Actuator Constrained Optimal Control of Formations Near the Libration Points

Capt Stuart A. Stanton Dr. Belinda G. Marchand

Department of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin

AIAA/AAS Astrodynamics Specialist Conference, Aug 2008
Outline

Background
 Dynamic Sensitivities and Control Limitations

Transcription Formulations
 Direct Collocation
 Multiple Segment Formulations
 Switching Segments and Time

Applications
 Costs and Constraints
 Initial Guess
 Sample Solution
Formation Limitations for Deep-Space Imaging Formations

- Fixed size, shape, and orientation of the formation
- Fixed orientation of each member of the formation (deputy spacecraft)

Figure: Formation Pointing
Dynamical Sensitivities Near the Libration Points

- Previous investigations have focused on unconstrained continuous control solutions
 - Linear and nonlinear; feasible and optimal solutions
 - Non-natural formations require extremely precise control ($< \text{nm/s}^2$ accelerations)
- These controls are impossible to implement with existing actuator technology

- Cannot reproduce the fidelity of continuous control
- Continuous control may even be smaller than minimum thrust bound

Figure: Implementing a Continuous Control Solution
Control Limitations for Deep-Space Imaging Formations

- Fixed thruster location on each spacecraft body
- Specified thrust acceleration magnitude
 - Based on actuator performance capability

\[T^* \]

\[\uparrow \]

\[\downarrow \]

\[T^* \]

\[\rightarrow T^* \]

\[\leftarrow T^* \]

Figure: Spacecraft Body
Transcription Methods for Highly Constrained Problems

- The libration point formation problem motivates a unique solution method
 - Direct optimization methods serve as the foundation
 - Modifications allow for creative treatment of difficult constraints

Solution methods are generalized for any number of dynamical models.
Optimization via Direct Transcription

- Define a parameter vector consisting of state and control values at nodes (discrete points in time)

\[\mathbf{x} = [\ldots, y^T(t_j), \ldots, u^T(t_j), \ldots, t_0, t_f]^T \]

- Convert the Optimal Control Problem into a Parameter Optimization Problem

Minimize

\[J = \phi(t_0, y_0, t_f, y_f) + \int_{t_0}^{t_f} L(t, y, u) \, dt \]

subject to

\[\dot{y} = f(t, y, u) \]
\[0 = \psi_0(t_0, y_0) \]
\[0 = \psi_f(t_f, y_f) \]
\[0 = \beta(t, y, u) \]

Minimize

\[F(\mathbf{x}) \]

subject to

\[c(\mathbf{x}) = \left[c_{\psi_0}^T(\mathbf{x}) \ c_{\psi_f}^T(\mathbf{x}) \ c_\beta^T(\mathbf{x}) \ c_y^T(\mathbf{x}) \right]^T = 0 \]

- Solve the resulting optimization problem with a standard Nonlinear Programming (NLP) algorithm
Multiple Segment Formulations

- Account for state or control discontinuities by dividing the problem into segments
 - Ideal treatment for finite burn control solutions
- Enforce appropriate constraints at the knots (segment boundaries)
- Include knot times or segment durations in parameter vector

Figure: An Example of Segments and Knots
Impacts of Fixed Spacecraft Orientation

- A traditional finite burn formulation specifies thrust (acceleration) magnitude, but not direction
 - Assumes spacecraft can re-orient to deliver required thrust vector
 - Control space \mathcal{U}_1: $u^T u = (T^*)^2$
- If spacecraft orientation is predetermined (according to other mission requirements)
 - Actuator configuration must provide 3-axis maneuverability
 - Assume thrusters are located on principal axes of body frame $\mathcal{B} \equiv \{\hat{x}_B, \hat{y}_B, \hat{z}_B\}$
 - Control space \mathcal{U}_2: $u_i(u_i - T^*)(u_i + T^*) = 0, i = \hat{x}_B, \ldots, \hat{z}_B$

Fixed spacecraft orientation leads to discrete optimization, which gradient-type NLP algorithms cannot support.

Figure: Control Spaces (a) \mathcal{U}_1 (Orientation Free), and (b) \mathcal{U}_2 (Orientation Fixed)
Managing Fixed Spacecraft Orientation

- Instead of optimizing control values (i.e. \(-T^*, 0, T^*)\), . . .

 \textit{Prespecify control values by segment and optimize switching times}

- Knots are used to designate switching times in each control axis
- Segments are bounded by switches in any control
- The chronological ordering of knots changes at each iteration of the optimization

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{control_profile.png}
\caption{Conceptual Control Profile with Segment Divisions}
\end{figure}
Costs and Constraints

- **Constraints**
 - Initial time and states specified
 - Final time and formation size and plane specified
 - $r_{cd}^* = 1 \text{ km distance between chief and deputy, } r_{dd}^* = 1.73 \text{ km distance between deputies}$
 - Specified pointing $r_{cs}^* = [1 \ 0 \ 0]$
 - State continuity (differential constraints) by segment
 - State equality across segments (at knots)

- **Weighted Costs**
 - Minimize thrust
 - Minimize formation size deviations along trajectory
 - Minimize formation plane deviations along trajectory

\[
J = w_1 J_1 + w_2 J_2 + w_3 J_3
\]
\[
F(x) = w_1 F_1(x) + w_2 F_2(x) + w_3 F_3(x)
\]
Baseline Initial Guess

Trajectory Legend
- Deputy 1 Trajectory
- Deputy 2 Trajectory
- Deputy 3 Trajectory

Control Legend
- Axis 1 Control (u_x)
- Axis 2 Control (u_y)
- Axis 3 Control (u_z)
Baseline Solution

Trajectory Legend
- Deputy 1 Trajectory
- Deputy 2 Trajectory
- Deputy 3 Trajectory

Control Legend
- Axis 1 Control (u_x)
- Axis 2 Control (u_y)
- Axis 3 Control (u_z)

Spacecraft Positions - Inertial Frame

Control Accelerations - Body Frame
Conclusions

- A modified collocation method with a segment-time switching algorithm leads to highly constrained control solutions
- Generalized formulation allows users to input
 - formation configuration, size, orientation, and rotation rate
 - thruster capability and placement
 - dynamic model and reference trajectory
 - initial and terminal conditions
- Suited to aid in establishing requirements and capabilities for highly constrained formations
References I

References II

References III

References IV

Varying Parameters to Obtain Different Solutions

- Final time
- Number of nodes and knots
- Initial guess
- Thrust magnitude

Table: Comparison of Solutions with Various Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>t_f</th>
<th>n_k, t_f</th>
<th>Feasible Guess</th>
<th>Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_n</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>n_k</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>t_f (10^6 sec)</td>
<td>5.1183</td>
<td>10.2366</td>
<td>10.2366</td>
<td>5.1183</td>
<td>5.1183</td>
</tr>
<tr>
<td>Guess</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Feasible</td>
<td>Baseline</td>
</tr>
<tr>
<td>w_{Thrust}</td>
<td>$\frac{1}{400}$</td>
<td>$\frac{1}{400}$</td>
<td>$\frac{1}{400}$</td>
<td>$\frac{1}{400}$</td>
<td>$\frac{1}{1600}$</td>
</tr>
<tr>
<td>$w_{Distance}$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>w_{Plane}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thrust (km/s2)</td>
<td>2.0e-12</td>
<td>2.0e-12</td>
<td>2.0e-12</td>
<td>2.0e-12</td>
<td>4.0e-12</td>
</tr>
<tr>
<td>n</td>
<td>2333</td>
<td>2333</td>
<td>6779</td>
<td>2333</td>
<td>2333</td>
</tr>
<tr>
<td># Iterations</td>
<td>45</td>
<td>157</td>
<td>194</td>
<td>95</td>
<td>272</td>
</tr>
<tr>
<td>Computational Time (sec)</td>
<td>253.91</td>
<td>956.41</td>
<td>3000.35</td>
<td>575.88</td>
<td>1570.04</td>
</tr>
<tr>
<td>Weighted Thrust Cost</td>
<td>1.6233</td>
<td>5.8133</td>
<td>6.6838</td>
<td>10.9247</td>
<td>1.1324</td>
</tr>
<tr>
<td>Weighted Formation Cost</td>
<td>16.1818</td>
<td>634.3255</td>
<td>67.7092</td>
<td>35.5675</td>
<td>6.9286</td>
</tr>
<tr>
<td>Weighted Plane Cost</td>
<td>0.8591</td>
<td>84.6949</td>
<td>4.6852</td>
<td>4.9035</td>
<td>1.0632</td>
</tr>
<tr>
<td>Total Cost</td>
<td>18.6643</td>
<td>724.8338</td>
<td>79.0782</td>
<td>51.3956</td>
<td>9.1242</td>
</tr>
</tbody>
</table>