

DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM

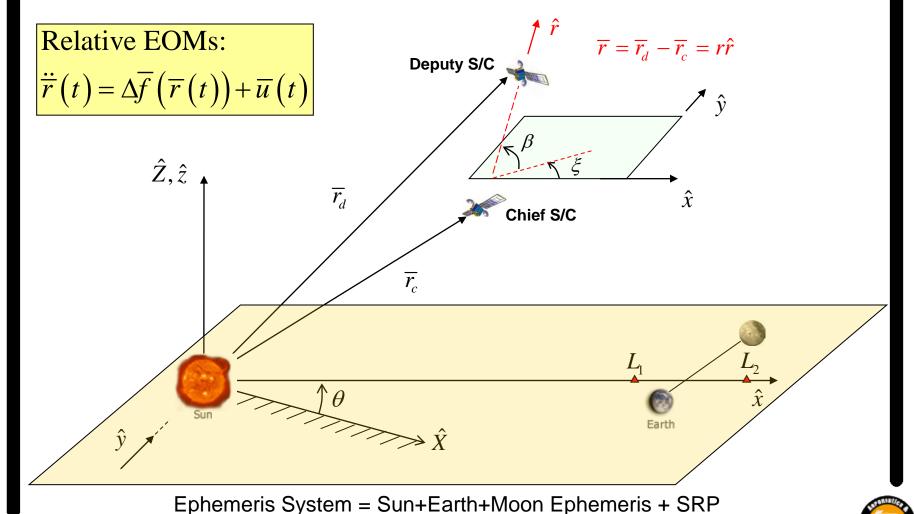
K.C. Howell and B.G. Marchand Purdue University

Reference Motions

- Natural Formations
 - String of Pearls
 - Others: Identify via Floquet controller (CR3BP)
 - Quasi-Periodic Relative Orbits (2D-Torus)
 - Nearly Periodic Relative Orbits
 - Slowly Expanding Nearly Vertical Orbits
- + Stable Manifolds

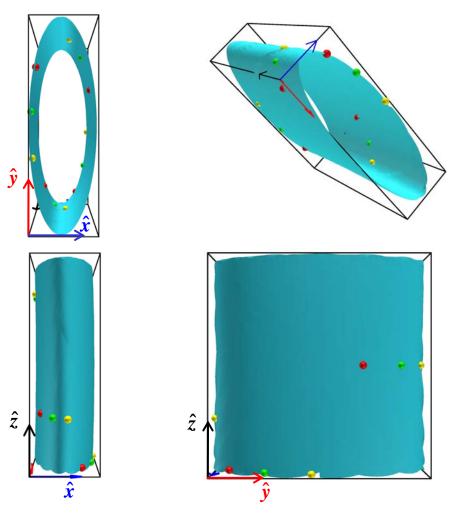
- Non-Natural Formations
 - Fixed Relative Distance and Orientation { RLP | Inertial
 - Fixed Relative Distance, Free Orientation
 - Fixed Relative Distance & Rotation Rate
 - Aspherical Configurations (Position & Rates)

2-S/C Formation Model in the Sun-Earth-Moon System

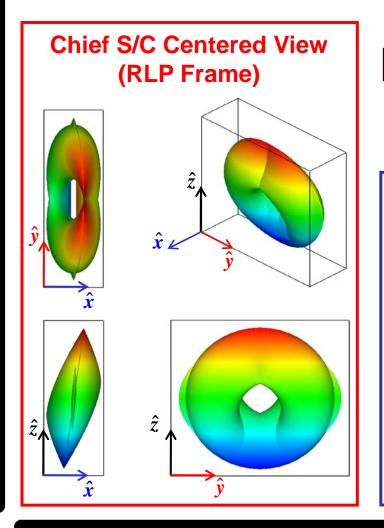


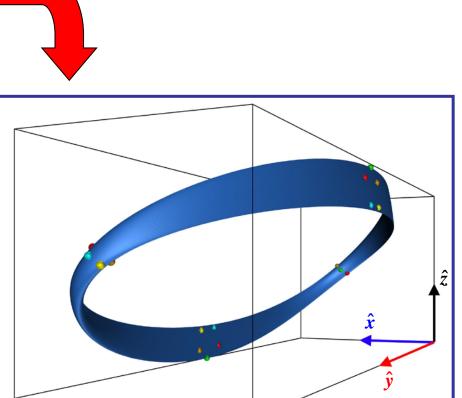
Natural Formations

Natural Formations: String of Pearls

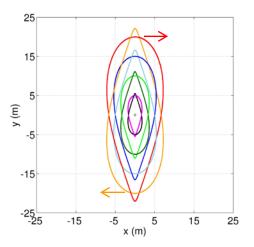


Natural Formations: Quasi-Periodic Relative Orbits → 2-D Torus

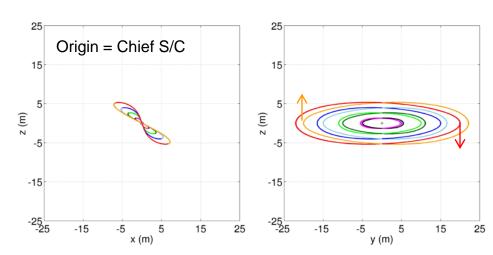




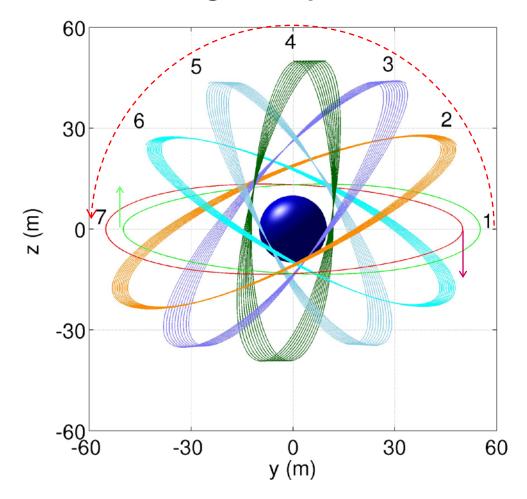
Natural Formations: Nearly Periodic Relative Motion



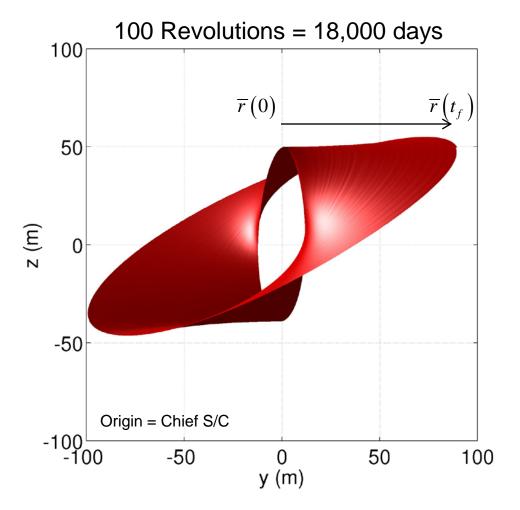
10 Revolutions = 1,800 days



Evolution of Nearly Vertical Orbits Along the *yz*-Plane

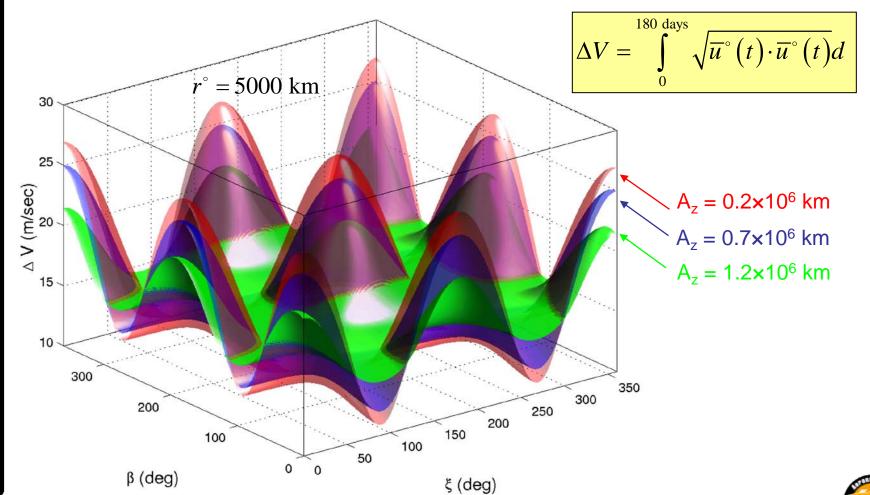


Natural Formations: Slowly Expanding Vertical Orbits



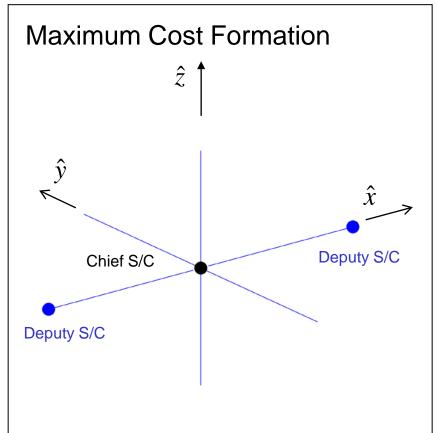
Non-Natural Formations

Nominal Formation Keeping Cost (Configurations Fixed in the RLP Frame)



PURDUE

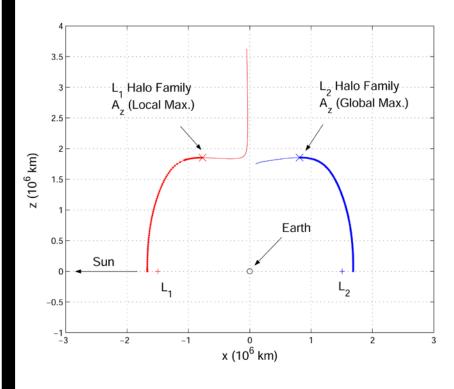
Max./Min. Cost Formations (Configurations Fixed in the RLP Frame)

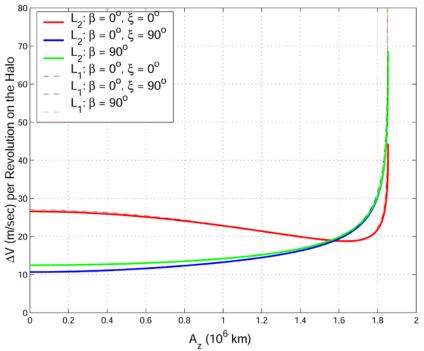




Nominal Relative Dynamics in the Synodic Rotating Frame

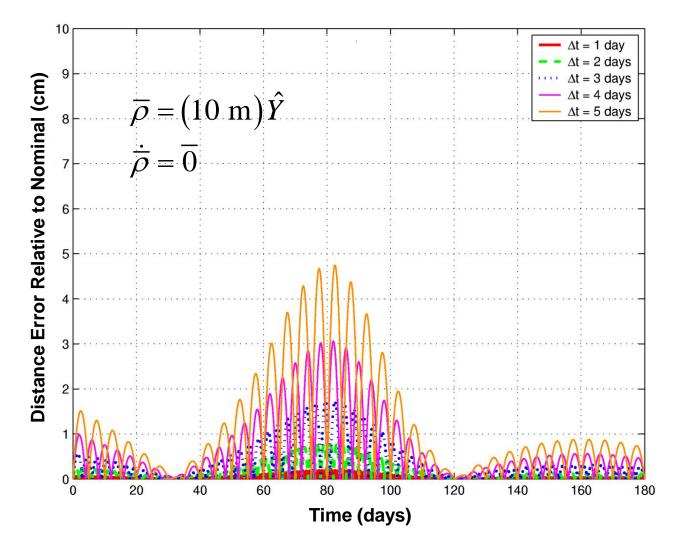
Formation Keeping Cost Variation Along the SEM L₁ and L₂ Halo Families (Configurations Fixed in the RLP Frame)



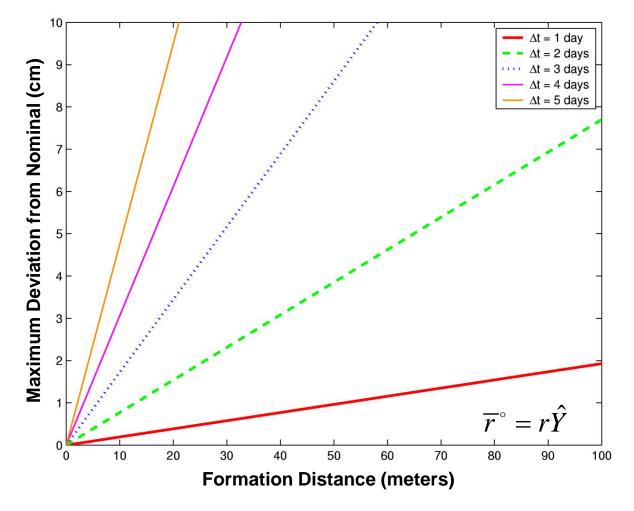


Discrete vs. Continuous Control

Discrete Control: Linear Targeter



Achievable Accuracy via Targeter Scheme

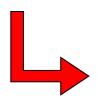


Continuous Control: LQR vs. Input Feedback Linearization

LQR for <u>Time-Varying</u> Nominal Motions

$$\dot{\overline{x}}(t) = \left[\dot{\overline{r}} \quad \ddot{\overline{r}}\right]^{T} = \overline{f}(t, \overline{x}(t), \overline{u}(t)) \qquad \to \overline{x}(0) = \overline{x}_{0}$$

$$\dot{P} = -A^{T}(t)P(t) - P(t)A(t) + P(t)B(t)R^{-1}B^{T}(t)P(t) - Q \to P(t_{f}) = 0$$



Optimal Control Law:

Nominal Control Input
$$\overline{u}(t) = \overline{u}^{\circ}(t) + \left\{ -R^{-1}B^{T}P(t)(\overline{x}(t) - \overline{x}^{\circ}(t)) \right\}$$
Optimal Control, Relative to Nominal, from LQR

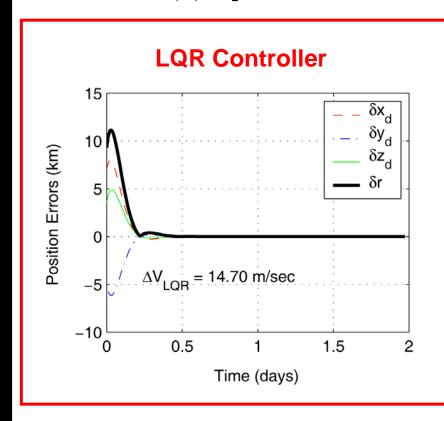
Input Feedback Linearization (IFL)

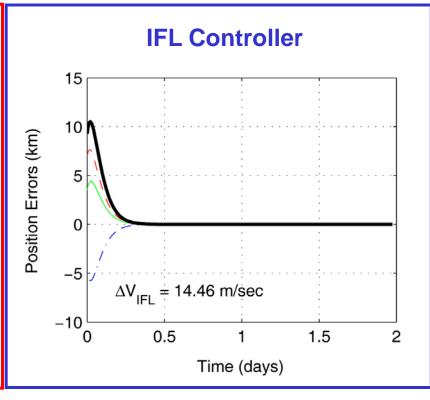
$$\ddot{\overline{r}}(t) = \overline{F}(\overline{r}(t)) + \overline{u}(t)$$

Dynamic Response to Injection Error

$$\rho = 5000 \text{ km}, \ \xi = 90^{\circ}, \ \beta = 0^{\circ}$$

$$\delta \overline{x}(0) = \begin{bmatrix} 7 \text{ km} & -5 \text{ km} & 3.5 \text{ km} & 1 \text{ mps} & -1 \text{ mps} \end{bmatrix}^T$$





Dynamic Response Modeled in the CR3BP Nominal State Fixed in the Rotating Frame

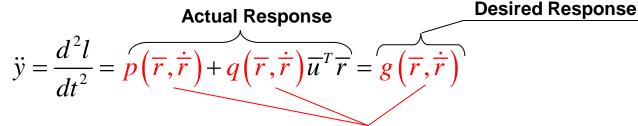
Output Feedback Linearization (Radial Distance Control)

Formation Dynamics

$$\ddot{r} = \Delta \overline{f}(\overline{r}) + \overline{u}(t) \longrightarrow \text{Generalized Relative EOMs}$$

$$y = l(\overline{r}) \longrightarrow \text{Measured Output}$$

Measured Output Response (Radial Distance)



Scalar Nonlinear Functions of \overline{r} and $\dot{\overline{r}}$

Scalar Nonlinear Constraint on Control Inputs

$$h(\overline{r}(t), \dot{\overline{r}}(t)) - \overline{u}(t)^{T} \overline{r}(t) = 0$$

Output Feedback Linearization (OFL)

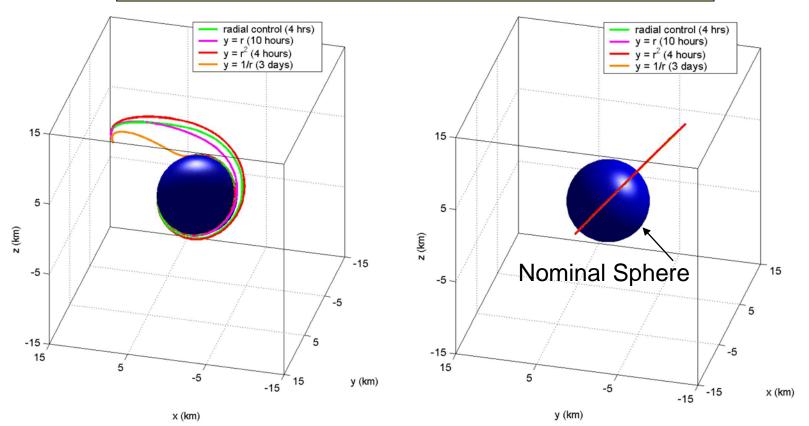
(Radial Distance Control in the Ephemeris Model)

$y = l\left(\overline{r}, \dot{\overline{r}}\right)$	Control Law
r	$\overline{u}(t) = \frac{h(\overline{r}, \dot{\overline{r}})}{r} \hat{r}$ Geometric Approach: Radial inputs only
r	$\overline{u}(t) = \left\{ \frac{g(\overline{r}, \dot{\overline{r}})}{r} - \frac{\dot{\overline{r}}^T \dot{\overline{r}}}{r^2} \right\} \overline{r} + \left(\frac{\dot{r}}{r}\right) \dot{\overline{r}} - \Delta \overline{f}(\overline{r})$
r^2	$\overline{u}(t) = \left\{ \frac{1}{2} \frac{g(\overline{r}, \dot{\overline{r}})}{r^2} - \frac{\dot{\overline{r}}^T \dot{\overline{r}}}{r^2} \right\} \overline{r} - \Delta \overline{f}(\overline{r})$
1/r	$\overline{u}(t) = \left\{ -rg(\overline{r}, \dot{\overline{r}}) - \frac{\dot{\overline{r}}^T \dot{\overline{r}}}{r^2} \right\} \overline{r} + 3\left(\frac{\dot{r}}{r}\right) \dot{\overline{r}} - \Delta \overline{f}(\overline{r})$

- Critically damped output response achieved in all cases
- Total ΔV can vary significantly for these four controllers

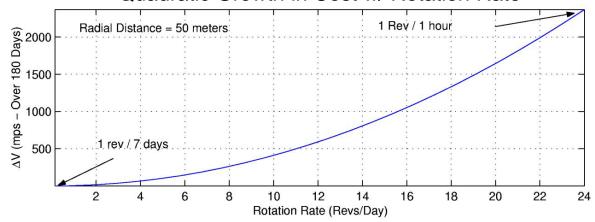
OFL Control of Spherical Formations in the Ephemeris Model

$$\overline{r}(0) = \begin{bmatrix} 12 & -5 & 3 \end{bmatrix}$$
 km $\dot{\overline{r}}(0) = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$ m/sec

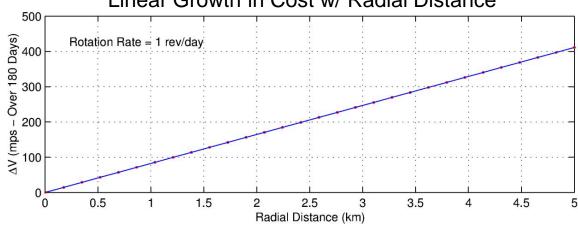


Relative Dynamics as Observed in the Inertial Frame

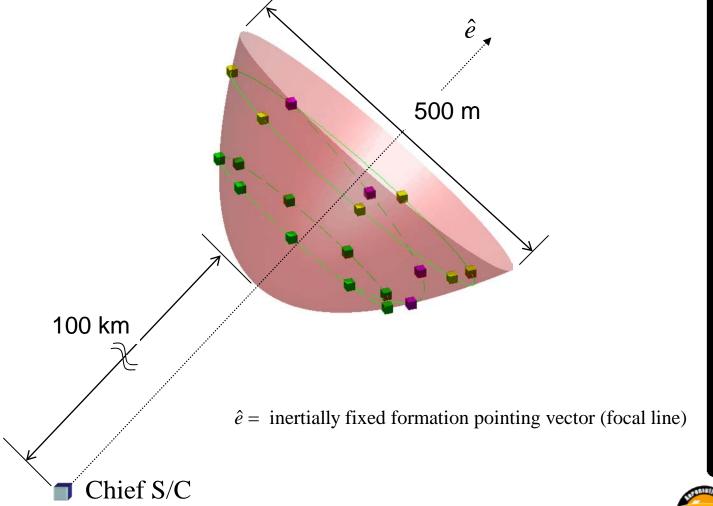
OFL Control of Spherical Formations Radial Dist. + Rotation Rate



Linear Growth in Cost w/ Radial Distance



Inertially Fixed Formations in the Ephemeris Model

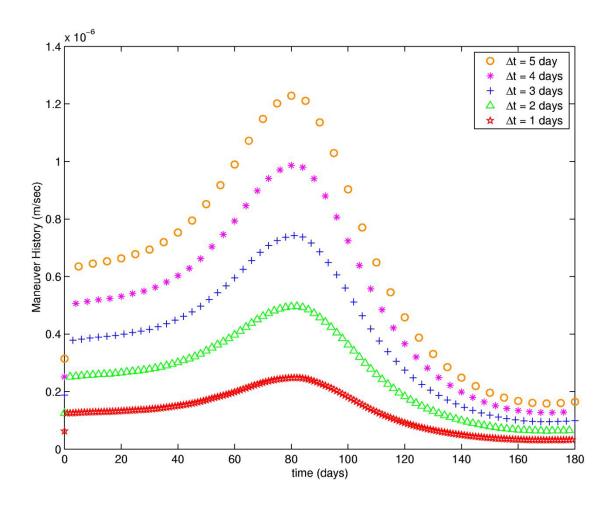


Conclusions

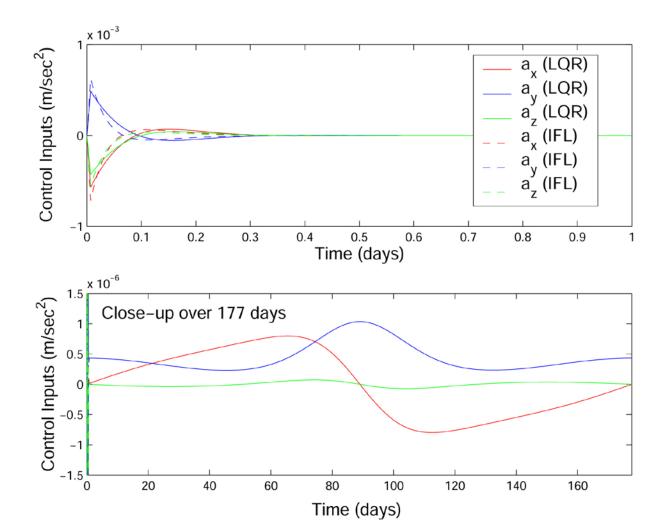
- Continuous Control in the Ephemeris Model:
 - Non-Natural Formations
 - LQR/IFL → essentially identical responses & control inputs
 - IFL appears to have some advantages over LQR in this case
 - OFL → spherical configurations + unnatural rates
 - Low acceleration levels → Implementation Issues
- Discrete Control of Non-Natural Formations
 - Targeter Approach
 - Small relative separations → Good accuracy
 - Large relative separations → Require nearly continuous control
 - Extremely Small ΔV's (10⁻⁵ m/sec)
- Natural Formations
 - Nearly periodic & quasi-periodic formations in the RLP frame
 - Floquet controller: numerically ID solutions + stable manifolds

Backups

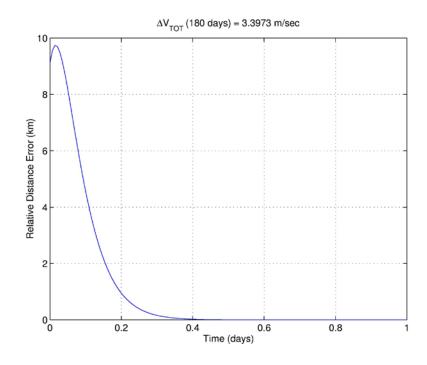
Targeter Maneuver Schedule

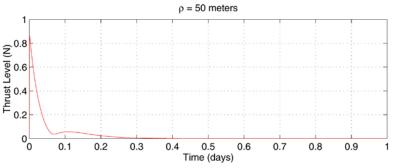


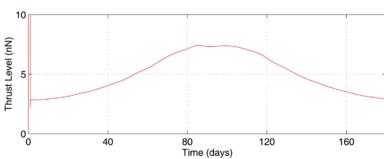
LQR vs. IFL (CR3BP) Control Accelerations



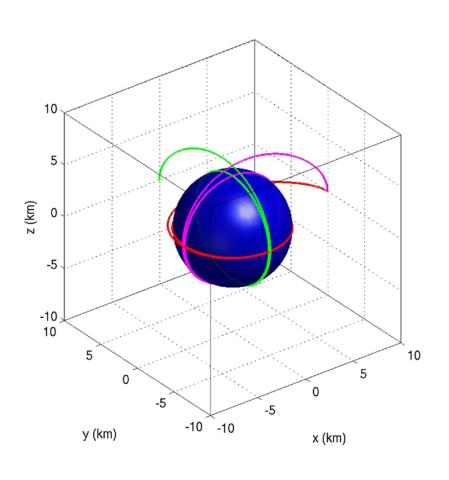
IFL Response in the Ephemeris Model

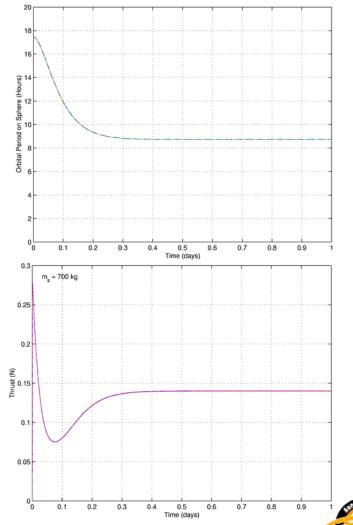




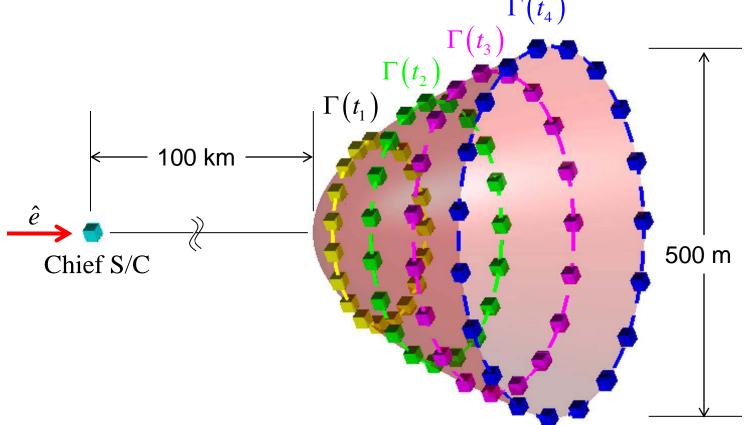


OFL Control in the Ephemeris Model





Inertially Fixed Formations in the Ephemeris Model



 $\Gamma(t_j)$ = Nominal configuration of deputies (20 s/c) at time t_j

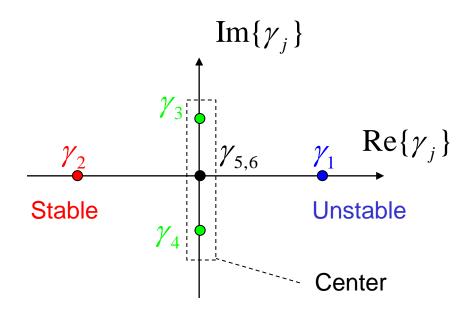
 \hat{e} = inertially fixed formation pointing vector (focal line)

Stability of *T*-Periodic Orbits

Linear Variational Equation:

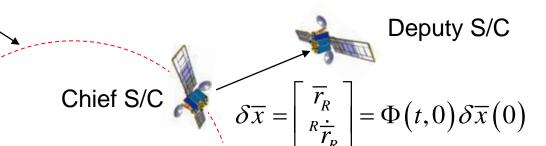
$$\delta \overline{x}(t) = \Phi(t,0) \delta \overline{x}(0)$$

 $\delta \overline{x}(t) \rightarrow$ measured relative to periodic orbit



Eigenstructure Near Halo Orbit

Reference Halo Orbit



Floquet Decomposition of $\Phi(t,0)$:

$$\Phi(t,0) = \left\{ P(t)S \right\} e^{Jt} \left\{ P(0)S \right\}^{-1}$$

Floquet Modal Matrix:

$$E(t) = P(t)S = \Phi(t,0)E(0)e^{-Jt}$$

Solution to Variational Eqn. in terms of Floquet Modes:

$$\delta \overline{x}(t) = \sum_{j=1}^{6} \delta \overline{x}_{j}(t) = \sum_{j=1}^{6} c_{j}(t) \overline{e}_{j}(t) = E(t) \overline{c}$$

Floquet Controller

(Remove Unstable + 2 Center Modes)

Find $\Delta \overline{v}$ that removes undesired response modes:

$$\sum_{j=1}^{6} \delta \overline{x}_{j} + \begin{bmatrix} 0_{3} \\ I_{3} \end{bmatrix} \Delta \overline{v} = \sum_{\substack{j=2,3,4 \\ \text{or} \\ j=2,5,6}} (1 + \alpha_{j}) \delta \overline{x}_{j}$$

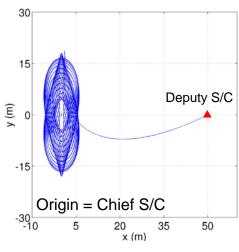
Remove Modes 1, 3, and 4:

$$\begin{bmatrix} \overline{\alpha} \\ \Delta \overline{v} \end{bmatrix} = \begin{bmatrix} \delta \overline{x}_{2\overline{r}} & \delta \overline{x}_{5\overline{r}} & \delta \overline{x}_{6\overline{r}} & 0_{3} \\ \delta \overline{x}_{2\overline{v}} & \delta \overline{x}_{5\overline{v}} & \delta \overline{x}_{6\overline{v}} & -I_{3} \end{bmatrix}^{-1} \left(\delta \overline{x}_{1} + \delta \overline{x}_{3} + \delta \overline{x}_{4} \right)$$

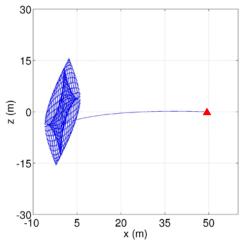
Remove Modes 1, 5, and 6:

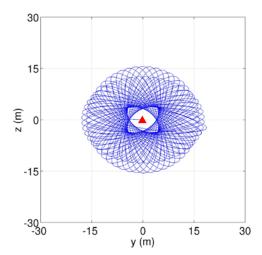
$$\begin{bmatrix} \overline{\alpha} \\ \Delta \overline{v} \end{bmatrix} = \begin{bmatrix} \delta \overline{x}_{2\overline{r}} & \delta \overline{x}_{3\overline{r}} & \delta \overline{x}_{4\overline{r}} & 0_{3} \\ \delta \overline{x}_{2\overline{v}} & \delta \overline{x}_{3\overline{v}} & \delta \overline{x}_{4\overline{v}} & -I_{3} \end{bmatrix}^{-1} \left(\delta \overline{x}_{1} + \delta \overline{x}_{5} + \delta \overline{x}_{6} \right)$$

Deployment into Torus (Remove Modes 1, 5, and 6)

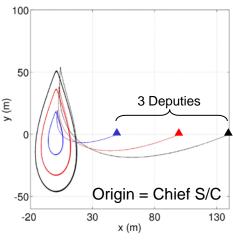


$$\overline{r}(0) = \begin{bmatrix} 5 & 00 & 0 \end{bmatrix}$$
 m
 $\dot{\overline{r}}(0) = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$ m/sec



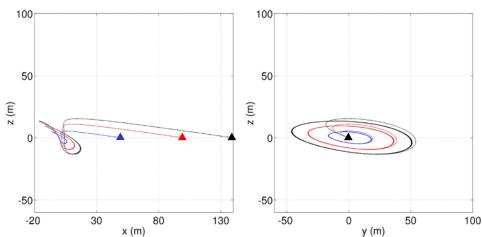


Deployment into Natural Orbits (Remove Modes 1, 3, and 4)

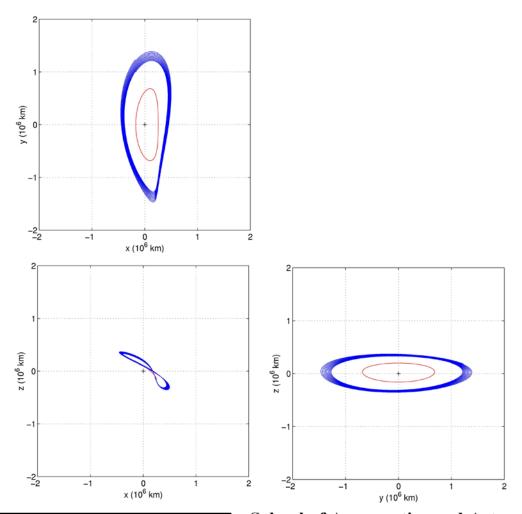


$$\overline{r}(0) = \begin{bmatrix} r_0 & 0 & 0 \end{bmatrix} \text{ m}$$

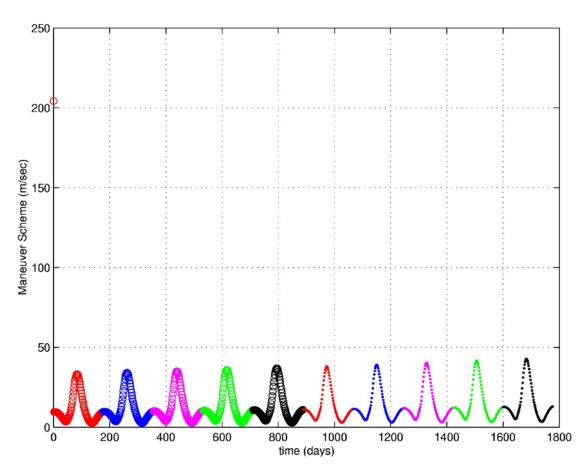
$$\dot{\overline{r}}(0) = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \text{ m/sec}$$



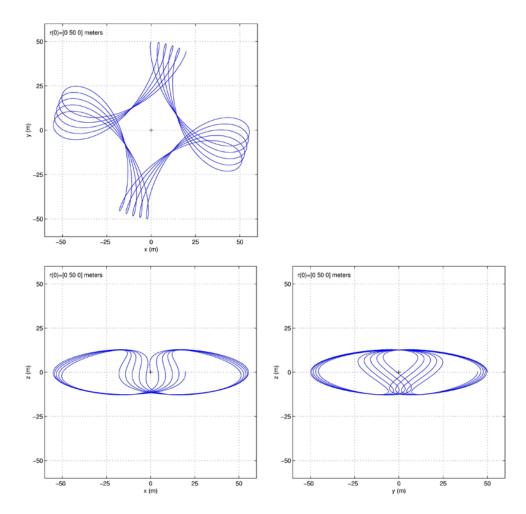
Floquet Control (Large Formations – Example 1)



Floquet Controller Maneuver Schedule (For Example 1)



Nearly Periodic Formations (Inertial Perspective)



Nearly Vertical Formations (Inertial Perspective)

