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 1  VOCAL AFFECT

 

The goal of a new field of study known as 

 

affective computing

 

 is to
design machines that understand and respond to human emotions
[9]. There is a range of information available for the development
of a human–machine interface based on emotion. Locally, we can
monitor physiological measures of human emotional state, or we
can judge at a distance using visual or vocal expressions of emo-
tion. In the latter approach, we attempt to relate aspects of speech

 

prosody

 

 (e.g., variations in the pitch, rhythm, and loudness of
speech) to the affective state, or pragmatic intent, of the speaker. 

Studying spontaneous emotion is difficult. Much of the engi-
neering work on vocal expressions of emotion is based on actors
reading sentences in specified emotional tones [2, 8, 11]. Such
expressions at best merely resemble real emotional expressions.
We need a way to capture affective and pragmatic vocalizations
that are both spontaneous and clearly identifiable.

A promising solution to this problem is to use parents’ speech
to infants. Infant-directed speech is often highly affective and is
undeniably spontaneous. For example, whether a parent praises a
young infant with “Goood girrlll!!” for the baby’s first steps, or
issues a strong prohibition, “NO! STOP!!” when a toddler is about
to pull a lamp off a table, there is little doubt about the affective
content, the communicative intent or the spontaneity of the vocal-
ization. 

Not only is the prosodic message clear, but it may also be uni-
versal. Fernald and her colleagues have shown that the prosodic
patterns parents use to convey affective and pragmatic messages
such as prohibition, praise and attention-bid are similar across lan-
guages and that infants respond appropriately to these vocaliza-
tions even in unfamiliar languages [3, 4, 7]. 

Normally, the words and prosody of an utterance contribute to
both the linguistic and affective message. We want to see how
much of the affective message can be recovered from simple

acoustic measures of the speech signal. Note that infants and cur-
rent speech-recognition systems operate on different aspects of the
vocal signal. Infants understand the prosodic message conveyed by
“gooood giirrrllll” and “NO! STOP!” long before they understand
the words. Speech-recognition systems worry about the words and
mostly ignore the prosody. 

Thus, we simplify: We study how adults convey affective mes-
sages to infants using prosody. We do not attempt to recognize the
words, let alone to distill more nebulous concepts such as satire or
irony. We analyze speech with low-level acoustic features and dis-
criminate approval, attentional bids, and prohibitions from adults
speaking to their infants. We built automatic classifiers to create a
system, Baby Ears, that performs the task that comes so naturally
to infants. We believe that adult-directed speech contains the same
affective messages as the speech we studied, with the same pro-
sodic patterns, although attenuated.

The remainder of this paper describes our data collection (Sec-
tion 2), signal-processing techniques (Section 3), and results (Sec-
tion 4). 

 

 2  DATA COLLECTION

 

We collected two kinds of experimental data. In the primary exper-
iment, we collected acoustic data from parents talking to their
infants. In the second experiment, different adult listeners judged
whether each utterance was best classified as an approval, atten-
tional bid, or prohibition, and judged the strength of the message.

 

 2.1  Acoustic Data

 

We recorded 12 parents—six mothers and six fathers—talking to
their 10- to-18-month-old infants in a quiet room. Each recording
session lasted about 1 hour, during which the parents were asked to
play and interact normally with their child. Several toys were
placed in the room. We asked the parents to use their voices to keep
their child away from several “dangerous” items, such as lamps
and microphones. An experimenter stayed in the room to oversee
the experiment and to encourage verbal interaction. 

We recorded audio from the parent, using a wireless micro-
phone mounted on a lightweight headset, directly onto a com-
puter’s hard disk and then downsampled to 22kHz.

A trained experimenter segmented the recorded audio into dis-
crete sentences and classified the utterances into three classes:
approval, attention, and prohibition. Typical examples of each cat-
egory follow; note that these words do not do justice to the pro-
sodic contours: 

•Approval: “Wow!” “Yea. Good Boy.”
•Attention: “Becca!” “Nicholas, here!” “Anthony?”
•Prohibition: “That’s not for you.” “Don’t go in there!”

For each parent–infant pair, we selected 30 to 50 utterances, each
comprising one phrase or sentence. We analyzed 212 approval
utterances, 149 attentional bids, and 148 prohibitions. 
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 2.2  Subjective Classifications

 

In a separate test, we had seven adult subjects listen to each of the
segmented utterances and judge the utterance’s category and
strength. The adult listeners had no training in either linguistics or
psychology. None of the listeners were familiar with our hypothe-
sis or method. Each listener rated each utterance as an approval,
attentional bid, or prohibition, and assigned it a strength on an arbi-
trary scale from 1 to 5. 

The utterances were grouped into three sets according to the
results of the listener test:

• All data: All utterances, including those for which the listen-
ers did not agree with the original classifications

• Strong data: Utterances for which 5 out of 7 listeners agreed
with the initial classification and the average strength was
above 2.5

• Very strong data: A subset of strong data, with an average
strength above 3.0

We report results on these three sets of data, in addition to gender-
and subject-dependent tests.

 

 3  ANALYSIS

 

We analyzed the speech using three classes of features: pitch, for-
mant transitions, and energy variations. In brief, we postulated that
speech that had long, smoothly varying sounds would indicate
approval, whereas sounds that changed quickly would be attention
bids or prohibitions. Several variations of these parameters were
measured and analyzed for their ability to classify these utterances. 

We performed signal processing on each utterance, and built
multidimensional classifiers to perform the classification experi-
ments. 

 

 3.1  Signal Processing 

 

Each utterance was processed automatically with a frame rate of
50Hz. A speech–silence discriminator segmented each utterance at
phrase boundaries [6]. We then chose the longest phrase in each
utterance for additional processing. 

For analysis, we processed each utterance as a whole, and split
each utterance into three segments: the first, middle, and final third
of the sound. Thus, for each feature—for example, the pitch
range—we had four measurements over different time periods. 

Three kinds of analysis were done on each temporal period of
each utterance: pitch, cepstral or formant changes, and energy. 

We analyzed the pitch of each utterance using a high-quality
dynamic-programming algorithm [12]. The pitch module produced
estimates of the speech signal’s pitch, measured in Hertz. We then
computed the log, base 2, of this number to collapse the pitch esti-
mate into octaves and to put the measurement on a perceptual
scale. We did not do any postprocessing to correct for possible
octave errors. We chose Talkin’s pitch detector because it gave the
fewest octave errors in our informal tests.

We measured several statistics related to the pitch: the vari-
ance, slope, range (maximum minus minimum), and mean. We
also measured two statistics of the frame-by-frame delta pitch: the
mean delta pitch, and the mean of the absolute delta pitch. The
mean-delta pitch is similar to the slope measurement. When either
frame’s pitch is undefined, because it is unvoiced, the delta-pitch
measures are undefined and do not enter into the calculation. 

We used mel-frequency cepstral coefficients (MFCC) [5] to
measure the formant information in the speech. MFCC parameters
are often used in speech recognition as a simple measure of what is
being said. We wanted to investigate whether the speed with which
these parameters changed would be a useful feature. Thus, we
measured the mean frame-by-frame change in the MFCC parame-
ters during each segment of the utterance. In this calculation, we

ignored the energy, or C0 component, and summed the absolute
value of the changes in the remaining coefficients.

Finally, we also computed the variance of the energy in dB in
each frame, across each utterance. 

 

 3.2  Classification

 

We built many multidimensional discriminators to put each utter-
ance into the proper class. We judged Baby Ears’ performance
based on whether the automatic classifier produced the same label
as the experimenter.

We used a Gaussian mixture model, GMM [10], with 10 Gaus-
sians per class, to model each class of data. Since we had a limited
set of data, we used the .632 bootstrapping procedure [1] to esti-
mate our performance. We trained with a set of data, chosen ran-
domly with replacement, equal in size to the original data set. We
tested our classifiers with all data that were not used in training.
We repeated this task 100 times per discriminator, then averaged
the results to find an estimate of the mean and standard deviation
of the recognizer’s performance with that set of features. We
obtained similar results with optimal linear discriminators. 

Finally, we built an optimal classifier using greedy selection.
At each step, we trained three GMMs, one for each class, with the
current set and each remaining feature. We then chose the feature
that resulted in the best performance, and added that feature to the
set. In this way, we found an approximation to the 

 

n

 

 best features
for making this classification. This test gave us information about
which features were adding the most information to the decision. 

 

 4  RESULTS

 

The seven adult listeners agreed unanimously with our initial clas-
sifications in 79% of the examples. There were 430 utterances clas-
sified consistently by 5 out of 7 listeners with an average strength
greater than 2.5, and 318 utterances with an average strength
greater than 3.0. 

Weak affective utterances in our database, as defined by our
listener’s strength measurements, often combined a strong linguis-
tic message with a different prosodic message. For example,
“Nicholas, don’t do that” said with a soft, pleading voice is a lin-
guistic prohibition said with an encouraging (or perhaps resigned)
affective message.

Figure 1 shows the classification results for individual acoustic
features. Not one of the features, by itself, allows the classification
to be made with accuracy much greater than chance (33%). The
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Figure 1. Three-way classification results for all our data with one
feature. Bracketed points show the fraction of correct classifica-
tions with the indicated measure. The four points represent, from
left to right, the first, second, and final third of each utterance, and
global measurements. Error bars show  standard deviations of
the individual bootstrap error estimates.
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pitch range and energy variance look most promising in this simple
test. 

Figure 2 shows classification results for all speakers as we add
more features to the classifier. Classification performance
increases as more features are added, then levels off above 57%
with five to seven features. 

Classification performance improves when we consider only
those utterances that are strong and unambiguous. Figure 2 com-
pares classification performance when training included all utter-
ances, only those utterances that had an average strength rating
greater than 2.5, or only those utterances with average ratings
greater than 3.0. Classification results are higher when the data set
is limited to vocalizations with the highest strength ratings.

For reasons that we do not understand, classification perfor-
mance was higher for female speakers than for male speakers (see
Figure 3.) The female utterances were classified at a rate up to 67%
correct, whereas male utterances were classified correctly 57% of
the time. This difference could be caused by four factors. First, the
acoustic features that we analyzed may not be optimal for male
speech. Second, our procedure may not have captured the full
affective range of the male speakers. Third, female speakers may
be more skillful or more practiced in producing characteristic
infant-directed speech. Fourth, male speakers may have been less
willing or able in our corporate laboratory environment to produce
the prototypical utterances of infant-directed speech. Average
strength ratings by our listeners were equal for male and female
speakers. 

The results in Figures 1–3 are based on the segmentation
approach used by McRoberts [7]. Unfortunately, segmenting
speech into discrete utterances, so that they can be split accurately
into thirds, is difficult. We avoid this problem if we use only global
features to make a classification. These features are less sensitive
to how well the speech is segmented. Figure 4 shows our results
using only global features. Our recognition rates were slightly
lower than when we use the full feature set.

Psychologists and infant researchers have looked for a set of
features that operate optimally across speakers. However, emo-
tional responses, and people’s willingness to display them, vary
widely among individuals. The way that people convey an affective
message often varies across speakers, and even across situations.
Thus speaker-dependent classifiers should work better than
speaker-independent classifiers. Figure 5 shows our speaker-
dependent classification results. Except for two speakers, both
male, our results are much better with speaker-dependent classifi-
ers. Training and testing speaker-independent classifiers with all
utterances from the nine best speakers raises our classification per-
formance to 66%.

Figure 6 shows plots of the decision surface for one of our best
classifiers (recognizing female utterances with a strength greater
than 3.0). These decision surfaces are plotted as a function of two
different sets of variables. 

Many features allow us to build good classifiers. The most
commonly chosen feature is global pitch range, followed by global
MFCC, global pitch slope and variance of the energy, in the first
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Figure 2. Performance as features are added for three different sets
of data, as described in Section 2.2. Error bars show  standard
deviation for two representative bootstraps measurements. Other
estimates have similar variance.
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Figure 3. Classifier performance for all utterances (middle line),
versus males only (bottom line) and females only (top line.)
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Figure 5. Performance on classification task as features are
added for each of 12 adults speakers. The three speakers with
the worst classification performance are male.
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Figure 4. Three way classification results with all features (top
curve) versus the global features only. 
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segment. Using these features, our classifiers demonstrated a rec-
ognition rate of 53, 54, and 58% correct on the three sets of data in
Figure 2. Using just global MFCC and global pitch range, they
obtained 51, 54, and 56% correct.

We are encouraged by the accuracy of our recognizers com-
pared to that of human listeners. While performance was not as
high as our adult listeners, who had access to the linguistic mes-
sage, it is comparable to results reported by others who controlled
the linguistic message. For example, Engberg [2] reported listen-
ers’ accuracy at 65% when judging emotional messages in Danish
in which the linguistic message was controlled by using the same
sentence for different affective messages. Other studies have tried
to mask the linguistic message through filtering [4, 11], but this
often introduces artifacts which may alter the affective message.

 

 5  CONCLUSIONS

 

Baby Ears is a system that uses simple acoustic features to recog-
nize affective messages with the same accuracy as that of some
human tests. 

We found it easier to classify female then male utterances from
our database. This result is surprising, because adult listeners
judged the utterances’ strengths to be similar. We do not know
whether male and female affective vocalizations are different in
some interesting way, or whether our data are not representative of
real-life situations.

Global features perform well in our classifiers, reducing the
need to segment precisely the incoming audio. This result will
become less important as speech-recognition systems improve,
eventually allowing good sentence boundaries to be judged. Our
work did not consider any melodic contour matching. That
approach would work best with good segment boundaries, and per-
haps with linguistic information to guide the pattern recognition.

Speaker-dependent recognizers perform more accurately than
do speaker-independent recognizers. We do not have sufficient data
to decide whether this performance difference is due to limitations
of our classifiers, or whether affective vocal messages are more
understandable if you know the prosodic customs of the speaker. 

We used a large collection of infant-directed utterances to
judge our results. We found that a small handful of features is suffi-
cient to perform this task, at near-human levels. Baby Ears is a
large step towards building machines that understand the emo-
tional messages communicated by humans.
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APPENDIX

 

We summarize the features used in each figure, from first chosen to
last chosen.We use the following abbreviations for each feature
name: pitch variance (PV), pitch slope (PS), pitch range (PR),
mean pitch (MP), mean delta pitch (MDP), mean absolute value
delta pitch (MADP), delta MFCC(MFCC), and energy variance
(EV). We use subscripts to indicate the time period. 
Figure 2:
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Figure 6. Bivariate discrimination surfaces for two different sets
of global variables.
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