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This report describes a collection of tools that implement several popular auditory models for a numerical program-
ming environment called M

 

ATLAB

 

. This toolbox will be useful to researchers that are interested in how the auditory 
periphery works and want to compare and test their theories. This toolbox will also be useful to speech and auditory 
engineers who want to see how the human auditory system represents sounds.

There are many ways to describe and represent sounds. The figure below shows one taxonomy based on signal 
dimensionality. A simple waveform is at the one-dimensional level. The two-dimensional level describes the acoustic 
signal as a time-frequency image. This is the typical approach for sound and speech analysis. This toolbox includes 
the conventional short-time-Fourier-Transform (STFT or Spectrogram) and several cochlear models that estimate 
auditory nerve firing “probabilities” as a function of time. Finally, the next level of abstraction is to summarize the 
periodicities of the cochlear output with the correlogram. The correlogram provides a power representation that 
makes it easier to understand multiple sounds and to perform auditory scene analysis.

Five time-frequency representations are implemented in this toolbox:
1) Conventional FFT analysis is represented using the spectrogram. Both narrow band and wide band 

spectrograms are possible. See the 

 

spectrogram

 

 command for more information.
2) A common front-end for many speech recognition systems consists of Mel-frequency cepstral coef-

ficients (MFCC). This technique combines an auditory filter-bank with a cosine transform to give a 
rate representation roughly analogous to the auditory system. See the 

 

mfcc

 

 command for more 
information.

3) Richard F. Lyon has described an auditory model based on a transmission line model of the basilar 
membrane and followed by several stages of adaptation. This model can represent sound at either a 
fine time scale (probabilities of an auditory nerve firing) or at the longer time scales characteristic 
of the spectrogram or MFCC analysis. The 

 

LyonPassiveEar

 

 command implements this particular 
ear model.

4) Roy Patterson has proposed a model of psychoacoustic filtering based on critical bands. This audi-
tory front-end combines a Gammatone filter bank with a model of hair cell dynamics proposed by 
Ray Meddis. This auditory model is implemented using the 

 

MakeERBFilters

 

, 

 

FilterBank

 

, and 

 

Med-
disHairCell

 

 commands.
5) Finally, Stephanie Seneff has described a cochlear model that combines a critical band filterbank 

with models of detection and automatic gain control. This toolbox implements stages I and II of her 
model.

Our work here at Apple has concentrated on how to capture and represent the information in our auditory environ-
ment. Towards this goal, we have been investigating the correlogram. The primary goal of the correlogram is to sum-
marize the temporal activity at the output of the cochlea. With most sounds, and especially with voiced speech, much 
of the information in the waveform and cochlear output is repetitive. The correlogram is an easy way to capture the 
periodicities and make them visible. This toolbox includes several routines to compute and display correlograms, and 
to compute pitch estimate from correlograms.

This toolbox has a very simple view of data. Sound waveforms are stored as one-dimensional arrays. The output from 
cochlear models is stored as a two-dimensional array, with columns of the matrix representing firing probabilities on 
the auditory nerve at one time. Correlograms can be stored as either movies or as an array. Filter coefficients are 
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4

either stored as two lists, like the M

 

ATLAB

 

 filter function, or second-order-sections are stored as a list of five coeffi-
cients.

Users of this package might also be interested in the Sound and Image Toolbox. This toolbox includes tools to read 
and write sound files stored in many common formats. This tools also includes additional M

 

ATLAB

 

 tools that make it 
easy to record sounds and work with images on Macintosh computers.

This report is not a detailed description of each auditory model. Most function descriptions include references to 
more detailed descriptions of each model.

This software has been tested on Macintosh computers running M

 

ATLAB

 

 4.1 and on Sun and HP workstations. All of 
this code is pretty portable so we don’t expect any problems when running on any other machine that runs M

 

ATLAB

 

.

Finally, a word from our lawyers:
Warranty Information: Even though Apple has reviewed this software, Apple makes no war-
ranty or representation, either express or implied, with respect to this software, its quality, 
accuracy, merchantability, or fitness for a particular purpose. As a result, this software is pro-
vided “as is,” and you, its user, are assuming the entire risk as to its quality and accuracy.

A flowchart showing how all the commands in this toolbox fit together is shown in the next section.

 

Installation

 

This toolbox is supplied as a collection of M

 

ATLAB

 

 m-functions and three MEX functions written in C. The three 
MEX functions, 

 

agc

 

, 

 

soscascade

 

, and 

 

sosfilters

 

, are precompiled for the Macintosh. You will need to compile them 
yourself for other machines using the Mathworks cmex function. Use the example code, included with the documen-
tation for each function, to test each function.

 

References

 

Malcolm Slaney, “Sound and Image Toolbox,” Apple Computer Technical Report #61, (Apple Corporate Library, 
Cupertino, CA 95014,) April 1995.
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Flow Charts

 

This section shows which routines are used by each function in this toolbox. This 
will help readers understand the structure of the cochlear models. Page numbers are 
shown in parenthesis.

 

Lyons Passive Long Wave Cochlear Model

Patterson-Holdsworth ERB Filter Bank

Seneff Auditory Model

Alternate Analysis Techniques

Correlogram Processing

Miscellaneous

agc (6)

sosfilters (39)

DesignLyonCascade (15)

EpsilonFromTauFS (17)

soscascade (38)

SetGain (36)

SecondOrderFilter (31)

LyonPassiveEar (21)

MakeERBFilters (23) MeddisHairCell (26)FilterBank (18)

SeneffEar (33) SeneffEarSetup (35)

mfcc (28) spectrogram (41)

CorrelogramFrame (10)

CorrelogramArray (8)CorrelogramMovie (11) CorrelogramPitch (12)

MakeVowel (25) FMPoints (19)
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agc

 

Purpose

 

Adaptation process for Lyon’s passive longwave cochlear model

 

Synopsis

 

output = agc(input, coeffs, output, state)

 

Description

 

This function implements multiple stages of the multiplicative adaptive gain used by 
Lyon’s passive longwave cochlear model. The input is a number of channels from a 
filter bank. An array of state filters, one per channel and per stage, measure a running 
average of the energy in the channel. These state variables are then used to drive a 
single multiplicative gain per stage per channel.

The coeffs array is used to parameterize the AGC system. Two parameters must be 
supplied for each stage, a target output value and an epsilon. The AGC tries to keep 
the output below the target value. The gain is changed gradually based on the value 
of epsilon. Smaller values of epsilon allow the AGC process to take longer to adjust 
the output. Values of epsilon should be between 0 and 1. See the routine 

 

EpsilonFromTauFS (17)

 

 for more information.

The output and states arguments are optional. If present, and they are the right size, 
then these arrays are used instead of allocating new arrays. If the input has N samples 
then:

input is C x N
Coeffs is 2 x S (targets;epsilons)
output is C x N
state is C x S

If the output argument is not present then a new array is allocated and returned to 
M

 

ATLAB

 

. If the state argument is not present then a new array is allocated and 
remembered for the next time this function is called. It will be reallocated if the num-
ber of filter channels change.

Note, the implementation of the 

 

agc

 

 function in this toolbox includes an additional 
limiting term to prevent the system gain from getting to close to zero. This is done 
(as described on page 19 of “Lyon’s Cochlear Model” by not letting the state variable 
exceed 0.9.

If the first argument, 

 

input

 

, is the string ‘clear’ then all internal state is set to zero. It 
is important to clear the state between runs so that the data at the end of one input 
array doesn’t affect the start of the next run.

 

Examples

 

»agc(ones(1,20),[.5;.5])

ans =

  Columns 1 through 7 

    1.0000 0.1000 0.4500 0.2750 0.3625 0.3187 0.3406

  Columns 8 through 14 

    0.3297 0.3352 0.3324 0.3338 0.3331 0.3334 0.3333

  Columns 15 through 20 

    0.3334 0.3333 0.3333 0.3333 0.3333 0.3333
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Here are some more examples. First use a target of 0.8 and a relatively short time 
constant (large value of epsilon or 0.5). Note the final output value will be dependent 
on both the input value and the AGC target. The oscillatory behaviour is normal 
when the input signal gets larger than the target faster than the AGC can cut the gain.

 

»agc('clear');plot(agc(ones(1,30),[.8;.5]))

 

Now switch to a much smaller target value.

 

»agc('clear');plot(agc(ones(1,30),[.4;.5]))

 

Finally, we switch to a much longer time constant (smaller value of epsilon.) This 
makes the response much less likely to oscillate, but now the AGC takes longer to cut 
the signal level to the target.

 

»agc('clear');plot(agc(ones(1,30),[.4;.1]))

 

See Also

 

Malcolm Slaney, 

 

Lyon’s Cochlear Model,

 

 

 

Apple Computer Technical Report #13, 
1988.
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CorrelogramArray

 

Purpose

 

Compute a sequence of correlogram frames and store in one large array

 

Synopsis

 

movie = CorrelogramArray(input, sr, frameRate, width)

 

Description

 

This routine computes multiple frames of a correlogram, storing each frame as one 
row in a large array. The 

 

input

 

 data can be from any of the cochlear models in this 
toolbox.

The 

 

input

 

 array should be of size NxL where N is the number of cochlear channels, 
and each channel has L firing probabilities. The 

 

input

 

 is sampled at a frequency of 

 

sr

 

.

The resulting correlogram array will have one frame stored in each row. These 
frames will be computed 

 

frameRate

 

 times per second. Each image in the correlogram 
will be N x

 

width

 

 in size. The rows in the output array will each have N*

 

width

 

 ele-
ments.

 

Examples

 

The correlogram of a vowel with vibrato can be calculated, played, and displayed 
using the following code.

 

»u=MakeVowel(4000,FMPoints(4000,120),16000,'u');
»playsound(u,16000)
»coch=LyonPassiveEar(u,16000,1,4,.25);
»width = 256;
»cor=CorrelogramArray(coch,16000,16,width);
Correlogram spacing is 1000 samples per frame.
CorrelogramFrame fftSize is 8192
CorrelogramFrame fftSize is 8192
CorrelogramFrame fftSize is 8192
CorrelogramFrame fftSize is 8192
»[pixels frames] = size(cor);
»colormap(1-gray);
»for j=1:frames

corFrame = reshape(cor(:,j),pixels/width,width);
scale = length(colormap)/max(max(corFrame));
image(corFrame*scale);
drawnow;

end



 

CorrelogramArray
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This produces the following images. Note how the pitch line moves.

 

See Also

 

CorrelogramFrame, CorrelogramMovie

Malcolm Slaney and R. F. Lyon, “On the importance of time—A temporal represen-
tation of sound,” in 

 

Visual Representations of Speech Signals

 

, M. Cooke, S. Beete, 
and M. Crawford, eds., J. Wiley and Sons, Sussex, England, 1993.
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CorrelogramFrame

 

Purpose

 

Compute one frame of a correlogram

 

Synopsis

 

picture = CorrelogramFrame(data, picWidth, start, winLen)

 

Description

 

This routine computes one frame of a correlogram. The 

 

input

 

 data is a two-dimen-
sional array of cochlear data, each row representing firing probabilities from one 
cochlear channel. The output picture is a two dimensional array with one row for 
each row of cochlear input data and 

 

picWidth

 

 pixels wide.

The correlogram is computed with autocorrelation using data from the input array. 
For each channel, the data from is extracted starting at column 

 

start

 

 and extending 
for 

 

winLength

 

 time steps. 

 

Examples

 

A simple correlogram can be calculated from synthetic data using the following 
code. We use 20 sinusoids (with high frequencies at the top to simulate the cochlea).

 

for j=20:-1:1
c(j,:) = max(0,sin((1:256)/256*(21-j)*3*2*pi));

end
picture=CorrelogramFrame(c,128,1,256);
image(picture/4*length(colormap))

 

Which produces the following image:

 

See Also

 

This routine is used by the CorrelogramArray and CorrelogramMovie routines.

Malcolm Slaney and R. F. Lyon, “On the importance of time—A temporal represen-
tation of sound,” in 

 

Visual Representations of Speech Signals

 

, M. Cooke, S. Beete, 
and M. Crawford, eds., J. Wiley and Sons, Sussex, England, 1993.
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CorrelogramMovie

 

Purpose

 

Compute a correlogram movie

 

Synopsis

 

movie = CorrelogramMovie(data, sr, frameRate, width)

 

Description

 

This routine computes multiple frames of a correlogram, storing each image as one 
frame in a M

 

ATLAB

 

 movie object. The 

 

input

 

 data can be from any of the cochlear 
models in this toolbox.

The 

 

input

 

 array should be of size NxL where N is the number of cochlear channels, 
and each channel has L firing probabilities. The 

 

input

 

 is sampled at a frequency of 

 

sr

 

.

The resulting correlogram array will have one frame stored in each row. These 
frames will be computed 

 

frameRate

 

 times per second. Each image in the correlogram 
will be N x

 

width

 

 in size. The rows in the output array will each have N*

 

width

 

 ele-
ments. Use the M

 

ATLAB

 

 movie command to play the resulting movie on the screen.

 

Examples

 

A correlogram movie can be calculated using the following code. See the 

 

CorrelogramArray (8)

 

 documentation for images of the movie frames.

 

»u=MakeVowel(4000,FMPoints(4000,120),16000,'u');
»playsound(u,16000)
»coch=LyonPassiveEar(u,16000,1,4,.25);
»mov=CorrelogramMovie(coch,16000,16,256);
»movie(mov,-10,16)

 

See Also

 

CorrelogramFrame, CorrelogramArray

Malcolm Slaney and R. F. Lyon, “On the importance of time—A temporal represen-
tation of sound,” in 

 

Visual Representations of Speech Signals

 

, M. Cooke, S. Beete, 
and M. Crawford, eds., J. Wiley and Sons, Sussex, England, 1993.
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CorrelogramPitch

 

Purpose

 

Compute the pitch of a sound using the correlogram

 

Synopsis

 

[pitch salience]=CorrelogramPitch(correlogram, ... 
width, sr [, lowPitch, highPitch]);

 

Description

 

This routine calculates the pitch of a sound using a correlogram model of human 
pitch perception. Given a correlogram, as computed by 

 

CorrelogramArray

 

, this rou-
tine performs the following operations on each frame of the correlogram.
1) Reshape the data in one row of the correlogram array into a correlo-

gram image. The second function argument, 

 

width

 

, is needed to 
reshape the correlogram to the proper size.

2) Summarize the correlogram frame by adding the energy at each time 
lag across all channels.

3) Remove the peak in the summary correlogram at zero lag by remov-
ing all points in the summary correlogram up to the first positive 
inflection.

4) Remove all points from the summary correlogram outside the valid 
pitch range.

5) Find the position of the largest peak that remains. This is an estimate 
of the pitch. The sample rate (sr) argument is used to convert from 
autocorrelation lag index to pitch frequency.

6) Pitch salience is calculated by dividing the value of the summary 
correlogram at the pitch peak into the value of the summary correlo-
gram at zero lag. Highly periodic sounds with an easily perceivable 
pitch will have a salience close to 1, aperiodic sounds will have a 
salience closer to zero.

The result is a single pitch estimate and a crude estimate of pitch salience at every 
frame.

Note, this routine uses a very simple, but powerful, algorithm to model human pitch 
perception. The paper by Slaney and Lyon describes additional algorithmic enhance-
ments that allow more robust pitch estimates.

The 

 

CorrelogramPitch

 

 function includes optional 

 

lowPitch

 

 and 

 

highPitch

 

 arguments 
that can be used to limit the range of legal pitch values.It is important to note that 
neither 

 

CorrelogramPitch

 

 or the papers referenced below include any other higher-
level knowledge about pitch. Notably, this work does not enforce any frame-to-frame 
continuity in the pitch. Each pitch estimate is independent and there is no restriction 
preventing the estimate to change instantaneously from frame to frame.

 

Examples

 

The simplest possible pitch detector is computed using auto-correlation of the origi-
nal waveform. This can be done by computing the correlogram of the original wave-
form (pretending that it is the output of a cochlear model with just one channel). The 
input is a vowel with it’s pitch centered at 120Hz and a 5Hz vibrato.

 

»u=MakeVowel(20000,FMPoints(20000,120),22254,'u');
»cor=CorrelogramArray(u,22254,50,256);
»p=CorrelogramPitch(cor,256,22254);
»plot(p)
»axis([0 45 110 130])



CorrelogramPitch
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The resulting pitch is shown below. The final pitch value is an artifact of the compu-
tation at the end of the signal. 

A more robust result is possible if the correlogram is computed on the output of a 
cochlear model. The example below computes the cochlear output and then the cor-
relogram of the /u/ vowel.

»coch=LyonPassiveEar(u,22254,1,4,.5);
»cor=CorrelogramArray(coch,22254,50,256);
»p=CorrelogramPitch(cor,256,22254);
»plot(p)
»axis([0 45110 130])

The resulting pitch estimate is

The lowPitch and highPitch arguments can be used to limit the pitch estimates to a 
known range. This is a simple way to make the pitch estimate use high-order bodies 
of knowledge. The example below shows adding steadily increasing gaussian-white 
noise to the /u/ vowel and then estimating the pitch.

»u=MakeVowel(20000,FMPoints(20000,120),22254,'u');
»n=randn([1 20000]).*(1:20000)/20000;
»un=u+n/4;
»coch=LyonPassiveEar(un,22254,1,4,.5);
»cor=CorrelogramArray(coch,22254,50,256);
»[pitch sal]=CorrelogramPitch(cor,256,22254,100,200);
»plot(pitch)

The pitch is limited to values between 100 and 200Hz and the resulting estimate is 
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The salience of this pitch estimate declines as the signal to noise ratio goes down.

See Also
The basic idea behind this model of pitch is described in three papers. The first paper 
extends the functionality implemented by this function using several techniques to 
more reliably pick the most robust peak.

Malcolm Slaney and Richard F. Lyon, “A perceptual pitch detec-
tor,” in the Proceedings of the 1990 International Conference on 
Acoustics, Speech, and Signal Processing, Albuquerque, NM, 
IEEE, pp 357-360, 1990.

An extensive comparison of the performance of a correlogram model of pitch and 
human performance is described in:

Ray Meddis and Michael J. Hewitt, “Virtual pitch and phase sensi-
tivity of a computer model of the auditory periphery, I. Pitch identi-
fication,” J. Acoustical Society of America, 89 (6), pp. 2866-2682, 
1991.

Ray Meddis and Michael J. Hewitt, “Virtual pitch and phase sensi-
tivity of a computer model of the auditory periphery, II. Phase sen-
sitivity,” J. Acoustical Society of America, 89 (6), pp. 2683-2894, 
1991.
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DesignLyonFilters

Purpose
Design the filters needed to implement Lyon’s passive cochlear model

Synopsis
[filters, freqs] = DesignLyonFilters(fs,EarQ,StepFactor)

Description
Design the cascade of second order filters and the front filters (outer/middle and 
compensator) needed for Lyon's Passive Short Wave (Second Order Sections) 
cochlear model. The variables used here come from Apple ATG Technical Report 
#13 titled Lyon's Cochlear Model.

Most of the parameters are hardwired into this m-function. The user settable parame-
ters are the digital sampling rate (fs), the basic Q of the each stage (usually 8 or 4), 
and the StepFactor between channels (usually .25 and .125, respectively.) The EarQ 
and Stepfactor parameters default to 8 and 32/EarQ respectively.

The result is returned as rows of second order filters; three coefficients for the numer-
ator and two for the denominator. Using the same convention as the Matlab filter 
function, the coefficients are [B0 B1 B2 A1 A2].

This function is called automatically by LyonPassiveEar to design the appropriate fil-
terbank.

Examples
The first five channels of a typical filter bank design are shown below. Note, the first 
two channels implement the model’s outer and middle ear filters.

»filts=DesignLyonFilters(16000);
»size(filts)

ans =

    88     5

»filts(1:5,:)

ans =

         0    0.7474   -0.6644         0         0
    0.8373         0   -0.8373    1.6433    0.6772
    0.8899    1.7137    0.8251    1.6369    0.6854
    0.8877    1.7027    0.8250    1.6160    0.6934
    0.8859    1.6774    0.8252    1.5821    0.7011

The frequency response of this filter bank can be calculated using soscascade.
»resp=soscascade([1 zeros(1,255)],filts);
»freqResp=20*log10(abs(fft(resp(1:5:88,:)')));
»freqScale=(0:255)/256*16000;
»semilogx(freqScale(1:128),freqResp(1:128,:))
»axis([100 10000 -60 20])



DesignLyonFilters
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The resulting response for every fifth channel is shown below.

See Also
Malcolm Slaney, Lyon’s Cochlear Model, Apple Computer Technical Report #13, 
1988.
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EpsilonFromTauFs

Purpose
Calculate first order decay coefficient (tau)

Synopsis
epsilon = EpsilonFromTauFS(tau, fs)

Description
Find first order filter coefficient as a function of time constant and sample rate

Examples
The following example shows the design of a first order filter with a sampling inter-
val of 1 and a time constant of 5 (samples). A simple digital filter is formed by add-
ing at each time the current input value and (1-epsilon) times the last output value. 
The resulting impulse response decays exponentially, reaching 37% of it’s original 
value in one time constant, tau.

You can verify the relationship between the time constant and the impulse response 
using the following example code.

»eps=EpsilonFromTauFS(5,1)

eps =

    0.1813

»filter(1, [1 eps-1],[1 zeros(1,9)])

ans =

  Columns 1 through 7 

    1.0000 0.8187 0.6703 0.5488 0.4493 0.3679 0.3012

  Columns 8 through 10 

    0.2466 0.2019 0.1653

»sosfilters([1 zeros(1,9)],[1 0 0 eps-1 0])

ans =

  Columns 1 through 7 

   1.0000 0.8187  0.6703  0.5488  0.4493  0.3679 0.3012

  Columns 8 through 10 

   0.2466 0.2019  0.1653
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FilterBank

Purpose
Compute an array of parallel filters

Synopsis
y=FilterBank(forward,feedback,x)

Description
This function filters the waveform x with the array of filters specified by the forward 
and feedback parameters. Each row of the forward and feedback parameters are the 
parameters to the Matlab built-in function filter. The output is an array of filter out-
puts, one waveform per row of the output array.

Examples
The impulse response of two filters can be calculated using the following code. 
These filters are designed by the MakeERBFilters function.

»[frwd,fdbk]=MakeERBFilters(16000,2,100);
»y=FilterBank(frwd,fdbk,[1 zeros(1,511)]);
»plot(y')

This generates the following plot of the two channel’s impulse responses.
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FMPoints

Purpose
Compute glottal pulses for voice with vibrato

Synopsis
points=FMPoints(len, freq, fmFreq, fmAmp, fs)

Description
This routine generates (fractional) sample locations for frequency-modulated 
impulses.
len number of samples
freq pitch frequency (Hz)
fmFreq vibrato frequency (Hz) (defaults to 6 Hz)
fmAmp max change in pitch (defaults to 5% of freq)
fs sample frequency (defaults to 22254.545454 samples/s)

The basic formula for the phase angle is

The output of this routine is a list of glottal pulse locations that can be used by the 
MakeVowel routine.

Examples
The MakeVowel routine is used to synthesize simple vowels. More realistic sounding 
vowels are possible with a bit of vibrato added to them with the FMPoints routine.

»u=MakeVowel(20000,FMPoints(20000,120),22254,'u');
»playsound(u/max(u))

Acknowledgments
This routine was written by Richard O. Duda of San Jose State University.

θ 2π freq t⋅ ⋅ fmAmp/fmFreq 2πfmFreq t⋅( )sin⋅+=
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FreqResp

Purpose
Evaluate frequency response of a filter

Synopsis
mag = FreqResp(filter, f, fs)

Description
Find the frequency response (in dB) of a filter (1x5 vector) at frequency f assuming a 
sampling rate fs. A vector of frequencies can be used as input.

Examples
The FreqResp function can be used to evaluate the second filter in the default filter 
bank shown in the DesignSosFilters example.

»f=10:10:7990;
»resp=FreqResp([0.8373 0 -0.8373 1.6433 .6772], ...

 f, 16000);
»semilogx(f,resp);
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LyonPassiveEar

Purpose
Calculate auditory nerve responses using Lyon’s passive cochlear model

Synopsis
y=LyonPassiveEar(x,sr,df,earQ,stepfactor,diff,agcf,tau)

Description
This mex-function calculates the probability of firing along the auditory nerve due to 
a sound input, x, with a sample rate, sr. The rest of the arguments are optional param-
eters of the cochlear model implementation and are described below.
df(1) Decimation Factor - How much to decimate the model’s output. 

Normally the cochlear model produces one output per channel at 
each sample time. This parameters allows the output to be decimated 
in time (using a filter to reduce aliasing. See the tau parameters.)

earQ(8) Quality Factor - The quality factor of a filter is a measure of its band-
width. In this case it measures the ratio of the width of each band-
pass filter at a point 3dB down from the maximum. Normally, 
critical band filters have a Q of about 8. Smaller values of earQ mean 
broader cochlear filters.

stepfactor Filter stepping factor - Each filter in a filter bank is overlapped by a 
fixed fraction given by this parameter. The default value is given by 
earQ/32. Thus normally filters (q=8) are overlapped by 25%.

differ(1) Channel Difference Flag - Adjacent filter channels can be subtracted 
to further improve the model’s frequency response. This parameter 
is a flag; non-zero values indicate the channel differences should be 
computed.

agcf(1) Automatic Gain Control Flag - An automatic gain control is used to 
model neural adaptation. This flag turns the adaptation mechanism 
on and off.

taufactor(3) Filter Decimation Tau Factor - When the output of the cochlear 
model is decimated, a low pass filter is applied to each channel to 
reduce the high frequency content and minimize aliasing. The filter’s 
time constant (tau) is set to the decimation factor multiplied by this 
argument. Larger values for the taufactor mean less high frequency 
information is passed.

Note this function resets the filter state each time it is run. The default state of the 
AGC filters is zero, so the cochlear model is very sensitive to initial sounds.

Examples
Calculate the impulse response with 

»is=LyonPassiveEar([1 zeros(1,255)],16000,1);
»image(min(is/.0004*length(colormap),64))

The response looks like
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A sine wave (1kHz) is generated and run through the standard cochlear model using 
the following code.

»s=sin((0:2041)/20000*2*pi*1000);
»ys=LyonPassiveEar(s,20000,20);
»image(ys/max(max(ys))*length(colormap));

The resulting image looks like this:

Finally, a cochleagram of the ‘A huge tapestry hung in her hallway’ utterance from 
the TIMIT database (TRAIN/DR5/FCDR1/SX106/SX106.ADC) is shown below. It 
was computed using the following command line.

»coch=LyonPassiveEar(tap,16000,100);
»image(coch/max(max(coch))*length(colormap));

See Also
“Lyon’s Cochlear Model”, by Malcolm Slaney and published as Apple Technical 
Report #13 (1988) describes the implementation of this particular cochlear model.

DesignLyonFilters, soscascade, agc
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MakeERBFilters

Purpose
Design the filters needed to implement an ERB cochlear model.

Synopsis
[frwd, fdbk]=MakeERBFilters(fs,numChannels,lowFreq)

Description
The MakeERBFilters function computes the filter coefficients for a bank of Gamma-
tone filters. These filters were defined by Patterson and Holdsworth for simulating 
the cochlea. The results are returned as arrays of filter coefficients. Each row of the 
filter arrays (forward and feedback) can be passed to the MatLab filter function, or 
you can do all the filtering at once with the FilterBank() function. Each filter in the 
filter bank is a fifth four order IIR filter with both poles and zeros.

The filter bank contains numChannels channels that extend from half the sampling 
rate (fs) to lowFreq.

Examples
The ten ERB filters between 100 and 8000Hz are computed using

»[frwd,fdbk]=MakeERBFilters(16000,10,100);
The resulting frequency response is given by

»y=FilterBank(frwd,fdbk,[1 zeros(1,511)]);
»resp=20*log10(abs(fft(y')));
»freqScale=(0:511)/512*16000;
»semilogx(freqScale(1:255),resp(1:255,:))
»axis([100 10000 -60 0])

A simple cochlear model can be formed by filtering an utterance with these filters. To 
convert this data into an image we pass each row of the cochleagram through a half-
wave-rectifier, a low-pass filter, and then decimate by a factor of 100. A cochleagram 
of the ‘A huge tapestry hung in her hallway’ utterance from the TIMIT database 
(TRAIN/DR5/FCDR1/SX106/SX106.ADC) is shown below. It was computed using 
the following commands.

»[frwd,fdbk]=MakeERBFilters(16000,40,100);
»coch=FilterBank(frwd,fdbk,tap);
»for j=1:20

c=max(coch(j,:),0);
c=filter([1],[1 -.99],c);
coch(j,:)=c;

end
»image(c/max(max(c))*length(colormap));
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Unlike the other cochlear models in this report, there is no adaptation or automatic 
gain control to equalize the formant frequencies and enhance the onsets. The 
MeddisHairCell (26) function can be used to do this.

See Also
Malcolm Slaney, An Efficient Implementation of the Patterson-Holdsworth Auditory 
Filter Bank, Apple Computer Technical Report #35, 1993.
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MakeVowel

Purpose
Simple vowel synthesis

Synopsis
y = MakeVowel(len, pitch, sampleRate, f1, f2, f3)

Description
Make a vowel with length samples and the given pitch. The vowel’s sample rate is 
given by sampleRate. The formant frequencies are f1, f2 & f3. The formant frequen-
cies for these English vowels are given by:

Vowel f1 f2  f3
/a/ 730 1090 2440
/i/ 270 2290 3010
/u/ 300 870 2240

The pitch variable can either be a scalar indicating the actual pitch frequency, or an 
array of impulse locations. Using an array of impulses allows this routine to compute 
vowels with varying pitch.

Alternatively, f1 can be replaced with one of the following strings ‘a’, ‘i’, ‘u’ and the 
appropriate formant frequencies are automatically selected.

Examples
A sequence of three vowels can be computed using

»vowels=[MakeVowel(10000,100,16000,'a') ...
MakeVowel(10000,100,16000,'i') ... 
MakeVowel(10000,100,16000,'u')];

and then played with
»PlaySound(vowels/max(vowels),16000);

Similarly, a shorter sequence of vowels can be displayed as a spectrogram.
»vowels=[MakeVowel(1000,100,16000,'a')...

MakeVowel(1000,100,16000,'i') ...
MakeVowel(1000,100,16000,'u')];

»s=spectrogram(vowels,256,2,2);
»image(s/256*length(colormap))

Acknowledgments
The first version of this routine was written by Richard O. Duda (San Jose State Uni-
versity). Additional debugging was provided by Professor. Duda.
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MeddisHairCell

Purpose
Implement Meddis’ Inner Hair Cell Model

Synopsis
y = MeddisHairCell(data,sampleRate[,subtractSpont] )

Description
This function calculates Ray Meddis’ hair cell model for a number of channels. Data 
is arrayed as one channel per row. All channels are done in parallel (but each time 
step is sequential) so it is much more efficient to process lots of channels at once.

The subtractSpont argument is optional. If this argument is positive then the hair 
cell’s spontaneous rate is subtracted before the result is returned.

Examples
This MEX function can be checked by comparing the results to those published in 
Ray Meddis’ 1986 JASA paper. The first two statements generate a sequence of tone 
pips, each 250 ms long, ranging in amplitude from 40dB to 80 dB in 5dB steps. Note 
the amplitude scale is arbitrary. In this case it was chosen to agree with the examples 
shown in his 1990 paper.

tone=sin((0:4999)/20000*2*pi*1000);
s=[zeros(1,5000) ...
 tone*10^(40/20-1.35) zeros(1,5000) ...
 tone*10^(45/20-1.35) zeros(1,5000) ...
 tone*10^(50/20-1.35) zeros(1,5000) ...
 tone*10^(55/20-1.35) zeros(1,5000) ...
 tone*10^(60/20-1.35) zeros(1,5000) ...
 tone*10^(65/20-1.35) zeros(1,5000) ...
 tone*10^(70/20-1.35) zeros(1,5000) ...
 tone*10^(75/20-1.35) zeros(1,5000) ...
 tone*10^(80/20-1.35)];
y=MeddisHairCell(s,20000);
plot((1:90000)/20000,y(1:90000))

This hair cell model can be added to the back-end of a Gammatone filter bank to 
form a “complete” auditory model. A cochleagram of the ‘A huge tapestry hung in 
her hallway’ utterance from the TIMIT database (TRAIN/DR5/FCDR1/SX106/
SX106.ADC) is shown below. The output of the filter-bank is scaled by a factor of 80 
to put this particular result in the correct range for the hair cell model. The filtering 
operation in the loop and the decimation are performed to reduce the amount of data 
to display. The cochleagram was computed using the following commands.
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»[frwd,fdbk]=MakeERBFilters(16000,80,100);
»coch=ERBFilterBank(frwd,fdbk,tap);
»hc=MeddisHairCell(coch/max(max(coch))*80,16000,1);
»for j=1:80

c=hc(j,:);
c=filter([1],[1, -.99],c);
h(j,:)=c(1:100:50381);

 end
»image(h/max(max(h))*length(colormap));

See Also
R. Meddis, “Simulation of mechanical to neural transduction in the auditory 
recepter,” Journal of the Acoustical Society of America, vol.79, no.3, p. 702-711, 
March 1986.

M. J. Hewitt, R. Meddis, “Implementation details of a computation model of the 
inner hair-cell/auditory-nerve synapse,” Journal of the Acoustical Society of Amer-
ica, vol.87, no.4, p. 1813-1816, April 1990.
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mfcc

Purpose
Mel-frequency cepstral coefficient transform of an audio signal

Synopsis
[ceps,freqresp,fb,recon] = mfcc(input, samplingRate)

Description
Find the cepstral coefficients (ceps) corresponding to the input. Three other quanti-
ties are optionally returned that represent the detailed FFT magnitude (freqresp), the 
log10 mel-scale filter bank output (fb), and the reconstruction of the filter bank output 
by inverting the cosine transform.

The sequence of processing includes for each chunk of data:
Window the data with a hamming window,
Shift it into FFT order,
Find the magnitude of the FFT,
Convert the FFT data into filter bank outputs,
Find the log base 10,
Find the cosine transform to reduce dimensionality.

The filter bank is constructed using 13 linearly-spaced filters (133.33Hz between 
center frequencies,) followed by 27 log-spaced filters (separated by a factor of 
1.0711703 in frequency.) Each filter is constructed by combining the amplitude of 
FFT bin as shown in the figure below.

The forty filters look like this.

CF - 133Hz or CF CF + 133Hz or
CF/1.0718 CF*1.0718

Frequency
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0.005
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Examples
Here is the result of calculating the cepstral coefficients of the ‘A huge tapestry hung 
in her hallway’ utterance from the TIMIT database (TRAIN/DR5/FCDR1/SX106/
SX106.ADC). The utterance is 50189 samples long at 16kHz, and all pictures are 
sampled at 100Hz and there are 312 frames. Note, the top row of the mfcc-cepstrum, 
ceps(1,:), is known as C0 and is a function of the power in the signal.Since the wave-
form in our work is normalized to be between -1 and 1, the C0 coefficients are all 
negative. The other coefficients, C1-C12, are generally zero-mean. 

Several intermediate results are also generated that can be used to investigate the per-
formance of the algorithm. The uncompressed FFT spectrogram (freqresp) is shown 
below (it’s been flipped so that high frequencies are at the top.) 

After combining several FFT channels into a single mel-scale channel, the result is 
the filter bank output. This is shown below (the fb output of the mfcc command 
includes the log10 calculation.)
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Finally, the conversion into the cepstral domain uses the discrete cosine transform to 
reduce the dimensionality of the output. We can invert the cosine transform to get 
back into the filter bank domain and see how much information we have lost. The 
recon output is shown below (flipped again so that the high frequency channel is at 
the top). Note the result is much smoother then the original filter bank output.

See Also
An MFCC-like algorithm was proposed by M. J. Hunt, M. Lennig, and P. Mermel-
stein, “Experiments in syllable-based recognition of continuous speech,” Proceed-
ings of the 1980 ICASSP, Denver, CO, pp. 880-883, 1980.
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SecondOrderFilter

Purpose
Design a second order filter section

Synopsis
filter = SecondOrderFilter(f, q, fs)

Description
Design a second order digital filter with a center frequency of f, filter quality of q, 
and digital sampling rate of fs (Hz).

The filter is a biquadratic section with a transfer function equal to

.

The filter is described by a five element row vector with the filter’s coefficients equal 
to [B0 B1 B2 A1 A2].

Examples
A simple bandpass filter is formed by putting the filter’s poles near the desired center 
frequency. This is shown below.

»f=10:10:7990;
»sos=SecondOrderFilter(3000,5,16000)

sos =

    1.0000   -0.6900    0.7901

»filt=[1 0 0 sos(2:3)]

filt =

    1.0000         0         0   -0.6900    0.7901

»semilogx(f,FreqResp(filt,f,16000))

Likewise, a simple band-reject filter is formed by using a pair of zeros. The resulting 
filter looks like this.

»filt=[sos 0 0]

filt =

    1.0000   -0.6900    0.7901         0         0

B0 B1z 1– B2z 2–+ +

1 A1z 1– A2z 2–+ +
-----------------------------------------------
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»semilogx(f,FreqResp(filt,f,16000))

A broader filter is formed by using a lower q, in this case 2.
»sos=SecondOrderFilter(3000,2,16000)

sos =

    1.0000   -0.6212    0.5549

»filt=[sos 0 0]

filt =

    1.0000   -0.6212    0.5549         0         0

»semilogx(f,FreqResp(filt,f,16000))
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SeneffEar

Purpose
Implement the Stages I and II of Seneff’s Auditory Model

Synopsis
y = SeneffEar(x, fs [, plotChannel] )

Description
This function implements Stage I (Critical Band Filter Bank) and Stage II (Hair Cell 
Synapse Model) of Seneff’s Auditory model. This routine converts an input signal, x, 
into an array of 

“detailed waveshapes of the probabilistic response to individual 
cycles of the input stimulus.” 

This model is 
“based on properties of the human auditory system. A bank of criti-
cal-band filters defines the initial spectral analysis. Filter outputs 
are processed by a model of the nonlinear transduction stages in the 
cochlea, which accounts for such features as saturation, adaptation 
and forward masking. The parameters of the model were adjusted 
to match existing experimental results of the physiology of the 
auditory periphery.”

The input data (x) is a one-dimensional array with a sampling rate of fs. The optional 
parameter plotChannel is used to indicate a channel to plot for debugging (see exam-
ple below.)

Examples
Figure 3 of Seneff’s paper (1988) can be duplicated with the following statements

»s=[zeros(1,160) sin(2000*2*pi/16000*(1:1120))];
»y=SeneffEar(s,16000,15);

which produces the following plot.
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A cochleagram using Seneff’s ear model of the ‘A huge tapestry hung in her hall-
way’ utterance from the TIMIT database (TRAIN/DR5/FCDR1/SX106/
SX106.ADC) is shown below. The filtering operation in the loop and the decimation 
are performed to reduce the amount of data to display. The cochleagram was com-
puted using the following commands.

»hc=SeneffEar(tap,16000);
»for j=1:40

c=hc(j,:);
c=filter([1],[1, -.99],c);
h(j,:)=c(1:100:50381);

 end
»image(h/max(max(h))*length(colormap));

Acknowledgments
This routine is based on work described by Benjamin D. Bryant and John D. Gowdy, 
“Simulation of Stages I and II of Seneff's Auditory Model (SAM) Using Matlab,” 
and published in the Proceedings of the 1993 Matlab User's Group Conference.

The detailed description of this model can be found in Stephanie Seneff, “A joint 
synchrony/mean-rate model of auditory speech processing,” Journal of Phonetics, 
Vol. 16, pp. 55-76, 1988.
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SeneffEarSetup

Purpose
Design the filters for Seneff’s Auditory Model

Synopsis
[SeneffPreemphasis, SeneffFilterBank, SeneffForward, SeneffBackward] ...

= SeneffEarSetup(fs)

Description
This function designs the preemphasis and filterbank filters for Seneff’s Auditory 
Model. The only parameter to this function, fs, is the desired sampling rate of the 
digital system. See the SeneffEar command for more details.

Testing
This routine includes test code which can be turned on by setting the plotTests vari-
able to a positive value. This produces the following plot showing the filter-bank’s 
response.

Acknowledgments
This routine is based on work described by Benjamin D. Bryant and John D. Gowdy, 
“Simulation of Stages I and II of Seneff's Auditory Model (SAM) Using Matlab,” 
and published in the Proceedings of the 1993 Matlab User's Group Conference.

The detailed description of this model can be found in Stephanie Seneff, “A joint 
synchrony/mean-rate model of auditory speech processing,” Journal of Phonetics, 
Vol. 16, pp. 55-76, 1988.
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SetGain

Purpose
Set the gain of a second order section

Synopsis
filter = SetGain(filter, desired, f, fs)

Description
Set the gain of a second order biquadratic filter section to any desired gain at any 
desired frequency, f, assuming a sampling rate of fs. The filter section is a 1x5 ele-
ment vector as produced by the SecondOrderFilter function.

Examples
This example shows a second order section designed for Lyon’s passive long-wave 
cochlear model. The frequency response is first plotted for the normal filter.

»filts=DesignSosFilters(16000);
»filt=filts(42,:)

filt =

    0.8993   -1.1193    0.8786   -1.2535    0.8899

»f=10:10:7990;
»semilogx(f,FreqResp(filt,f,16000));

Then the gain of the filter section is set to 10 (20dB) near the filter’s best frequency 
(1960 Hz). The new frequency response is plotted below.

newFilt = SetGain(filt, 10, 1960, 16000);
semilogx(f, FreqResp(newFilt, f, 16000));
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soscascade

Purpose
Implement a cascade of second order filters.

Synopsis
output = soscascade(input, coeffs, output, states) 

Description
This routine implements a cascade of second order filters. A cascade of filters means 
that each filter’s output is used as input to the next filter. The number of filters defines 
the number of channels in the filter bank and each channel of the filter bank has its 
own output waveform. This block is a basic building block for Lyon’s passive long-
wave cochlear model.

The filter implemented at each stage is a biquadratic section with a transfer function 
equal to

.

Each filter is described by a five element row vector. The number of filter channels is 
equal to the number of rows in the coeffs argument to soscascade. Within each row 
the filter’s coefficients are equal to [B0 B1 B2 A1 A2].

The output and states arguments are optional. If present, and they are the right size, 
then these arrays are used instead of allocating new arrays. If the input has N samples 
then:

coeffs is C x 5 where C is the number of channels
output is C x N
state is C x 2

If the output argument is not present then a new array is allocated and returned to 
MATLAB . If the state argument is not present then a new array is allocated and 
remembered for the next time this function is called. It will be reallocated if the num-
ber of filter channels change.

If the first argument, input, is the string ‘clear’ then all internal states are set to zero. 
It is important to clear the state between runs so that the data at the end of one input 
array doesn’t affect the start of the next run.

Examples
Test this command by trying the following command. The correct results are shown 
below. The first filter is a simple exponential decay. The second filter sums the last 
two outputs from the first filter.

>>soscascade([1 0 0 0 0],[1 0 0 -.9 0;1 1 0 0 0]) 

ans =
 

 1.0000    0.9000    0.8100    0.7290    0.6561
  1.0000    1.9000    1.7100    1.5390    1.3851

See Also
LyonPassiveEar 

B0 B1z 1– B2z 2–+ +

1 A1z 1– A2z 2–+ +
-----------------------------------------------
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sosfilters

Purpose
Implement a bank of second order filters.

Synopsis
output = sosfilters(input, coeffs, output, states) 

Description
This routine implements a bank of second order filters. Each channel of the filter 
bank is independent of the other filters. The number of filters defines the number of 
channels in the filter bank and each channel of the filter bank has its own output 
waveform. This block is a basic building block for the Patterson-Holdsworth ERB 
cochlear model.

The filter implemented at each stage is a biquadratic section with a transfer function 
equal to

.

Each filter is described by a five element row vector. The number of filter channels is 
equal to the number of rows in the coeffs argument to soscascade. Within each row 
the filter’s coefficients are equal to [B0 B1 B2 A1 A2].

The output and states arguments are optional. If present, and they are the right size, 
then these arrays are used instead of allocating new arrays. If the input has N samples 
then:

coeffs is C x 5 where C is the number of channels
output is C x N
state is C x 2

If the output argument is not present then a new array is allocated and returned to 
MATLAB . If the state argument is not present then a new array is allocated and 
remembered for the next time this function is called. It will be reallocated if the num-
ber of filter channels change.

If the first argument, input, is the string ‘clear’ then all internal state is set to zero. It 
is important to clear the state between runs so that the data at the end of one input 
array doesn’t affect the start of the next run.

Examples
Test this command by trying the following commands. The correct results are shown 
below. The first example filters an impulse with two low pass filters.

»sosfilters([1 0 0 0 0 0],[1 0 0 -.9 0;1 0 0 -.8 0])

ans =

    1.0000   0.9000   0.8100   0.7290   0.6561    0.5905
    1.0000   0.8000   0.6400   0.5120   0.4096    0.3277

The next example shows a variant; multiple input arrays, one per filter channel.
»sosfilters([1 0 0 0 0 0;2 0 0 0 0 0], ...
            [1 0 0 -.9 0;1 0 0 -.8 0])

ans =

    1.0000   0.9000   0.8100   0.7290   0.6561    0.5905
    2.0000   1.6000   1.2800   1.0240   0.8192    0.6554

Finally, multiple input arrays can be filtered by a single filter.

B0 B1z 1– B2z 2–+ +

1 A1z 1– A2z 2–+ +
-----------------------------------------------
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»sosfilters([1 0 0 0 0 0;2 0 0 0 0 0],[1 0 0 -.9 0])

ans =

    1.0000   0.9000   0.8100   0.7290   0.6561    0.5905
    2.0000   1.8000   1.6200   1.4580   1.3122    1.1810

See Also
soscascade
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spectrogram

Purpose
Compute the spectrogram of a signal

Synopsis
array = spectrogram(wave,segsize,nlap,ntrans)

Description
Compute a short-time Fourier transform (STFT) or spectrogram of a one-dimen-
sional signal. The following optional arguments are used to control the window size, 
overlap, and thus the image quality.
segsize(128) Size of a segment of data used to calculate each frame. This deter-

mines the basic frequency resolution of the spectrogram. Smaller 
segment sizes give more detailed time resolution, but at the expense 
of frequency resolution.

nlap (8) Number of hamming windows overlapping a point. Larger overlaps 
give better resolution in the time domain.

ntrans (4) Factor by which transform is bigger than segment, larger sizes mag-
nify the frequency axis, but don’t really give any better resolution.

This function returns a spectrogram 'array' compressed with the square root of the 
maximum amplitude (fourth root of power)

Examples
A spectrogram of the ‘A huge tapestry hung in her hallway’ utterance from the 
TIMIT database (TRAIN/DR5/FCDR1/SX106/SX106.ADC) is shown below. It was 
computed using the following command line.

i=spectrogram(tap,64,2,1);

Author
Richard F. Lyon wrote the stabilization code and the smoothing algorithm.
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