LEARNING OUTCOME #1: "an ability to analyze and design CMOS logic gates."

Multiple Choice – select the single most appropriate response for each question.

Note that "none of the above" MAY be a VALID ANSWER.

- 1. The **unsigned hexadecimal** number **(537)16** is equivalent to the following **unsigned binary** number:
	- (A) (101 11 111)₂
	- (B) $(101 011 111)_2$
	- (C) $(101\ 0011\ 0111)_2$
	- (D) all of the above
	- (E) none of the above
- 2. The expression $(X+Y) \cdot (X+Z) = X + Y \cdot Z$ is an example of:
	- (A) distributivity
	- (B) commutitivity
	- (C) associativity
	- (D) consensus
	- (E) none of the above
- 3. A circuit consisting of a level of **NOR gates** followed by a level of **AND gates** is **logically equivalent** to:
	- (A) a multi-input OR gate
	- (B) a multi-input AND gate
	- (C) a multi-input NOR gate
	- (D) a multi-input NAND gate
	- (E) none of the above

- 4. The **high impedance state** of a **tri-state buffer** is created by:
	- (A) turning "off" the PMOS transistor and turning "on" the NMOS transistor at the output of the buffer
	- (B) turning "off" both the PMOS and the NMOS transistors at the output of the buffer
	- (C) turning "on" both the PMOS and the NMOS transistors at the output of the buffer
	- (D) turning "on" the PMOS transistor and turning "off" the NMOS transistor at the output of the buffer
	- (E) none of the above
- 5. The **direction that current flows** between the drain (D) and source (S) of N-channel and P-channel MOSFETS is as follows:
	- (A) N-channel: $D \rightarrow S$; P-channel: $S \rightarrow D$
	- (B) N-channel: $S\rightarrow D$; P-channel: $D\rightarrow S$
	- (C) N-channel: $D\rightarrow S$; P-channel: $D\rightarrow S$
	- (D) N-channel: $S\rightarrow D$; P-channel: $S\rightarrow D$
	- (E) none of the above
- 6. For most CMOS logic families, the **maximum acceptable V_{IL}** is:
	- (A) 10% of the power supply voltage
	- (B) 30% of the power supply voltage
	- (C) 50% of the power supply voltage
	- (D) 70% of the power supply voltage
	- (E) 90% of the power supply voltage
- 7. The **nominal (minimum) case** for the **outputs of logic family "A"** to be able to successfully drive **the inputs of logic family "B"** is:
	- (A) fanout_{A→B} \leq 1 and DCNM_{A→B} < 0
	- (B) fanout $A\rightarrow B \leq 0$ and DCNM $A\rightarrow B \leq 1$
	- (C) fanout_{A→B} \geq 1 and DCNM_{A→B} > 0
	- (D) fanout_{A→B} \geq 0 and DCNM_{A→B} > 1
	- (E) none of the above
- 8. If a CMOS gate input voltage is 50% of its V_{cc} (power supply) voltage, then:
	- (A) the logic gate will dissipate *less* **power** than it would if the input was 1% of its power supply voltage
	- (B) the logic gate will dissipate *less* **power** than it would if the input was 99% of its power supply voltage
	- (C) the logic gate will dissipate *more* **power** than it would if the input was *either* 1% *or* 99% of its power supply voltage
	- (D) the logic gate will dissipate *no* **power**
	- (E) none of the above
- 9. A microcontroller designed to operate over a power supply range of **2 V to 4 V** and a clock frequency range of **0 to 60 MHz** dissipates a maximum of **320 mW.** If the supply voltage used is **3 V** and the clock frequency is **40 MHz**, the power dissipation of the microcontroller will be reduced to:
	- (A) 60 mW
	- (B) 120 mW
	- (C) 160 mW
	- (D) 180 mW
	- (E) none of the above
- 10. A microcontroller designed to operate over a power supply range of **2 V to 4 V** and a clock frequency range of **0 to 60 MHz** dissipates a maximum of **320 mW.** If the supply voltage used is **4 V** and the clock frequency is **1 Hz**, the power dissipation of the microcontroller will be reduced to:
	- (A) 60 mW
	- (B) 120 mW
	- (C) 160 mW
	- (D) 180 mW
	- (E) none of the above

The following table applies to questions 11 through 14:

Table 1. DC Characteristics of a Hypothetical Logic Family.

11. The *DC noise margin* for this logic family is:

- (A) 0.50 V
- (B) 1.00 V
- (C) 1.50 V
- (D) 2.00 V
- (E) none of the above

12. The *practical fanout* for this logic family is:

- (A) 1
- (B) 2
- (C) 5
- (D) 10
- (E) none of the above
- 13. When interfacing an **LED** that has a **forward voltage of 1.5 V** to this logic family in a *current sourcing* configuration, **maximum brightness** will be achieved (within the rated specifications) using a current limiting resistor of the value:
	- (A) 200Ω
	- (B) 300Ω
	- (C) 400Ω
	- (D) 500Ω
	- (E) none of the above
- 14. When interfacing an **LED** that has a **forward voltage of 1.5 V** to this logic family in a *current sinking* configuration, **maximum brightness** will be achieved (within the rated specifications) using a current limiting resistor of the value:
	- (A) 200Ω
	- (B) 300Ω
	- (C) 400Ω
	- (D) 500Ω
	- (E) none of the above

The following circuit applies to questions 15 through 17:

- 15. If the *minimum* value of pull-up resistor **R** used for this circuit is **1000 Ω**, the **IOLmax** of each 7403 open-drain NAND gate is specified to be **+5 mA**, and the **I**_{IL} required by the 7404 inverter is **-0.5 mA**, then the **V**_{IL} provided to the 7404 input is guaranteed to be *no higher than:*
	- (A) 0.1 V
	- (B) 0.5 V
	- (C) 4.5 V
	- (D) 5.0 V
	- (E) none of the above
- 16. If the *maximum* value of pull-up resistor **R** used for this circuit is **10,000 Ω**, the off-state leakage current of each of the 7403 open-drain NAND gate outputs is **+10 μA**, and the **IIH** required by the 7404 inverter is **+20 μA**, then the **VIH** provided to the 7404 input is guaranteed to be *no lower than:*
	- (A) 0.1 V
	- (B) 0.5 V
	- (C) 4.5 V
	- (D) 5.0 V
	- (E) none of the above
- 17. A **valid reason** for choosing the *minimum value* of **R** (provided above) is:
	- (A) to minimize the fall time (t_{THL}) of the circuit
	- (B) to minimize the rise time (t_{TLH}) of the circuit
	- (C) to minimize the power dissipation of the circuit
	- (D) to minimize the DC noise margin of the circuit
	- (E) none of the above

- 18. This circuit implements the following type of logic gate:
	- (A) two-input OR
	- (B) two-input AND
	- (C) two-input NOR
	- (D) two-input NAND
	- (E) none of the above
- 19. If $A = 5V$ and $B = 5V$, the output **F** will be:
	- (A) disconnected ("floating" or high impedance)
	- (B) 0 V
	- (C) 2.5 V
	- (D) 5.0 V
	- (E) none of the above
- 20. If the "on" resistance of both the P-channel and N-channel MOSFETs is **50** Ω , the amount of power this circuit will dissipate when input $A = 5V$ and input **B = GND** is:
	- (A) 25 mW
	- (B) 50 mW
	- (C) 250 mW
	- (D) 500 mW
	- (E) none of the above

The following circuit applies to questions 21 through 23:

- 21. This circuit implements the following type of logic gate:
	- (A) two-input OR
	- (B) two-input AND
	- (C) two-input NOR
	- (D) two-input NAND
	- (E) none of the above
- 22. If the "on" resistance of the MOSFET labeled " Q_P " is **200** Ω and the "on" resistance of the MOSFET labeled " Q_N " is **100** Ω , then if **10 mA** of current is **sourced** in the high state, **V_{OH}** will be:
	- (A) 1 V
	- (B) 2 V
	- (C) 3 V
	- (D) 4 V
	- (E) none of the above
- 23. If the "on" resistance of the MOSFET labeled " Q_P " is **200** Ω and the "on" resistance of the MOSFET labeled " Q_N " is **100** Ω , then if **10 mA** of current is **sunk** in the low state, V_{OL} will be:
	- (A) 1 V
	- (B) 2 V
	- (C) 3 V
	- (D) 4 V
	- (E) none of the above

The following figure applies to questions 24 through 25 (assume each horizontal division is **1 nanosecond**):

\leftarrow 1 ns

- 24. Based on the definition provided in the course text, the **fall time** (t_{THL}) for the inverter is approximately:
	- (A) 1.0 ns
	- (B) 1.5 ns
	- (C) 2.0 ns
	- (D) 3.0 ns
	- (E) none of the above
- 25. The **rise propagation delay** (t_{PLH}) for the inverter is approximately:
	- (A) 1.0 ns
	- (B) 1.5 ns
	- (C) 2.0 ns
	- (D) 3.0 ns
	- (E) none of the above

26. A **"floating"** (unconnected) gate input will *most likely* cause the gate's **output** to:

- (A) always be high
- (B) always be low
- (C) be one-half (50%) of the supply voltage
- (D) be unpredictable
- (E) none of the above
- 27. A CMOS circuit only consumes a **significant** amount of power:
	- (A) when warming up
	- (B) when cooling off
	- (C) during output transitions
	- (D) during input transitions
	- (E) none of the above
- 28. The **primary purpose** of decoupling capacitors is to:
	- (A) provide an instantaneous source of current during output transitions
	- (B) increase the output current sourcing/sinking capability
	- (C) prevent V_{OH} from falling below V_{OH} _{min}
	- (D) prevent V_{Ol} from rising above V_{Ol} max
	- (E) none of the above
- 29. When a gate's **rated IOL** specification is *exceeded*, the following is likely to happen:
	- (A) the V_{OH} of the gate will increase and the t_{TLH} of the gate will decrease
	- (B) the V_{OL} of the gate will decrease and the t_{THL} of the gate will increase
	- (C) the V_{OH} of the gate will decrease and the t_{TLH} of the gate will increase
	- (D) the V_{OL} of the gate will increase and the t_{THL} of the gate will increase
	- (E) none of the above
- 30. If a CMOS inverter drives a **capacitive load of 100 pF** and the "on" resistance of its P-channel MOSFET is 20 Ω , then the gate's output rise time (t_{TLH}) is approximately:
	- (A) 0.2 ns
	- (B) 2 ns
	- (C) 20 ns
	- (D) 2000 ns
	- (E) none of the above