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CHAPTER 8 
CONCLUSIONS 

A number of ideas are new to this work. While they have served to answer 
a number of questions about diffraction tomography there remains much work 
to be done. This chapter, therefore, reviews the state of the art of diffraction 
tomography as presented by this work and indicates directions for future 
research. 

Chapter 2 reviewed the wave equation and its integral solution. While 
this material is well known among people doing research in diffraction 
tomography and inverse scattering its presentation here emphasized the 
common mathematical problems in acoustic and electromagnetic scattering. 
For this reason all distances were expressed in wavelengths and the object 
function represented the (complex) refractive index variation of an 
inhomogeneity for either acoustic or electromagnetic waves. Researchers more 
concerned with experimental work will want to use the relationships presented 
in Chapter 2 to convert the results presented in the remainder of this work to 
more physical quantities. 

Finally Chapter 2 also presented two approximations, the Born and the 
Rytov, which allow linearized versions of the wave equation to be written. 
These two first order perturbational approximations are important because 
they allow simple inversion algorithms to be derived. Since these 
approximations are so critical to first order diffraction tomography the 
mathematical limitations of each approximation are also discussed. 

The Fourier Diffraction Theorem relates the scattered field measured on a 
line to the Fourier transform of the object and is presented in Chapter 3. This 
theorem is only true when either the Born or the Rytov approximation is valid 
but it has generated much excitement in the research community. 

The Fourier Diffraction Theorem was derived by two different methods in 
this work. Both approaches to the Fourier Diffraction Theorem lead to the 
same relationship between the scattered field and the object’s Fourier 
transform. The conventional approach is to decompose the Green’s function, 
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the field scattered by a point scatterer, into plane waves and simply substitute 
this result into the integral solution to the wave equation. A second, new 
approach, is to consider the Fourier Diffraction Theorem entirely in the Fourier 
domain. This method points toward a more natural computer implementation 
and was exploited in Chapter 6 for computing better approximations to the 
scattered field. 

The remainder of Chapter 3 discussed experimental methods for collecting 
enough scattered data so that a unique estimate for the object can be formed. 
The potential methods described include using a plane wave to illuminate the 
object, synthesizing plane waves much like what is done in phase array antenna 
design and broadband (in time) incident fields. 

Chapter 4 discussed two mathematical algorithms for inverting the 
scattered data to estimate the object’s (complex) refractive index. Much like 
conventional (straight ray) tomography there are two approaches that can be 
used to invert the scattered data. These two algorithms, often described as 
interpolation in the space domain and frequency domain, were presented here 
and their algorithmic complexity was discussed. 

In addition several signal processing concerns were examined in Chapter 4. 
By calculating the Mean Squared Error between the object and the 
reconstruction it was concluded that zero padding each projection is a good 
way to reduce the interpolation error in the frequency domain. On the other 
hand, using a Hamming window to shape the projection and reduce the effect 
of the finite aperture severely attenuates the high frequency information in the 
projection and increases the error. 

The limitations of first order diffraction tomography were discussed in 
Chapter 5. Two types of errors limit the quality of the reconstruction: 
mathematical limitations caused by the approximations used to derive the 
Fourier Diffraction Theorem and experimental limitations caused by the ability 
to only collect a finite amount of data. The mathematical limitations are the 
most severe. In deriving the Born and the Rytov approximations it was 
necessary to assume that the scattered fields were small compared to incident 
fields. This is equivalent to saying that the object must be weakly scattering 
for the first order diffraction tomography algorithms to hold and if this 
condition isn’t met then the reconstruction will have serious artifacts. 

The limits of first order diffraction tomography are easily described in 
terms of the magnitudes of the scattered fields but a more meaningful measure 
is to study the range of objects where the approximations are valid. This was 
done in Chapter 5 by calculating the exact scattered fields from a large number 



of cylinders and then making an estimate of the object assuming that the first 
order diffraction tomography algorithms are valid. Thus it was concluded that 
the Born approximation is valid when the product of the diameter of the 
cylinder (in wavelengths) and the absolute value of the refractive index change 
is less than 0.5. On the other hand the size of the object is not as critical to 
the Rytov approximation. Instead the refractive index change is the limiting 
factor and reconstructions based on the Rytov approximation are good as long 
as the refractive index of the object is less than a few percent. 

The experimental limitations, on the other hand, can always be minimized 
by collecting more data. Thus it is clear that interpolation error can always be 
reduced by increasing the number of projections or the number of samples per 
projection. Another, less obvious, limitation is the finite aperture of the 
projection. Unlike conventional (straight ray) tomography where the projection 
of a finite sized object has a finite length, the same is not true for scattered 
fields. With diffraction tomography the scattered field never goes to zero and 
the sampling interval for the projection must be carefully balanced to prevent 
al&sing but yet large enough to measure the high frequency information far 
from the center of the projection. An expression for this relationship was 
derived in Chapter 5 and several reconstructions were presented with different 
sampling intervals to confirm the optimum sampling interval. 

The limitations of first order reconstruction algorithms were addressed in 
Chapters 6 and 7. The most severe limitation is caused by the first order 
perturbation models assumed in deriving the Fourier Diffraction Theorem. 
Thus Chapter 6 discussed several approaches to more accurately model the 
scattered fields. With one of these more accurate models it should then be 
possible to invert the relationship and derive a better reconstruction algorithm. 
A survey of several possible approaches to inverting the scattered data is 
presented in Chapter 7. 

Since better reconstructions will be based on more accurate models of the 
field inside the object two approaches to more accurately model the scattered 
field were presented in Chapter 6. The most severe limitation of first order 
algorithms is the assumption that the field inside the object is approximately 
equal to the incident field. Thus when this condition is not valid the Born and 
the Rytov approximations are no longer valid. 

The simplest technique is to assume that the perturbational model used to 
derive the Fourier Diffraction Theorem is approximately correct and simply 
include more of the higher order terms. The result is a series of terms much 
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like a Taylor series. This is an iterative procedure and was applied to both the 
Born and the Rytov approximations. 

An important measure of any series is a description of its region of 
convergence. In this case the region of convergence is a function of the entire 
object and the results presented in Chapter 6 were simplified by considering the 
convergence as a function of size and refractive index of simple objects. Thus 
the region of convergence can be described by two parameters and all objects 
outside this region (because they are larger or have a greater refractive index 
change) will cause the series to diverge. 

The series described in Chapter 6 were calculated by sampling the object 
and the fields and then using an efficient algorithm based on Fourier 
transforms. In each case the scattered field was calculated by multiplying a 
function of the object by a field and then convolving this “scattering potential” 
with the Green’s function. The convolution represents the most expensive part 
of the algorithm and can be efficiently calculated using FFT’s. 

The convergence properties of the Born and the Rytov series were 
determined by a binary search procedure. Thus for a given size the refractive 
index of the object was varied till a point was found were the series converged 
for all refractive indices that were smaller and diverged if the refractive index 
was larger than this point. By varying the size of the object it was possible to 
show a region of convergence as a function of both object size and refractive 
index. 

The simulations of the Born series showed it to converge only when the 
first iteration is an accurate estimate of the field inside the object. Thus the 
phase change of the field as it travels through the object is a good indication of 
not only the quality of a first order Born reconstruction but also describes the 
region of convergence of the Born series. 

The convergence of the Rytov series is more surprising. For all cases 
studied the Rytov series’ region of convergence includes the region of 
convergence for the Born. This is especially surprising since the first order 
Born and Rytov approximations have different regions of validity. 

In addition Chapter 6 also presented a study of the effects of attenuation 
on both the Born and the Rytov series. A key part of this work is the idea 
that attenuating plane waves can be described either in terms of a solution to 
the wave equation or in the Fourier domain. In a non-attenuating media the 
two approaches are identical since plane wave solutions to the wave equation 
are also Fourier waves. 
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Considering an attenuating plane wave in the Fourier domain makes it 
possible to calculate the higher order Born and Rytov series for attenuating 
media. While the algorithms remain the same there is a significant difference 
in its convergence properties. Since the energy in the field is attenuated as it 
travels away from the scattering site the region of convergence for both the . 
Born and the Rytov series is increased as the attenuation of the media is 
increased. Thus the attenuation of the media balances the extra field caused 
by a larger scattering potential. 

A second approach to calculating the scattered fields from a known object 
was also discussed in Chapter 6. By sampling the object and the fields a set of 
discrete equations can be written that relate the field and the object. Without 
using any approximations it is then possible to express the field as the solution 
of a linear matrix equation. 

While the form of the matrix equation is simple, the large amount of data 
makes this problem difficult to compute directly with today’s computers. 
Instead it was necessary to use an iterative technique known as the Kaczmarz 
approach to solve the matrix. While the iterative technique used can be shown 
theoretically to always converge, numerical errors limit the range of objects to 
those that have a refractive index change of less than 20-40%. 

The rate of convergence of this method is only a function of the 
orthogonality of the defining equations. Thus when the object has a small 
refractive index the defining equations are nearly orthogonal and the Kaczmarz 
approach quickly converges to the correct field. On the other hand as the 
refractive index is increased the hyperplanes defined by the equations become 
nearly parallel and convergence is much slower. Since the Kaczmarz approach 
treats each equation for the field separately faster convergence is often possible 
by sequencing the equations so that each equation is nearly parallel to the one 
before it. 

Finally Chapter 7 presented a survey of several techniques for 
reconstructing an object without using first order approximations. The most 

. difficult part of this problem is that it now necessary to actually compute the 
field inside the object. In first order diffraction tomography the field inside the 
object is assumed to be a plane wave but this can’t be true with higher order 
approximations. Since it is necessary to illuminate the object from a number 
of different directions to perform the reconstruction a calculation of the field is 
necessary for each view. The large number of equations makes this a difficult 
and expensive process. 
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A straightforward approach is to write a system of equations that 
describes both the field inside the object and the refractive index of the object. 

, It should then be possible to solve this system of equations for both the field 
and the object. Unfortunately it is a non-linear system of equations because 
the defining equations are a function of the product of the two unknowns. For 
this reason it is necessary to use some type of search procedure to solve for 
both the fields and the object. 

A second approach, first used in high energy physics and described in 
Chapter 7, is to do a perturbation expansion for the object. This is similar to 
the Born and the Rytov series described in Chapter 6 but now the object is 
assumed to consist of a series of components. 

The convergence of this approach is a function of two series. Since this 
approach is based on a Born series expansion for the scattered field it is only 
valid when the field inside the object can be described as a converging Born 
series. As seen in Chapter 6 this is a rather severe limitation. In addition the 
object is expressed as a separate series expansion and for this approach to 
converge it is necessary for both the Born series and the object series to 
converge. 

Finally a third approach, described in Chapter 7, is to make a first order 
estimate for the object and then use this object to calculate a better estimate 
for the field inside the object. Like the Born and the Rytov series described in 
Chapter 6 this is a fixed point algorithm. This approach is made even more 
difficult than first order reconstruction algorithms since it is necessary to 
calculate an estimate of the object given an arbitrary illuminating field. Since 
each projection is no longer independent the Fourier Diffraction Theorem is not 
valid and a reconstruction procedure will need to look at ail the scattered data 
simultaneously. This can be easily done using a matrix formulation but there 
is a severe performance penalty. 

The convergence properties of this particular series is not known although 
it is probably reasonable to assume that the region of convergence will be a 
function of the quality of the first order estimate of the field. If using the first 
order estimate of the field is not better than the original assumption to use the 
incident field then certainly the series will diverge. This condition represents a 
severe limitation for the technique. 

Future work on this problem could continue in several areas. The 
perturbational approach has a limited range of convergence but for objects that 
fall within this range a better quantitative estimate of the object should be 
possible than that which is possible using first order algorithms. The same is 
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also true for the fixed point approach but more work is needed to determine 
the range of convergence. 

Certainly the only guaranteed approach to solve the inverse scattering 
problem is to find a solution to a non-linear set of equations. There are a 
number of algorithms that can be used but the large number of equations (a 
128x128 reconstruction has over 2 million unknowns and equations) makes this 
a very difficult problem. 
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