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CHAF’TER 3 
THE FOURIER DIFFRACTION THEOREM 

3.1 Introduction 
Fundamental to diffraction tomography is the Fourier Diflraction 

Projectiola Theorem, which relates the Fourier transform of the measured 
forward scattered data with the Fourier transform of the object. The theorem 
is valid when the inhomogeneities in the object are only weakly scattering and 
can be stated as [Kak84]: 

When an object, f(x,y), is illuminated with a plane wave as shown 
in Figure 3.1, the Fourier transform of the forward scattered 
fields measured on line TT’ gives the values of the 2-D transform, 
F(w,,w,), of the object along a circular arc in the frequency 
domain, as shown in the right half of the figure. 

The importance of the theorem is made obvious by noting that if an object is 
illuminated by plane waves from many directions over 360 O, the resulting 
circular arcs in the (wl,w2)-plane will fill the frequency domain. The function 
f(x,y) may then be recovered by Fourier inversion. 

Before giving a short proof of the theorem, first a few words about the 
dimensionality of the object compared to that of the scattered fields. Although 
the theorem talks about a two-dimensional object, what is actually meant is an 
object that does not vary in the z direction. In other words, the theorem is 
about any cylindrical object whose cross-sectional distribution is given by the 
function f(x,y). The forward scattered fields are measured on a line of 
detectors along TT’ in Figure 3.1. 

If a truly three-dimensional object is illuminated by a plane wave, the 
forward scattered fields would now have to be measured by a planar array of 
detectors. The Fourier transform of the fields measured by such an array 
would give the values of the 3-D transform of the object over a spherical 
surface. This was first shown by Wolf [Wo169]. A more recent exposition is in 
[Nah84 and Dev84], where the authors have also presented a new synthetic 
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aperture procedure for a full three dimensional reconstruction using only two 
rotational positions of the object. This chapter, however, will continue to work 
with two dimensional objects in the sense described here. A recent work 
describing some of the errors in this approach is [LuZ84]. 

3.2 Decomposing the Green’s Function 

Earlier in this work, the scattered field due to a weakly scattering object 
was expressed as the convolution 

uB6? = ~"tt')uO@%~~')bt' (3-l) 

where us(?) represents the complex amplitude of the field as in the Born 
approximation or the incident field, uo(?‘), times the complex scattered phase, 

hi% in the Rytov approximation. From this integral there are two 
approaches to the derivation of the Fourier Diffraction Theorem. Many 
researchers [Mue79, Gre78, Dev82) have expanded the Green’s function into its 
plane wave decomposition and then noticed the similarity of the resulting 
expression and the Fourier transform of the object. Alternatively, if the 
Fourier transform of each component of this equation (3.1) is taken then the 
Fourier Diffraction Theorem can be derived in a manner that can be easily 
visualized and points towards efficient computer implementations. This work 
will present both approaches to the derivation of the Fourier Diffraction 
Theorem: the first because the math is more straightforward, the second 
because it provides more insight into the difference between transmission and 
reflection tomography. 

First the Green’s function will be decomposed into its plane wave 
components. 

3.2.1 Plane Wave Approach 

The integral equation for the scattered field (3.1) can be considered as a 
convolution of the Green’s Function, g(iY’), and the product of the object 
function, o(P), and the incident field, u,(P). Consider the effect of a single 
plane wave illuminating an object. The forward scattered field will be 
measured at the receiver line as is shown in Figure 3.2. 

A single plane wave in two dimensions can be represented as 

uo(q = dR-7 (3.2) 

where K = (k,,k,) satisfies the following relationship 
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Figure 3.2 A typical diffraction tomography experiment 
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k; = k;+k;. (3.3) 

From earlier in this work, the two dimensional Green’s function is given 

bY 

and He is the zero-order Hankel function of the first kind. The function He has 
the plane wave decomposition [Mor53] 

where t = (x,y), t’ = (x’ ,y’ ) and 

p=@F? P-6) 
Basically, equation (3.5) expresses a cylindrical wave, He, as a superposition of 
plane waves. At all points, the wave centered at 7’ is traveling outward; for 
points such that y>y ’ the plane waves propagate upward while for y<y ’ the 
plane waves propagate downward. In addition, for ] a] Ike, the plane waves 
are of the ordinary type, propagating along the direction given by tan-*(p/o). 
However, for 1 CY] >ke, p becomes imaginary, the waves decay exponentially 
and they are called evanescent wa23e.s. Evanescent waves are usually of no 
significance beyond about 10 wavelengths from the source. 

Substituting this expression, (3.5), into the expression for the scattered 
field, (3.1), the scattered field can now be written 

O”l ~~0) = --$+I )u&” ) I p&(x-X’) +@I Y-Y’ 1 Ida@ 

-00 
(3-V 

In order to show the first steps in the proof of this theorem, assume for 
notational convenience that the direction of the incident plane wave is along 
the positive y-axis. Thus the incident field is given by 

u,,m = eJ'O*' (3.8) 

where S0 = (0,ke). Since in transmission imaging the scattered fields are 
measured by a linear array located at y = l,,, where 1, is greater than any y- 
coordinate within the object (see Figure 3.2) the term ] y-y ’ I in the above 
expression may simply be replaced by 1,-y ’ and the resulting form may be 
rewritten 
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U&Y ‘4) = (3.9) 

Recognizing part of the inner integral as the twodimensional Fourier 
transform of the object function evaluated at a frequency of (cu#-ke) the 
scattered field can be written 

Ug(X,y=b) = k 7 $ei(““+A)O(a,/9-k0)do 
-w 

(3.10) 

where 0 has been used to designate the two dimensional Fourier transform of 
the object function. 

Let Uu(~,le) denote the Fourier transform of the one dimensional scattered 
field, uB(x,lO), with respect to x, that is 

U,(w,b) = 7 ug(x,le)e-jwxdx 
-00 

(3.11) 

As mentioned before, the physics of wave propagation dictate that the highest 
angular spatial frequency in the measured scattered field on the line y =le is 
unlikely to exceed k,. Therefore, in almost all practical situations, U,(w,lO) = 0 
for 1 WI > ke. This is consistent with neglecting the evanescent modes as 
described earlier. 

If the Fourier transform of the scattered field is found by substituting 
equation (3.10) into equation (3.11) then using the following property of Fourier 
integrals 

00 
I ej(Wa)xdx = 274~1-4 

-00 
(3.12) 

where 6(e) is the Dirac delta function discussed in Chapter 2 the scattered field 
can be written 

uB(d,) = iej-O( a, J--k,) 
2&p 

(3.13$ 

for IcrI < ke. 

This expression relates the two dimensional Fourier transform of the object to 
the one dimensional Fourier transform of the field at the receiver line. The 
factor 
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(3.14) 

is a simple constant for a fixed receiver line. As cl! varies from -ke to kc, the 

coordinates (a, $&%ke) in the Fourier transform of the object function 
trace out a semicircular arc in the (u,v)-plane as shown in Figure 3.1. This 
proves the Fourier Diffraction Theorem. 

To summarize, if the Fourier transform of the forward scattered data is 
found when the incident illumination is propagating along the positive y-axis, 
the resulting transform will be zero for angular spatial frequencies 1 cyI >k,. 
For 1 al <ke, the transform of the data gives values of the Fourier transform 
of the object on the semicircular arc are shown in Figure 3.1 in the (u,v)-plane. 
The endpoints A and B of the semicircular arc are at a distance of fike from 
the origin in the frequency domain. 

3.2.2 Fourier Transform Approach 

Another approach to the derivation of the Fourier Diffraction Theorem is 
possible if the scattered field 

ugp) = lo(Y’ )u()(T” )g(iw )ct?’ (3.15) 

is considered entirely in the Fourier domain. The plots of Figure 3.3 will be 
used to illustrate the various transformations that take place. 

Again consider the effect of a single plane wave illuminating an object. 
The forward scattered field will be measured at the receiver line as is shown in 
Figure 3.2. 

The integral equation for the scattered field can be considered as a 
convolution of the Green’s Function, gp?‘), and the product of the object 
function, o(Y), and the incident field, I@“). First define the following Fourier 
transform pairs. 

OFI 4-t O(R) 

gw 1 4-t G(if) (3.16) 

The integral solution to the wave equation can now be written in terms of 
these Fourier transforms or 
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Shifted Object 

. 

Scattered Field 

Creca’m Function 

Figure 3.3 Two dimensional Fourier representation of the Helmholtz 
equation. (a) Th e object, (b) the incident field, (c) the 
Green’s function, (d) the (space domain) product of the 
object and the incident field and (e the two dimensional 
Fourier transform of the scattered fiel d . 



(3.17) 

where ‘1’ has been used to represent convolution and x = (a,~). In equation 
(3.2) an expression for u. was presented. It’s Fourier transform is given by 

v,(X) = 24-R) (3.18) 

and thus the convolution of equation (3.17) becomes a shift in the frequency 
domain or 

O(X)*U,(F) = 27ro(z-Ix). (3.19) 

This convolution is illustrated in Figures 3.3a-c for a plane wave propagating 
with direction vector, R = (O,ko). Figure 3.3a shows the Fourier transform of a 
single cylinder of radius 1X and Figure 3.3b is the Fourier transform of the 
incident field. The resulting multiplication in the space domain or convolution 
in the frequency domain is shown in Figure 3.3~. 

To find the Fourier transform of the Green’s function the Fourier 
transform of the equation for a point scatterer 

( V2 + k;)g(717’ ) = -S(iV’ ), (3.20) 

is taken to find 

(-A2+ki)G(xIP’) = -e-8*?‘. (3.21) 

Rearranging terms the following expression for the Fourier transform of the 
Green’s function is found 

(3.22) 

This has a singularity for all x such that 

I I A2 =cr2++ = k,2. (3.23) 

An approximation to G(x) is shown in Figure 3.3d. 

The Fourier transform representation is misleading because it represents a 
point scatterer as both a sink and a source of waves. A single plane wave 
propagating from left to right can be considered in two different ways 
depending on the point of view. From the left side of the scatter, the point 
scatterer represents a sink to the wave while to the right of the scatterer the 
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wave is spreading from a source point. Clearly, it is not possible for a scatterer 
to be both a point source and sink, and later when our expression for the 
scattered field is inverted, it will be necessary to choose a solution that leads to 
outgoing waves only. 

The effect of the convolution shown in equation (3.15) is a multiplication 
in the frequency domain of the shifted object function, (3.19) and the Green’s 
function, (3.22) evaluated at it’ = 0. The scattered field is written as 

v,(X) = 2*=Q. 
A2-k2 

(3.24) 

This result is shown in Figure 3.3e for a plane wave propagating along the y- 
axis. Since the largest frequency domain components of the Green’s function 
satisfy equation (3.23), the Fourier transform of the scattered field is dominated 
by a shifted and sampled version of the object’s Fourier transform. 

An expression for the field at the receiver line will now be derived. For 
simplicity it will continue to be assumed that the incident field is propagating 
along the positive y axis or R = (0,ke). The scattered field along the receiver 
line (x,y=b) is simply the inverse Fourier transform of the field in equation 
(3.24). This is written as 

u(x,y=b) = 5-7 i” U,(n’)ej”*‘dad~ 
0000 

which, using (3.24), can be expressed as 

u,(x,y=le) = ,j(ax ++o)dad7 

(3.25) 

(3.26) 

First find the integral with respect to 7. For a given Q, the integral has a 
singularity for 

%,2 = +/i&7 (3.27) 

Using contour integration the integral can be evaluated with respect to 7 along 

the path shown in Figure 3.4. By adding -& of the residue at each pole the 

scattered field is expressed 

u,(x,y) = +-ITr(cr;y)ej’=‘da + $JI’2(o;y)ejffxdo (3.28) 

where 
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Figure 3.4 Integration path in the complex plane for inverting the two 
dimensional Fourier transform of the scattered field. 
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I-1 = 

and 

I-2 = 

-jO(cr,-$&hcJ ,-j&Y& 

z&7 

(3.29) 

(3.30) 

Examining the above pair of equations it can be seen that rI represents the 
solution in terms of plane waves traveling along the positive y axis while I’2 
represents plane waves traveling in the -y direction. 

As was discussed earlier, the Fourier transform of the Green’s function 
(3.22) represents the field due to both a point source and a point sink but the 
two solutions are distinct for receiver lines that are outside the extant of the 
object. First consider the scattered field along the line y = l,-, where le is 
greater than the y-coordinate of all points in the object. Since all scattered 
fields originate in the object, plane waves propagating along the positive y axis 
represent outgoing waves while waves propagating along the negative y axis 
represent waves due to a point sink. Thus for y>object (i.e. the receiver line is 
above the object) the outgoing scattered waves are represented by rr or 

UskY 1 = $/I’l(o;y)~~xdu y>object (3.31) 

Conversely for a receiver along a line y = le where lc is less than the y- 
coordinate of any point in the object the scattered field is represented by r2 or 

u,(x,y) = &lI’z(u;y)daxdo y<object (3.32) 

In general the scattered field will be written as as 

U*hY) = +-T(*;y)ei”da (3.33) 

and it will be understood that values of the square root in the expression for I’ 
should be chosen that lead only to outgoing waves. 

Taking the Fourier transform of both sides of equation (3.33) the Fourier 
transform of the scattered field at the receiver line is written 

fu(x ,y =b)e-jQxdx = I’(c+,). (3.34) 

But since by equations (3.29) and (3.30), I’(cr,le) is equal to a phase shifted 
version of the object function then the Fourier transform of the scattered field 
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along the line y=l, is related to the Fourier transform of the object along a 
circular arc. The use of the contour integration is further justified by noting 
that only those waves that satisfy the relationship 

cr2+q = k$ (3.35) 

will be propagated and thus it is safe to ignore all waves not on the k,-,-circle. 

This result is diagramed in Figure 3.5. The circular arc represents the 
locus of all points (a,?) such that 7 = +/i&? Th e solid line shows the 
outgoing waves for a receiver line at y=l,, above the object. This can be 
considered transmission tomography. Conversely the dashed line indicates the 
locus of solutions for the reflection tomography case, or y=la is below the 
object. 

3.3 Limit of the Fourier Diffraction Theorem 

While at first the derivations of the Fourier Slice Theorem and the Fourier 
Diffraction Theorem seem quite different, it is interesting to note that in the 
limit of very high energy waves or, equivalently, very short wavelengths the 
Fourier Diffraction Theorem is closely approximated by the Fourier Slice 
Theorem. Recall that the Fourier transform of a diffracted projection 
corresponds to samples of the two dimensional Fourier transform of an object 
along a circular arc. As shown in Figure 3.1 the radius of the arc is equal to k, 
which is given by 

27r 
k, = x (3.36) 

and X is the wavelength of the energy. As the wavelength is decreased, the 
wavenumber, k,,, and the radius of the arc in the object’s Fourier domain 
grows. This process is illustrated in Figure 3.6 where the semicircular arc 
resulting from a diffraction experiment is shown at six different frequencies. 

An example might make this idea clearer. Compare an ultrasonic 
diffraction apparatus and a typical x-ray scanner. The ultrasonic experiment 
might be carried out at a frequency of 5 MHz and a wavelength in water of .3 
mm. This corresponds to a kc of 333 radians/meter. On the other hand, an 
x-ray source with a 100 keV beam has a wavelength of .012 PM. The result is 
that a diffraction experiment gives samples along an arc of radius 5x10* 
radians/meter. Certainly for all physiological features (i.e. resolutions of < 
1000 radians/meter) the arc can be considered a straight line and the Fourier 
Slice Theorem is an excellent model of the propagation of x-rays. 
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Figure 3.5 Estimate of the two dimensional Fourier transform of the 
object are available along the solid arc for transmission 
tomography and the dashed arc for reflection tomography. 
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Figure 3.6 As the illuminating frequency is increased the Fourier 
Diffraction Theorem becomes equivalent to the Fourier Slice 
Theorem. 
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3.4 The Data Collection Process 

The best that can be hoped for in any tomographic experiment is to 
estimate the Fourier transform of the object for all frequencies within a disk 
centered at the origin. For objects that do not have any frequency content 
outside the disc then the reconstruction procedure is perfect. 

There are several different procedures that can be used to estimate the 
object function from the scattered field. A single plane wave provides exact 
information (up to a frequency of fike) about the Fourier transform of the 
object along a circular arc. Two of the simplest procedures involve changing 
the orientation and frequency of the incident plane waves to move the 
frequency domain arcs to a new position. By appropriately choosing an 
orientation and a frequency it is possible to estimate the Fourier transform of 
the object at any given frequency. In, addition it is possible to change the 
radius of the semicircular arc by varying the frequency of the incident field and 
thus generating an estimate of the entire Fourier transform of the object. 

3.4.1 Plane Wave Illumination 

The most straightforward data collection procedure consists of rotating the 
object and measuring the scattered field for different orientations. Each 
orientation will produce an estimate of the object’s Fourier transform along a 
circular arc and these arcs will rotate as the object is rotated. When the object 
is rotated through a full 360 degrees an estimate of the object will be available 
for the entire Fourier disk. 

The coverage for this method is shown in Figure 3.7 for a simple 
experiment with 8 projections of 9 samples each. Notice that there are two 
arcs that pass through each point of Fourier space. Generally it will be 
necessary to choose one estimate as better. 

On the other hand if the reflected data is collected by measuring the field 
on the same side of the object as the source then estimates of the object are 
available for frequencies greater than fike. This follows from Figure 3.5. 

The first experimental results for diffraction tomography were presented 
by Carter and Ho [Car70, Car74, Car76 and Ho76]. They used an optical plane 
wave to illuminate a small glass object and were able to measure the scattered 
fields using a hologram. Later a group of researchers at the University of 
Minnesota carried out the same experiments using ultrasound and gelatine 
phantoms. Th eir results are discussed in [Kav82]. 
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Figure 3.7 Estimates of the object’s two dimensional Fourier transform 
are available along the circular arcs for plane wave 
illumination. 
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3.4.2 Synthetic Aperture 

Nahamoo and Kak [Nah82, Nah84] and Devaney [Dev84) have proposed a 
method that requires only two rotational views of an object. Consider an 
arbitrary source of waves in the transmitter plane as shown in Figure 3.8. The 
transmitted field, utr can be represented as a weighted set of pIane waves by 
taking the Fourier transform of the transmitter aperture function [Goo68]. 
Doing this the transmitted field can be expressed as 

ut(x) = $7 At(k,)ejk”d k,. 
w 

(3.37) 

Moving the source to a new position, q, the plane wave decomposition of the 
transmitted field becomes 

%h) = 5-7 [Adk,)eikX’r]ejkxxdkx. 
w 

(3.38) 

Given the plane wave decomposition, the incident field in the plane follows 
simply as 

w 

ui(V;x,Y) = 
I[ 

-!-A,(kx)ejka 
-00 4n2 I 

$tkxx +kyY)dkx. (3.39) 

In equation (3.34) an equation for the scattered field from a single plane 
wave was presented. Because of the linearity of the Fourier transform, the 
effect of each plane wave, e j(kxx + kg) can be weighted by the expression in 
brackets above and superimposed to’find the Fourier transform of the total 
scattered field due to the incident field ut(x;q) as [Nah82) 

U,( q;cr) = 7 [A,(kx)ejkx’r) o(“-~~~7ky) dk,, 
-00 

(3.40) 

Taking the Fourier transform of both sides with respect to the transmitter 
position, q, the Fourier transform of the scattered field with respect to both the 
transmitter and the receiver position is given by 

Us&x;4 = At(kx) 
ok-kxrk,) k 

07 
X’ (3.41) 

This approach gets the name synthetic aperture because a phase is added 
to the field measured for each transmitter position to synthesize a transmitted 
plane wave. Thus this method has a lot in common with the theory of phased 
arrays. Figure 3.9 shows that by properly phasing the wave transmitted at 
each transmitter location a plane wave can be generated that travels in an 
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Figure 3.8 A typical synthetic aperture tomography experiment. 
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Figure 3.0 By adding a phase to the field transmitted from each 
transmitter any desired plane wave can be synthesized. 
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arbitrary direction. Since the system is linear it doesn’t matter whether the 
phase is added to the transmitted signal or as part of the reconstruction 
procedure. Thus multiplying the received field for each transmitter position by 
the pure phase term ejkxq, where q represents the location of the transmitter, is 
equivalent to an experiment with an incident plane wave with the direction 

vector (k,,dki-k:). 

By collecting the scattered field along the receiver line as a ‘function of 
transmitter position, q, an expression can be written for the scattered field. 
Like the simpler case with plane wave incidence, the scattered field is related to 
the Fourier transform of the object along an arc. Unlike the previous case, 
though, the coverage due to a single view of the object is a pair of circular 
disks as shown in Figure 3.10. Here a single view consists of transmitting from 
all positions in a line and measuring the scattered field at all positions along 
the receiver line. By rotating the object by 90 degrees it is possible to generate 
the complimentary disk and to fill the Fourier domain. 

The coverage shown in Figure 3.10 is constructed by calculating (R-x) for 
all vectors (ft) and (x) that satisfy the experimental constraints. Not only 
must each vector satisfy the wave equation but it is also necessary that only 
forward traveling plane waves be used. The dashed line in Figure 3.10 shows 
the valid propagation vectors (-x) for the transmitted waves. To each possible 
vector (-x) a semicircular set of vectors representing each possible received 
wave can be added. The locus of received plane waves is shown as a solid 
semi-circle centered at each of the transmitted waves indicated by an ‘x’. The 
entire coverage for the synthetic aperture approach is shown as the shaded 
areas. 

In addition to the diffraction tomography configurations proposed by 
Mueller and Nahamoo other approaches have been proposed. In Vertical 
Seismic Profiling (VSP) [Dev84] th e scattering between the surface of the Earth 
and a borehole is measured. Alternately a broadband incident field can be used 
to illuminate the object. In both cases, the goal is to estimate the Fourier 
transform of the object. 

In geophysical imaging it is not possible to generate or receive waves from 
all positions around the object. If it is possible to drill a borehole then it is 
possible to perform VSP and obtain information about most of the object. A 
typical experiment is shown in Figure 3.11. So as to not damage the borehole, 
acoustic waves are generated at the surface using acoustic detonators or other 
methods and the scattered field is measured in the borehole. 



Received Plane Wave 
for an Incident Field 

\ Transmitted Plane Wave 

Figure 3.10 Estimates of the Fourier transform of an object in a 
synthetic aperture experiment are available in the shaded 
region. 
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Figure 3.11 A typical Vertial Seismic Profiling (VSP) experiment. 
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The coverage in the frequency domain is similar to the synthetic aperture 
approach. Plane waves at an arbitrary downward direction are synthesized by 
appropriately phasing the transmitting transducers. The receivers will receive 
any waves traveling to the right. The resulting coverage for this method is 
shown in Figure 3.12a. If can be assumed that the object function is real 
valued then the symmetry of Fourier transform for real valued functions can be 
used to obtain the coverage in Figure 3.12b. 

3.4.3 Broadband Illumination 

It is also possible to perform an experiment for broadband illumination 
[Ken82]. Up until this point only narrow band illumination has been 
considered; wherein the field at each point can be completely described by its 
complex amplitude. 

Now consider a transducer that illuminates an object with a wave of the 
form at(kk,t). Taking the Fourier transform in the time domain this wave can 
be decomposed into a number of experiments. Let 

&(kX,w) = 7 at(k,,t)e-jwtdt (3.42) 
-00 

where w is related to k, by 

k, = + 
W 

(3.49 

c is the speed of propagation in the media and the wavevector (k,,k,) satisfies 
the wave equation 

k,z+k; = k,2 (3.44) 

If a plane wave illumination of spatial frequency k, and a temporal 
frequency w leads to the scattered field uJk,,w;y) then the total scattered field 
is given by a weighted superposition of the scattered fields or 

u&y) = 7 A,(k,,w)u,(k,,w;y)dw. 
-00 

- (3.45) 

For plane wave incidence the coverage for this method is shown in Figure 
3.13a. Figure 3.13b shows that by doing four experiments at 0, 90, 180 and 
270 degrees it is possible to gather information about the entire object. 
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Plane Wave 

Figure 3.12 Estimate of the Fourier transform of an object are available 
in the shaded region for a VSP experiment (a). If, in 
addition, the object is real valued then the symmetry of the 
Fourier transform can be used to get the coverage shown in 
04. 
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Figure 3.13 One view of a broadband diffraction tomography experiment 
will generate estimates of the object along the arcs in (a). 
With four views of the object complete coverage can be 
obtained as shown in (b). 
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