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CHAPTER 2 
DIFFRACTED PROJECTIONS 

2.1 Introduction 
Tomography with diffracting energy can not be modeled with the same 

equations used to model projections in conventional, straight ray, tomography. 
Acoustic and electromagnetic waves do not travel along straight rays and the 
projections are not line integrals. Instead the flow of energy will be described 
with the wave equation and in the limit of very short wavelengths or objects 
where the effects of refraction are small it will be shown that the diffracted 
projections can be approximated by a non diffracting projection 

First consider the propagation of waves in homogeneous media. The wave 
equation is a second order linear differential equation and under certain 
conditions it can be shown that an expression for the field at every other point 
in space can be written. 

The problem is not to image a homogeneous media but one that is 
inhomogeneous. To solve the inhomogeneous wave equation, one of two 
approximations, the Born or the Rytov, must be used. With these two 
approximations expressions for the field scattered by the inhomogeneities of the 
media can be written. 

The theory to be discussed will be applicable to both two and three 
dimensional structures. Even in a three dimensional world a two dimensional 
model can often be used if the object varies slowly in one direction. This 
assumption, for example, is often made in conventional computerized 
tomography where images are made of a single slice of the object. The theory 
of diffraction tomography will be presented almost entirely in two dimensions 
for two reasons. More importantly, the ideas behind the theory are often easier 
to visualize (and certainly to draw) in two dimensions. In addition technology 
has yet to make it practical to implement large three dimensional transforms 
and then to display the results. This limitation will certainly be eliminated in 
the near future and where the differences are significant both the two and three 
dimensional solutions will be indicated. 
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2.2 Homogeneous Wave Equation 

In a constant or homogeneous media the propagation of acoustic or 
electromagnetic waves can be modeled with the scalar Helmholtz equation. For 
a temporal frequency of w radians per second (rps) a field, u(7), satisfies the 
equation 

(V2+k;)u(7) = 0. (2.1) 

For homogeneous media the wavenumber, ku, is a constant related to the 
wavelength, X, of the wave by 

=2n ko A’ (2.2) 

The wavelength, X, is related to the temporal frequency of the wave by the 
propagation speed in the media, c, or 

x =2sc 
W 

(2.3) 

Since the theory of diffraction tomography is normally derived based on 
coherent fields the time dependence of most fields will be suppressed in this 
work. Thus all fields should be multiplied by e-jut to find the measured field as 
a function of time. The extension of this theory to broadband fields is 
discussed in Section 3.4.3 

For acoustic (or ultrasonic) tomography, u(7) can be the pressure field at 
position i? For the electromagnetic case, assuming the applicability of a scalar 
propagation equation, u(7) may be set equal to the complex amplitude of the 
electric field along its polarization. In both cases the time dependence of the 
fields are suppressed and u@‘) represents the complex amplitude of the field. As 
a function of time and space the field is given by 

UW) (2.4) 

The vector gradient operator, V, can be expanded into its two 
dimensional representation and the wave equation becomes 

2U 2U ~+~+k;u(i’) = 0. (2.5) 

As a trial solution let 

u(q = (p (2.6) 
where the vector E = (k,,k,) is the two dimensional propagation vector and 
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u(i) represents a two dimensional plane wave of spatial frequency 1 El . This 
form of u(?‘) represents the basis function for the two dimensional Fourier 
transform; using it, any two dimensional function can be represented as as a 
weighted sum of plane waves. Calculating the derivatives as indicated in 
equation (2.5) it can be seen that all plane waves that satisfy the condition 

I I 5;* 2 = k,2+k; = k,2 (2.7) 
are valid solutions to the wave equation. This condition is consistent with an 
intuitive picture of a wave and description of the wave equation above, since 
for any frequency wave only a single wavelength can exist no matter which 
direction it propagates. 

The homogeneous wave equation is a linear differential equation so the 
general solution can be written as a weighted sum of each possible plane wave 
solution. In two dimensions, at a temporal frequency of w, the field, u(Y) is 
given by 

u(7) = --& 7 a( ky)ej(kxx + kyy)&y + & 7 p( ky)ej(-kxX +kyY)dk 
Y (24 

-co -co 

and by equation (2.7) 

k, = Jkw. (2-g) 
The form of this equation might be surprising to the reader for two reasons. 
First, the integral has been split into two parts. The coefficients of waves 
traveling to the right are represented by o(ky) and those traveling to the left 
by P(k,). In addition the limits of the integrals have been set to go from -00 
to co. For k; greater than ki the radical in equation (2.9) becomes imaginary 
and the plane wave becomes an evanescent wave. These are valid solutions to 
the wave equation but because k, is imaginary the exponential has a real or 
attenuating component. This real component causes the amplitude of the wave 
to either grow or decay exponentially. In practice, these evanescent waves only 
occur to satisfy boundary conditions, always decay rapidly far from the 
boundary, and can often be ignored at distance greater than 10X from the 
inhomogeneity. 

The limited range of valid solutions to the wave equation allows (under 
certain condition) an expression to be written for the field in all of two-space 
given the amplitude of the field along a line. The three dimensional version of 
this idea gives the field in three-space if the field is known at all points on a 
plane. 
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Consider a source of plane waves to the left of a vertical line as shown in 
Figure 2.1. By calculating the one-dimensional Fourier transform of the field 
along the line the field can be decomposed into a number of one-dimensional 
components. Each of these one dimensional components can then be attributed 
to one of the valid plane wave solutions to the homogeneous wave equation 
because for any one frequency component, k,, there can exist only two plane 
waves that satisfy the wave equation. Since the incident field has already been 
constrained to propagate toward the right (all sources are to the left of the 
measurement line) then a one-dimensional Fourier component at a frequency of 
k, can be attributed to a two dimensional wave with a propagation vector of 

( dw,ky). 

This can be put on a more mathematical basis if the one-dimensional 
Fourier transform of the field is compared to the general form of the wave 
equation. If waves that are traveling to the left are ignored 
solution to the wave equation becomes 

urn = -& 7 a( ky)ej(kG + krY)dk 
Y 

--oo 

then the general 

(2.10) 

Now if the coordinate system is moved so that the measurement line is at 
X = 0 then the expression for the field becomes equal to the one-dimensional 
Fourier transform of the field or 

urn = -& 7 o(ky)ejkyydk Y’ 
-co 

(2.11) 

This equation establishes the link between the one-dimensional Fourier 
transform of the field along the line to the two-dimensional field. The 
coefficients cr(k,) are given from the one dimensional Fourier transform of the 
field by 

4ky) = Fourier Transform . (2.12) 

The simple form of a plane wave allows an expression to be written 
relating the field on two parallel lines. If a priori it is known that all the 
sources for the field are positioned, for example, left of the line at x=le then 
the field u(x =l,,y) can be decomposed into its plane wave components. Given 

a plane wave uplane wave(x =bd = ,,j(kxb+kyy) the field undergoes a phase shift 
as it propagates to the line x=li, and the field can be written 
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Frequency of k, 

x =Qo x=Q1 

Figure 2.1 A plane wave with direction cosines (dw,k,) is shown 
- propagating between the lines x=l,-, and x=ll. 



14 

uplane ,&x =l,,y) = ,ej(kxb+kyy)ejkdll-b) = uplane ,&x =l,,,y)eikX(ll-b) (2.13) 

Thus the complex amplitude of the plane wave at x ~1, is related to its 
jk,(&-b) complex amplitude at x =le by a factor of e . 

The complete process of finding the field at a line x ~1, follows in three 
steps. 

1) Take the Fourier transform of u(x +,y) to find the Fourier 
decomposition of u as a function of k,. 

2) Propagate each plane wave to the line x ~1, by multiplying its 
jk4Wd complex amplitude by the phase factor e , where as before 

k, = ,/w. 

3) Find the inverse Fourier transform of the plane wave decomposition 
to find the field at u(x =l,,y). 

2.3 Iuhomogeneous Wave Equation 

For imaging in an inhomogeneous media a more general form of the wave 
equation is written as 

[V2+k(Y)2]u(7) = 0. (2.14) 

For the electromagnetic case it is necessary to ignore the effects of polarization 
so that k@‘) is a scalar function representing the refractive index of the 
medium. Now write 

k(7) = k+(Y) = ka[l +n@)] (2.15) 

where k, represents the average wavenumber of the media and n&j) represents 
the refractive index deviations. In general it will be assumed that the object 
has a finite size and therefore n&‘) is zero outside the object. Rewriting the 
wave equation 

(V2+k,$@) = -k&$‘)2-1]u(?) (2.16) 

where n(7) is the electromagnetic refractive index of the media and is given by 

n(7) = 
I/- 

l?L!fwl 
POCO * 

(2.17) 

Here p and c have been used to represent the magnetic permeability and 
dielectric constant and the subscript zero to indicate their average values. This 
new term, on the right hand side of equation (2.16) is known as a forcing 
function for the differential equation (V2 +k&$‘). 
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Note that equation (2.16) is a scalar wave propagation equation. Its use 
implies that there is no depolarization as the electromagnetic wave propagates 
through the medium. It is known [Ish78] that the depolarization effects can be 
ignored only if the wavelength is much smaller than the correlation size of the 
inhomogeneities in the object. If this condition is not satisfied, then strictly 
speaking the following vector wave propagation equation must be used 

V2ilf(Y)+k,2n%$?‘)-2V =i? = 0 I 1 n 
(2.18) 

where E is the electric field vector. A vector theory for diffraction tomography 
based on this equation has yet to be developed. 

For the acoustic case, first order approximations give the following wave 
equation [Kak84] 

(V2+k,+(i’) = -k,$2@‘)-1]u(?) (2.19) 

where n is the comptez re/ructive indez at position?, and is equal to 

CO n(T) = - 
GY 

(2.20) 

where co is the propagation velocity in the medium in which the object is 
immersed, and c(?) is the propagation velocity at location t in the object. For 
the acoustic case where only the compressional waves in a viscous compressible 
fluid are involved, the speed of sound is given by 

(2.21) 

where p and K are the focal density and the complez compressibility at location 
7. 

The forcing function in equation (2.19) is only valid provided the first and 
higher order derivatives of the medium parameters can be ignored. If the 
inhomogeneity can be modeled as a viscous compressible fluid, an exact form 
for the wave equation is given by 

where 

(V2 + k&(r) = kzrSu - V*(r,Vu) (2.22) 

/C-K0 

7% =- 
“0 

(2.23) 



(2.24) 

ICY and p. are either the compressibility and density of the medium in which 
the object is immersed, or the average compressibility and the density of the 
object, depending upon how the process of imaging is modeled. On the other 
hand, if the object is a solid and can be modeled as a linear isotropic 
viscoelastic medium, the forcing function possesses another more complicated 
form. Since this form involves tensor notation, it will not be presented here 
and the interested reader is referred to (Iwa75]. 

Due to the similarities of the electromagnetic and acoustic wave equations 
a general form of the wave equation can be written as 

(V2 + k$)u(?) = -o(F)u(i’) (2.25) 

where 

(2.26) 

To hide some of the mathematical details the term o@‘) will be used to 
represent all inhomogeneities of the object. Later the object will be 
reconstructed in terms of the object function, o(T), and the reader is referred to 
equation (2.20) to put the reconstruction in terms of the refractive index. 

Consider the field, u(Y), to be the sum of two components. The incident 
field, u&‘), is the field present without any inhomogeneities or a solution to the 
equation 

(V2 + k;)u,,@) = 0. (2.27) 

That leaves the scattered field, us(F), as that part of the field due to the object 
inhomogeneit ies or 

usm = u(F)-u,(q. (2.28) 

The wave equation becomes 

(V2 + k;)u,(i’) = -u(F)o(T). (2.29) 

The scalar Helmholtz equation (2.29) cannot be solved for us(?) directly 
but a solution can be written in terms of the Green’s function wor53]. The 
Green’s function, which is a solution of the differential equation 

(V2+k;)g(F]P’) = -6(W’), (2.30) 

is written in three-space as 
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$p 1 
,jkdi =- 
47rR 

(2.31) 

with 

R = li”t’l. (2.32) 

In two dimensions the solution of (2.30) is written in terms of a zero-order 
Hankel function of the first kind, and can be expressed as 

gfl f’ ) = fl@l(kJX). (2.33) 

In both cases, the Green’s function, g(Fl-it’), is only a function of the difference 
FP so the function will often be represented as simply g(FF). Because the 
object function in equation (2.30) represents a point inhomogeneity, the Green’s 
function can be considered to represent the field resulting from a single point 
scatterer. 

It is possible to represent the forcing function of the wave equation as an 
array of impulses or 

o(qu(q = Jo(F’ )I@’ )qF-F )dP . (2.34) 

In this equation the forcing function of the inhomogeneous wave equation is 
represented as as a summation of impulses weighted by o(Y)@) and shifted by 
i? The Green’s function represents the solution of the wave equation for a 
single delta function; because the left hand side of the wave equation is linear, 
a solution can be written by summing the scattered field due to each individual 
point scatterer. 

Using this idea, the total field due to the impulse o(i+’ )u(P )S(F-P ) is 
written as a summation of scaled and shifted versions of the impulse response, 
g(Y). This is a simple convolution and the total radiation from all sources on 
the right hand side of (2.29) must be given by the following superposition: 

u&F) = Jg(H )0(-F )u(T” )dF’ . (2.35) 

At first glance it might appear that this is the solution needed for the scattered 
field, but it is not that simple. An integral equation for the scattered field, u,, 
has been written in terms of the total field, u = ue +uS. This equation needs to 
be solved for the scattered field and two approximations that allow this to be 
done will now be discussed. 



18 

2.4 Approximations to the Wave Equation 

In the last section an inhomogeneous integral equation was derived to 
represent the scattered field, us(?), as a function of the object, 00. This 
equation cannot be solved directly, but a solution can be written using either of 
the two approximations described here. These approximations, the Born and 
the Rytov, are valid under different conditions but the form of the resulting 
solutions are quite similar. These approximations are the basis of the Fourier 
Diffraction Theorem. 

Mathematically speaking equation (2.35) is a Fredholm equation of the 
second kind. A number of mathematicians have presented works describing the 
solution of scattering integrals [Hoc73, Co1831 and they should be consulted for 
the theory behind the approximations to be presented here. 

2.4.1 The First Born Approximation 

The first Born approximation is the simpler of the two approaches. Recall 
that the total field, u(t), is expressed as the sum of the incident field, ue(?), and 
a small perturbation, us?), or 

urn = u(-J(iq +u,(-?). (2.36) 

The integral of equation (2.35) is now written as 

us(?) = Jg(i9’ )o(P )ucp )dP + Jg(iV )o(i’ )u$+ )dP (2.37) 

but if the scattered field, I@), is small compared to uc(i) the effects of the 
second integral can be ignored to arrive at the approximation 

USPI % ug(iq = Jg(y’ )o(P )uo(P )dF’ . (2.38) 

The first Born approximation is valid only when the magnitude of the 
scattered field, 

%rn = u(T)-u&i), (2.39) 

is smaller than the magnitude of the incident field, uo. If the object is a 
homogeneous cylinder it is possible to express this condition as a function of 
the size of the object and the refractive index. Let the incident wave, uo(?), be 
a plane wave propagating in the direction of the vector, Eo. For a large object, 
the field inside the object will not be well approximated by the incident field 

jl;o.? 
um = %bjectCif) # Ae (2.40) 

but instead will be a function of the change in refractive index, nti Along a ray 
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through the center of the cylinder and parallel to the direction of propagation 
, of the incident plane wave the field inside the object becomes a slow (or fast) 

version of the incident wave or 

Since the wave is propagating through the object the phase difference 
between the incident field and the field inside the object is approximately equal 
to the integral through the object of the change in refractive index. For a 
homogeneous cylinder of radius ‘a’ wavelengths the total phase shift through 
the object becomes 

Phase Change = 47rr$- (2.42) 

where X is the wavelength of the incident wave. For the Born approximation 
to be valid, a necessary condition is that the change in phase between the 
incident field and the wave propagating through the object be less than ?r. 
This condition can be expressed mathematically as (New661 

an6< t. (2.43) 

2.4.2 The First Rytov Approximation 

The Rytov approximation is another approximation to the scattered field 
and is valid under slightly different restrictions. It is derived by considering 
the total field to be represented as a complex phase or (Ish78] 

ii(?) = e+@ (2.44) 

and rewriting the wave equation (2.14) 

(V2+k2)u = 0 (2.14) 

as 

V2e+ + k2eb = 0 (2.45) 

V[Vtie#] +k2e+ = 0 (2.46) 

V2$e+ + ( V4)2ed + k2e4 = 0 (2.47) 

and finally 

(V4)2+V24+k; = -o@‘). (2.48) 

(Although all the fields (T+!J and #) are a function oft, to simplify the notation 
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the argument of these functions will be dropped.) Expressing the total complex 
phase, (P, can be expressed as the sum of the incident phase function, 40, and 

the scattered complex phase, 4,, or 

4m = 4oo?+~sm (2.49) 

where 

uofF) = edoo (2.50) 

to find that 

(~~,)2+2v~~.v~,+(V~,)~+V~~~+V~~~+k02+0(~ = 0. (2.51) 

As in the Born approximation it is possible to set the zero perturbation 
equation equal to zero. Doing this, the homogeneous wave equation can be 
written 

k; +(V$,J2 +V24, = 0. (2.52) 

Substituting this into equation (2.51) the wave equation becomes 

2V&).V$, + v2f#, = -(V$J2-o(i). (2.53) 

This equation is still inhomogeneous but can be linearized by considering 
the following relation: 

V2(uofk) = YVuo-A + UOW,) (2.54) 

or by expanding the first derivative on the right hand side of this equation 

V2(u,4,) = v2uo-I$, + 2Vu,*V~, + uov2q5, (2.55) 

Using a plane wave for the incident field, 

u. = Aejx”‘, (2.56) 

the second gradient of the incident field is 

V2uo = -k,2uo (2.57) 

so that equation (2.55) may be rewritten as 

2u,V$,V#, + uoV2& = V2(uo&) + k;u,G. (2.58) 

This result can be substituted into equation (2.53) to find 

(V2 + k;)uo#, = -0 I WJ2 + om I 
(2.59) 

The solution to this differential equation can again be expressed as an integral 
equation. This becomes 
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(2.60) 

Using the Rytov Approximation it is necessary to assume that the term in 
brackets in the above equation can be approximated by 

(Vqp-o(T) 1! -o(T). (2.61) 

When this is done, the first order Rytov approximation to the function r1,,4~ 
becomes 

uo& = I g(iW )uo(P )o(F’ )dr’ . 
v 

(2.62) 

Thus $,, the complex phase of the scattered field, is given by 

km = -$p$ gW” )UOF b(t W - (2.63) 
0 

Substituting the expression for un given in equation (2.38) the first Rytov 
approximation can be written 

The Rytov approximation is valid under a less restrictive set of conditions 
than the Born approximation [CheGO, Ke169]. In deriving the Rytov 
approximation it was necessary to assume that 

I g@T’ )u@” )o@” )dr’ >> I g(Fi” )uo@’ )( V4J2dr . (2.65) 
v v 

If the object is smaller then a wavelength then both the field and the object 
can be assumed to be constant compared to the object function and the above 
relation can be written 

dWuo(O) jo@” W >> dWuoW~ WA2dr . (2.66) 
v 

When the term (Vq5,)2 is small outside the object this relation can be further 
simplified to find 

o(f) >> (V$g2. (2.67) 

If o(T) is written in terms of the change in refractive index 



(2.26) 

and the square of the refractive index is expanded to find 

o(T) = k& 1 + 2n&‘) + n;(F))-l] (2.68) 

43 = ki[2n&F) +n@)]. (2.69) 

To a first approximation the object function is linearly related to the refractive 
index or 

o(T) -N 2k&@). (2.70) 

The condition needed for the Rytov approximation (see equation (2.67) can be 
rewritten as 

n6 >> (v’s)2 . 
G 

(2.71) 

This can be justified by observing that to a first approximation the 
scattered phase, 4,, is linearly dependent on the refractive index change, ns, 
and therefore the first term in equation (2.65) above can be safely ignored for 
small n& 

The term 04, is the change in the complex scattered phase per unit 
distance and by dividing by the wavenumber 

=2n 
k” x 

a necessary condition for the validity of the Rytov approximation is 

(2.72) 

(2.73) 

Unlike the Born approximation, it is the change in scattered phase, (6,, over one 
wavelength that is important and not the total phase. Thus, because of the V 
operator, the Rytov approximation is valid when the phase change over a 
single wavelength is small. 

Estimating IQ(F) for the Rytov case is slightly more difficult. In an 
experiment the total field, u(F), is measured. An expression for ug(F) is found 
by recalling the expression for the Rytov solution to the total wave 

u(T) = uo+us@) = e40+4s (2.74) 

and then rearranging the exponentials to find 
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u, = e +o+ Leg0 (2.75) 

(2.76) 

(2.77) 

Inverting this to find an estimate for the scattered phase, $,, the scattered 
phase is 

(2.78) 

Then expand 4, in terms of equation (2.64) to obtain the following estimate for 
the Rytov estimate of u&J 

(2.79) 

Since the natural logarithm is a multiple valued function, one must be careful 
at each position to choose the correct value. For continuous functions this is 
not difficult because only one value will satisfy the continuity requirement. On 
the other hand for discrete (or sampled) signals the choice is not nearly as 
simple and one must resort to a phase wrapping algorithm to choose the proper 
phase. Phase unwrapping has been described in a number of works [Tri77, 
OCo78, Kav84, McG82, Kav84]. Due to the “ + 1” factor inside the 
logarithmic term, this is only a problem if u, is on the order of or larger than 
uo. Thus both the Born and the Rytov techniques can be used to estimate 

UBt-0 

While the Rytov approximation is valid over a larger class of objects, it is 
possible to show that the Born and the Rytov approximations produce the 
same result for objects that are small and deviate only slightly from the 
average refractive index of the medium. Consider first the Rytov expression to 
the total field. This is given by 

+) = e40+6sa (2.80) 

Substituting an expression for the scattered phase, (2.64) and the incident field, 
(2.56) into this expression 

(2.81) 

or 
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(2.82) 

For small uB, the first exponential can be expanded in terms of its power series. 
Throwing out all but the first two terms the total field is approximately equal 
to 

or 

u(T) = u&F) + I$(?). (2.84) 

Thus when the magnitude of the scattered field is small the Rytov solution is 
approximately equal to the Born solution given in equation (2.38). 

The similarity between the expressions for the first order Born and Rytov 
solutions will form the basis of the reconstruction algorithms to be derived 
here. In the Born approximation the complex amplitude of the scattered field 
is measured and this is used as an estimate of the function ug while in the 
Rytov case uB is estimated from the complex phase of the scattered field. 
Since the Rytov approximation is considered more accurate than the Born 
approximation it should provide a better estimate of uB. In Chapter 5 of this 
work, after deriving reconstruction algorithms based on the Fourier Diffraction 
Theorem, simulations comparing the Born and the Rytov approximations will 
be discussed. 
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