments "EXP" (13 @ 1.5%)		19.5%
Lab Quizzes "QZ" (13 @ 0.5%)		6.5%
Lab Practical Exam "LPE"		10.0%
Outcome Assessment Exams "POA" (4 @ 12.5%)		50.0%
Outcome Demonstration Bonus "LODBN" (5 @ 1%)		∆ ₂%
		100+ ∆%

Grade Determination • Calculation of Raw Weighted Percentage: $\frac{\sum_{i=1}^{WGT_i \times SCORE_i}}{\sum_{i=1}^{WGT_i} \times 100}$ • RWP then "curved" (mean-shifted) with respect to upper percentile of class, yielding the Normalized Weighted Percentage (NWP)

- Windowed Standard Deviation (WSD) for class is calculated based on statistics of "middle" 90% of class
- Cutoff Width Factor (CWF) is then max(WSD,10), i.e., the nominal cutoffs are 90-80-70-60 for A-B-C-D, respectively

Learning Objectives

As part of faculty participation in the **Purdue IMPACT** initiative, a detailed set of learning objectives have been developed based on Bloom's taxonomy

The goal is to toach intentionally and test intentionally based on the stated outcomes and objectives

A list of learning objectives is included in the Lecture Summary Notes for each outcome as well as the Class Presentation Slides

Jse the list of learning objectives as a guide (

"Best Way to Study for Exam"

- *Re-work* and *fully understand* all homework and example problems worked in class
- Methodically review the entire set of *Learning Objectives* for Outcome 2 and verify you can perform each cognitive domain action
- Make effective use of all the instructional resources available
 - practice exams
 - textbook / practice problems

Possible Questions

- Graphically transform a logic circuit from one set of symbols to another through successive application of DeMorgan's Law
- Express a given Boolean function a variety of ways, e.g., as an ON-set, as an OFF-set, as a canonical sum-of-products, etc.
- Find the dual or the complement of a given Boolean function
- ✓ Determine a minimal sum-of-products or product-of-sums expression for a given Boolean function using a K-map
- Realize a given Boolean function using either a two-level NAND circuit or two-level NOR circuit, and compare the cost
- Realize a given Boolean function using a single-level open-drain NAND circuit
- Realize a given Boolean function using a circuit that is free of hazards
 Sketch a timing diagram that depicts the relationship among logic
- signals Simplify a function in terms of XOR/XNOR operators

Possible Questions

- Identify macrocell characteristics
- Realize combinational functions in Verilog
- > Knowledge of basic Verilog source file structure
- Knowledge of basic keywords and extensions
- Knowledge of equation syntax
 Knowledge of report content/interpretation
- Compare discrete realizations with PLD-based realizations
- Realize decoder building blocks in Verilog
- Realize encoder building blocks in Verilog
- Realize tri-state output capability in Verilog
- ✓ Realize multiplexer building blocks in Verilog
- Realize XOR functions in Verilog