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Abstract

 

FaceSync is an optimal linear algorithm that finds the degree of syn-
chronization between the audio and image recordings of a human
speaker. Using canonical correlation, it finds the best direction to com-
bine all the audio and image data, projecting them onto a single axis.
FaceSync uses Pearson’s correlation to measure the degree of synchro-
nization between the audio and image data. We derive the optimal linear
transform to combine the audio and visual information and describe an
implementation that avoids the numerical problems caused by comput-
ing the correlation matrices.

 

1  Motivation

 

In many applications, we want to know about the synchronization between an audio signal
and the corresponding image data. In a teleconferencing system, we might want to know
which of the several people imaged by a camera is heard by the microphones; then, we can
direct the camera to the speaker. In post-production for a film, clean audio dialog is often
dubbed over the video; we want to adjust the audio signal so that the lip-sync is perfect.
When analyzing a film, we want to know when the person talking is in the shot, instead of
off camera. When evaluating the quality of dubbed films, we can measure of how well the
translated words and audio fit the actor’s face. 

This paper describes an algorithm, FaceSync, that measures the degree of synchronization
between the video image of a face and the associated audio signal. We can do this task by
synthesizing the talking face, using techniques such as Video Rewrite [1], and then com-
paring the synthesized video with the test video. That process, however, is expensive. Our
solution finds a linear operator that, when applied to the audio and video signals, generates
an audio–video-synchronization-error signal. The linear operator gathers information
from throughout the image and thus allows us to do the computation inexpensively.

Hershey and Movellan [2] describe an approach based on measuring the mutual informa-
tion between the audio signal and individual pixels in the video. The correlation between
the audio signal, 

 

x

 

, and one pixel in the image 

 

y

 

, is given by Pearson’s correlation, 

 

r

 

. The
mutual information between these two variables is given by 

 

I(x,y) = -1/2 log(1-r
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)

 

. They
create movies that show the regions of the video that have high correlation with the audio;
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from the correlation data, they estimate the centroid of the activity pattern and find the
talking face. They make no claim of their algorithms ability to measure synchronization.

FaceSync is an optimal linear detector, equivalent to a Wiener filter [3], which combines
the information from all the pixels to measure audio–video synchronization. We developed
our approach based on two surprisingly simple algorithms in computer-vision and audio–
visual speech synthesis: EigenPoints [4] and ATR’s multilinear facial synthesizer [5]. The
relationship of these two algorithms to each other and to our problem is shown in Figure 1.

EigenPoints [4] is an algorithm that finds a linear mapping between the brightness of a
video signal and the location of fiduciary points on the face. At first, the validity of this
mapping is not obvious; we might not expect the brightness of pixels on a face to covary
linearly with 

 

x

 

 and 

 

y

 

 coordinates. It turns out, however, that the brightness of the image
pixels,

 

 i(x,y)

 

, and the location of fiduciary points such as the corner of the mouth, 
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, describe a function in a high-dimensional space. In the absence of occlusion, the com-
bined brightness–fiduciary function is smoothly varying. Thus the derivatives are defined
and a Taylor-series approximation is valid. The real surprise is that EigenPoints can find a
linear approximation that describes the brightness–fiduciary space, and this linear approx-
imation is valid over a useful range of brightness and control-point changes. 

Similarly, Yehia, Rubin, and Vatikiotis-Bateson at ATR [5] have shown that it is possible to
connect a specific model of speech, the line-spectral pairs or LSP, with the position of
fiduciary points on the face. Their multilinear approximation yielded an average correla-
tion of 0.91 between the true facial locations and those estimated from the audio data.

We derive a linear approximation to connect brightness to audio without the intermediate
fiduciary points. Neither linear mapping is exact, so we had to determine whether the
direct path between brightness and audio could be well approximated by a linear trans-
form. We describe FaceSync in the next section. 

Fisher and his colleagues [6] describe a more general approach that finds a non-linear
mapping onto subspaces which maximize the mutual information. They report results
using a single-layer perceptron for the non-linear mapping.

 

2  FaceSync Algorithm

 

FaceSync uses a face-recognition algorithm and canonical correlation to measure audio–
visual synchrony. There are two steps: 

 

training

 

 or building the canonical correlation
model, and 

 

evaluating

 

 the fit of the model to the data. In both steps we use face-recogni-
tion software to find faces and align them with a sample face image. In the training stage,
canonical correlation finds a linear mapping that maximizes the cross-correlation between

Figure 1: Connections between linear models
relating audio, video and fiduciary points

Figure 2: Standard deviation of the
aligned facial images used to create the
canonical model.
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two signals: the aligned face image and the audio signal. Finally, given new audio and
video data, we use the linear mapping to rotate a new aligned face and the audio signal
into a common space where we can evaluate their correlation as a function of time.

In both training and testing, we use a neural-network face-detection algorithm [7] to find
portions of the image that contain a face. This approach uses a pyramid of images to
search efficiently for pixels that look like faces. The software also allows the face to be
tracked through a sequence of image and thus reduce the computational overhead, but we
did not use this capability in our experiments. The output of Rowley’s face-detection algo-
rithm is a rectangle that encloses the position of a face. We use this information to align
the image data prior to correlational analysis. 

We investigated a number of ways to describe the audio signal. We looked at mel-fre-
quency cepstral coefficients (MFCC) [8], linear-predictive coding (LPC) [8], line spectral
frequencies (LSF) [9], spectrograms, and raw signal energy. For most calculations, we
used MFCC analysis, because it is a favorite front-end for speech-recognition systems
and, as do several of the other possibilities, it throws away the pitch information. This is
useful because the pitch information affects the spectrogram in a non-linear manner and
does not show up in the image data. For each form of audio analysis, we used a window
size that was twice the frame interval (2 / 29.97 seconds,) 

Canonical correlation analysis (CCA) uses jointly varying data from an input subspace 
and an output subspace  to find canonic correlation matrices,  and . These matri-
ces whiten the input and output data, as well as making the cross correlation diagonal and
“maximally compact.” Specifically, the whitened data matrices are

 and , (1)

and have the following properties:

 , , , (2)

where  and . In addition, for  starting from
1 and then repeating up to ,  is the largest possible correlation between  and

(where  and  are the i

 

th

 

 elements of  and  respectively), given the norm and
orthogonality constraints on  and , expressed in equation 2. We refer to this property
as maximal compaction, since the correlation is (recursively) maximally compacted into
the leading elements of  and .

We find the matrices  and  by whitening the input and output data:

 and (3)

and then finding the left (U) and right (V) singular vectors of the cross-correlation matrix
between the whitened data

 . (4)

The SVD gives the same type of maximal compaction that we need for the cross correla-
tion matrices, and . Since the SVD is unique up to sign changes (and a couple of
other degeneracies associated with repeated singular values),  and  must be:

  and . (5)

We can verify this by calculating  using the definitions of  and .

, (6)

, (7)

then note

 (8)
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and then by using equation 4 (twice)

   . (9)

This derivation of canonical correlation uses correlation matrices. This introduces a well-
known problem due to doubling the dynamic range of the analysis data. Instead, we for-
mulate the estimation equations in terms of the components of the SVDs of the training
data matrices. Specifically, we take the SVDs of the zero-mean input and output matrices:

, . (10)

From these two decompositions, we can write the two correlation matrices as

 , (11)

 , (12)

and then write the cross-correlation matrix as

. (13)

Using these expressions for the correlation matrices, the K matrix becomes

 . (14)

Now let’s look at the quantity in terms of its SVD

 . (15)

and, due to the uniqueness of the SVD, note

 and . (16)

Now we can rewrite the equation for  to remove the need for the squaring operation

  (17)

and similarly for 

 . (18)

Using these identities, we compute  and  using the following steps:

1) Find the SVDs of the data matrices using the expressions in equation 10.

2) Form a rotated version of the cross-correlation matrix K and computes its SVD using
equation 14.

3) Compute the  and  matrixes using equations 17 and 18.

Given the linear mapping between audio data and the video images, as described by the
 and  matrices, we measure the correlation between these two sets of data. For each

candidate face in the image, we rotate the audio data by the first column of , rotate the
face image by the first column of , and then compute Pearson’s correlation of the
rotated audio and video data. We use the absolute value of this correlation coefficient as a
measure of audio–video synchronization.

3  Results
We evaluated the performance of the FaceSync algorithm using a number of tests. In the
simplest tests we measured FaceSync’s sensitivity to small temporal shifts between the
audio and the video signals, evaluated our performance as a function of testing-window
size and looked at different input representations. We also measured the effect of coarticu-
lation.

To train the FaceSync system, we used 19 seconds of video. We used Rowley’s face-detec-
tion software to find a rectangle bounding the face but we noticed a large amount (several
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pixels) of jitter in the estimated positions. Figure 2 shows the standard deviation of our
aligned facial data. The standard deviation is high along the edges of the face, where small
amounts of motion have a dramatic effect on the brightness, and around the mouth, where
the image brightness changes with the spoken sounds. 

Figure 3 shows the results of the canonical-correlation analysis for the 7 (distinct) seconds
of audio and video that we used for testing. Canonical correlation has rotated the two mul-
tidimensional signals (audio and image) into the directions that are maximally correlated
with each other. Note that the transformed audio and image signals are correlated.

We can evaluate the quality of these results by looking at the correlation of the two sets of
data as the audio and image data are shifted relative to each other (such shifts are the kinds
of errors that you would expect to see with bad lip sync.) An example of such a test is
shown in Figure 4. Note that, after only a few frames of shift (about 100ms), the correla-
tion between the audio and image data declined to close to zero.

We used the approach described by Hershey and Movellan to analyze which parts of the
facial image correlate best with the audio data. In their work, they computed correlations
over 16 frame intervals. Since we used aligned data, we could measure accurately the cor-
relations over our entire 9 second test sequence. Our results are shown in Figure 5: Each
pixel shows the correlation that we found using our data. This approach looks at each pixel
individually and produces a maximum correlation near 0.45. Canonical correlation, which
accumulates all the pixel information from all over the image, also produces a maximum
correlation near 0.45, but by accumulating information from all over the image it allows us
to measure sychronization without integrating over the full 9 seconds.

Figure 6 shows FaceSync’s ability to measure audio–visual synchronization as we varied
the testing-window size. For short windows (less than 1.3 seconds), we had insufficient
data to measure the correlation accurately. For long windows (greater than 2.6 seconds),
we had sufficient data to average and minimize the effect of errors, but as a result did not
have high time resolution. As shown in Figure 5, there is a peak in the correlation near 0
frame offset; there are often, however, large noise peaks at other shifts. Between 1.3 and
2.6 seconds of video produces reliable results. 

Different audio-analysis techniques provide different information to the FaceSync algo-
rithm. Figure 7 shows the audio–video synchronization correlation, similar to Figure 3, for
several different kinds of analysis. LPC and LSF produced identical narrow peaks; MFCC
produced a slightly lower peak. Hershey used the power from the spectrogram in his algo-
rithm to detect the visual motion. However, our result for spectrogram data is in the noise,
indicating that a linear model can not use spectrogram data for fine-grain temporal mea-
surements.

Figure 3: Optimum projections of the
audio and video signals that maximize
their cross-correlation.

Figure 4: Correlation of audio and video
data as the audio data is shifted in time
past the video. (29.97 frames/sec.)
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We also looked at FaceSync’s performance when we enhanced the video model with tem-
poral context. Normally, we use one image frame and 67 ms of audio data as our input and
output data. For this experiment, we stacked 13 images to form the input to the canonical-
correlation algorithm Our performance did not vary as we added more visual context,
probably indicating that a single image frame contained all of the information that the lin-
ear model was able to capture. 

As the preceding experiment shows, we did not improve the performance by adding more
image context. We can, however, use the FaceSync framework with extended visual con-
text to learn something about co-articulation. Coarticulation is a well-known effect in
speech; the audio and physical state of the articulators not only depends on the current
phoneme, but also on the past history of the phonemic sequence and on the future sounds.

We let canonical correlation choose the most valuable data, across the range of shifted
video images. Summing the squared weighting terms gives us an estimate of how much
weight canonical correlation assigned to each shifted frame of data. Figure 8 shows that
one video frame (30ms) before the current audio frame, and four video frames (120ms)
after the current audio are affected by coarticulation. Interestingly, the zero-shift frame is
not the one that shows the maximum importance. Instead, the frames just before and after
are more heavily weighted.

4  Conclusions
We have described an algorithm, FaceSync, that builds an optimal linear model connect-
ing the audio and video recordings of a person's speech. The model allows us to measure
the degree of synchronization between the audio and video, so that we can, for example,
determine who is speaking or to what degree the audio and video are sychronized.

While the goal of Hershey’s process is not a temporal synchronization measurement, it is
still interesting to compare the two approaches. Hershey’s process does not take into
account the mutual information between adjacent pixels; rather, it compares mutual infor-
mation for individual pixels, then combines the results by calculating the centroid. In con-
trast, FaceSync asks what combination of audio and image data produces the best possible
correlation, thus deriving a single optimal answer. Although the two algorithms both use
Pearson’s correlation to measure sychronization, FaceSync combines the pixels of the face
and the audio information in an optimal detector.

The performance of the FaceSync algorithm is dependent on both training and testing data
sizes. We did not test the quality of our models as we varied the training data. We do the
training calculation only once using all the data we have. Most interesting applications of

Figure 6: Performance of the FaceSync
algorithm as a function of test window
length. We would like to see a large peak
(dark line) for all frames at zero shift.
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FaceSync depend on the testing data, and we would like to know how much data is neces-
sary to make a decision.

In our FaceSync application, we have more dimensions (pixels in the image) than exam-
ples (video frames). Thus, our covariance matrices are singular, making their inversion —
which we do as part of canonical correlation — problematic. We address the need for a
pseudo-inverse, while avoiding the increased dynamic range of the covariance matrices,
by using an SVD on the (unsquared) data matrices themselves (in place of an eigen-
decomposition of the covariance matrices).

We demonstrated high linear correlations between the audio and video signals, after we
first found the optimal projection direction by using canonical correlation. We evaluated
the FaceSync algorithm by measuring the correlation between the audio and video signals
as we shift the audio data relative to the image data. MFCC, LPC, and LSF all produce
sharp correlations as we shift the audio and images, whereas speech power and spectro-
grams produce no correlation peak at all.
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Figure 8: Contributions of different frames
to the optimum correlation with the audio
frame
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