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CONTROL STRATEGIES FOR FORMATION FLIGHT 
IN THE VICINITY OF THE LIBRATION POINTS 

K.C. Howell,1 and B.G. Marchand2  

The concept of formation flight of multiple spacecraft offers many promising 
possibilities both for space exploration and the associated technology 
development. Recent studies have focused primarily on formation flight for 
Earth-orbiting clusters. However, space based observatory and interferometry 
missions, such as Starlight (ST3) [1-2], Terrestrial Planet Finder (TPF) [3-4], 
Planet Imager [5], and Life Finder [6], have sparked new interest in formation 
flight in multi-body regimes, particularly in the vicinity of the Sun-Earth-Moon 
(SEM) libration points. The goal of this study is to develop some basic 
understanding about the natural formation dynamics in the CR3BP. Then, the 
baseline propulsive requirement, for a variety of formation configurations, is 
determined. The effectiveness of existing control techniques in maintaining the 
prescribed formations is also investigated. A de-centralized control strategy is 
presented based on optimal and nonlinear control methods. Both techniques 
have been successfully implemented and tested on a two-S/C formation evolving 
along periodic and quasi-periodic orbits near the SEM L1 and L2 libration points. 

INTRODUCTION 

For this study, “formation flight” is defined as a number of satellites that maintain a constant relative 
distance, and perhaps orientation, over long periods of time. In general, this type of dynamical 
configuration is not likely to exist as natural motion in either the two-body problem (2BP) or a multi-body 
regime. Much of the research to date refers to the control of constellations, clusters, and formations for 
Earth-orbiting missions [7-23] where the influence of other gravitational perturbations can be safely 
ignored. However, recent interest in formation flight near the Sun-Earth libration points requires an 
assessment of the effectiveness of the more commonly implemented control techniques. The nature of the 
dynamical force model in this region of space does not allow an analytical solution for the reference path of 
a spacecraft. Although some approximations are available, any analysis involving formation flight in multi-
body systems is still strongly dependent on numerical methods. 

In the two-body regime, optimal control techniques are the most commonly encountered in the available 
literature on formation flight [7-16]. Many of these references reasonably assume that the formations are 
relatively small. Hence, the reference motion is modeled completely in terms of the linearized dynamics, as 
described by the Clohessy-Wiltshire equations in the 2BP. Thus, the controller is applied to the linear 
system and its effectiveness in the nonlinear model is not explicitly demonstrated. Impulsive control 
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schemes have also been implemented but are only applicable to formations that do not require constant 
tracking of a reference solution [17-19]. This approach is usually based on a Keplerian formulation of the 
two-body dynamics. Nonlinear methods, such as Lyapunov based control [20-21] combined with adaptive 
control methods [22-23] have also been successfully implemented for small formations in the two-body 
regime. Among these researchers, only de Queiroz et al. [22-23] developed their control strategies based 
solely on the full nonlinear equations of motion.  

Control strategies for formation flight in multi-body systems are much less common and the increased 
degree of complexity associated with the dynamical model usually extends to the control as well. Gurfil 
and Kasdin [24] consider formation-keeping strategies based on optimal control (LQR) in the Circular 
Restricted Three-Body Problem (CR3BP). The nominal formation employed in their study corresponds to 
one that is fixed in distance and orientation relative to the Sun-Earth rotating frame. The particular 
reference trajectory that is described in reference [24], however, was apparently based on a set of initial 
conditions corresponding to a 200 km altitude circular Earth orbit, subject to an applied impulsive out-of-
plane maneuver of 4.9 km/sec. For the dynamical model presented in their study, this set of initial 
conditions does not appear to be consistent with the trajectory presented in the visuals (however, the precise 
configuration of the initial conditions is unknown). Furthermore, even for an accurate model, any similar 
set of initial conditions will not yield the type of motion that is characteristic near the Sun-Earth libration 
points, that is, periodic and quasi-periodic orbits or the associated stable and unstable manifolds. Hence, the 
effectiveness of this approach is not actually demonstrated for this highly sensitive region of space nor was 
it ever a goal of their analysis. 

Another study, by Scheeres and Vinh [25], considers motion relative to an unstable orbit in Hill’s problem. 
In particular, the vehicle dynamics are modeled as a perturbation relative to an unstable nominal halo orbit 
near the Sun-Earth L2 point. The goal is a controller that maintains bounded motion around the nominal 
path rather than the tracking of some specific motion relative to the halo orbit. The control problem is 
simplified by reducing the time-varying nature of the linear system into a series of discrete segments, each 
assumed to be accurately described by locally time invariant dynamics. Hence, the system matrix 
associated with each segment is defined as constant. This approach is somewhat similar to gain scheduling. 
The controller is designed using information about the “local” stable and unstable eigenvectors of the 
system matrix associated with each segment along the path. As noted by the authors, this type of control 
scheme is most appropriate when the relative dynamics of each spacecraft in the formation are not expected 
to track some prescribed path or precise distance/orientation at all times.  

Howell and Barden [26-28] have also investigated formation flying near the vicinity of the libration points 
in the CR3BP. Initially, their focus is the determination of the natural behavior on the center manifold near 
the libration points and the first stage of their study captured a naturally occurring six-satellite formation 
near the libration points [26]. Further analysis considered strategies to maintain a periodic, planar formation 
of the six vehicles in an orbit about the Sun-Earth L1 point [27-28]. The deviation of each spacecraft is 
controlled impulsively relative to the plane of the initial formation, one that is specified to be contained 
within the center manifold. The natural flow in the center subspace is such that the relative distances 
between each spacecraft remain essentially bounded and the relative configuration of the formation is time 
independent.  

The present study, then, represents an effort to survey existing control strategies and assess their 
effectiveness in the multi-body problem, in particular, for libration point missions in the Sun-Earth-Moon 
(SEM) system. In contrast to some earlier efforts, relative distance and orientation are constrained. Optimal 
control techniques for time-varying systems are successfully applied. Nonlinear control methods are also 
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considered and the performance between both approaches is contrasted. The relative dynamics of the 
formation are modeled in terms of cartesian coordinates, relative to the chief spacecraft, and a de-
centralized control approach is employed. Hence, the control of each spacecraft is independent of the other 
and the goal is to successfully track some prescribed nominal distance and/or orientation at all times. As an 
example, formations that are fixed relative to the rotating or inertial frames are considered as well as the 
less constrained problem of distance tracking. Quasi-periodic nominal motion on a torus surrounding a halo 
orbit is also investigated and successfully controlled via optimal and nonlinear control techniques. 

BACKGROUND 

Previous Work 

Of the control strategies previously applied in the two-body regime, LQR and feedback linearization, a 
basic nonlinear control approach, are considered in the present study of formation flight in the CR3BP. 
Notably, Irvin and Jacques [13] consider a combination of LQR with feedback linearization. In this section, 
some details of their approach are discussed to contrast the effectiveness of each control scheme as applied 
to formation flight in the two- and three-body models. Although Gurfil and Kasdin [24] consider LQR 
control in a CR3B model, their analysis does not encompass the type of reference motion that is the focus 
of the formation flight analysis here. In particular, formations in this work evolve in the vicinity of the 
libration points in the circular restricted three-body problem (CR3BP). Scheeres and Vinh [25], Hamilton 
[29], and Folta et al. [30] do consider control strategies near the libration points. Thus, these three 
methodologies are briefly discussed to establish the differences between these previous approaches and the 
control strategies implemented in this study. 

LQR and Feedback Linearization in the 2BP 

Irvin and Jacques [13] investigate satellite formation control in the two-body problem. In particular, a two-
spacecraft formation is controlled such that the chief spacecraft follows a 10,000 km circular orbit around 
the Earth and the deputy is commanded to maintain some nominal separation at all times. The formations 
considered in their study range from one to forty kilometers in separation for some prescribed formation 
orientation.  Three control methods are considered: a standard LQR controller based on the linearized 
Clohessy-Wiltshire equations, a nonlinear controller that uses both Input Feedback Linearization (IFL) 
combined with LQR to ensure accurate tracking, and a standard discrete station-keeping approach. 
Feedback linearization is applied to the full nonlinear equations to cancel the nonlinear gravity terms. The 
residual linear dynamics are controlled via a standard LQR approach. Since the new linear system matrix is 
constant, the algebraic Riccatti equation is solved to compute the gain matrix. Their results reveal that both 
LQR and nonlinear control yield essentially identical results for the smaller formations (~ 1 km). However, 
the nonlinear control techniques are most effective for the larger formations (~40 km). In their study, Irvin 
and Jacques note that sometimes “the nonlinear controller might produce inferior results,” particularly for 
the smaller one kilometer formations. However, this may be due to the combination of the LQR with the 
IFL. If the controller is completely nonlinear, the results may be different. It is true, however, that 
sometimes feedback linearization techniques may require prohibitive formationkeeping costs. This issue 
must be addressed on a case-by-case basis since it is extremely model dependent. Since feedback 
linearization techniques essentially change the dynamics of the problem by eliminating the nonlinearities, 
the controller is required to cancel gravity and expend more effort to force the response to track the desired 
solution. This very fact suggests that feedback linearization may be well-suited for application to the 3BP 
near the libration points. Since the net gravitational forces in this region of space are much weaker than in 
Earth orbit, feedback linearization can produce very reasonable results. In the present study, both input and 
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output feedback linearization are considered and successfully implemented in the CR3BP. In all the cases 
presented here, the formation keeping cost is similar to or better than that determined from LQR techniques 
over a wide operating range. 

Formation Control Strategies in the CR3BP 

Scheeres and Vinh [25] consider “formation flight” within the context of Hill’s problem. Hill’s model is 
usually appealing because it reduces the nonlinear system to a less complex form. However, the 
assumptions associated with this model do have notable consequences in terms of the solution space. In 
particular, the number of equilibrium points is reduced from five to two, essentially equivalent to L1 and L2. 
A further difference, in comparison to the full CR3B model, is that near these equilibrium points, the 
“halo” families themselves are symmetric across the yz-plane. This is not the case in the CR3BP where, 
near the smaller primary, the hodographs representing the L1 and L2 halo families approach an asymptote 
from opposite sides and the amplitudes progress in different directions. More specifically, the out-of-plane 
amplitude of members along the L1 family tends to infinity as it approaches the asymptote from one side 
while the L2 family collapses towards the primary along the opposite side of the asymptote. These 
observations are significant for studies, such as the current investigation, that include halo orbits along an 
entire family. 

In their study, Scheeres and Vinh define a nominal as, roughly, a 300,000 km out-of-plane amplitude 
“halo” orbit near the L2 libration point.  A set of variational equations of the form ( ) ( ) ( )x t A t x tδ δ= , 
derived relative to this nominal, governs the motion of the vehicle. The linearized dynamics are further 
simplified by assuming that, over a sufficiently small time interval tδ , the matrix ( )iA t  remains roughly 
constant. Hence, the state transition matrix can be written as a function of the matrix exponential 

( )( )exp iA t . The matrix exponential is then approximated via a truncated Taylor series that includes only 
the linear terms in tδ . Of course, from general linear systems theory, if the state ( )ix t  on the periodic 
orbit were instead an equilibrium point, this approximation would imply that the local stability of the 
equilibrium point, ( )ix t , is dependent on the eigenstructure of the matrix ( )iA t , which is assumed to 
remain constant over the interval tδ . The controller is then modeled based on an approximation of the 
local pseudo-linearized dynamics at each state along the path. In essence, the vehicle dynamics are modeled 
as a perturbation relative to the nominal “halo” orbit. Hence, the apparent goal is to construct a controller 
that achieves “local”, not global, marginal stability such that the spacecraft remains in the immediate 
vicinity of the halo orbit. The proposed controller is formulated from knowledge of the stable and unstable 
eigenvectors of the local matrix ( )iA t . By treating ( )ix t  as a local “equilibrium” point, such that ( )iA t  is 
constant, these eigenvectors represent the stable and unstable directions associated with ( )ix t . The 
controller gain matrix is then formed by the addition of two matrices that project the initial perturbation 
onto the “local” stable and unstable subspaces with the objective that the perturbation neither grows nor 
decays. For a sufficiently high gain, the controller proves to be effective in achieving “bounded” motion 
over the period of time considered in the study. An added advantage of this approach is that it is relatively 
simple to implement. However, since the system is, in fact, time-varying, there is no guarantee that the 
controller will be successful for all time or for all reasonable perturbations. The present work differs from 
Scheeres and Vinh [25] in some fundamental ways. In this analysis, relative distance is fixed and total cost 
per revolution defines a successful control. With different goals, Scheeres and Vinh achieve acceleration 
levels that are very low, but the total propulsive cost over one revolution is relatively high. For example, 
one sample case in the analysis here corresponds to a formation separation of 5000 km. Using the approach 
proposed by Scheeres and Vinh results in a trajectory that is bounded between 18 km and 5000 km relative 
to the original halo orbit. The acceleration level never exceeds 3×10-4 m/sec2. However, the total cost 
required to stabilize the orbit, over one orbital period of the original halo (6 months), is 1.68 km/sec. The 



   5

current study also considers responses to velocity injection errors, an analysis not presented by Scheeres 
and Vinh [25]. A point of note, in general and non-exclusive to formation flight applications, if bounded 
tracking of the original halo orbit is a requirement, it has been numerically determined that this controller 
does not to respond well to large velocity injection errors, e.g., on the order of 1 km/sec. In the present 
study, both optimal and nonlinear control strategies usually respond to this type of error but, not 
surprisingly, the correction cost is on the same order of magnitude as the velocity injection error. 

Hamilton [29] studies the problem of multi-spacecraft formation flight within the context of the CR3BP. In 
particular, the study considers LQG control as applied to the station-keeping problem, as well as formation 
slewing and reorientation. Hamilton uses an approach similar to that of Scheeres and Vinh by assuming the 
( )iA t  matrix to remain roughly constant over a specified time interval and computing the “optimal” 

controller for that interval in the presence of process noise. By assuming an “infinite” horizon, 
determination of the controller gain matrix is reduced to computing the solution to the discrete algebraic 
Riccatti equation at each time step. Although the initial development is based on a linear approximation of 
the Lissajous orbit, the actual implementation of the controller is performed in the full ephemeris model. To 
do this, Hamilton relies on software developed at Purdue University [31] to compute a true Lissajous 
trajectory in the full nonlinear ephemeris system. In this model, no assumptions are made about the motion 
of the primaries, hence the numerical integration uses actual planetary ephemeris to determine the position 
of the Earth at any given time. Furthermore, Hamilton also includes lunar perturbations in the model. The 
nominal trajectory, determined via a two-level differential corrections process applied to an initial 
approximation, is then stored for later use to compute the LQG controller gain matrix. Naturally, the 
assumptions associated with the implementation of this controller do not satisfy all the constraints derived 
from optimal control theory for time varying systems. Hence, there is no guarantee that the resulting 
controller is optimal or that it works over a wide operating range, though it appears to be quite effective.  

Folta, Carpenter, and Wagner [30] use an approach slightly similar to Hamilton [29]. In their study, a 
decentralized control approach is developed using LQR techniques combined with disturbance 
accommodation via Kalman filtering. However, the simplifying assumptions used in the determination of 
the controller are less accurate than those implemented by Scheeres and Vinh or Hamilton. In particular, 
although motion of the chief spacecraft is assumed to proceed along a quasi-periodic Lissajous trajectory, 
one that is modeled via a linear approximation, the system matrix used to evaluate the optimal controller is, 
in fact, associated with the libration point rather than the actual nominal orbit. Although the controller 
appears to be successful, the resulting costs seem too high considering the fact that no velocity injection 
errors are included in the examples. An injection error in position, even a large one, is usually relatively 
simple to correct and requires minimal ∆V via LQR. 

In an effort to evaluate the simplifying assumptions and, in contrast with the work done by Scheeres and 
Vinh [25], Hamilton [29], and Folta et al. [30], no simplifying assumptions are made in the present study 
about the form of the linear system. Hence, the LQR controller is formulated using the true time-varying 
dynamics associated with the reference path. This requires that the differential matrix Riccatti equation be 
numerically integrated, simultaneously, with the equations of motion associated with the nominal solution. 
The matrix solution is then used to compute the state feedback gain matrix. The controller derivation is 
based strictly on the optimality requirements established by the Euler-Lagrange theorem for time-varying 
systems as outlined in Bryson and Ho [32]. 
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Dynamical Model of a Two-Spacecraft Formation in the CR3BP 

There are a variety of ways to formulate the dynamics of a spacecraft (S/C) formation. In this study, the 
central spacecraft is termed “chief” while all other vehicles in the formation are denoted as “deputies”. The 
motion of the chief S/C is described in terms of rotating coordinates relative to the barycenter of the system 
primaries (SEM system). In this frame, the rotating x-axis is directed from the Sun towards the Earth-Moon 
barycenter, as illustrated in Figure 1. The z-axis is normal to the plane of motion of the primaries, and the y-
axis completes the right-handed triad. The general non-dimensional form of the equations of motion, 
relative to the system barycenter ( B ), are of the form 

 ( ) ( ) ( ) ( )( ) ( ) ( ), , 2 ,xx t f x t y t z t y t x t= + +  (1.1) 

 ( ) ( ) ( ) ( )( ) ( ) ( ), , 2 ,yy t f x t y t z t x t y t= − +  (1.2) 
 ( ) ( ) ( ) ( )( ), , ,zz t f x t y t z t=  (1.3) 

where ( ), ,x y z  denote the coordinates of the spacecraft relative to the barycenter B , and ( ), ,x y zf f f  
represents the net gravitational force vector acting on the vehicle. The force components are defined as  

 ( ) ( ) ( ) ( )3 3
1 2

1
, , 1 ,xf x y z x x

r r
µ µµ µ

−
= − + − − +  (1.4) 

 ( ) ( )
3 3

1 2

1
, , ,yf x y z y

r r
µ µ−  = − + 

  
 (1.5) 

 ( ) ( )
3 3

1 2

1
, , ,zf x y z z

r r
µ µ−  = − + 

  
 (1.6) 

and 1r  and 2r  represent the radial distance from the spacecraft to the larger and smaller primary, 
respectively. In the Sun-Earth-Moon system, the Earth-Moon barycenter represents the smaller primary. 
The quantity µ  is the non-dimensional mass parameter associated with the system. For the Sun-Earth-
Moon system, 63.0404 10µ −≈ × . During non-dimensionalization, the reference length is defined as the 
mean distance between the primaries. Since the Earth-Moon barycenter is roughly 4700 km away from the 
center of the Earth, the mean distance is assumed to be roughly equal to the semi-major axis of the Earth’s 
orbit around the Sun, * 1 aul = . The characteristic mass is the total mass of the system 
( ( )*

sun earth moonm m m m= + + ), and the characteristic time is the inverse of the mean motion of the primaries, 
* *3 * 1/ 2( /( ))t l Gm −= . In this study, the chief spacecraft dynamics are modeled using Equations (1.1)-(1.3) 

and the associated coordinates, relative to the barycenter, are defined as ( ), ,c c cx y z . 

For the deputy spacecraft, a more convenient choice of coordinates is one that describes the relative 
dynamics with respect to the chief. These relative dynamics may be modeled in terms of a variety of 
coordinates. For example, one could formulate the equations of motion in terms of relative spherical 
coordinates rather than cartesian coordinates. That is, the deputy S/C position can be expressed in terms of 
radial distance to the chief S/C ( ρ ), azimuth of the chief-deputy line as measured in the plane of motion of 
the primaries (ξ ), and elevation relative to the plane ( β ). This formulation proves to be adequate when 
dealing with the two-dimensional CR3BP, where 0β = . However, the spherical formulation presents a 
series of modeling difficulties. Some are immediately apparent from the equations of motion and are 
analogous to gimbal lock when 90β = . Even if it is assumed that the operating range might temporarily be 
below this value, there are other issues associated with this formulation. The scale difference between the 
state variables (distance versus angular quantities) requires gain matrices whose elements differ by many 
orders of magnitude. This leads to computational difficulties during the numerical integration process. 
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Another setback is an unreasonable sensitivity to minute perturbations in the angular variables. These last 
two issues directly affect the effectiveness of any LQR approach. For instance, the LQR feedback 
controller may appear to be effective in dealing with distance perturbations but entirely inadequate in the 
presence of the slightest orientation errors.  

Given the standard form of the CR3BP equations of motion in Equations (1.1)-(1.3), the simplest 
formulation corresponds to a set of cartesian coordinates ( ), ,d d dx y z , associated with the synodic rotating 
frame but measured relative to the chief spacecraft. Either actual relative coordinates or nonlinear error 
states with respect to some nominal motion may be used. For nominal motions of the deputy relative to the 
chief that can be represented analytically, such as formations fixed in either the rotating or inertial frames, 
cartesian coordinates relative to the chief spacecraft are sufficient. The controlled relative equations of 
motion associated with the deputy spacecraft dynamics are then defined by 

 ( ) ( ) ( ) ( ) ( ), , , , , 2 ,d x c c c d d d d d xx t f x y z x y z y t x t a t= ∆ + + +  (1.7) 

 ( ) ( ) ( ) ( ) ( ), , , , , 2 ,d y c c c d d d d d yy t f x y z x y z x t y t a t= ∆ − + +  (1.8) 
 ( ) ( ) ( ), , , , , ,d z c c c d d d zz t f x y z x y z a t= ∆ +  (1.9) 

where xa , ya , and za  denote the control accelerations along each direction and the differential 
gravitational forces are computed as 

 
( ) ( )
( ) ( )
( ) ( )

, , , , ,

, , , , ,

, , , , .

x x c d c d c d x c c c

y y c d c d c d y c c c

z z c d c d c d z c c c

f f x x y y z z f x y z

f f x x y y z z f x y z

f f x x y y z z f x y z

∆ = + + + −

∆ = + + + −

∆ = + + + −

 (1.10) 

For a general time-varying reference solution defined by the state vector 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
T

d d d d d dx t x t y t z t x t y t z t =    (1.11) 

the linearized dynamics associated with Equations (1.7)-(1.9) are represented by a first order system of the 
form 

 ( ) ( ) ( ) ( ) ( ).x t A t x t B t u tδ δ δ= +  (1.12) 

The vector ( )x tδ  denotes the perturbed state relative to the desired reference solution, ( )x t . Hence, the 
deputy state, at any time, can be represented by ( ) ( ) ( )x t x t x tδ= + . The time varying linear system 
matrix, ( )A t , is evaluated along the reference solution, ( )x t , that defines the desired formation 
configuration and is of the form 

 ( )

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 0 2 0
.

1 2 0 0

0 0 0

x x x

d d d

y y y

d d d

z z z

d d d

f f f
x y zA t

f f f
x y z
f f f

x y z

 
 
 
 
 
∂∆ ∂∆ ∂∆ + ∂ ∂ ∂=
 
∂∆ ∂∆ ∂∆ + − ∂ ∂ ∂ 

 ∂∆ ∂∆ ∂∆
 ∂ ∂ ∂ 

 (1.13) 
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The 6×3 matrix ( )B t in this case is constant and defined by [ ]3 3 3 30 TB I× ×= . Note that, even if the desired 
nominal motion is constant, the matrix ( )A t  is time-varying because the partial derivative terms in 
Equation (1.13) depend explicitly on the path of the chief S/C, that is ( ) ( ) ( )( ), ,c c cx t y t z t . These elements 
are periodic in nature since the chief is assumed to evolve along a halo orbit. The control input is defined 
by the vector ( ) ( ) ( ) ( ) T

x y zu t a t a t a t =   .   

This formulation is effective, for instance, when the desired nominal motion corresponds to fixed distance 
and orientation in the rotating or inertial frames, both of which can be easily represented analytically. 
However, if the nominal motion is quasi-periodic, for instance, the solution must be stored and numerically 
approximated on demand during the integration procedure. In this study, quintic splines are used to model 
the nominal quasi-periodic orbit. Since there is some error introduced by this estimate, some difficulties 
may be encountered during the numerical integration process such as a decrease in computational speed or, 
at times, non-convergence. This problem is bypassed by modeling the dynamics in terms of the error 
relative to the nominal, 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 ,

2 ,

,

x x x y x x x

y y y x y y y

z z z z z

e t f f e t e t a a

e t f f e t e t a a

e t f f a a

= ∆ −∆ + + + −

= ∆ − ∆ − + + −

= ∆ − ∆ + −

 (1.14) 

where the superscript “o” implies that the differential gravity forces and control accelerations are evaluated 
along the nominal path of the deputy. The linear system matrix ( )A t  associated with the system in 
Equation (1.14) is of the same form as that in Equation (1.13) but the partial derivative terms must be 
modified accordingly. 

Nominal Formations 

In this study, four types of nominal formations are considered for the chief-deputy line: fixed relative 
distance and orientation with respect to the rotating and inertial frames; quasi-periodic motion around a 
halo orbit; and, fixed radial distance with no orientation requirements. Any control strategy that relies on 
the linearized dynamics of the system, such as LQR, requires that a nominal formation keeping cost be 
initially determined. In the case of formation flight in the CR3BP, the question then becomes – is the 
baseline control effort required to achieve and maintain some desired configuration, physically reasonable? 
The following sections address this issue in detail.  

Formations Fixed Relative to the CR3BP Rotating Frame 

One possible type of formation corresponds to a configuration such that the relative distance between the 
chief spacecraft and the deputy is constant and the relative orientation of the chief-deputy line is fixed with 
respect to the rotating frame. Mathematically, this type of formation is described by a constant set of 
position elements for the deputy vehicle (all time derivatives relative to the rotating frame are zero along 
the nominal path). In order to apply LQR control, it is necessary to first identify the baseline cost associated 
with tracking the nominal state. If the position elements are to remain constant for all time, then, from 
Equations (1.7)-(1.9), the nominal formation keeping control accelerations (denoted by the superscript “ ”) 
are defined by 

 ( ) ,x x da f x= − ∆ +  (1.15) 
 ( ) ,y y da f y= − ∆ +  (1.16) 
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 .z za f= −∆  (1.17) 

To compute the cost incurred in maintaining the nominal formation over some prescribed period of time 
( t∆ ), it is necessary to numerically integrate both the chief and deputy equations of motion simultaneously. 
If the system is expressed in first order form, a total of 12 states are numerically integrated. If the state 
vector is augmented by one, and a new state ( )V t∆  is introduced such that  

 ( ) ( ) ( ) ( )2 2 2
,x y zV t a a a∆ = + +  (1.18) 

then the total propulsive cost required to maintain the formation over a period of t∆  time units is defined 
as the 13th state at time t .  

The trajectory of the chief spacecraft is assumed to evolve along a natural halo orbit and completes one 
revolution in approximately six months. A single deputy spacecraft is located at a specific distance ( )ρ and 
orientation ( ),ξ β  relative to the chief. This is defined as the baseline formation. The cost ( )V∆  to 
maintain this formation fixed with respect to the rotating frame is determined over one revolution along the 
path of the chief spacecraft. The total cost associated with maintaining a variety of formations is illustrated 
in Figure 2. Three surfaces are displayed in this illustration. The narrower green surface corresponds to a 
halo orbit characterized by a 1.2×106 km out-of-plane amplitude ( zA ), the intermediate blue contour is 
associated with an zA  of 700,000 km, and the wider red outline pertains to an zA  of 200,000 km. Each 
surface is associated with a formation defined by a 5000 km separation ( )ρ . The total cost ( )V∆  is 
represented as a function of the azimuth (ξ ) and elevation ( β ) of the chief-deputy line, as defined in 
Figure 1. For a nominal halo orbit (chief S/C) with an out-of-plane amplitude ( )zA  of 200,000 kilometers, 
the formation keeping cost ranges between 10.8 m/sec ( 0β =  and 90ξ = ) and 26.9 m/sec ( 0β =  and 

0ξ = ). Note that the surfaces displayed in Figure 2 exhibit two local minima, one at 90 nβ π= +  and the 
other at ( ) ( ), 90 ,0nξ β π= + , for [0,1]n = . Although the cost associated with these configurations is 
similar, they are not the same. In fact, a formation described by ( ) ( ), 90 ,0ξ β =  is slightly less expensive. 
Figure 3 illustrates how these minimum-cost formations evolve relative to the rotating frame. It is apparent, 
from Figures 2 and 3, the formations that are orthogonal to the Sun-Earth-Moon line result in the lowest 
formation keeping costs for the particular segment of the halo family associated with the surfaces in Figure 
2. The maximum cost case, ( ) ( ), 0 ,0nξ β π= + , then, corresponds to a formation that is always parallel 
to the Sun-Earth-Moon line. The net control acceleration levels for this particular configuration range 
between 1.45×10-6 and 2.66×10-6 m/sec2, as noted from Figure 4. In contrast, for a halo orbit defined by 

zA = 700,000 km, the cost ranges between 11.9 m/sec and 24.9 m/sec. For the maximum cost configuration, 
( ) ( ), 0 ,0nξ β π= + ,  the acceleration level is anywhere between 1.23×10-6 m/sec2 and 2.85×10-6 m/sec2.  

Along the highlighted segments of the halo families illustrated in Figure 5, the variation in the total cost 
required to maintain a 5000 km formation fixed in the rotating frame is illustrated in Figure 6. The cost 
variations displayed in Figure 6 include only members of the L1 and L2 halo families that have reached the 
critical amplitude, as highlighted in Figure 5. Beyond this point, the formation keeping cost increases 
rapidly to extremely prohibitive values, at least for a 5000 km formation. This is not unusual considering 
that, beyond this critical point, the perigee along the halo orbit collapses closer to the Earth. The bold lines 
in Figure 6 are associated with the L2 halo family while the dashed lines pertain to the L1 family. The blue 
and green lines are associated with the ( ) ( ), 90 ,0ξ β =  and 90β =  minimum cost formations, 
respectively. The red lines are indicative of the maximum cost formation, ( ) ( ), 0 ,0ξ β = . The pattern in 
Figure 6 indicates that the surfaces in Figure 2 change concavity when the zA  amplitude reaches a critical 
value of roughly 1.55×106 km. Hence, the ( ) ( ), 90 ,0ξ β =  and 90β = configurations, previously 
associated with the minimum cost formations, transition into maximum cost formations for zA  > 1.55x106 
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km. Similarly, what was previously the most costly configuration, ( ) ( ), 0 ,0ξ β = , now evolves into a 
global minimum for zA  > 1.55x106 km.  

For most practical mission applications, the reference halo orbits of interest are likely to be in the range 
61.55 10 kmzA < × . Otherwise, the nominal formation keeping cost may become prohibitive, at least for 

formations characterized by large relative separations between vehicles. Smaller formations with relative 
separations under 1 kilometer may still yield reasonable costs. Overall, the most cost effective formation 
configurations, ones that are fixed in the rotating frame, can be deduced from the illustration in Figure 6. 

Formations Fixed Relative to the Inertial Frame 

Let dr  denote the position vector of the deputy S/C relative to the chief S/C in terms of rotating coordinates 
( R ). A formation that is fixed with respect to the inertial frame ( I ) must satisfy  

 0,I R I R
d d dr r rω= + × =  (1.19) 

 ( )
0,

R I
dI I R I

d d

d r
r r

dt
ω= + × =  (1.20) 

where ˆI R nzω = , and n  represents the rotation rate of the primaries about the barycenter. In non-
dimensional time units, 1n = . Equation (1.19) implies that the nominal velocities are defined by 

 ,d dx ny=  (1.21) 
 ,d dy nx= −  (1.22) 
 0.dz =  (1.23) 

Hence, if the initial position is defined by ( )0 0 0, ,x y z , then the initial velocity may be computed from  
Equations (1.21)-(1.23) and the resulting analytical solution that describes the desired nominal motion is  

 ( ) 0 0cos sin ,dx t x nt y nt= +  (1.24) 
 ( ) 0 0sin cos ,dy t x nt y nt= − +  (1.25) 
 ( ) 0 .dz t z=  (1.26) 

Recall that the orientation variablesξ  and β  are measured relative to the rotating frame as defined in 
Figure 1. The inertial azimuth, ( )i tξ , is defined as ( ) ( ) ( )i t t tξ ξ θ= + , where ( )tθ  represents the 
orientation of the rotating x-axis with respect to the inertial X-axis. Since all frames are assumed to be 
initially aligned, ( ) 00 0θ θ= = . Hence, for an inertially fixed configuration, the inertial orientation of the 
chief-deputy line is constant and characterized by 0 0 0ξ θ ξ+ =  and 0β . The subscript “ 0 ” implies the 
quantities are evaluated at 0t = . 

The formation constraints defined in Equations (1.19)-(1.20) require nominal control accelerations that 
overcome the net gravitational force acting on the deputy, i.e., 

 ,x xa f= −∆  (1.27) 
 ,y ya f= −∆  (1.28) 
 .z za f= −∆  (1.29) 

Unlike formations that are fixed relative to the rotating frame, Figure 7 reveals that the minimum and 
maximum costs, associated with an inertially fixed formation, depend only on the elevation with respect to 
the plane of motion of the primaries. For different reference halo orbits, the minimum and maximum costs 
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occur at different values of 0ξ  but are always associated with the same value of 0β  along the halo family.  
The maximum formation keeping cost is always associated with a formation that evolves in the plane of 
motion of the primaries for all time. The minimum cost, then, corresponds to a formation that is 
perpendicular to the plane of motion of the primaries as the chief S/C evolves along the halo orbit. Unlike 
in the previously considered formation, the overall characteristics of the surface in Figure 7 remain 
unaltered as the zA  amplitude of the reference halo orbit increases, as observed in Figure 8. 

Center Manifold Formations 

Howell and Barden [28] propose formations that take advantage of the structure of the center subspace near 
the reference halo orbit. In particular, formations that evolve along a two-dimensional torus that is known 
to envelop the halo orbit. For a reference halo orbit of period T  characterized by a 200,000 km out-of-
plane amplitude, one such sample surface is illustrated in Figures 9 and 10. Along the surface of the torus 
illustrated in Figure 9, the relative separation of the deputy spacecraft with respect to the chief ranges 
between 14,000 km and 58,000 km. Naturally, this represents an extremely large range and is only selected 
to aid the visualization process. The configuration can be designed to achieve relative distances of 14 
meters to 58 meters instead. The colored spheres along the surface in Figure 9 represent 5 spacecraft. These 
spheres illustrate the motion that the vehicles experience longitudinally as the formation moves along the 
nominal halo orbit, as well as the winding motion as the formation revolves on the torus. Computation of 
this two-dimensional torus is a two step process. First, the monodromy matrix, ( )0 0,T t tΦ + , associated 
with the reference halo orbit must be computed. This is accomplished by numerically integrating Equations 
(1.1)-(1.3), along with the matrix differential equation 

 ( ) ( ) ( )0 0, , ,t t A t t tΦ = Φ  (1.30) 

over one period of the reference orbit. Then, the eigenvectors of the monodromy matrix are computed. The 
majority of the halo family is comprised of unstable orbits, with the exception of a small range among the 
relatively large orbits. The unstable orbits have a four-dimensional center subspace. It is possible to select 
an initial perturbation that excites only one of the modes associated with the center eigenspace. The 
perturbation vector is then entirely contained within a specific subset of the center subspace. Howell and 
Barden first generate a linear version of a two-dimensional torus by propagating the predetermined initial 
perturbation using the solution to the linear system, 

 ( ) ( ) ( )0 0, .x t t t x tδ δ= Φ  (1.31) 

As time progresses, the columns of the state transition matrix tend to align themselves with the unstable 
subspace. Hence, as the numerical error builds up, propagation of the initial perturbation vector, using 
Equation (1.31) over an extended length of time, yields inaccurate results. To circumvent this numerical 
difficulty, Howell and Barden use the projection theorem at the end of each revolution to project the final 
state back onto the center subspace. This “linear” torus serves as an initial guess to a two-level differential 
corrections process, described by Howell and Pernicka [33], that is used to generate the exact solution in 
the nonlinear system. In the present investigation, this is accomplished using software previously developed 
at Purdue University [34]. For a center manifold formation, the deputy spacecraft is assumed to evolve 
along this torus. LQR and nonlinear control techniques are implemented to track the nominal motion in the 
presence of injection and tracking errors. To accomplish this, it is necessary to find an analytical 
representation of the torus. Since an analytical solution is not available in the full nonlinear CR3BP, the 
differentially corrected torus is represented using quintic splines. Of course, motion along the torus 
represents a naturally occurring solution in the CR3BP. Hence, there is no nominal formation keeping cost 
associated with this type of configuration. 
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Formation Control 

A simple test to determine the effectiveness of the available control strategies, in a multi-body regime, is to 
introduce both injection and tracking errors in the reference trajectory and assess the properties of the 
response. In this study, it is assumed that the reference trajectory of the chief vehicle is a three-dimensional, 
periodic halo orbit in the vicinity of the Sun-Earth-Moon L1 point. The goal of the controller for the chief 
S/C is to accurately track the nominal halo orbit. In formation flight, the deputy spacecraft should then 
follow some prescribed nominal motion relative to the chief. The baseline motion for the deputy includes 
one natural and three non-natural but prescribed behaviors. Continuous control in response to injection and 
tracking errors is investigated here for all cases. 

In designing an effective, practical controller for onboard S/C formation keeping, simplicity is the key. As 
de-centralized strategies, nonlinear and optimal control are both effective in maintaining a multi-spacecraft 
formation. Nonlinear control strategies, such as input or output feedback linearization, allow the designer to 
pre-specify the desired error dynamics. For time-varying systems, this leads to improved performance over 
linear control methods. Whether this improved performance comes at a lower or higher cost depends on the 
form of the dynamical model and the forces that must be overcome to achieve the desired response. The 
computational simplicity of this method is very appealing. However, this control approach also has its 
disadvantages. One of these disadvantages is that the methodology requires full-state feedback. 
Furthermore, as discussed by Chen et al. [35], an inherent flaw in this design approach is that the controller 
is more complex than the original system. In essence, this controller removes the natural dynamics and 
replaces them with the desired behavior. Although the approach is mathematically sound, physically 
incorporating such a controller on a spacecraft may be a daunting task. This is particularly true for highly 
complex nonlinear dynamics such as those associated with the CR3BP. Hence, if a linear controller can 
achieve the desired dynamics then it is usually recommended over nonlinear control, even when the 
nonlinear controller can yield far better response characteristics. Comparative performance evaluations are, 
thus, useful. 

From a mathematical or computational perspective, optimal control is more complex than feedback 
linearization. Both the nonlinear and linear quadratic regulators (NQR and LQR) require that a two-point 
boundary value problem, with mixed boundary conditions, be solved. For a general time-varying nominal 
solution, computing the optimal controller gain matrix requires that the equations of motion be integrated 
first, forward in time, and the solution stored over the entire duration of the mission. Then, an NQR 
controller requires that the co-state equations be integrated backwards in time, from the nominal end state, 
to evaluate the controller gain matrix. If instead, an LQR controller is desired, integration of the co-states 
can be replaced by integration of the 6×6 matrix differential Riccatti equation. For systems that are 
invariant under time transformation, such as the CR3BP, this two-point boundary value problem can be 
reduced to an initial value problem, as demonstrated later. However, in either case, the gain matrix must 
still be stored for later use. Although this transformation simplifies the implementation of the controller in 
the CR3BP, ultimately a real formation flight mission will require that this analysis be performed in the 
general ephemeris model, where no assumptions are made about the motion of the primaries. Unlike the 
CR3BP, the ephemeris model is not invariant under time transformation. Hence, implementing a quadratic 
regulator in the ephemeris model still requires solution of a two-point boundary value problem. 

Both the nonlinear and linear quadratic regulators are more computationally intense in comparison to 
input/output feedback linearization. In the available literature, the more commonly encountered of these 
methods is the linear quadratic regulator. However, it should be noted that the LQR controller is only 
optimal for the linear system dynamics. For a time-varying system, there is no guarantee that the controller 
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will be successful over a wide range of operating conditions in the nonlinear model, or that it will result in a 
reasonable or “optimal” cost. In this study, linear optimal control, input feedback linearization (IFL), and 
output (or partial) feedback linearization are all applied to the formation keeping problem near the libration 
points in the CR3BP. The IFL and LQR controllers prove to be effective in maintaining the relative 
distance and orientation of the formation at a reasonable cost. Though both the IFL and LQR controllers 
yield similar response characteristics, this study demonstrates that the IFL controller is the most cost 
effective. The output feedback controller can lead to a similar response at a much lower cost, depending on 
the relative formation configuration that is considered. All three controllers respond well to both position 
and velocity injection errors.  

Linear Quadratic Regulator for Time-Varying Systems 

Consider a general nonlinear vector field of the form 

 ( ) ( ) ( )( ), ,x t f x t u t=  (1.32) 

where nx ∈R  is the state vector at time t , x  represents the time derivative of x , / 2nu ∈R  is defined as 
the control acceleration vector, and : nf U → R  is a smooth function defined on some subset nU ⊆ R . Let 

( )x t  denote some reference motion that satisfies the system in Equation (1.32) and ( )u t  represent the 
control effort required to sustain ( )x t . Linearization about this reference solution yields a system of the 
form  

 ( ) ( ) ( ) ( ) ( ) ,x t A t x t B t u tδ δ δ= +  (1.33) 

where xδ  and uδ  represent perturbations relative to ( )x t  and ( )u t , respectively. Consider a general 
quadratic cost function of the form 

 ( ) ( ) ( ) ( )( )
0

1min ,
2

ft
T T

t

J x t Q x t u t R u t dtδ δ δ δ= +∫  (1.34) 

subject to the system in Equation (1.33) with initial conditions ( )0 0x t xδ δ= . The matrices Q  and R  
represent the weighting on the state error and control effort, respectively, and are both symmetric positive 
definite. For simplicity, let Q and R  be diagonal matrices. This implies that the individual state variable 
errors, and control accelerations, are decoupled. Since the cost function can be scaled by any constant 
without affecting the results, only the relative magnitudes of the elements of Q  and R  are important. 
Hence, in this study R  denotes the 3 3×  identity matrix and Q , scaled relative to R , is given by 

( ), , , , ,p p p v v vQ diag Q Q Q Q Q Q=  where pQ  and vQ  are the position and velocity weights, respectively. 
The structure of this matrix places equal weighting on each position error, and each velocity error. 

As outlined in Bryson and Ho [32], application of the Euler Lagrange theorem to the system in Equations 
(1.34) and (1.33) yields the following optimality requirements, 

 ( ) ( ) ( ) ( ) ( );   0,T
ft Qx t A t t tλ λ λ= − − =  (1.35) 

 ( ) ( )1 .Tu R B t tλ−= −  (1.36) 

Consider a state feedback controller by defining ( ) ( ) ( )t P t x tλ δ= . Substitution of this transformation 
into Equation (1.35) yields the following Riccatti matrix differential equation, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 ,T TP t A t P t P t A t P t B t R B t P t Q−= − − + −   (1.37)  
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subject to ( ) 6 60fP t ×= . Equations (1.37) and (1.7)-(1.9), or (1.14), represent a two point boundary value 
problem with 42 first order ordinary differential equations. Obtaining an exact solution to this equation is 
numerically inconvenient because it requires that the reference trajectory be integrated first forward in time 
from 0t  to ft  to evaluate ( )A t  before integrating Equation (1.37) backwards from ft  to 0t . However, this 
difficulty can be avoided by exploiting the time invariance properties associated with the flow in the 
CR3BP. Consider the following time transformation, 

 ,ft tτ = −  (1.38) 

 .d d
dt dτ

= −  (1.39) 

Since the linear system Equation (1.33) models the behavior for all time, positive or negative, introduce the 
following coordinate transformation, 

 ( ) ( ) ,z Gx tτ =  (1.40) 

where G  denotes a constant non-singular matrix. For the free response ( ( ) 0u t = ) the transformed state 
must also satisfy the differential equations, 

 

( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1

,

,

.

f

f

dz
A z

d
d Gx t

A t t Gx t
dt

dx t
G A t t Gx t A t x t

dt

τ
τ τ

τ

−

=

− = −

= − − =

 

Hence, 

 ( ) ( )1 .fA t G A t t G−= − −  (1.41) 

But, Equation (1.41) must be satisfied for all time which further implies that  

 ( ) ( ) ( )1 1( ) ,f f fA t t G A t t t G G A t G− −− = − − − = −  
 ( ) ( ) 1.fA t GA t t G−= − −  (1.42) 

For both Equations (1.41) and (1.42) to be satisfied, the matrix G  must posses some special properties. In 
particular, 1G G− = , 2G I= , but G I≠ . Since G  must be a diagonal matrix to satisfy these conditions it 
must also satisfy  

 1 .T TG G G G− −= = =  (1.43) 

The diagonal matrix ( ) 11 j
jjG −= −  satisfies all of the stated requirements.  

Substitution of the time transformation defined by Equations (1.38) and (1.42) into (1.37) yields 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1T TdS
A S S A S B R B S Q

d
τ

τ τ τ τ τ τ τ τ
τ

−− = + + −  (1.44) 

where, 
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 ( ) ( )1 ,fS G P t Gτ τ−= −  (1.45) 

 ( ) ( )1 ,fB G B tτ τ−= −  (1.46) 

 1 .Q G QG−=  (1.47) 

The terminal boundary condition ( ) 0fP t =  implies that when 0τ = , ( )0 0S = . Since Equation (1.44) 
must be satisfied for all time, let tτ =  and then solve the equation, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1T TS t A t S t S t A t S t B t R B t S t Q−= − − − +  (1.48) 

with ( )0 0S = . Equation (1.48) can be numerically integrated to time ft along with the nonlinear equations 
of motion (1.32). Then, using Equation (1.45), 

 ( ) ( ) ( )1 1 .fP t t GS t G G S t G− −− = =  (1.49) 

This yields the controller gain matrix  

 ( ) ( ) ( )1 .T
fK t t R B t S t G−− = −  (1.50) 

The process of implementing the linear controller in the nonlinear model is divided into two steps. In the 
first step, the nonlinear system described by Equation (1.32) is numerically integrated along with the matrix 
differential equation in Equation (1.48). These equations are subject to ( )0 0x t x=  and ( )0 0S t = , 
respectively. The results are used to determine ( )K t  which is stored, along with the corresponding time, 
for later implementation. The second step is to numerically integrate the perturbed nonlinear equations and, 
at each time step, apply the control accelerations associated with the corresponding ( )K t  matrix. The 
integration step size is determined by the first integration since the gain matrix elements are accessed from 
memory at each time. 

It is not uncommon that, in adding an LQR controller to a time-varying system, the linearized dynamics are 
oversimplified by letting ( ) 0P t =  in Equation (1.37). Then, computing the gain matrix reduces to solving 
the algebraic Riccatti equation at each point during the integration, each time evaluating Equation (1.37) 
with the corresponding matrix, ( )A t . This approximate approach is frequently implemented and successful 
– though the theoretical reason for success may not be clear. In the CR3BP, the ( )A t  matrix associated 
with a halo orbit is periodic, ( ) ( )A t A t T= + . If ( )A t  were constant, the differential equation in Equation 
(1.37) would converge to a constant matrix P . Hence, in practice, it is only necessary to solve for the 
constant steady state solution as defined by the algebraic Riccatti equation. When the reference solution is 
periodic, the differential Riccatti equation converges on a periodic matrix ( ) ( )P t P t T= + .  However, if 
the elements of Q  are sufficiently large, the amplitude of the elements of the “steady state” solution are so 
large that the oscillations induced by ( )A t  become negligible, at least in the CR3BP. Hence, solving the 
algebraic Riccatti equation at each time step, with the corresponding matrix ( )A t , yields a solution that is 
close, but not exactly equal, to the true ( )P t  matrix determined from Equation (1.37). Folta, Carpenter, 
and Wagner [30] further simplify the solution process by assuming ( )A t  to be the constant linear system 
matrix associated with the libration point. In their study, the reference orbit around the equilibrium point is 
small in comparison to those considered here. Hence, they solve the algebraic Riccatti equation using the 
constant system matrix associated with the equilibrium point. For such a small orbit, the periodic deviations 
of the actual ( )A t  matrix, relative to the constant matrix associated with the libration point, are also small. 
Thus, the LQR controller may still yield reasonable performance, assuming large gains. Even though using 
the approximate system matrix may yield reasonable results on a case by case basis, if a generally accurate 
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control approach is sought, then solving the differential Riccatti equation is the mathematically solid 
approach.  

Input Feedback Linearization 

Feedback linearization, as discussed in Slotine and Li [36], is a mathematically simple nonlinear control 
strategy that allows the designer to specify the desired response characteristics. For instance, consider a 
scalar differential equation of the form 

 ( ) ( )( ) ( ) ,t h t tα α υ= +  (1.51) 

where ( )tα  represents the state at time t .  In input feedback linearization, the control ( )tυ is selected such 
that 

 ( ) ( )( ) ( ).t h t tυ α υ= − +  (1.52) 

The control acceleration, ( )tυ , in Equation (1.52) is designed to be representative of the desired nominal 
motion, ( )tα  . For a critically damped response,  

 ( ) ( ) ( )22 .n ntυ α ω α α ω α α= − − − −  (1.53) 

Any form of feedback linearization requires full-state feedback, one of the disadvantages of the approach. 
However, for formation flight, if the relative states are available, this method can be a powerful tool. 
Consider the controlled CR3BP equations of motion from Equations (1.7)-(1.9). It is possible to select xa , 

ya , and za  such that each state follows a critically damped response that meets some prescribed settling 
time requirement. The individual response of each state can be decoupled by choosing control accelerations 
of the form, 

 ( ) ( ) ( )22 2 ,x d n d n d x d da x x x x x f y xω ω= − − − − − ∆ + +  (1.54) 
 ( ) ( ) ( )22 2 ,y d n d n d y d da y y y y y f x yω ω= − − − − − ∆ − +  (1.55) 
 ( ) ( )22 .z d n d n d za z z z z z fω ω= − − − − − ∆  (1.56) 

In this study, an acceptable response is one that reaches the desired solution in less than a day. A non-
dimensional angular frequency ( )nω  of at least 1000 meets this requirement. It should be noted that 
decoupling the states is not necessarily the “optimal” solution, it is simply a way to accomplish the task. 
The feasibility of this control approach must be determined numerically by evaluating Equations (1.54)-
(1.56) to determine if the total cost is physically reasonable. Furthermore, this approach is useful when the 
formation requires that both distance and orientation be completely specified in time. However, in 
formation flight applications, it may not be necessary to track each state individually. If the formation only 
requires that relative distance be specified then output (or partial) feedback linearization is better suited for 
the task. 

Output Feedback Linearization 

Output feedback linearization also requires full-state feedback. However, the controller design is much less 
constrained than input feedback linearization and it usually yields a lower total cost. Let the radial distance, 
between the deputy and chief spacecraft, and the associated radial rate be specified as the measured output. 
Then, reformulate the system in Equations (1.7)-(1.9) in terms of the relative radius vector, r .  
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 ( ) ( )( ) ( ) ( ) ( )2r t f r t Jr t Kr t u t= + + +  (1.57) 

Here, the 3 3×  matrices J  and K  are defined as 

 
0 1 0
1 0 0 ,

0 0 0
J

 
 = − 
  

 (1.58) 

 
1 0 0
0 1 0 .
0 0 0

K
 
 =  
  

 (1.59) 

Define the measured system output as 

 ,
r

y
r
 

=  
 

 (1.60) 

where ( )1/ 2Tr r r=  denotes the separation, or range, between the chief and deputy spacecrafts and r  
represents the range rate. In output feedback linearization, the measured output is differentiated q times 
until the control vector appears explicitly. Then, the system is said to be of relative degree q. The goal, 
then, is to determine ( )u t  that yields the desired output response defined by [ ]0 0 Ty r= . Differentiating 
(1.60) once with respect to time yields, 

 
( ) ( )

( ) ( ) ( ) ( )

1
2

1 3 2
2 2

.
T T

T T T T T

r r r rr
r

r r r r r r r r r r

−

− −

 
  

=   
   + − 

 (1.61) 

In Equation (1.61) the control appears through the r  term. The desired response should satisfy ( )r g r=  
subject to 0r = . It is possible to substitute the vector in Equation  (1.57) into Equation (1.61) and, after 
some vector manipulation, solve for the control law that achieves the desired output response 

 ( ) ( ) ( )( )2 2 .
Tg r r ru t r f r Jr Kr

r r
 

= − − + + 
 

 (1.62) 

Observe that the last term in Equation (1.62) serves to, once again, cancel the natural dynamics of the 
problem while the first two terms enforce the desired response. For the purpose of distance tracking, a 
critically damped response would require that  

 ( ) ( ) ( )22 ,n ng r r r r r rω ω= − − − −  (1.63) 

where the superscript “ ” implies that the quantity is evaluated along the reference path. A distinct 
advantage of feedback linearization over LQR, is the ability to pre-specify the error dynamics. If the 
weighting matrices of the LQR controller are chosen as diagonal, there is always an overshoot associated 
with the response. This can increase the cost because, as the solution moves farther away from the nominal, 
the controller has to exert more effort to drive it back to the desired state within the specified time frame. 
The overshoot and settling time can be reduced by choosing sufficiently large elements for the state 
weighting matrix Q, relative to those of R. In particular, the weights associated with the position errors 
should be very large and many orders of magnitude greater than the weights on the velocity errors. 
Essentially, this reduces the control accelerations to a nearly impulsive maneuver. The problem then 
becomes, finding the gain matrices that force the LQR controller to produce a nearly critically damped 
response (e.g. no overshoot). There is no simple way to accomplish this analytically and ensure that the 
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response will follow critically damped dynamics under any perturbation. However, if the weights are 
sufficiently large, it is possible to attain a response that is similar in character to critically damped 
dynamics, at least in terms of overshoot. Here, the feedback linearization approach is designed to yield a 
truly critically damped response while the LQR will usually exhibit some degree of oscillations before 
reaching the desired nominal state.  

RESULTS 

In general, the chief spacecraft evolves along an unstable halo orbit and the desired baseline motion of the 
deputy does not always correspond to a naturally occurring solution. Hence, if left uncontrolled, the deputy 
spacecraft would quickly leave the vicinity of the chief in its orbit. For instance, let the desired baseline 
motion correspond to a formation that is fixed with respect to the rotating frame, at a relative distance of 
5000 km, and a reference halo orbit of 200,000zA =  km. In the absence of control inputs, the natural 
response of the system would place the deputy anywhere between 1.6 km and 5.5 km away from the initial 
position within a day, depending on the configuration considered. Subsequently, divergence is exponential; 
within 8 days the deputy would be 100 km away. The impact is, of course, less noticeable for smaller 
formations. For instance, at most, an uncontrolled 50 meter formation will diverge by 1 meter within 6 
days. The rate of divergence is lowest for the minimum-cost formations and highest for the maximum-cost 
formations. The inertially fixed formations tend to diverge at a faster rate. A 5000 km formation fixed 
relative to the inertial frame can diverge between 2.5 and 4.5 km from its initial distance within a day. 
Within 8 days, the deputy will have diverged from its nominal path by almost 200 km. A 50 meter 
formation, on the other hand, would diverge at most by 1 meter within 4.5 days, depending on the 
formation orientation. This suggests that, if the formation tolerances are not too constrained, a discrete 
control approach may be sufficient for small formations. However, if the configuration constraints are tight 
and the nominal vehicle separations are relatively large, continuous control will likely be required. This is 
particularly true if the desired nominal motion is not representative of the natural flow of the system. 

Formations Fixed Relative to the Rotating Frame 

The LQR and input feedback linearization methods previously described are applied here to a 5000 km 
two-spacecraft formation fixed relative to the rotating frame. Both methods can be successfully applied to 
either the chief spacecraft orbit, described by Equations (1.1)-(1.3), or the deputy dynamics outlined in 
Equations (1.7)-(1.9). In particular, the line defining the formation is commanded to track the rotating y-
axis at all times. As mentioned previously, this type of formation represents the most cost effective baseline 
configuration. Figures 11 and 12 illustrate the response to an injection error defined by 

( )7, 5,3.5  kmrδ = −  and ( )1, 1,1  m/secrδ = − . For the LQR response, each figure lists the cost to maintain 
the baseline configuration alone, NOMV∆ , as well as the total cost, correctionLQR NOMV V V∆ = ∆ + ∆ , that is 
necessary to also correct the initial injection error. Thus, these values represent the propulsive cost required 
to maintain the formation over one revolution of the reference halo orbit.  The top two plots in Figures 11 
and 12 illustrate the response of the error dynamics in each state to the LQR controller. The response in 
Figure 11 is associated with a weighting matrix defined by 1010pQ =  and 510vQ =  . The settling time of 
the response is significantly improved by increasing the position error weight to 1210pQ = , as reflected in 
Figure 12. In contrast, the two plots at the bottom in Figures 11 and 12 illustrate the error response 
corresponding to each state for a controller based on Input Feedback Linearization (IFL), as represented by 
Equations (1.54)-(1.56), for 400nω =  and 1250nω = , respectively. As noted on these Figures, both 
controllers yield good tracking characteristics at essentially the same cost. Accordingly, the acceleration 
histories are almost identical and promptly converge onto the nominal acceleration required to maintain a 
formation fixed in the rotating frame. Numerical trials indicate that, for the selected controller parameters, 
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the IFL controller is consistently less costly than the LQR controller, though only by a small amount, at 
most 1-2 m/sec. Furthermore, the response associated with the LQR controller exhibits some small 
oscillations about the reference while the net error settles to zero. The IFL controller is consistent with a 
critically damped response, as stipulated by the original formulation. In both cases, the formation reaches 
the desired nominal configuration to within 1 meter in roughly 19 hours for the case illustrated in Figure 
12. The similarities between the results are not surprising considering that, for the LQR approach, the state 
weighting matrix Q  is selected as diagonal. Hence, the state errors are decoupled from each other. This is 
the same premise behind the IFL controller design as formulated in Equations (1.54)-(1.56). 

Although the results in Figures 11 and 12 reflect only the response to initial injection errors, the 
methodology can be extended to accomplish reconfigurations during flight. For instance, suppose the 
formation must reconfigure its relative separation every 20 days by 10 km. Application of the LQR 
approach with 1210pQ =  and 510vQ =  yields the response presented in Figure 13. Each reconfiguration is 
accomplished by a net 1.92 m/sec correction above the required nominal formation keeping cost, NOMV∆ . 
The reconfiguration can also be accomplished using the IFL controller.  

The sample formations presented here, as well as the injection errors that are considered, are large in 
comparison to those presented by most authors [7-24]. Most of these cases involve separations that range 
between 10 meters to 1 km and the injection errors are scaled accordingly. In the present study, large 
formations are desirable to determine the operating range of these controllers. Both the LQR and IFL 
controllers will respond in a similar form, and yield similar costs, even to the most absurd perturbations 
but, of course, at an equally absurd cost. Numerical analysis indicates that changing the size of the 
formation by one order of magnitude impacts the nominal cost by the same order of magnitude. For 
instance, a 10 meter formation requires a nominal cost of 2.538×10-5 m/sec, over one period of the 
reference halo orbit, while a 1×105 meter formation requires 2.166×10-1 m/sec. The total cost increased by 
4 orders of magnitude along with the stipulated separation distance, but it is still quite small. Since the net 
cost is so low, the problem is then in the delivery. Even with electric propulsion, the thrust level required to 
maintain these formations is extremely low. For instance, a minimum cost 100-meter formation has 
nominal acceleration requirements defined by 11 110.86 10 2 10NOMu− −× < < ×  m/sec2. For a 2000 kg 
spacecraft, this is equivalent  5 51.7 10 4 10F− −× < < ×  mN. A 5000 km minimum-cost formation, on the 
other hand, would require nominal thrust levels ranging between 0.86 2.1F< <  mN. As detailed in the 
Technology Validation Report on the NSTAR Engine [37] used in DS-1, the minimum thrust level 
achievable by the ion-engine is 20mN. If the results presented here pertained to a two-body regime, this 
would appear to suggest that larger formations are best serviced by continuous control while smaller 
formations can be designed around the classical discrete station-keeping approach. However, the chaotic 
nature of the CR3BP is characterized by extreme sensitivity to small perturbations. That is, the smallest 
deviation from the nominal path results in exponential divergence. Hence, continuous control may still be 
required, particularly for non-natural formations. 

Formations Fixed in the Inertial Frame 

Formations fixed relative to inertial directions are just as effectively controlled by either of the two 
methods described above. Once again, let the reference halo orbit be characterized by 200,000 kmzA = . 
Assume that the deputy is to follow the chief spacecraft as it evolves along the reference halo orbit over one 
revolution. Then, the propulsive cost required to maintain the formation, one that is fixed with respect to 
the inertial frame, ranges from 12.7 m/sec to 19.7 m/sec, depending on the desired configuration. The 
minimum cost formation corresponds to the case when the formation line is aligned with the inertial Z-axis. 
That is, as the chief spacecraft moves along the reference halo orbit, the deputy is always located directly 
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above, along the inertial Z-axis. A sample response to an initial injection error of ( )7, 5,3.5rδ = −  km and 
( )1, 1,1rδ = −  m/sec is presented in Figure 14. Once again, both methods yield essentially the same 

response for an almost identical cost, but the IFL method is computationally simple to implement compared 
to the LQR approach. In contrast, the maximum cost is associated with a formation that remains aligned 
with the inertial X-axis. 

Radial Distance Tracking With No Orientation Requirements 

Some formations might require only that the chief and deputy spacecraft maintain some constant distance at 
all times, without constraining their relative orientation in any frame. For this type of formation keeping, 
the only “nominal” variable is the radial separation between each spacecraft. This is assumed to be the only 
“measured” variable although full state feedback is still required to compute the control input. Consider, 
then, the output feedback controller defined in Equation (1.62). The reference halo orbit still corresponds to 
a 200,000 km out-of-plane amplitude. In this type of approach, a nominal state vector is not defined. To 
verify that the controller can maintain a constant distance, let the “nominal” control effort represent the 
input required to maintain the formation at its starting distance, as defined by the initial conditions. During 
this test, no injection errors are added. For a set of initial conditions of the form ( ), , ,0,0,0d d dx y z , this 
controller yields the same nominal cost determined by the surface in Figure 2. For a 5000 km formation 
relative to a 200,000 km halo orbit, the nominal cost varies between 10.8 m/sec and 26.9 m/sec. Once the 
controller’s ability to maintain the nominal formation is assessed, its effectiveness in the presence of 
injection errors is determined. For the same injection error considered with the IFL controller, maintaining 
a constant relative distance of 5000 km relative to the chief spacecraft requires between 14.9 m/sec and 
22.4 m/sec, depending on the initial alignment of the formation. Of course, in this case, the state of the 
deputy with respect to the chief is not fixed relative to any particular reference direction, as seen from the 
bottom two plots in Figure 15. The controller is only designed to achieve a constant relative distance 
between the two spacecraft, in this case 5000 km. For a natural frequency of 1250nω = , the critically 
damped response characteristics of the radial distance are essentially the same as those previously 
presented for each individual state via the IFL controller, as observed from the top two illustrations in 
Figure 15. 

Formations Evolving Along the Center Manifold 

A formation evolving along the center manifold, associated with the reference halo orbit, is characterized 
by bounded motion. That is, the motion of the deputy relative to the chief is quasi-periodic. Motion along 
the center manifold is a function of two frequencies. One of these frequencies is associated with the period 
of the reference orbit and the associated modes are tangent to nearby periodic solutions. The second 
frequency characterizes the winding motion along the surface of a torus that envelopes the halo orbit, as 
discussed by Howell and Barden [26]. If the initial state of the deputy is selected such that only the modes 
associated with the second frequency are excited, the resulting motion, over 200 orbital periods, is 
illustrated in Figure 9. The formations considered by Howell and Barden [27-28] evolved along a surface 
similar to that in Figure 9.  

Since this type of motion is part of the natural phase space corresponding to periodic halo orbits, no 
nominal cost is required to maintain a formation such that the deputy S/C evolves along the torus, 

0NOMV∆ = . As previously determined, both the LQR and the IFL controllers are effective in counteracting 
injection errors in this case as well. The correction costs for both approaches, is on the same order of 
magnitude as the velocity injection error. For an injection error defined by ( )7, 5,3.5rδ = −  km and 

( )1, 1,1r vδ δ= = −  m/sec, the LQR controller requires a 3.91 m/sec correction, assuming 1210pQ =  and 
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510vQ = . The IFL controller, with requires 3.66 m/sec to correct the injection error. The associated error 
response is presented in Figure 16.   

Of course, if the deputy spacecraft motion is quasi-periodic relative to the chief, such as the motion on the 
torus, the relative separation between the two spacecraft will not be naturally constant. The radial distance 
between the deputy and chief S/C for a relatively small formation is illustrated in Figure 17. If the relative 
separation of the two spacecraft is less critical than their relative orientation, Barden and Howell [28] have 
demonstrated that maintaining multiple spacecraft on a formation plane is a feasible configuration in terms 
of cost. Further study of natural formations along the center manifold is a future topic of interest. 

Response to Tracking Errors 

The formation dynamics, as developed in this study, only incorporate control inputs. No disturbance inputs 
are included in the mathematical model. Hence, disturbance accommodation is not implemented in the 
development of the controllers considered here. Theoretically, there is no guarantee that either the LQR or 
IFL controllers, as presently formulated, will maintain the formation in the presence of disturbances. Even 
if both controllers are successful at tracking the desired formation, the cost required to compensate for 
disturbances may be prohibitive. However, it is still compelling to investigate, numerically, how these two 
controllers perform in the presence of tracking errors along the trajectory.  

Considering that the nominal acceleration levels required for formation keeping are so small, some of these 
tracking errors may be introduced by the propulsion system itself. Delivering such small acceleration levels 
accurately is difficult because the error introduced by the hardware may be on the same order of magnitude 
as the required control input, if not greater. Recall the case of the inertially fixed formation previously 
discussed. Suppose that, at each step along the trajectory, tracking errors are introduced to the numerically 
determined state vector. Let the standard deviations in position and velocity be characterized by 1 meter 
and 0.01 m/sec, respectively. These values are large considering that the automated formation flight 
systems on TPF are expected to be accurate to within centimeters in position and millimeters per second on 
range rate. The associated response is presented in Figure 18. As predicted, the formation keeping cost is 
considerably higher. However, it is interesting to note that the IFL controller performs significantly better 
than the LQR controller in the presence of tracking disturbances. That is in comparison to the previous case 
where the performance of both controllers was equivalent in response to injection errors. Naturally, for 
smaller tracking errors, characterized by 1 cm and 1 mm/sec standard deviations, both control 
methodologies yield more reasonable costs but the IFL controller still performs significantly better than the 
LQR approach as noted from Figure 19. 

CONCLUSION 

Increased interest in formation flight near the libration points of the Sun-Earth-Moon system has motivated 
a number of studies on the type of control required to maintain a prescribed formation in this highly 
sensitive region of space. However, most of the available literature on formation flight pertains to 
formations near the Earth, where a two-body model is appropriate. The first part of this study presents a 
survey of some of the work done to date on formation flight in the two-body model and how the control 
strategies previously implemented in that system perform in the rich phase space of the CR3BP. In this 
regime, non-naturally occurring formations, such as those that remain fixed relative to either the rotating or 
inertial frames, will likely require continuous control for precise tracking. Whether a continuous or discrete 
control approach is necessary depends on the relative separation of each spacecraft in the formation, with 
respect to the chief. Larger formations, on the order of 5000 km, will likely require continuous control for 
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precise tracking. However, if the separation between the chief and deputy spacecraft is on the order of 
hundreds of meters, a discrete control approach may later prove to be sufficient, though further study into 
this matter is necessary. A study on the nominal formation keeping costs required to maintain these types of 
configurations is also presented. The results indicate that for reference halo orbits that are below a critical 
out-of-plane amplitude, the formation keeping costs are miniscule, even for relative separations of 5000 
km. Though LQR and nonlinear control techniques can be designed to yield a similar response in the 
presence of injection errors, the formation keeping cost appears to be consistently lower via nonlinear 
control. This trend is most noticeable when tracking errors are introduced into the system.  
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Figure 1 – Two S/C Formation Model in the Sun-Earth-Moon CR3BP 
 
 

 
 
 

Figure 2 – Nominal Formation Keeping Cost Associated with Various  5000 km Formations,  
Fixed Relative to the Rotating Frame (Over 6 Months). Each Surface is Associated  

with a Particular L1 Halo Orbit (Az = 2×105, 7×105, and 1.2×106 km). 
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Figure 3 – Minimum Cost Formations in the Rotating Frame 
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Figure 4 – Nominal Control Acceleration Required  
to Maintain a 5000 km Formation Fixed Relative to the Rotating Frame (Over 6 Months).  

Chief S/C Evolves Along a 200,000 km Halo Orbit Near the SEM L1 Point. 
 

x̂

Deputy S/C 

Deputy S/C 

Deputy S/C 

Deputy S/C 

Chief S/C 

ŷ
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Figure 5 – L1 and L2 Halo Family Hodographs for the SEM System 
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Figure 6 –Variation in Nominal Formation Keeping Cost  
Along the SEM L1 and L2 Halo Families for a 5000 km Formation  

Fixed Relative to the Rotating Frame (Over 6 Months) 
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Figure 7 – Nominal Formation Keeping Cost Associated with Various 5000 km Formations,  
Fixed Relative to the Inertial Frame (Over 6 Months).  Each Surface is Associated  

with a Particular L1 Halo Orbit (Az = 2×105, 7×105, and 1.2×106 km). 
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Figure 8 – Variation in Nominal Formation Keeping Cost   
Along the SEM L1 and L2 Halo Families for a 5000 km Formation  

Fixed Relative to the Inertial Frame (Over 6 Months) 
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Figure 9 – Torus Near a 200,000 km Halo Orbit near the SEM L1 Point 
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Figure 10 – Quasi-Periodic Toroidal Deputy Path Around a 200,000 km SEM L1 Halo Orbit 
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Figure 11 – LQR (Qp=1010, Qv=105) vs. IFL (ωn = 1000) Error Response  
for Deputy S/C in a 5000 km Formation, Fixed Relative to the Rotating Frame (Over 6 Months),  

Near a 200,000 km L1 Halo Orbit  
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Figure 12 – LQR (Qp=1012, Qv=105) vs. IFL (ωn = 1250) Error Response  
for Deputy S/C in a 5000 km Formation, Fixed Relative to the Rotating Frame (Over 6 Months),  

 Near a 200,000 km L1 Halo Orbit  
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Figure 13 – LQR Applied to Formation Reconfiguration (Qp=1012, Qv=105) 
(Correction ∆V ’s Listed Do Not Include Nominal Formation Keeping Costs) 
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Figure 14 – LQR (Qp=1012, Qv=105) vs. IFL (ωn = 1250) Error Response  
for Deputy S/C in a 5000 km Formation, Fixed Relative to the Inertial Frame (Over 6 Months),  

 Near a 200,000 km L1 Halo Orbit  
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Figure 15 – OFL Controller Response to Injection Errors (ωn = 1250)  
for Deputy S/C in a 5000 km Formation, with No Orientation Constraints (Over 6 Months),  

Near a 200,000 km L1 Halo Orbit  
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Figure 16 – LQR (Qp=1012, Qv=105) vs. IFL (ωn = 1250) Error Response  
for Deputy S/C Evolving Along Quasi-Periodic Orbit (Torus) 

in the Vicinity of a 200,000 km L1 Halo Orbit  
 



35 

 
 

Figure 17 – Relative S/C Separation Along Quasi-Periodic Orbit (Torus) 
For a Small Two-Spacecraft Formation Near a 200,000 km SEM L1 Halo Orbit 
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Figure 18 – LQR (Qp=1012, Qv=105) vs. IFL (ωn = 1250) Error Response  
for Deputy S/C in a 5000 km Formation, Fixed Relative to the Inertial Frame (Over 6 Months), 

Near a 200,000 km L1 Halo Orbit. Tracking Errors on the order of 1 m and 10 mm/sec Included. 
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Figure 19 – LQR (Qp=1012, Qv=105) vs. IFL (ωn = 1250) Error Response  
for Deputy S/C in a 5000 km Formation, Fixed Relative to the Inertial Frame (Over 6 Months),  

Near a 200,000 km L1 Halo Orbit. Tracking Errors on the order of 1 cm and 1 mm/sec Included. 


