Applications of Artificial Potential Function Methods to Autonomous Space Flight

Sara K. Scarritt* and Belinda G. Marchand†

AAS/AIAA Astrodynamics Specialist Conference
July 31 - Aug. 4 2011
Girdwood, Alaska

*Graduate Student, Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 210 E. 24th St., Austin, TX 78712.
†Assistant Professor, Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 210 E. 24th St., Austin, TX 78712.
Artificial Potential Function (APF) Methods

- Extensive use in path planning applications
- Global minimum at goal, peaks at constraints
- Vehicle follows steepest descent of potential
- Extendable to more general trajectory planning
Modification for General Trajectory Design

- Discrete control parameter (Δv) vs. continuous control
- Formation flight problem - time derivative of Φ to define switching time
- Minimum of Φ \rightarrow lowest available maneuver cost
- Potential as a function of velocity error 1 (i.e. Δv)
- Dynamical model to calculate desired velocity field

Potential Function Construction

- Desired state/desired orbit (transfer time constraint)
- Two distinct cases: (1) intersecting orbits, and (2) non-intersecting orbits
- Initial orbit intersects target orbit \rightarrow maneuver at intersection point:
 \[
 \Phi_{int} = (\mathbf{r}_{intersect} - \mathbf{r}_0)^T(\mathbf{r}_{intersect} - \mathbf{r}_0),
 \]
- For non-intersecting orbits, $\Phi = \Phi(\Delta v)$:
 \[
 \Phi_{vel} = \Delta v^2,
 \]
APF Maneuver Planning

- Initialize
- Is the vehicle on the desired orbit?
 - NO
 - Maximum number of maneuvers reached?
 - NO
 - Propagate current state
 - NO
 - \(\phi = \phi_{rel} \)
 - YES
 - \(\phi = \phi_{int} \)
 - YES
 - Apply computed \(\Delta v \)
 - YES
 - Apply computed \(\Delta v \)
- YES
- STOP
The Desired Velocity Field

- Desired velocity depends on target point r_f along final orbit
- Target point assumed to be
 - apoapsis of the transfer orbit, if transferring to higher altitude
 - periapsis of the transfer orbit, if decreasing altitude
- Gives eccentricity vector direction, leads to desired velocity vector:

$$r_f \rightarrow \hat{e}_t \rightarrow e_t \rightarrow v_t$$
Coplanar Transfer: Desired Velocity Field

- Target point: 180° from current position

\[\hat{r}_f = -\frac{r_0}{r_0}. \]

Figure: Coplanar Velocity Field and Potential Function
Coplanar Transfer

- Total Δv: 1.25 km/s
- Doubly cotangential 180° transfer - matches analytical optimal result

Table: Coplanar Transfer
Initial and Target States

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (km)</td>
<td>-6478.145</td>
<td>0.000</td>
</tr>
<tr>
<td>y (km)</td>
<td>0.000</td>
<td>12587.983</td>
</tr>
<tr>
<td>z (km)</td>
<td>0.000</td>
<td>0.00000</td>
</tr>
<tr>
<td>v_x (km/s)</td>
<td>0.000</td>
<td>-4.708</td>
</tr>
<tr>
<td>v_y (km/s)</td>
<td>-7.844</td>
<td>0.000</td>
</tr>
<tr>
<td>v_z (km/s)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure: Coplanar Transfer
The Desired Velocity Field: Inclined Transfer

- Target point: intersection of initial and desired orbit planes
- Higher altitude solution to minimize cost of the plane change

![Velocity Field](figure1a.png)

![Resulting Potential](figure1b.png)

Figure: Non-Coplanar Velocity Field and Potential Function
Inclined Transfer

- Total Δv: 3.46 km/s \rightarrow Compare to 6.11 km/s for Lambert solution
- Consider three-maneuver sequence to reduce plane change

Table: Inclined Transfer
Initial and Target States

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (km)</td>
<td>-5610.238</td>
<td>190.512</td>
</tr>
<tr>
<td>y (km)</td>
<td>0.000</td>
<td>12396.744</td>
</tr>
<tr>
<td>z (km)</td>
<td>3239.073</td>
<td>2177.562</td>
</tr>
<tr>
<td>v_x (km/s)</td>
<td>0.000</td>
<td>-4.690</td>
</tr>
<tr>
<td>v_y (km/s)</td>
<td>-7.844</td>
<td>0.000</td>
</tr>
<tr>
<td>v_z (km/s)</td>
<td>0.000</td>
<td>0.410</td>
</tr>
</tbody>
</table>

Figure: Non-Coplanar Transfer
Lunar Example (1/3)

- More complex test of APF algorithm
- Specific time needed at target state; not guaranteed by APF method as-is
- Offset targeting to do timing match, typically converges in 3-4 iterations

Table: Initial Conditions

<table>
<thead>
<tr>
<th>Epoch</th>
<th>2-Aug-2018 17:16:06 TDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (km)</td>
<td>-1834.7155</td>
</tr>
<tr>
<td>y (km)</td>
<td>-66.2361</td>
</tr>
<tr>
<td>z (km)</td>
<td>-73.9653</td>
</tr>
<tr>
<td>v_x (km/s)</td>
<td>-0.0864</td>
</tr>
<tr>
<td>v_y (km/s)</td>
<td>0.8139</td>
</tr>
<tr>
<td>v_z (km/s)</td>
<td>1.4136</td>
</tr>
</tbody>
</table>

Table: Estimated Arrival Conditions

<table>
<thead>
<tr>
<th>Epoch</th>
<th>7-Aug-2018 00:52:08 TDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geocentric Altitude (km)</td>
<td>121.92</td>
</tr>
<tr>
<td>Longitude (deg)</td>
<td>-134.5456</td>
</tr>
<tr>
<td>Geocentric Latitude</td>
<td>-19.20410</td>
</tr>
<tr>
<td>Geocentric Azimuth (deg)</td>
<td>13.9960</td>
</tr>
<tr>
<td>Geocentric Flight Path Angle (deg)</td>
<td>-5.8600</td>
</tr>
</tbody>
</table>
Lunar Example (2/3)

- Total Δv: 1.9483 km/s

Figure: APF Lunar Return, 1.9483 km/s
Lunar Example (3/3)

- Investigate phasing effects on total cost
- Shift departure/arrival epoch by n revolutions

Figure: Δv of Time-Shifted Transfers vs. # of Revolutions
Conclusions

- Preliminary exploration of artificial potential function methods as a design tool for generating startup arcs
- Candidate potential function construction presented
- Method for calculating a desired velocity field developed based on two-body analysis
- APF trajectory design algorithm developed and tested
- APF method is promising, but room for improvement in design of potential field
- Future work will focus on constructing more complex potentials for use in multi-body regimes