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1 Foundations

1 Foundations

1.1 What is Pa�ern Recognition?

In the signal processing community, pattern recognition is typically de�ned as the process of
deciding between mutually exclusive alternatives called “classes" or “patterns" (e.g. in [5]). For
example, detection is a type of pattern recognition where one is trying to determine whether a
given something (e.g., a plane, a disease, a defect) is present or not. In this cases, there are two
classes: present and not present.

In statistics, pattern recognition is viewed as the process of predicting a random categorical
outcome, and the classes are known as “hypotheses" (e.g. in [7]). More speci�cally, we are given
data which is viewed as a random sample G of a random variable - , called the input variable
(also “predictor" or, more classically, “independent variable."). The class corresponding to the
random sample is viewed as a random sample l of a random variable Ω, called the output
variable (also “response" or, more classically, “dependent variable.").

In either case, the goal is to �nd a rule, usually a deterministic function 5 , to estimate the class
l given the data G . In estimation theory, the value l̂ of the function at a sample G is called an
“estimator" :

l̂ = 5 (G) .

In classi�cation problems, l takes on discrete (categorical) values, usually within a �nite set.
When l takes on continuous values, the problem is known as “regression."

Notice the subtle, but important di�erence between the signal processing and the statistical point
of view. In the second case, classes are explicitly viewed as random variables (though they are
often modeled as such in the �rst case as well). Not all classi�cation problems �t this assumption.
For example, when manufacturing a piece of hardware, there could be potentially in�nitely
many di�erent possible defects which would be cause for rejection. The process generating
these defects may not be a random process. In other words, there may not be a probability law
from which the defects are drawn. Recall that, for a variable to be a random variables, there
needs to be a well-de�ned function from the set of possible outcomes to a measurable space.
Such a function does not necessarily exists. For instance, the process controlling the quality of
the pieces may vary so unpredictably from one moment to the next that there is no consistency
in the process, no level reproducibility in the outcome, so that the process cannot be modeled.

However, the foundation of machine-learning based pattern recognition methods (including
neural networks) lie in theories phrased in probabilistic terms. Thus the rationale for the use
of these methods falls apart when statistical modeling is not possible. While this does not
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necessarily mean that the such pattern recognition problems cannot be solved, one needs to
thread carefully.

1.2 Example of Pa�ern Recognition Problems

There are two main categories of pattern recognition problems, called “supervised" and “unsu-
pervised." A hybrid category called “semi-supervised" also exists.

Supervised pattern recognition problems are those where the classes are predetermined. For
example

• Determine if a patient has heart disease;

• Determine if a building on a foreign territory map is a school;

• Predict whether a criminal will relapse into crime if granted parole;

• Determine if a delivery robot should stop or continue;

• Identify the ZIP code on a letter;

• Identify airport patrons about to commit a terrorist act;

• Determine the next move when solving a Rubik cube;

• Determine if a positive integer is prime;

• Determine if a picture contains a cat;

• Identify spam email;

• Identify if a credit card transaction is fraudulent.

Exercise: For each of these problems, discuss whether the input data and the classes can be
modeled as random variables. �

Unsupervised pattern recognition problems are those where the classes are not predetermined
and must be derived from the data. For example:

• De�ne species within groups of animals;

• Segment an image into its di�erent objects and backgrounds;

• Organize a database of objects for e�cient retrieval;

• Divide integers into groups with shared properties.

Unsupervised pattern recognition has traditionally been equated with “clustering." However, the
intuition between the term clustering is misleading, as the classes need not consist of objects
that are particularly “close" together. The case of even/odd integers, which is a perfectly valid
way to group integers into two well-de�ned similarity classes, illustrates this clearly. While
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objects in the same class share a similar characteristics (divisibility by two), they are not close
in any way. In other words, pattern recognition is about similarity than proximity.

Exercise: Give other examples of classes of objects that are well-de�ned yet do not correspond
to “clusters" or “proximity" in the input data. �

1.3 Classification by Look-up

When the set of possible values for the input variable G is �nite, then it may be possible to list
the decision to be made in all possible cases. For example, if the input data consists in 4 binary
valued pixels in an image, then the set of possibilities for the input contains 24 = 16 cases. If
the decisions to be made for each of these 16 cases is determined (e.g., by an expert or with
machine learning techniques), then they can be stored in a look-up table for later retrieval. In
such case, the function 5 need not be assumed to take any particular form.

When the look-up approach is viable, it should not be dismissed. Today’s electronic machines
often allow fairly large look-up tables to be consulted quickly. Thus many of them use look-ups
to make decisions, as the trade-o� between computation and memory is often positive.

For example, we have developed a look-up based method to classify edges within color images
[10]. This was part of a color trapping project funded by the Hewlett Packard company. Color
trapping is a solution to the problem of color plane misalignment during printing, which cause
the color at the edge of objects to be inconsistent with the color inside the object. Part of the
solution to this problem involves identify pixels that lie on the edge of a colored area, and
classifying the edges into one of several types based on their shape and the colors they involve.
After quantizing the pixel values to 8 bits and normalizing the orientation of a 5-by-5 patch
surrounding the pixel, the look-up table required to store all the possible edge cases used only
3.7 MBytes of memory.

1.4 Classification by Extrapolation

When the the set of possible values for the input variable G is in�nite, or when it is �nite but of
too large a size for all the cases to be separately analyzed and/or stored in a look-up table, then
the function 5 must be constructed somehow.

Once can do this by relying on understanding the principles that control the decision. For
example, if one needs to decide if an integer is even or odd, then it would be impossible to build
a look-up table with the parity of all integers. However, we know the rule to make this decision,
and so building the required function 5 does not pose a challenge. For example, using 0 as the
label for even integers and 1 for odd integers, we can set 5 (G) = G mod 2.

When the rules to make the decision are unknown, or only partially known, one can attempt
to build the function 5 by extrapolating from known examples. This approaches requires to
assume some level of continuity/regularity/consistency in the pattern distribution. For example,
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it is not possible to decide if an integer is prime or not by extrapolating from known examples,
as prime integers tend to be isolated and their distribution follows no speci�c pattern (only
asymptotically). But it may be a viable approach if points from the same class tend to be
grouped together. In particular, this is a reasonable assumption if the classes can be viewed as
one ideal prototype pattern perturbed by a large number of independent noise processes [6].
Indeed, by the Central Limit Theorem, the combined e�ects of all these independent variables
is approximately Gaussian.

1.5 Evaluation of Pa�ern recognition Methods

If the space of possible values for the input is �nite and small, one can assess the accuracy of a
given pattern recognition method by evaluating its accuracy at every single point of the input
space.

If the space is in�nite, or if it is too large, one can try to use a sampling strategy to estimate
the accuracy of the classi�er. Again, this can only work under some kind of “continuity" or
“consistency" assumption.

One approach to do this is to assume that the input is a random variable. More speci�cally,
one needs to be given some input values, with their corresponding class (e.g. the “test data"),
and be able to assume that these input values correspond to independent samples from some
distribution. A popular approach is to compute the accuracy of the classi�er on the test data.
Since the test data is random, the accuracy obtained is also a random number. Therefore, this
test is usually repeated several times, and the empirical average and standard deviation of the
test accuracy is reported.

There is, however, a strong theoretical basis for using the test accuracy as an estimate for the
accuracy of a classi�er. This theory relies on concentrations inequalities in probability theory.
Let me explain.

Let /8 , 8 = 1, . . . , = be a binary valued random variable representing the success (/8 = 1) or
failure (/8 = 0) of the classi�cation of test input value 8 . Then / = 1

=

∑=
8=1 /8 is a measure of the

accuracy of the classi�er on the test data. The quantity / is not �xed, but rather random. Each
random variable /8 is an identically distributed Bernoulli random variable with parameter ?
equal to the population accuracy of the classi�er. Thus =/ is a binomial random variable with
mean =? and variance =? (1 − ?).

Concentration inequalities quantify to what extent a random variable . deviates from its mean
`, and so they can be used to quantify to what extent the test accuracy deviates from the
population accuracy of a classi�er. They usually take the form [9]

P{|. − ` | > n} < something small.

A basic concentration inequality is Chebyshev’s Inequality
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Theorem 1.1. (Chebyshev’s Inequality) Let . be a random variable with �nite mean ` and
variance f2. Then

P{|. − ` | ≥ n} ≤ f
2

n2 ,

for any n > 0

Proof. This inequality follows from applying Markov’s inequality to the random variable (/−`)2.

Markov’s inequality states that if a random variable . ′ taking values in R is non-negative and
has �nite mean ` ′, then for any n > 0,

P{. ′ ≥ n} ≤ `

n
.

Setting . ′ = (/ − `)2, we have ` ′ = �{(/ − `)2} = f2 and the conclusion follows. �

Applying Chebyshev’s Inequality to the test accuracy measure / , we obtain

P{|/ − ? | ≥ n} ≤ ? (1 − ?)
=n2 , for any n > 0.

Thus, as the number of samples = grows to in�nity, the probability that the test accuracy is not
within an n of the classi�er accuracy ? goes to zero. The bound decreases to zero is inversely
proportional to the number of test points.

Note that the bound on the probability that the test accuracy is within n of the true accuracy ?
of the classi�er depends on ? , which is unknown. We can make the bound independent of ? by
observing that ? (1 − ?) ≤ 1

4 . Thus we have

P{|/ − ? | ≥ n} ≤ 1
4=n2 , for any n > 0.

This inequality holds for any classi�er, and for any data distribution.

Another important concentration inequality is Hoe�ding’s inequality.

Theorem 1.2. (Hoe�ding’s Inequality) Let .1, . . . , .= be random variables such that, for all
8 = 1, . . . , =, there exists �nite 08 , 18 ∈ R such that 08 ≤ .8 ≤ 18 with probability one. Let
. =

∑=
8=1 .8 . Then for every n > 0, we have

P{|. − � (. ) | ≥ n} ≤ 24
−2n2∑

8 (08−18 )2 .

It the .8 are Bernoulli random variables, this boils down to

P{|. − � (. ) | ≥ n} ≤ 24
−2n2
= .

Dividing by =:

P{
����.= − � (. )= ���� ≥ n= } ≤ 24

−2n2
= .
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We have / = .
=

and the population accuracy ? = � (/ ) = � (. )
=

. Setting C = n
=

yields

P{|/ − ? | ≥ C} ≤ 24−2=C2
.

(This is one of many things called “Cherno�’s bound") This means that the di�erence between
the probability that the test accuracy and the population accuracy of a classi�er di�er by more
than C decreases (at least) exponentially with the number of samples =. This time, the the bound
on the probability that the test accuracy is within n of the true accuracy ? of the classi�er only
depends on =, and no other unknown parameters. The bounds decreases to zero exponentially
with respect to the number of test points.

Again, this inequality holds for any classi�er, and for any data distribution.

1.6 The Statistical Machine Learning Paradigm

In the empirical view of unsupervised pattern recognition, one is given some data points
?1, . . . , ?= . These data points are viewed as points belonging to a vector space equipped. The
goal is to partition the the set of points into subsets that form meaningful structures in the
vector space. For example, one might equip the vector space with a metric and ask that points in
the same subset be “closer," in some sense, to points within the same subset than points within
other subsets.

The statistical point of view models each ?8 as a random sample G8 in a probability space ( . The
goal is to build a classi�er l̂ = 5 (G) which can be used to classify any point G of the probability
space ( . So rather than merely grouping the data at hand, we wish to obtain a rule to be able to
group further random samples. The emphasis is on the future performance of the classi�er.

data points −→
samples

G1, . . . , G= ∈ (
of a r.v. X

−→ Machine Learning → 5

classi�er

The statistical view of learning with supervision is similar. The emphasize is still on building a
classi�er that will classify future points accurately. The di�erence is that the data points used to
learn are already classi�ed; both the point and their classes are then viewed as random samples.

classi�ed
data points −→

samples
(G1, l1) . . . , (G=, l=)

of r.v.(-,Ω)
−→ Machine Learning → 5

classi�er

1.7 Appeal of the Black Box Approach

Antoine De Saint-Exupéry, a wise man, explained the appeal of the black box approach in his
famous book: "Le Petit Prince." In the story, the author, who is the main protagonist, is stranded
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in the desert after his plane su�ers an engine failure. While attempting a repair, he is visited by
the little prince, who recently arrived on planet Earth.

The little prince asks him "Please, draw me a sheep." The author is very surprised at this request,
and initially protests, remembering his struggles as a child whose drawings were misunderstood
by adults. He eventually obliges and does his best to draw a sheep. The little prince looks at the
result, and complains that the sheep is too sick. He requests another one.

The author draws another one, this time with horns, which makes the little prince smile. "That’s
not a sheep. It’s a ram."

The third attempt is also rejected. This time the little prince deems the sheep too old; he wants
one that will live a long time.

So the author, who is getting impatient, �nally draws a crate and says: "The sheep you want
is inside." He even draws some breathing holes on the side of the crate. Then the little prince
exclaims: "That’s exactly the sheep I wanted."

1.8 Discriminant Function Versus Decision Boundary

In the case where there are two classes to distinguish (binary classi�cation), there are two
related but di�erent points of view. The �rst one seeks to construct a discriminant function
6(G) : ( → R which will be used to classify data points as follows [4]:

i5 6(G) > 0, decide class 1,
i5 6(G) < 0, decide class 2.

Observe that the discriminant function de�nes two regions of the feature space

(1 = {G |6(G) > 0},
(2 = {G |6(G) < 0},

each associated to a di�erent class label. If the feature space is R3 and 6 is a continuous function,
then the two regions are separated by boundary points where 6 vanishes. An alternative point
of view in this case is to focus on �nding the boundary between the regions

{G |6(G) = 0}.

1.9 Two simple examples of classifiers

We now present two simple examples of classi�cation methods, which we will use to illustrate
our further discussion. Although both methods are strictly empirical, we will later see that they
can be viewed in statistical terms.
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Nearest Neighbor Classification Method

Consider a supervised classi�cation problem where one is asked to classify a data point G ∈ (
into one of 2 classes, denoted by the labels Ω = {1, 2, . . . , 2}. Given are = data points with known
classes:

(G8 , l8), , 8 = 1, . . . , =

with G8 ∈ ( and l8 ∈ Ω. Assume that the space ( in which the points lie is equipped with a
metric 3 :

3 : ( × ( → R≥0.

That is to say, a function 3 such that, for all G, G ′, G ′′, we have

1. 3 (G, G) ≥ 0 and 3 (G, G ′) = 0⇔ G = G ′,

2. 3 (G, G ′) = 3 (G ′, G),

3. 3 (G, G ′) + 3 (G ′, G ′′) ≥ 3 (G, G ′′).

The “nearest neighbor classi�cation rule" is to assign G to the class of the nearest point among
G1, . . . , G= :

l̂ = l8∗, where 8∗ = arg min
8=1,...,=

3 (G, G8).

We can also describe the classi�er using a discriminant function, for example

6(G) = min
8B.C .l8=1

3 (G, G8) − min
8B.C .l8=2

3 (G, G8)

Notice that this classi�er makes no mention of probability. In particular, it does not assume that
the points G8 are samples drawn following a distribution. We will later see that this classi�er
can be viewed from a probability standpoint.

Linear Separation Between Means

This time, we consider a supervised classi�cation problem where one is asked to classify a data
point G ∈ ( into one of 2 classes, denoted by the labels Ω = {1, 2}. Given are = data points with
known classes:

(G8 , l8), 8 = 1, . . . , =

with G8 ∈ ( and l8 ∈ Ω. Assume that ( is a vector space equipped with a real-valued inner
product · : ( × ( → R.

Without loss of generality, assume l1 = l2 = . . . = l=1 = 1 and l=1+1 = . . . = l= = 2. Let

`1 =
1
=1

=1∑
8=1

G8 and `2 =
1

= − =1

=∑
8==1

G8 .

If `1 ≠ `2, de�ne the discriminant function

6(G) = (`1 − `2) · G −
1
2 (`1 − `2) · (`1 + `2) .
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Thus we have the classi�cation rule

i5 (`1 − `2) · G −
1
2 (`1 − `2) · (`1 + `2) > 0, decide class 1,

i5 (`1 − `2) · G −
1
2 (`1 − `2) · (`1 + `2) < 0, decide class 2.

The separation between the classes is the hyperplane

(`1 − `2) · G −
1
2 (`1 − `2) · (`1 + `2) = 0

We can check that `1 (and, by continuity, the entire side containing `1) is classi�ed as class 1
by checking that 6(`1) > 0. Similarly `2 (and, by continuity, the entire side containing `2) is
classi�ed as class 2 since 6(`2) < 0. Also, the midpoint 1

2 (`1 − `2) is on the boundary since
6( 12 (`1−`2)) = 0. Furthermore the normal to the hyperplane is (`1−`2) since (`1−`2)·(G1−G2) =
0 for any two points G1, G2 on the hyperplane 6(G1) = 6(G2) = 0.

So the separation hyperplane is the hyperplane passing through the half-point between the
means 1

2 (`1 − `2) that is perpendicular (in the sense given by the inner product) to the vector
linking the means.

Connections between the two example classifiers

Consider the space vector S with inner product of the linear separation method, and equip it
with the distance function induced by the inner product:

3 (G, G ′) =
√
(G − G ′) · (G − G ′) .

Then the linear separation method is the same as classi�cation to the class of the nearest mean:

l̂ = l8∗, where 8∗ = arg min
8=1,2

3 (G, `8) .

Indeed we have

3 (G, `1) ≤ 3 (G, `2)
⇔ 32(G, `1) ≤ 32(G, `2)

⇔ (G − `1) · (G − `1) ≤ (G − `2) · (G − `2)
⇔ G · G − 2G · `1 + `1 · `1 ≤ G · G − 2G · `2 + `2 · `2

⇔ −2G · `1 + `1 · `1 ≤ −2G · `2 + `2 · `2

⇔ 0 ≤ −2G · (`2 − `1) + `2 · `2 − `1 · `1

0 ≤ −G · (`2 − `1) +
1
2 (`2 · `2 − `1 · `1)

⇔ 0 ≤ G · (`1 − `2) + `2 · `2 +
1
2 (`1 + `2) (`1 − `2)
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So if we add a little bit more structure to the space ( , this linear separation method become a
shortest distance method.

Conversely, if we take the space S equipped with a metric d in the nearest neighbor classi�cation
and equip it with an inner product, then the method can be viewed as one where the decision
boundary is a collection of hyperplane segments.

Arbitrariness of Structure

The choice of inner product or metric is arbitrary. It is up to the data scientist to decide what
they will use. However, this choice will a�ect the resulting classi�er.

For example, one can use the Euclidean inner product

G · G ′ = G)G .

Then the discriminant function can be written as

6(G) = (`1 − `2) · G −
1
2 (`1 − `2) · (`1 + `2),

= (`1 − `2))G −
1
2 (`1 − `2)) (`1 + `2),

and thus the separation hyperplane has normal vector (`1 − `2).

More generally, one can use any symmetric, positive de�nite matrix " to de�ne an inner
product as

G · G ′ = G)"G.

Then the discriminant function can be written as

6(G) = (`1 − `2) · G −
1
2 (`1 − `2) · (`1 + `2),

= (`1 − `2))"G −
1
2 (`1 − `2))" (`1 + `2) .

Here the separation hyperplane has normal vector " (`1 − `2).

Note that one could perform a change of coordinate to map one inner product to the other. For
example, if the singular value decomposition of " is

" = *) Σ* ,

then after mapping G to a new coordinate Ḡ as

G → Ḡ =
√
Σ*G,

the inner product G · G ′ = G)"G becomes the Euclidean inner product Ḡ · Ḡ ′ = Ḡ) Ḡ ′.

Exercise: Consider the nearest-mean classi�cation rule on R2 equipped with the Euclidean
metric. We have seen that the separation line between the two classes in R2 is a straight line
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passing between the two class means `1, `2. We have also seen that, if the metric is rede�ned as
3 (G, G ′) = (G − G ′))" (G − G ′), where " is any positive de�nite symmetric 2-by-2 matrix, then
the separation is still a straight line passing between the two class means. Is it possible to de�ne
a metric on R2 such that the above classi�cation method will yield a separation line that is not
straight? �

1.10 Selecting a Classifier

We have seen that the choice of structure on the space in which the training samples lie will
a�ect the resulting classi�er. We have also seen that this choice is arbitrary. So what to do if we
have several possible choices and would like to pick one?

Consider # di�erent classi�ers (e.g., # di�erent choices of metrics for a nearest neighbor
classi�er). Assume that any data point G is a sample of a random variable - . Assume also that
we are given labeled samples (G8 , l8) drawn independently.

Let /:8 be a binary valued random variable representing the success (/:8 = 1) or failure (/:8 = 0)
of the classi�cation of test input value 8 using classi�er : . Then /: = 1

=

∑=
8=1 /

:
8 is a (random)

measure of the accuracy of classi�er : on the test data. The population accuracy of classi�er :
is equal to the expectation � (/: ).

If we pick the method :0 with the highest test accuracy:

:0 = arg max
:=1,2,...,#

/: ,

then to what extent can be expect this method to perform well on future data?

We have

%A>1

{���/:0 − � (/:0)
��� > n} ≤ %A>1

{
∪#
:=1

���/: − � (/: )��� > n}
≤

#∑
:=1

%A>1

{���/: − � (/: )��� > n}
≤

#∑
:=1

24−2=n2

= 2#4−2=n2
.

So, for a high enough number = of test samples, and a small enough number # of choices, the
empirical error of the chosen classi�er is likely to estimate the classi�er well. The higher the
number of classi�ers considered, the bigger the likely di�erence. If the number of considered
classi�ers is in�nite, then the bound is useless. See [1] for bounds that apply to the in�nite case.
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2 From Data to Random Samples

Data points are not the same as samples from a random variables. However, one can view data
points as samples from a random variable provided that a suitable theoretical framework can be
assumed to hold. In order to do this, two steps of abstraction are needed:

1. the data points needed to be seen as taking values in some space ( ;

2. the space ( needs to be equipped with a structure so to make it a probability space.

2.1 Types of Random Variables

There are three types of random variables, along with variables of mixed type. Here is a short
summary. For more details see Section 1.2 of [7].

1. Quantitative random variables. These are characterized by notions of size (large/small)
and a quanti�ed notion of closeness. Random variables taking values in N or in R are
examples of such.

2. Ordered categorical random variables. These are discrete random variables whose values
can be ranked. For example, the three following values are ranked {B<0;;,<438D<, ;0A64},
as ;0A64 > <438D< and ;0A64,<438D< > B<0;; . However, one cannot say that the
di�erence between B<0;; and<438D< is the same as the di�erence between<438D< and
;0A64 . Another example is the set {2ℎ8;3, C44=, 03D;C}.

3. Unordered categorical random variables. These are discrete random variables without any
notion of rank. For example, gender as categorized into three cases as {<0;4, 5 4<0;4, >Cℎ4A }
has no ordering. Similarly, the sides of a die, even if they are represented by numbers
{1, 2, 3, 4, 5, 6}, are not ordered in any speci�c way.

The mapping from data to its representation as a point in some space is a choice. Care must
be taken not to introduce structures in ( that are not compatible with the data. For example,
given categorical data like the genders {<0;4, 5 4<0;4, >Cℎ4A }, one should not map these to
{1, 2, 3} ∈ N with a structure such that 1 < 2 < 3 or 1 + 2 = 3.

2.2 A Technique to Map Non-numerical Data to R3

Now we showcase a method to map complex data into points in R3 through the theoretical
framework of a rubric. The technique was developed and used to analyse data in [11].
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2 From Data to Random Samples

1 2 3
Basic Intermediate Advanced

A Rigor
B Communication
C Estimation

Table 2.1: Example of Rubric

Suppose you are given data such as set of student exams and homework, or a set of interviews,
books, or movies. A traditional method for analysing the data consists in using a theoretical
rubric and have an expert go over the data “by hand" to label it according to the rubric. This is
similar to grading, where one if given a set of attributes along with values for each attribute.

For example, in [11], we were interested in the “habits of mind" of engineering students, as
exampli�ed by certain characteristics such as “rigor," “communication skills" and “estimation
skills." For each item, a level of achievement was de�ned, such as “basic," “intermediate," and
“advanced." These skills and levels were arranged in a grid, as in Table 2.1.

The expert uses the rubric to label di�erent parts of the work/homework/movie according to
the skill displayed and its level of achievement. This yields a sequence of tags. For example, if
using the rubric of Table 2.1, a particular homework could be labeled as

(�1), (�3, �1), (�2), (�1, �2,�2), (�3), . . . , (�3,�1)

In other words, the data is summarized as a sequence of vectors of various lengths, where each
vector entry consists of a letter (representing a skill) and a number (representing an achievement
level).

This sequence of vectors can be viewed as a random process. If the process is modeled as
a certain parametric random process, then the speci�c values of the tags in the sequence,
along with their order (and possibly timing as well) can be used to estimate the parameters
\ = (\1, . . . , \3 ) of the random process corresponding to one data point (e.g., one movie or one
interview). Then the estimated vector of parameters \̂ provides a representation in R3 for the
given data point.

Note that the representation obtained depends on the rubric chosen: the same data can be
interpreted through a di�erent rubric, leading to a di�erent sequence of tabs and thus a di�erent
point in R3 .

2.3 Mapping Data to Invariant Coordinates

Suppose the data points are in a space % on which there is an equivalence relation ∼ such that

class of ? = class of ? ′, ∀? ∼ ? ′.

Recall that an equivalence relation on a space % is a subset of % × % whose elements, denoted by
? ∼ ? ′, are such that, for all ?, ? ′, ? ′′ ∈ % we have

15



2 From Data to Random Samples

• ? ∼ ? for all ? ∈ % ;

• if ? ∼ ? ′ then ? ′ ∼ ? , for all ?, ? ′ ∈ % ;

• if ? ∼ ? ′ and ? ′ ∼ ? ′′, then ? ∼ ? ′′, for all ?, ? ′, ? ′′ ∈ % .

De�nition 1. A real-value function � : % → R is called an invariant under ∼ if

� (?) = � (? ′), for all ? ∼ ? ′.

Under many circumstances, one can map each ? ∈ % to new coordinates

G = G (?) = (�1(?), �2(?), . . . , �3 (?)),

in such a way that
? ∼ ? ′ if and only if G (?) = G (? ′) .

In such case, we call {�1, . . . , �3 } a separating set of invariants because their values separate the
equivalence classes de�ned by ∼. In other words, the feature vector (�1(?), . . . , �3 (?)) ∈ R3 is
an invariant representation for the point ? : it only removes information that is irrelevant to the
classi�cation.

There are various methods and algebraic computational tools to obtain a separating set of
invariants for a given equivalence relation ∼ on a space % . For example, when the equivalence
relations is given by the action of a Lie group, one can use the Moving Frame method of Fels
and Olver [3]. For equivalence relations given by �nite group actions, see for example [2].

Example 1. Rotations in the Plane

Example 2. Addition of two units

Example 3. Permuting a set of points

Example 4. Weighted graphs under isomorphism

Example 5. Point Sets under rigid motion and relabeling

2.4 Extension to an Implicit Feature Space

Recall that the nearest neighbor classi�cation rule can be implemented on any real inner product
space ( as

l̂ = l8∗, where 8∗ = arg min
8=1,...,=

(G − G8) · (G − G8) .

Similarly, one can assign G to the class of the closest mean on an inner product vector space S as

l̂ = l8∗, where 8∗ = arg min
8=1,2

(G − `8) · (G − `8) .

In other words, the only structure that is needed to make a decision with these methods is an
inner product.

16



2 From Data to Random Samples

If we map the data in % to a space S equipped with an inner product

q : % → (,

then we can implement the nearest neighbor classi�cation rule in S as

l̂ = l8∗, where 8∗ = arg min
8=1,...,=

(q (G) − q (G8)) · (q (G) − q (G8))

and
l̂ = l8∗, where 8∗ = arg min

8=1,2
(q (G) − q (`8)) · (q (G) − `8),

respectively.

Many other methods for classi�cation, and many methods for building a classi�er, also only
rely on computing inner products.

The kernel trick allows one to compute inner products in the space ( without having to know
the mapping q or even the space ( .

De�nition 2. A function : : % × % → R is called a kernel function if there exists a Hilbert space
( and a map q : % → ( called a feature map such that

q (?) · q (? ′) = : (?, ? ′) for all ?, ? ′ ∈ % .

Recall that a Hilbert space is a real inner-product space that is complete with respect to the
norm de�ned by the inner product. Recall also that a Complete space is one where every Cauchy
sequence converges to a point in the space.

Example 6. Suppose % = R2 and ( = R3 equipped with the Euclidean inner product. Write
? = (D, E) and consider the map q : R2 → R3 given by

q (D, E) = (D2,
√

2DE, E2) .

Then

q (D, E) · q (D ′, E ′) = (D2,
√

2DE, E2) · (D ′2,
√

2D ′E ′, E ′2)
= D2D ′2 + 2DED ′E ′ + E2E ′2

= (DD ′ + EE ′)2

=

[
(D, E)

(
D

E

)]2
.

So here the function : (?, ? ′) =
(
?)?

)2 is a kernel. Note that this function is a kernel for other
mappings as well, for example

q̄ (D, E) = 1
√

2
(D2 − E2, 2DE,D2 + E2).
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2 From Data to Random Samples

Example 7. Let ;2 be the set of in�nite sequences {28}∞8=1 in R with
∑∞
8=1 |28 |2 < ∞ equipped with

the inner product

{28}∞8=1 · {28}∞8=1 =
∞∑
8=1

282
′
8 .

Consider a set of functions 58 : % → ' such that

∞∑
8=1

58 (?) ∈ ;2, for all ? ∈ % .

De�ne the map q : % → ;2 as
q (?) = {58 (?)}∞8=1.

We have

q (?) · q (? ′) =
∞∑
8=1

58 (?) 58 (? ′) .

Therefore the kernel in this case is

: (?, ? ′) =
∞∑
8=1

58 (?) 58 (? ′) .

What kind of functions can be kernels? The following theorem clari�es that kernels are any
symmetric, positive de�nite functions.

Theorem 2.1 (Version of Mercer’s Theorem). A function : : % × %R is a kernel if and only if

1. : (?, ? ′) =  (? ′, ?) for all ?, ? ′ ∈ %

2. For any = ∈ N, the matrix (
: (?8 , ? 9 )

)=
8,9=1

is positive semi-de�nite for any ?1, . . . , ?= ∈ % .

Proof. Covered in class. �

For more details about implicit coordinates and kernels see Chapter 4 of [8].

Exercise: Given is a kernel: : %×% → R associated to a mapq : % → ( into some Hilbert space ( .
Recall that the inner product on ( induces a metric on ( , namely3( (G, G ′) =

√
(G − G ′) · (G − G ′) .

Does this metric on ( induce a metric on % as well? �
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2 From Data to Random Samples

2.5 From Metric Space to Probability Space

A probability space ((, Σ, `) is made of

• ( , the sample space, that is to say the set of possible outcomes of a random experiment.

• Σ, a f-algebra called the event space, that is to sat the set of possible events, where each
event is a set of outcomes in ( . Recall that a f-algebra satis�es (1) ( ∈ Σ, (2) if � ∈ Σ,
then �2 = ( \� ∈ Σ, (3) if �8 ∈ Σ, then

⋂
�8 ∈ Σ.

• `, the probability function, that is to say a probability measure ` :→ [0, 1]. Recall that
a probability measure satis�es (1) ` (⋃8 �8) =

∑
8 ` (�8) if the �8 ∈ Σ have an empty

intersection �8
⋂
� 9 = when 8 ≠ 9 , and (2) ` (() = 1.

We have previously discussed how to map data to points in a metric space. There is a very
natural way to make a metric space into a probability space.

One can construct a f-algebra called a “Borel algebra" on a metric space (, 3 as follows.

1. Use the metric 3 : ( ×�→ R to de�ne open sets as

{G ∈ ( |3 (G, G0) < A }, for some A ∈ R≥0 and some G0 ∈ (.

2. add more open sets by taking complements and intersections until you get a f-algebra Σ.

In other words, if one equips a space ( with a metric (or with an inner product, which naturally
induces a metric), then viewing ( as the sample space, one is indirectly building a f-algebra on
( .

So the only thing that remains in order to have a probability space is the probability function
`. Such a function can be assumed to exist if the data points can be assumed to be obtained
following some “pattern." In other words, we expect some level of repeatability in the process
that yields the data. Assuming this, then the probability measure can be estimated by counting
data points (vieweded as samples) inside open sets of a �xed size, as per the metric chosen. The
assumption of repeatability implies that the probability measure obtained in this fashion should
be consistent over di�erent data sets (i.e. random draws of samples).
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3 Hypothesis Testing

3 Hypothesis Testing

3.1 The MAP criterion

References section 8.1 of [5] (or Chapter 3.1 of Gallager’s corresponding lecture notes).

We begin with a motivating example to illustrate the importance of considering the probability
function underlying the data. Suppose an advertisement company would like to be able to
determine if a forum user is male or not. They are hiring a data scientist to design a classi�er.

Consider the two following classi�ers:

Classifer 1: Decide "male" all the time.

Classi�er 2: Decide "not male" all the time.

Which classi�er is better?

Assuming that the probability that a forum user is male is 0.5, then the probability that the forum
use if not male is also 0.5. Therefore, both Classi�er 1 and Classi�er 2 have a 0.5 probability of
error. So, under this assumption, both classi�ers are equally bad.

Now, if after more investigation, it is determined that the forum is for students in ECE at Purdue,
where about 90% of the students are male, then Classi�er 1 would only have a 0.1 probability of
error while Classi�er 2 would have a 0.9 probability of error. In this scenario, Classi�er 1 is far
better.

This example illustrates several things.

1. whether a classi�er is good or not depends on the context in which it is applied,

2. The probability distribution of the data does matter when designing a classi�er,

3. the question of the accuracy of a classi�er does not make any sense, unless a speci�c
context (and thereby probability law for the data) is speci�ed

4. The probability of error of a classi�er must be interpreted in the context of the problem
at hand. For example, a low probability of error does not mean that the classi�er is good.
In particular, if the ratio of the class in the data is very unbalanced, that is to say if one
class has a very high probability of being drawn from the population, then it is very easy
to obtain a classi�er with high accuracy.
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3 Hypothesis Testing

3.2 Bayes Decision Rule

3.3 Bayes Decision Rule for Normally Distributed Features

3.4 Bounds on Bayes Error

3.5 Minimum Cost Criterion

3.6 Neyman-Pearson Rule

3.7 Sequential Hypothesis Testing

3.8 Single Hypothesis Testing
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