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This Mathematica notebook provides many functions that are useful when designing Infinite 
Impulse Response (IIR) filters. This notebook is limited to Butterworth and Chebychev 
polynomial approximations, and transformations of these polynomials into lowpass, highpass, 
bandpass, and band reject filters. This report also describes how these continuous-domain filters 
can be implemented as digital filters.

This report is not meant to be a tutorial on filter design but instead to provide polynomial filter 
design functions in a readily accessible form. For more details on the transformation described 
here the reader is referred to analog and digital filter design books [Daryanani1976 and 
Oppenheim1989].

The material in this report started as the Appendix to a previous report on cochlear filters 
[Slaney1988]. The signal processing and filter design material was extracted and augmented with 
a number of algorithms for higher-order filter design. These filter design functions are based on a 
course on filter design taught by Prof. Ray DeCarlo at Purdue University around 1980. Portions 
of this notebook were used to illustrate two different publications by the author [Slaney1990 and 
Slaney1992]. A more comprehensive signal processing notebook has been described by Evans 
[Evans1992]. Finite impulse response (FIR) filter design is also discussed in a series of 
Mathematica notebooks by Julius Smith [Smith1992].

This notebook defines several Mathematica functions for signal processing applications. First and 
second order filters are described since the cochlear model is defined this way. Continuous time 
filters are described in Section 1 and Section 2 describes the discrete time versions of these filters. 
In general, the functions provided in the continuous case and in the discrete case are similar. To 
avoid confusion the word “Continuous” is used in the names of the continuous domain filters.



 1. - Continuous Time Filter Design
This section first defines some useful functions when working with continuous (analog) filters. 
Section 1.2 derives a number of properties of second-order continuous filters, and Section 1.3 
describes how to use higher-order polynomials to design lowpass, highpass, bandpass, and 
band-reject filters.

 1.1 - Continuous Filter Functions

Continuous time filters are described by giving the filter’s response as a function of complex 
frequency s. In the expressions that follow, filters can be an arbitrary function of the complex 
frequency s. A typical filter looks like

             3      2
aFilter = a s  + b s  + c s + d

The following functions are used to evaluate the complex response of a filter for a real frequency f 
(in cycles per second), and its corresponding magnitude and phase. A filter’s response function is 

evaluated along the imaginary axis by making the substitution s->I 2 Pi f (or j 2 π f in 
conventional EE notation.) 

ContinuousFilterEval[filter_, newS_] :=
filter /. s->newS;

ContinuousFilterGain[filter_,f_] := 
ContinuousFilterEval[filter,I 2 Pi f];

ContinuousFilterMag[filter_,f_] := 
Abs[ContinuousFilterGain[filter,f]]

ContinuousFilterPhase[filter_,f_] := 
Arg[ContinuousFilterGain[filter,f]]

dB[x_] := 20 Log[10,x]

ContinuousFilterDb[filter_,f_] := 
dB[ContinuousFilterMag[filter,f]]

We define the following function to display the frequency response of a continuous filter. (The 
plot starts at 0.01Hz to avoid any problems with filters that have a zero at DC.)

ContinuousFreqResponse[filter_, maxf_, opts_:{}] :=
Block[{response},

response = N[ContinuousFilterDb[filter,f]];
Plot[response,{f,.01,maxf},

AxesLabel->{" Hz", "dB"},
PlotLabel->"Response",
opts]];

We define a similar function for displaying the frequency response of a filter as a function of 

radian frequency (ω or radians per second, rps).
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ContinuousFreqResponseRadians[filter_, maxw_, opts_:{}] :=
Block[{response},

response = N[ContinuousFilterDb[filter,w/2/Pi]];
Plot[response,{w,.01,maxw},

AxesLabel->{" RPS", "dB"},
PlotLabel->"Response",
opts]];

Note, for each of these functions there is a third optional argument which allows additional 
options on each plot to be set. We use this feature to plot family of responses by turning off the 
display until we are ready to show the final accumulated result.

The ContinuousAdjustGain function is used to modify a filter so that it has unity gain (and 
zero phase) at any desired frequency.

ContinuousAdjustGain[filter_,f_] := 
filter/ContinuousFilterGain[filter,f]

 1.2 - Continuous Second Order Filters

This section describes the behaviour of a second-order polynomial filter. Second-order filters are 
useful because they represent a simple building block for more complicated filters. This section 
describes how to use these simple resonators to build bandpass and band-reject filters. The 
concepts shown here will be useful in the following sections when higher-order filters are 
described.

A second order filter is described by its resonant frequency (f) and its quality factor (q). The 3 dB 
bandwidth of the resulting filter is approximately equal to f/q. The following function computes 
the roots of a second order polynomial with a given center frequency (f in cycles per second) and 
bandwidth (q). These roots will be used later in the numerator of a filter function to make a notch 
in the frequency response or in the denominator to make a peak.

ContinuousSecondOrderRoot[f_, q_] := 
 
  -2 Pi f                       1
  ------- + I 2 Pi f Sqrt[1 - ------]  ------                      -----  
    q 2                            2
                              (2 q)

For any given frequency these roots trace out a circle in the s-plane. For very large q the roots are 
close to the imaginary axis. Thus as the frequency response is evaluated along the imaginary axis 
the roots closest to the imaginary axis (high q) will have a sharper response than those that are 
farther away (low q).

The plot below shows the location of one of the two roots of a second order filter with a constant 
resonant frequency. Each second order filter has two roots that are complex comjugates of each 
other. This plot shows only one of the two roots. Those roots that are closest to the imaginary 
axis have a high q (2.2 in this case) while those on the left near the real axis have a low q (0.501) 
and thus a broad response in the frequency domain. 

The radius of this circle is 2π times the resonant frequency (1000 Hz). For larger resonant 
frequencies, a cirle with a larger radius will result.  In all cases a filter with real coefficients will 
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have a second set of roots that are complex conjugates of the ones shown below. For the filter to 
be stable all of the roots must be in the left half of the complex plane.
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We create a second order filter using a pair of complex conjugate roots as a function of the 
complex frequency s.

ContinuousSecondOrderFilter[f_,q_] := 
Expand[(s-ContinuousSecondOrderRoot[f,q])

(s-Conjugate[ContinuousSecondOrderRoot[f,q]])]//N

The maximum response of this filter is not at its “center” frequency but at a slightly lower 
frequency given by.

ContinuousNaturalResonance[f_,q_] := 
f Sqrt[1 - 1/(2q^2)]

The approximate location of the 3 dB points of the response curve are defined by the following 
two equations.

Lower3DbPoint[f_,q_] := 
ContinuousNaturalResonance[f,q] - f/(2q)

Upper3DbPoint[f_,q_] := 
ContinuousNaturalResonance[f,q] + f/(2q)
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 1.2.1 - Continuous Second Order Filter Design

A bandpass filter (or resonator) is defined by placing the roots of a second order polynomial in 
the denominator. The gain of the filter is normalized so at its peak (the natural resonance 
frequency) it has unity gain.  A unity gain bandpass filter is defined by the following function as a 
function of center frequency and filter quality (q).

MakeContinuousResonance[f_,q_] := 
ContinuousAdjustGain[1/ContinuousSecondOrderFilter[f,q],

ContinuousNaturalResonance[f,q]]

A typical bandpass filter (or resonator) with a center frequency of 1000 Hz and a q of 10 looks 
like this.

MakeContinuousResonance[1000,10]//N

                      6
  197392. + 3.93796 10  I
------------------------------------------------------- 
          7                2
3.94784 10  + 628.319 s + s

The gain of this bandpass filter is shown below.

ContinuousFreqResponse[MakeContinuousResonance[1000,10],
2000];
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The phase of this bandpass filter shifts as the frequency passes through the resonant frequency. 
The phase is equal to zero near the center frequency since the gain of the filter has been 
normalized so that it is equal to one at its resonance frequency.
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Plot[Release[ContinuousFilterPhase[
MakeContinuousResonance[1000,10],f]],

{f,0,2000}];
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The plot below shows the change in frequency response of second order bandpass filters with a 
center frequency of 1000 Hz as the quality factor (q) is varied. The flattest curve is the frequency 
response of the filter with a q of 0.71 while the sharpest (narrowest) filter has a q of 10.
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Likewise we can create a second order filter with a notch in the frequency response. In this case 
all of the roots are in the numerator so there is a zero (or a notch) in the frequency response. We 
normalize the filter’s gain so that at DC there is unity gain.

MakeContinuousAntiResonance[f_,q_] := 
ContinuousAdjustGain[ContinuousSecondOrderFilter[f,q],

0]

A filter with a notch centered at 1000 Hz and with a q of 10 is described by the following 
equation.

FilterDesign 6



MakeContinuousAntiResonance[1000,10]

          -8            7                2
2.53303 10   (3.94784 10  + 628.319 s + s )

The response of this filter in the frequency domain is shown below.

ContinuousFreqResponse[
MakeContinuousAntiResonance[1000,10],2000];
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 1.2.2 - Continuous Second Order Examples

We can combine notch and resonance filters to get more interesting responses. The following 
combination of a resonance with a q of 2 at 1000 Hz and a notch with a q of 5 at 1100 Hz is 
similar to the cascade-only ear filters described in Lyon’s Cochlear Model [Slaney88].

MakeContinuousResonance[1000,2] *
MakeContinuousAntiResonance[1100,5]//N

                                   7               2
(0.103306 + 0.386535 I) (4.77689 10  + 1382.3 s + s )
--------------------------------------------------------------------------------------------------------- 
                      7                2
            3.94784 10  + 3141.59 s + s
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ContinuousFreqResponse[MakeContinuousResonance[1000,2]*
MakeContinuousAntiResonance[1100,5]//N,2000];
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A second filter is shown below. We have combined a broad notch with a narrow resonance to 
give a bandpass filter.

MakeContinuousResonance[1000,5] *
MakeContinuousAntiResonance[1000,2]//N

                              7                2
(0.02 + 0.19799 I) (3.94784 10  + 3141.59 s + s )
------------------------------------------------------------------------------------------------- 
                    7                2
          3.94784 10  + 1256.64 s + s

ContinuousFreqResponse[MakeContinuousResonance[1000,5]*
MakeContinuousAntiResonance[1000,2]//N,2000];
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We can gain more insight about this filter by examining the response in the complex s-plane. This 
is shown below with the white spots representing the location of the resonance (or greatest 
response) and the black representing the zeros or lowest response.
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gg[x_] := Release[N[Abs[(MakeContinuousResonance[1000,5] *
MakeContinuousAntiResonance[1000,2])

/.s->x]]];

DensityPlot[gg[x + I y],{x,-8000,8000},{y,-8000,8000},
PlotPoints->33,
AxesLabel->{"Real Frequency","Imaginary Frequency"}];
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We can also plot this function as a perspective plot. This is shown below. Here we have only 
shown the upper left hand quadrant of the gray scale picture above. The front axis is the positive 

jω axis and corresponds to the functions frequency response. The poles and zeros in the upper 
left half plane are clearly visible. [Thanks to Richard Lyon for suggesting this viewpoint.]
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gg[x_] := Release[N[dB[Abs[(MakeContinuousResonance[1000,2] *
MakeContinuousAntiResonance[1000,5])

/.s->x]]]]

Plot3D[gg[x + I y],{x,-10000,0},{y,0,12000},
PlotPoints->20,
ViewPoint->{2,-0.25,1},
Lighting->True];
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 1.2.3 - Continous Second Order Test Code

The following function prints some interesting information about a second order filter function. 
(The filter's center frequency and quality factor aren't strictly needed for this analysis since they 
can be found from the filter polynomial.  They are included here to make the code easier to write.)

FilterCheck[filter_,f_,q_] :=
Block[{fd,f1,f2,g1,g2},

f1 = N[Lower3DbPoint[f,q]];
f2 = N[Upper3DbPoint[f,q]];
fd = N[ContinuousNaturalResonance[f,q]];
g = N[ContinuousFilterMag[filter,fd]];
g1 = N[ContinuousFilterMag[filter,f1]];
g2 = N[ContinuousFilterMag[filter,f2]];
Print["Gain at f1=",f1," is ",g1];
Print[" or ",dB[g1/g],"dB"];
Print["Gain at fd=",fd," is ",g];
Print["Gain at f2=",f2," is ",g2];
Print[" or ",dB[g2/g],"dB"];
]
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FilterCheck[MakeContinuousResonance[1000,10],1000,10]

Gain at f1=947.497 is 0.71646
 or -2.89616dB
Gain at fd=997.497 is 1.
Gain at f2=1047.5 is 0.698751
 or -3.11355dB

Note that the calculation of the 3dB points is only approximate. As the q gets larger the 
approximation is better.

FilterCheck[MakeContinuousResonance[1000,100],1000,100]

Gain at f1=994.975 is 0.707996
 or -2.99939dB
Gain at fd=999.975 is 1.
Gain at f2=1004.97 is 0.706228
 or -3.0211dB

I’ve written the following function to look for the 3dB points. I couldn’t figure out any way to 
make Mathematica solve the equation for me.

FilterSearch[f_,v_,l_,h_] := Block[{vl,vm,vh,m},
m = (l + h) / 2;
If [Abs[m-l] < m/1000000,

Return[N[m]]];
vl = N[ContinuousFilterMag[f,l]];
vm = N[ContinuousFilterMag[f,(l+h)/2]];
vh = N[ContinuousFilterMag[f,h]];
If [ Between[vl,v,vm], 

FilterSearch[f,v,l,m],
If [ Between [vm, v, vh],

FilterSearch[f,v,m,h],
Print["Error vl=",vl," vm=",vm," vh=",vh]
]

]
]

Between[l_,m_,h_] := (m >= l && m < h) || 
(m < l && m >= h)

Get a simple resonator with center frequency 1000 and a q of 2.

aFilter = MakeContinuousResonance[1000,2]//N

          6             7
 4.9348 10  + 1.84643 10  I
------------------------------------------------------- 
          7                2
3.94784 10  + 3141.59 s + s

First look for the upper 3dB point. Note that it is few percent lower in frequency than the 
equations predict.

FilterSearch[aFilter,N[Sqrt[2]/2],1000,1200]

1165.81
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Upper3DbPoint[1000,2]//N

1185.41

Likewise the lower 3dB point is also off by a bit.

FilterSearch[aFilter,N[Sqrt[2]/2],500,1000]

625.202

Lower3DbPoint[1000,2]//N

685.414

The following two equations verify that the two 3dB frequencies really do solve the defining 
equations (See Hayt and Kemmerly, Engineering Circuit Analysis.)

Simplify[q(Upper3DbPoint[f,q]/f-f/Upper3DbPoint[f,q])]

                       2
(-(f/(f Sqrt[1 - 1/(2 q )] + f/(2 q))) + 
 
                      2
    (f Sqrt[1 - 1/(2 q )] + f/(2 q))/f) q

Simplify[q(Lower3DbPoint[f,q]/f-f/Lower3DbPoint[f,q])]

                       2
(-(f/(f Sqrt[1 - 1/(2 q )] - f/(2 q))) + 
 
                      2
    (f Sqrt[1 - 1/(2 q )] - f/(2 q))/f) q

Note that if we subtract the two 3dB frequencies we get the bandwidth of the filter (in cycles per 
second) as a function of the center frequency and q.

Simplify[Upper3DbPoint[f,q] - Lower3DbPoint[f,q]]

f/q

 1.2.4 - Usage

The following definitions are needed so that Mathematica can respond to user’s requests for more 
information about the functions defined here. This means that the Apple-I (for a function 
template) and ?Function features will now work with this notebook.

FilterEval::usage = "FilterEval[filter, w] returns the
response of a filter at real frequency w.";

FilterMag::usage = "FilterMag[filter, w] returns the 
magnitude of the response of a filter at real frequency w.";

FilterPhase::usage = "FilterPhase[filter, w] returns the
phase of the response of a filter at real frequency w."; 

dB::usage = "dB[x] converts a voltage (or current) into
decibels.";

FilterDb::usage = "FilterDb[filter, w] returns the 
magnitude of the response of a filter in dB at a 
frequency w.";
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AdjustGain::usage = "AdjustGain[filter,w] adjust the 
gain of a filter so that it has unity gain at the frequency
w.";

SecondOrderRoot::usage = "SecondOrderRoot[w, q] gives the
location on the s-plane of a pole or zero that has a center
frequency of w and a quality factor of q.  The other root
of the second order section is given by the complex 
conjugate of this root.";

Omega1::usage = "Omega1[w, q] gives the frequency of the 
lower 3dB point of a second order section with center 
frequency of w and a quality factor of q.";

Omega2::usage = "Omega2[w, q] gives the frequency of the 
upper 3dB point of a second order section with center 
frequency of w and a quality factor of q.";

NaturalResonance::usage = "NaturalResonance[w, q] gives 
the frequency of the peak (or valley) of the response of a
second order filter with frequency w and quality factor q.";

ContinuousFreqResponse::usage = "ContinuousFreqResponse[
filter,maxf] shows the frequency response of a continuous
filter from DC to the maximum frequency specified.";

MakeResonance::usage = "MakeResonance[w,q] designs a 
second order filter with a peak at frequency w and a 
quality factor of q.";

MakeAntiResonance::usage = "MakeAntiResonance[w,q] designs
a second order filter with a notch at frequency w and a 
quality factor of q.";

 1.3 - Continuous Filter Design

Section 1.3.1 will introduce higher-order filters and define a data structure that is used throughout 
this notebook to describing an arbitrary polynomial filter. The simplest filter, the Butterworth, is 
described in Section 1.3.2 and a higher performance alternative, the Chebychev, is described in 
Section 1.3.3. These polynomials are transformed into lowpass filters in Section 1.3.4. Section 
1.3.5 shows how to transform these polynomials into highpass, bandpass, and band-reject 
filters. Finally, Section 1.3.6 shows a number of examples and test cases.

Higher order filters have a sharper response and are designed using different techniques. The 
second order filters designed above have a gain that varies with the square of the frequency. In 
other words the gain changes by at most 6 dB per octive. Faster gain changes are possible by 
combining multiple second order sections and this section of the report describes how to place the 
poles and zeros to get arbitrarily sharp cutoffs.
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 1.3.1 - Introduction to Continuous Filter Design

Four types of filters we will be studied in this section. The simplest filter is a low pass filter. We 
study several types of low pass filters, all normalized so that frequencies below 1 radians/second 
(rps) are passed relatively unchanged and frequencies above 1 rps are attenuated. We then study 
four transformations that are used to transform the normalized low pass filter into four other types 
of filters. They are the unnormalized low pass, high pass, band reject and band pass filters. For 
these filters each of the poles and zeros of the normalized low pass are transformed into new 
poles and zeros that lead to the desired response.

These filters could be designed with Mathematica using either rational polynomials or lists of 
poles and zeros. Rational polynomials would certainly be nicer since all intermediate results look 
like filters. Unfortunately we sometimes need to talk about individual poles and zeros (for 
example when doing partial fractions expansions) and this is difficult if the filter is described as a 
polynomial. If a filter is described by its poles, zeros and gain and we can always regenerate the 
polynomial.

A list of polynomial roots are turned into a polynomial in s using this Mathematica expression.

PolynomialFromRoots[roots_] :=
If[Length[roots] == 0,

1,
First[Apply[Times,Map[{s-#}&,roots]]]]

In this notebook we use a list to keep track of the zeros, poles and gain of a filter. Functions that 
transform filters will take as input a list of three items (gain, zeros and poles) and return a similar 
structure. We abbreviate the name of this structure to just GZP (Gain, Zeros and Poles.) The 
following function is then used to take one of these lists and transform it into a filter in the 
s-domain. Note that we have used the pattern matching facilities of Mathematica to pick out the 
three elements of the input list. 

FilterFromGZP[{gain_, zeros_, poles_}] :=
gain * PolynomialFromRoots[zeros]/

PolynomialFromRoots[poles]//N

FilterFromGZP[{zeros_, poles_}] :=
FilterFromGZP[{1,zeros,poles}]

 1.3.2 - Butterworth Filters

The simplest type of higher order filter is known as the Butterworth. In a Butterworth filter 
design the poles are evenly spaced along a circle in the left half of the s-plane. (Remember that 
poles in the right half of the s-plane lead to unstable filters.) The left hand poles of the following 
equation define the Butterworth filter.

   1
--------------- 
     2 n
1 + s

The following expression calculates the poles of an n’th order Butterworth filter. Note that the 
poles are evenly distributed around the left half of a unit circle in the s-plane.
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ButterworthPoles[n_] :=
Table[N[Exp[I Pi / 2 ( 2 k + n - 1)/n]],

{k,1,n}]

ButterworthPoles[4]

{-0.382683 + 0.92388 I, -0.92388 + 0.382683 I, 
 
  -0.92388 - 0.382683 I, -0.382683 - 0.92388 I}

We use the following expression to plot the locations of a poles (or zero) list.

PlotPoles[complexpolelist_]:=
ListPlot[Map[{Re[#],Im[#]}&,complexpolelist],

AspectRatio->Automatic];

These last two functions are demonstrated below by showing the locations of the poles in a 16th 
order Butterworth filter.

PlotPoles[ButterworthPoles[16]];
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The polynomial resulting from a eighth order Butterworth filter is

PolynomialFromRoots[ButterworthPoles[8]]//N

(0.19509 - 0.980785 I + s) (0.19509 + 0.980785 I + s) 
 
  (0.55557 - 0.83147 I + s) (0.55557 + 0.83147 I + s) 
 
  (0.83147 - 0.55557 I + s) (0.83147 + 0.55557 I + s) 
 
  (0.980785 - 0.19509 I + s) (0.980785 + 0.19509 I + s)
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ContinuousFreqResponseRadians[
ContinuousAdjustGain[1/

PolynomialFromRoots[ButterworthPoles[8]],0],2];
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Note that at the corner frequency (1 rps) this filter has a gain of 3 dB.

ContinuousFilterDb[ContinuousAdjustGain[
PolynomialFromRoots[ButterworthPoles[8]],0],
1/2/Pi] //N

3.0103

If we want to have a different gain then we need to move the roots slightly to give us the desired 
gain at the corner frequency. This correction factor is included in the following function which 
takes as arguments the order of the desired filter and the gain (in dB) at 1 rps.

ButterworthLp[n_,amax_] :=
Block[{poles,gain},

poles = Sqrt[10^(amax/10)-1]^(-1/n) *
ButterworthPoles[n]//N;

gain = ContinuousFilterGain[
PolynomialFromRoots[poles],0]//N;

Return[{gain, {}, poles}]]

An example of this shown below for an eighth order Butterworth filter with a gain of 1 dB at the 
corner frequency.

ButterworthLp[8,1]

                     -20
{1.96523 - 2.71051 10    I, {}, 
 
  {-0.212282 + 1.06721 I, -0.604527 + 0.904738 I, 
 
   -0.904738 + 0.604527 I, -1.06721 + 0.212282 I, 
 
   -1.06721 - 0.212282 I, -0.904738 - 0.604527 I, 
 
   -0.604527 - 0.904738 I, -0.212282 - 1.06721 I}}
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FilterFromGZP[ButterworthLp[8,1]]

                     -20
(1.96523 - 2.71051 10    I)/
 
  ((0.212282 - 1.06721 I + s) (0.212282 + 1.06721 I + s) 
 
    (0.604527 - 0.904738 I + s) 
 
    (0.604527 + 0.904738 I + s) 
 
    (0.904738 - 0.604527 I + s) 
 
    (0.904738 + 0.604527 I + s) 
 
    (1.06721 - 0.212282 I + s) (1.06721 + 0.212282 I + s)
 
    )

ContinuousFreqResponseRadians[
FilterFromGZP[ButterworthLp[8,1]],2];
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 1.3.3 - Chebychev Polynomials

The Chebychev polynomials are an alternative to the Butterworth filters described above. The 
poles of a Butterworth low pass filter are arrayed so that the filter’s response is flat through most 
of its passband and as the frequency approaches the corner frequency the gain quickly falls off. In 
some cases this characteristic is an advantage because the gain between DC and the corner 
frequency is nearly flat. In addition if a Butterworth filter is designed that has a given tolerance in 
the passband then it will easily meet the specification at low frequencies and only at the corner 
frequency will it approach the maximum specified passband loss. 

It turns out that filters with a much smaller variation in gain in the passband can be designed using 
the Chebychev polynomials. Chebychev filters no longer have a flat response in the passband but 
like Butterworth filters the passband error can be made arbitrarily small.

The Chebychvev polynomials are described by the following recursive relationship. A technique 
that Mathematica calls dynamic programming is used to remember lower order Chebychev 
polynomials so that they do not need to be recalculated. (I think caching is a better name.)

ChebychevPoly[0] := 1

ChebychevPoly[1] := s
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ChebychevPoly[n_] := ChebychevPoly[n] = 
Simplify[2 s ChebychevPoly[n-1] - ChebychevPoly[n-2]] 

ChebychevPoly[6]

         2       4       6
-1 + 18 s  - 48 s  + 32 s

The poles of these function are given by the following expression. This expression is a function 
of the desired order (n) and the error (e) in the passband.

Chebychev[n_,e_] := 
Table[Sin[Pi/2(1+2k)/n]Sinh[ArcSinh[1/e]/n] +

I Cos[Pi/2(1+2k)/n]Cosh[ArcSinh[1/e]/n],
{k,n,2n-1}]

ChebychevPoles[n_, amax_] :=
Chebychev[n,Sqrt[10^(amax/10)-1]]

ChebychevPoles[6,2]//N

{-0.0469732 - 0.981705 I, -0.128333 - 0.718658 I, 
 
  -0.175306 - 0.263047 I, -0.175306 + 0.263047 I, 
 
  -0.128333 + 0.718658 I, -0.0469732 + 0.981705 I}

As can be seen from the pole plot below, the roots of a Chebychev polynomial fall on an ellipse.  

This plot shows the roots as the maximum error in the passband is varied from 10-10 (the ones 

that look most like a circle) and a passband error of 1 dB.
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PlotPoles[Flatten[Map[N[ChebychevPoles[16,#]]&,
{10^-10,10^-4,.1,1}]]];
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The next function computes a Chebychev low pass filter and returns a list with the gain, zeros 
(none for a low pass filter) and poles. This list can then be passed to the filter transform routines 
to realize other types of filters (bandpass, bandreject and highpass.) In this filter design function 
the gain at the corner frequency (1 radian per second) is adjusted so that it has a loss of amax. As 
will be seen in the plots to follow this will set the maximum gain of the filter (at the peaks in the 
passband) to 0 dB.
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ChebychevLp[n_,amax_] :=
Block[{poles,gain},

poles = ChebychevPoles[n,amax]//N;
gain = ContinuousFilterGain[

PolynomialFromRoots[poles],
1/(2 Pi)]//N;

gain = 10^(-amax/20) * gain;
Return[{gain, {}, poles}]]

The plot below shows the response of a eighth order Chebychev low pass filter with a passband 
error of 1 dB.

ContinuousFreqResponseRadians[
FilterFromGZP[ChebychevLp[8,1]],1.02];
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Chebychev filters can have an arbitrarily small error in the passband but this does not come for 
free. The plot below shows the gain at twice the corner frequency as a function of passband error. 
In each case an eighth order Chebychev low pass filter was designed.

FilterDesign 20



Plot[ContinuousFilterDb[
FilterFromGZP[ChebychevLp[8,e]],
1/Pi],

{e,.01,10},
AxesLabel->{"Passband Error","Gain at 2rps"}];
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The two plots that follow show the actual frequency response of two of the filters used to make 
the plot above. The first plot is for a maximum passband error of 0.1 dB while the second plot is 
a Chebychev filter with an error of 3 dB.

ContinuousFreqResponseRadians[
FilterFromGZP[ChebychevLp[8,.1]],
2,{PlotRange->All}];
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ContinuousFreqResponseRadians[
FilterFromGZP[ChebychevLp[8,3]],
2,{PlotRange->All}];
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 1.3.4 - Low Pass Filter Design

A low pass filter with a corner frequency of 1 rps can be transformed into a low pass filter with 
an arbitrary cutoff using a coordinate transformation. Using Mathematica, this transformation can 
be implemented two different ways. First we could simply replace s in the normalized filter with 
s/(2 Pi fp) where fp is the new center frequency in Hertz. This gives us

LpToLp[filter_, fp_] :=
Simplify[filter/.s->s/(2 Pi fp)]

But it is hard to convince Mathematica to put this transformed function into the form of simple 
polynomials in s.

LpToLp[FilterFromGZP[ButterworthLp[3,1]],1000]

                                              -7  2
                     0.00156895 s   6.26288 10   s
1.96523 / (1.96523 + ------------ + --------------- +                      -----------    --------------    
                          Pi                2
                                          Pi
 
           -10  3
    1.25 10    s
    -------------)    ------------  
           3
         Pi

A better way to do this transformation is to use the gain, zero, pole (GZP) structure. The new 
LpToLp  transformation function is given by

LpToLp[{gain_, zeros_, poles_}, fp_] :=
{gain * (2 Pi fp) ^ (Length[poles]-Length[zeros]),

zeros * 2 Pi fp,
poles * 2 Pi fp}
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FilterFromGZP[LpToLp[ButterworthLp[3,1],1000]]

           11
(4.87475 10   + 0. I)/
 
  ((3935.08 - 6815.77 I + s) (3935.08 + 6815.77 I + s) 
 
    (7870.17 + s))

First we show the effect of this transformation on a simple 3rd order Butterworth filter with a 
passband error of 1 dB.

ContinuousFreqResponse[
FilterFromGZP[LpToLp[ButterworthLp[3,1],1000]],
2000,{PlotRange->All}];
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Now we can compare the Butterworth response with a similar filter designed using the 
Chebychev polynomials. Note that by rearranging the positions of the poles we have designed a 
filter with a much sharper cutoff. The Butterworth filter has an attenuation of 12dB at 2kHz while 
the Chebychev filter is already down 20dB. (But in both cases the asymptotic loss for high 
frequencies will be a function of frequency to the sixth power or 36 dB per octave.)

ContinuousFreqResponse[
FilterFromGZP[LpToLp[ChebychevLp[3,1],1000]],
2000,{PlotRange->All}];
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 1.3.5 - Other Filter Transforms

Other filter transforms are also possible. This section describes transforms that make a low pass 
filter into a high pass, bandpass and band-reject. In each case we use the gain, zero, pole 
structure to keep track of the filter parameters. 

High pass filters are designed by replacing s in the original normalized low pass filter transfer 
function with

    wp
S = --    - 
    s

where wp is the desired high pass cutoff in radians per second. This transformation is done as 
follows. Not only is it is necessary to transform each pole into a zero and each zero into a pole, 
but also to adjust the overall filter gain.

LpToHp[{gain_, zeros_, poles_}, fp_] :=
Block[{RootDiff, ExcessPoles, ExcessZeros},

RootDiff = Length[zeros]-Length[poles];
If [ RootDiff > 0,

ExcessZeros = Table[0,{RootDiff}];
ExcessPoles = {},

ExcessPoles = Table[0,{-RootDiff}];
ExcessZeros = {}];

{gain * Apply[Times,zeros]/Apply[Times,poles],
Join[2 Pi fp / zeros,ExcessPoles],
Join[2 Pi fp / poles,ExcessZeros]}]

Below we show the Butterworth and Chebychev high-pass filters that have been computed with 
this transform.

FilterFromGZP[LpToHp[ButterworthLp[3,3],1000]]

               3
((-1. + 0. I) s )/
 
  ((3139.11 - 5437.09 I + s) (3139.11 + 5437.09 I + s) 
 
    (6278.21 + s))

FilterDesign 24



ContinuousFreqResponse[
FilterFromGZP[LpToHp[ButterworthLp[3,3],1000]],
2000,{PlotRange->{0,-50}}];
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ContinuousFreqResponse[
FilterFromGZP[LpToHp[ChebychevLp[3,3],1000]],
2000,{PlotRange->{0,-50}}];
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Bandpass filters are more difficult to design. A low pass filter is transformed into a bandpass by 
specifying the location of the two corner frequencies. We make this transform by subsituting the 
following expression for s into the normalized low pass filter

     2     2
    s  + w0
S = --------    ------- 
      B s

In these expressions B is the difference (in radians) between the two edges of the passband and 
w0 is the geometric mean of the freqencies at the edges of the passband. The function 
BpTransform  is used to transform a single root of the normalized filter into two new roots due 
to the substitution above.
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BpTransform[roots_,w0_,B_] :=
N[Flatten[Map[{B # / 2 + Sqrt[B^2#^2-4w0^2]/2,

B # / 2 - Sqrt[B^2#^2-4w0^2]/2}&,
roots]]]

BpTransform[ButterworthPoles[3],
2Pi Sqrt[1000 2000],
2Pi 1000]

{-1104.8 - 6450.39 I, -2036.79 + 11891.8 I, 
 
  -3141.59 + 8311.87 I, -3141.59 - 8311.87 I, 
 
  -1104.8 + 6450.39 I, -2036.79 - 11891.8 I}

LpToBp[{gain_, zeros_, poles_}, fp1_, fp2_] :=
Block[{w0, B, RootDiff, ExcessPoles, ExcessZeros},

w0 = 2 Pi Sqrt[fp1 fp2];
B = 2 Pi (fp2 - fp1);
RootDiff = Length[zeros] - Length[poles];
If[RootDiff > 0,

ExcessZeros = RootDiff;
ExcessPoles = 0,

ExcessPoles = -RootDiff;
ExcessZeros = 0];

{gain/B^RootDiff,
 Join[BpTransform[zeros,w0,B],
 Table[0,{ExcessPoles}]],
 Join[BpTransform[poles,w0,B],
 Table[0,{ExcessZeros}]]}]

LpToBp[ButterworthLp[3,3],1000,2000]//N

          11
{2.4864 10   + 0. I, {0, 0, 0}, 
 
  {-1105.33 - 6448.69 I, -2038.75 + 11894.4 I, 
 
   -3144.08 + 8310.93 I, -3144.08 - 8310.93 I, 
 
   -1105.33 + 6448.69 I, -2038.75 - 11894.4 I}}
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ContinuousFreqResponse[
FilterFromGZP[LpToBp[ChebychevLp[3,3],1000,2000]],
4000];
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We transform a low pass filter into a bandreject filter by specifying the width and the geometric 
mean frequency of the rejection band. We make this transform by subsituting the following 
expression for s into the normalized low pass filter

      B s
S = --------    ------- 
     2     2
    s  + w0

Again in these expressions B is the difference (in radians) between the two edges of the passband 
and w0 is the geometric mean of the freqencies at the edges of the passband.

Two functions are defined here to make the transformation easier. First the function 
BrTransform  is used to take a single root and apply the above transformation to create two new 
roots. Second the function BrExtraRoots is used provide the extra roots for either the 
numerator or the denominator due to the following term. 

 2     2
s  + w0

BrTransform[roots_,w0_,B_] :=
N[Flatten[Map[{(B+Sqrt[B^2 - 4 #^2 w0^2])/(2#),

(B-Sqrt[B^2 - 4 #^2 w0^2])/(2#)}&,
roots]]]

BrExtraRoots[w0_, num_] :=
Flatten[Table[{w0 I,-w0 I},{num}]]
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LpToBr[{gain_, zeros_, poles_}, fp1_, fp2_] :=
Block[{w0, B, RootDiff, ExcessPoles, ExcessZeros},

w0 = 2 Pi Sqrt[fp1 fp2];
B = 2 Pi (fp2 - fp1);
RootDiff = Length[zeros] - Length[poles];
If[RootDiff > 0,

ExcessZeros = RootDiff;
ExcessPoles = 0,

ExcessPoles = -RootDiff;
ExcessZeros = 0];

{gain*Apply[Times,Map[-#&,zeros]]/
Apply[Times,Map[-#&,poles]],

 Join[BrTransform[zeros,w0,B],
 BrExtraRoots[w0,ExcessPoles]],
 Join[BrTransform[poles,w0,B],
 BrExtraRoots[w0,ExcessZeros]]}]

LpToBr[ButterworthLp[3,3],1000,2000]//N

{1. + 0. I, {8885.77 I, -8885.77 I, 8885.77 I, 
 
   -8885.77 I, 8885.77 I, -8885.77 I}, 
 
  {-2034.83 - 11889.2 I, -1104.27 + 6452.08 I, 
 
   -3139.11 - 8312.81 I, -3139.11 + 8312.81 I, 
 
   -2034.83 + 11889.2 I, -1104.27 - 6452.08 I}}

ContinuousFreqResponse[
FilterFromGZP[LpToBr[ButterworthLp[3,3],1000,2000]],4000];
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ContinuousFreqResponse[
FilterFromGZP[LpToBr[ChebychevLp[3,3],1000,2000]]
,4000];
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 1.3.6 - DeCarlo’s Test Cases

Most of the above sections came from the EE445 course at Purdue University taught by Prof. 
Ray DeCarlo. It seems only right to check the results of this notebook using his test cases.

Design an 8th order Butterworth filter with Amax is 1 dB, whose DC gain is 1 (absolute) and 
whose cutoff frequency is 1500 Hz.

ButterworthLp[8,1]

                     -20
{1.96523 - 2.71051 10    I, {}, 
 
  {-0.212282 + 1.06721 I, -0.604527 + 0.904738 I, 
 
   -0.904738 + 0.604527 I, -1.06721 + 0.212282 I, 
 
   -1.06721 - 0.212282 I, -0.904738 - 0.604527 I, 
 
   -0.604527 - 0.904738 I, -0.212282 - 1.06721 I}}

Now check the gain constant

dB[Abs[First[ButterworthLp[8,1]]]]//N

5.86825

LpToLp[ButterworthLp[8,1],1500]//N

           32            12
{1.22344 10   - 1.6874 10   I, {}, 
 
  {-2000.71 + 10058.2 I, -5697.53 + 8526.96 I, 
 
   -8526.96 + 5697.53 I, -10058.2 + 2000.71 I, 
 
   -10058.2 - 2000.71 I, -8526.96 - 5697.53 I, 
 
   -5697.53 - 8526.96 I, -2000.71 - 10058.2 I}}

dB[Abs[First[LpToLp[ButterworthLp[8,1],1500]]]]//N

641.752
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ContinuousFreqResponse[
FilterFromGZP[LpToLp[ButterworthLp[8,1],1500]],
3000,{PlotRange->All}];
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Design a sixth-order Chebychev filter whose Amax is 2 dB and whose DC gain is 1.588656 
(absolute), that is the peak bandpass gain is 2 (absolute).

ChebychevLp[6,2]//N

{0.0205241 + 0.0353328 I, {}, 
 
  {-0.0469732 - 0.981705 I, -0.128333 - 0.718658 I, 
 
   -0.175306 - 0.263047 I, -0.175306 + 0.263047 I, 
 
   -0.128333 + 0.718658 I, -0.0469732 + 0.981705 I}}

Our filter design functions always normalize the filters so that the maximum gain is unity. We can 
get a DC gain of 1.5 by adjusting the gain of the filter at DC so that it is 1 (using the 
ContinuousAdjustGain function) and then multiplying by the appropriate gain constant.

ContinuousFreqResponseRadians[
1.588656 *
ContinuousAdjustGain[FilterFromGZP[ChebychevLp[6,2]],

0],2];
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The following is a third-order Chebychev filter whose Amax is .5 dB and whose DC gain is 1 
(absolute).

ChebychevLp[3,.5]

{-0.507168 + 0.504974 I, {}, 
 
  {-0.313228 - 1.02193 I, -0.626456, 
 
   -0.313228 + 1.02193 I}}

dB[Abs[First[ChebychevLp[3,.5]]]]

-2.90546

The next example is a third-order Butterworth filter whose Amax is 3 dB and whose DC gain is 
1.0 (absolute.)

ButterworthLp[3,3]

{1.00238 + 0. I, {}, {-0.500396 + 0.866711 I, -1.00079, 
 
   -0.500396 - 0.866711 I}}

dB[Abs[First[ButterworthLp[3,3]]]]//N

0.0206244

The following is the third order Butterworth filter transformed into a highpass filter with a corner 
frequency of 1000Hz.

LpToHp[ButterworthLp[3,3],1000]//N

{-1. + 0. I, {0, 0, 0}, 
 
  {-3139.11 - 5437.09 I, -6278.21, -3139.11 + 5437.09 I}}

dB[Abs[First[LpToHp[ButterworthLp[3,3],1000]]]]//N

0.

ContinuousFreqResponse[
FilterFromGZP[LpToHp[ButterworthLp[3,3],1000]],
2000,{PlotRange->{-50,0}}];
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The next example is the normalized third order Butterworth above transformed into a bandpass 
filter with corner frequencies of 1000 and 2000 Hz.

LpToBp[ButterworthLp[3,3],1000,2000]//N

          11
{2.4864 10   + 0. I, {0, 0, 0}, 
 
  {-1105.33 - 6448.69 I, -2038.75 + 11894.4 I, 
 
   -3144.08 + 8310.93 I, -3144.08 - 8310.93 I, 
 
   -1105.33 + 6448.69 I, -2038.75 - 11894.4 I}}

dB[Abs[First[LpToBp[ButterworthLp[3,3],1000,2000]]]]//N

227.911

ContinuousFreqResponse[
FilterFromGZP[LpToBp[ButterworthLp[3,3],1000,2000]],
4000,{PlotRange->{-50,0}}];
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The following example is the normalized third order Butterworth above transformed into a 
bandreject filter with corner frequencies of 1000 and 2000 Hz.

LpToBr[ButterworthLp[3,3],1000,2000]//N

{1. + 0. I, {8885.77 I, -8885.77 I, 8885.77 I, 
 
   -8885.77 I, 8885.77 I, -8885.77 I}, 
 
  {-2034.83 - 11889.2 I, -1104.27 + 6452.08 I, 
 
   -3139.11 - 8312.81 I, -3139.11 + 8312.81 I, 
 
   -2034.83 + 11889.2 I, -1104.27 - 6452.08 I}}

dB[Abs[First[LpToBr[ButterworthLp[3,3],1000,2000]]]]//N

0.
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ContinuousFreqResponse[
FilterFromGZP[LpToBr[ButterworthLp[3,3],1000,2000]],
4000,{PlotRange->{-50,0}}];
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 2. - Discrete Time Filter Design
This section of the notebook describes how to calculate first and second order digital filters. 
Discrete time filters are defined by their response in the z-domain. This section first presents some 
simple routines for describing polynomials in the z-domain and describes how to design first and 
second order filters. The frequency response and impulse response of these filters are then 
shown.

 2.1 - Polynomial Evaluation Utilities

This section of the report defines some Mathematica functions to make it easier to work with filter 
functions in the Z-domain. These functions allow us to define a new polynomial given a list of its 
coefficients (MakePoly), evaluate a polynomial (FilterEval ), and find the zeros and roots of 
ratios of polynomials (RationalZeros and RationalPoles). 

In this notebook polynomials in z will be represented as lists of polynomial coefficients. The 
coefficients of a polynomial are listed from the initial constant to the coefficient multiplying the 
highest power. All coefficients past the end of the list are defined to be zero. The PolyCoeff 
function is used to pick out the n’th coefficient of a polynomial. 

PolyCoeff[coeffs_, n_] :=
If [ n < Length[coeffs],

coeffs[[n+1]],
0]

Given a list of coefficients, MakePoly returns a Mathematica expression that represents the 
polynomial. The use of z for the polynomial variable is arbitrary and was chosen to make the 
polynomials look good when printed. 

MakePoly[coeffs_List] := 
Block[{i},

PolyCoeff[coeffs,0] + 
Sum[PolyCoeff[coeffs,i] z^i,

{ i, 1, Length[coeffs]}]]

FilterEval  will return the value of a polynomial at a given point by substituting the desired value 
into the polynomial. Note, this function will work on all z-transforms.

FilterEval[poly_, x_] := (poly)/. z->x

For example the following is a third order polynomial and the result of evaluating it at z=1.

zPoly = MakePoly[{1,4,2,1}]

             2    3
1 + 4 z + 2 z  + z

FilterEval[zPoly,1]

8
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Likewise we can define a rational function by writing the ratio of two MakePoly’s and then 
evaluate it using FilterEval .

ratPoly = MakePoly[{1,-1,-1,1}] / MakePoly[{3,2,1}]

         2    3
1 - z - z  + z
----------------------------- 
            2
 3 + 2 z + z

FilterEval[ratPoly,2]

3
--- 
11

Finally we define two functions, RationalPoles and RationalZeros, that return a list of the 
poles and zeros of a rational function. The function GetSolution is used to pick apart the 
stylized expression that Mathematica uses to show the roots of an equation.

GetSolution[x_] :=
If [ x == {},

{},
x[[1]][[2]]]

RationalPoles[rat_] :=
Block[{roots},

roots = Solve[FilterEval[Denominator[rat],x] == 0,x];
Map[GetSolution, roots]]

RationalZeros[rat_] :=
Block[{roots},

roots = Solve[FilterEval[Numerator[rat],x] == 0,x];
Map[GetSolution, roots]]

Using the previously defined rational polynomial (rat), we can find the poles and zeros of this 
filter:

RationalPoles[ratPoly]

         3/2          3/2
 -2 + I 2     -2 - I 2
{-----------, -----------} ----------   ----------  
      2            2

RationalZeros[ratPoly]

{1, 1, -1}

 2.2 - Digital Filter Design Equations

This section describes some general first and second order filter design functions.

Using the impulse-invariant technique, a one pole (first-order lowpass) filter is defined by the 
following transfer function (in the z domain):
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1 / MakePoly[{-epsilon,1}]

     1
----------------------- 
-epsilon + z

This filter has a time constant of tau if epsilon is given by

EpsilonFromTauFS[tau_, fs_] := E^(-1 / tau / fs)

Note that epsilon is a function of not only the time constant (tau) but also the sampling frequency 
(fs) of the digital filter. A first-order filter with time constant tau is given by (high pass in this 
case):

FirstOrderFromTau[tau_, fs_] :=
MakePoly[{-EpsilonFromTauFS[tau, fs],1}]

A first order filter with a time constant (tau) of 1 ms is given by

FirstOrderFromTau[0.001, 16000]

-0.939413 + z

Likewise, a first-order filter with a corner frequency of f is described by :

FirstOrderFromCorner[f_, fs_] :=
MakePoly[{1,-E^(-2 Pi f / fs)}]

A second order filter is defined by its center frequency (f), quality factor (q) and sampling 
frequency (fs):

SecondOrderFromCenterQ[f_, q_, fs_] :=
Block[{cft, rho, theta},

cft := f/fs;
rho := E^(-Pi cft / q);
theta := 2 Pi cft Sqrt[1 - 1/(4 q ^ 2)];
MakePoly[{rho^2, -2 rho Cos[theta], 1}]]

The function FilterGain  evaluates the filter transfer function (z transform) at the frequency f by 
making the substitution
                    z -> E ^ ( I 2 Pi f / fs )
where fs is the sampling interval.

FilterGain[filter_,f_,fs_] :=
FilterEval[filter,E^(I 2 Pi f / fs)]

Likewise the functions FilterMag , FilterPhase and FilterDb  compute the magnitude, phase 
and gain in dB of a digital filter.

FilterMag[filter_,f_,fs_] := 
Abs[FilterGain[filter,f,fs]]

FilterPhase[filter_,f_,fs_] := 
Arg[FilterGain[filter,f,fs]]

FilterDb[filter_,f_,fs_] :=
Db[FilterMag[filter,f,fs]]
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The function AdjustGain  adjusts the gain of a filter so that it has unit gain at any desired 
frequency.

AdjustGain[filter_,f_,fs_] :=
filter/FilterGain[filter,f,fs]

We define the MakeFilter  function to design a filter with a given feedback (poles) and 
feedforward (zeros) response. The resulting filter is just the ratio of the two polynomials. In 
addition a frequency and gain are specified so that the resulting filter can be normalized to have 
any desired gain at a specified frequency. 

MakeFilter[forward_, feedback_, fs_, f_, gain_] :=
gain AdjustGain[forward/feedback,f,fs]

The frequency response of a filter is plotted in Mathematica using the following function.

FreqResponse[coeffs_, fs_, opts_:{}] :=
Block[{func,f},
func = N[dB[Abs[FilterGain[coeffs,f,fs]]]];
Plot[func,

{f,1,fs/2-fs/1000},
AxesLabel->{"  Hz","dB"},
PlotLabel->"Response",
opts]]

Likewise we define a similar function to plot the phase of the filter.

PhaseResponse[coeffs_, fs_] :=
Block[{theFunction,f},
theFunction = N[180/Pi FilterPhase[coeffs,f,fs]];
Plot[theFunction,

{f,1,fs/2-fs/1000},
AxesLabel->{"  f","Phase (Degrees)"}]]

For example we define a first order low pass filter with a 3 dB point at 1000 Hz (the frequency 
response would look better with a logarithmic frequency scale):

firstFilt = MakeFilter[1,FirstOrderFromCorner[1000,16000],
16000,0,1]//N

   0.324768
----------------------------- 
1. - 0.675232 z
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FreqResponse[firstFilt,16000];
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The gain at the corner frequency is given by the following Mathematica expression:

20 Log[ 10, Abs[N[FilterGain[firstFilt,1000,16000]]]]

-2.95485

A second order bandpass filter with center frequency 3000 and a q of 10 is given by 

secondFilt = MakeFilter[1,
SecondOrderFromCenterQ[3000,10,16000],
16000,3000,1]//N

 -0.0953624 + 0.0380781 I
--------------------------------------------------- 
                         2
0.888865 - 0.724151 z + z

FreqResponse[secondFilt,16000];
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A less peaky response is possible using a lower q.
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secondFilt = MakeFilter[1,
SecondOrderFromCenterQ[3000,2,16000],
16000,3000,1]//N

  -0.389971 + 0.133203 I
--------------------------------------------------- 
                         2
0.554855 - 0.621189 z + z

FreqResponse[secondFilt,16000];
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The poles and zeros in the complex z-plane of a stable discrete time filter are inside the unit circle. 
In general the resonant frequency of the root is proportional to the angle of the root from the 
positive real axis. Roots that are close to the unit circle will have a high q. The plot below shows 
the roots of a second order section with resonant frequency of 1000 Hz and a sampling frequency 
of 16000 Hz as the q varies from 0.5 to 2.2.

FilterDesign 39



ListPlot[Map[{Re[#],Im[#]}&,
Flatten[Table[

RationalZeros[
N[SecondOrderFromCenterQ[1000,q,16000]]],

{q,.501,2.2,.1}]]],
PlotRange->{{-1,1},{-1,1}},
AspectRatio->1,
PlotLabel->"Location of Roots vs. Q (Complex Z-Plane)"];
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The following plot shows the frequency response of a number of second order discrete bandpass 
filters with a center frequency of 1000 Hz and a sampling frequency of 16000. The flattest curve 
is the frequency response of a second order bandpass filter with a q of 0.7 while the sharpest 
(narrowest) curve is the frequency response when the q is 10.
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 2.3 - Time Domain Implementation

The following signal flow graph shows how the filter

     A1   A2
A0 + -- + --     -    - 
     z     2       2
          z    A0 z  + A1 z + A2
------------ = ----------------------------    ---------------- 
    B1   B2      2
1 + -- + --     z  + B1 z0 + B2    -    -                     
    z     2
         z

can be computed. Each stage of the ear cascade model discussed in this report is implemented this 
way.
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The following function is used to evaluate the inverse z-transform of a ratio of two polynomials in 
z.

FindImpulseResponse[filter_,maxn_] :=
Block[{num, denom, numorder, denomorder, response,

theorder, inverseFilt, new},
new = Expand[Numerator[filter]] /

Expand[Denominator[filter]];
theorder = Abs[Exponent[Numerator[new],z]-

Exponent[Denominator[new],z]];
inverseFilt = Expand[new/.z->1/z];
num = Expand[Numerator[inverseFilt]];
denom = Expand[Denominator[inverseFilt]];
inverseFilt = Simplify[Expand[z^theorder num]/

Expand[z^theorder denom]];
num = Expand[Numerator[inverseFilt]];
denom = Expand[Denominator[inverseFilt]];
numorder = Exponent[num,z];
denomorder = Exponent[denom,z];
response = Table[0,{maxn}];
Do [ response[[i+1]] = 

(Coefficient[num,z,i] - 
 Sum[Coefficient[denom,z,j] *

response[[i-j+1]],
{j,1,Min[i,denomorder]}])/

 Coefficient[denom,z,0],
{i, 0, maxn-1}];

Return[response]]
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This is the impulse response for a simple low pass filter.

FindImpulseResponse[z/(z-.9),10]

{1, 0.9, 0.81, 0.729, 0.6561, 0.59049, 0.531441, 
 
  0.478297, 0.430467, 0.38742}

 2.4 - Digital Test Code

The following examples are used to verify the digital filter code.

Clear[a,b]
Simplify[FindImpulseResponse[1/(1-a z)/(1-b z),5]]

                          2  2     2          2    3  3
{0, 0, 1/(a b), (a + b)/(a  b ), (a  + a b + b )/(a  b )}

The next example is the impulse response for a perfect oscillator with a pair of poles on the unit 
circle.

ListPlot[FindImpulseResponse[1/(1-1.99z+z*z),100],
PlotJoined->True];

20 40 60 80 100
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A second order filter with finite q will have an impulse response that is a decaying sinusoid. The 
following example shows the impulse response to a second order filter with a center frequency of 
1000 Hz, sampling frequency of 8000 Hz and a q of 10.

aFilter = SecondOrderFromCenterQ[1000,10,8000] //N

                        2
0.924465 - 1.36109 z + z

RationalPoles[1/aFilter]

{0.680544 - 0.679209 I, 0.680544 + 0.679209 I}
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ListPlot[FindImpulseResponse[1/aFilter,50],
PlotJoined->True];
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 2.5 - Analog to Digital Filter Conversion

Filters can be transformed from the analog domain into the digitial domains using a number of 
methods. The simplest is known as the standard-z transform or the impulse invariant technique. A 
more accurate approach, the bilinear transform, is discussed in the second half of this section

The basic procedure of the impulse-invariant technique is to reduce the filter into a number of first 
order sections using the partial fractions expansion. Each first order section (in the s-domain) can 
then be transformed into its digital equivalent by mapping the first order pole in the s-plane into a 
single pole in the z-plane. Complex poles lead to complex filter coefficients but real valued filter 
coefficients are possible by combining complex conjugate pairs.

The function GroupRoots is used to group complex conjugate roots into common lists. This 
routine works by keeping a list of active roots (roots). Each iteration through the loop it takes the 
first root off of the list (current) and then sorts the remaining roots by how close they are to the 
conjugate of the current root. If the difference in magnitude between the complex conjugate of the 
current root and the first item in the sorted list is less than 0.0001% of the magnitude of the root 
then we have a complex conjugate pair. This routine returns a list of isolated roots and complex 
conjugate pairs. (Each item in the returned list is a list of either one or two element lists.)
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GroupRoots[listofroots_] :=
Block[{groups, current, roots},

groups = {};
roots = listofroots;
While[Length[roots]>0,

current = Conjugate[First[roots]];
roots = Sort[Rest[roots],

Abs[#1-current]<=Abs[#2-current]&];
If [Length[roots]>0 && 

Abs[First[roots]-current]<Abs[current/10^6],
Block[{},

AppendTo[groups,
{Conjugate[current],

First[roots]}];
roots = Rest[roots]],

AppendTo[groups,List[Conjugate[current]]]];
];
Return[groups];

]

GroupRoots[Last[LpToBr[ChebychevLp[7,3],1000,2000]]]

{{-122.44 + 12636.4 I, -122.44 - 12636.4 I}, 
 
  {-555.427 - 13663.2 I, -555.427 + 13663.2 I}, 
 
  {-2819.07 + 17784.2 I, -2819.07 - 17784.2 I}, 
 
  {-60.5376 - 6247.79 I, -60.5376 + 6247.79 I}, 
 
  {-234.529 + 5769.27 I, -234.529 - 5769.27 I}, 
 
  {-686.512 - 4330.89 I, -686.512 + 4330.89 I}, 
 
  {-1643.86}, {-48031.3}}

The partial fractions expansion is done by calculating the residue due to each pole in the filter’s 
s-domain transfer function. Several functions are defined here to make that easier. DeletePole 
deletes a single pole from a list of poles by removing the pole closest to the given pole. 
EvaluateGZP finds the value of a filter (expressed in terms of its gain, zeros and poles) at a 
given point. Finally, FindResidue combines all of these function to compute the residue due to 
a pole of the transfer function.

DeletePole[pole_, poles_] :=
Rest[Sort[poles, Abs[#1-pole]<=Abs[#2-pole]&]]

DeletePole[-1,{3,-1}]

{3}

EvaluateGZP[gain_, zeros_, poles_, w_] :=
gain * Apply[Times,Map[(w-#)&,zeros]]/

Apply[Times,Map[(w-#)&,poles]]

FilterFromGZP[{2,{2},{3,-1}}]

   2. (-2. + s)
----------------------------------- 
(-3. + s) (1. + s)
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EvaluateGZP[2,{2},{3,-1},4]

4/5

FilterFromGZP[{2,{2},{3,-1}}]/.s->4//N

0.8

FindResidue[pole_, gain_, zeros_, poles_] :=
EvaluateGZP[gain, zeros, DeletePole[pole,poles], pole]

FindResidue[-1,2,{2},{3,-1}]

3/2

The function PartialFractions transforms a filter function (in gain, zeros, poles form) into a 
sum of first order rational polynomials. This is test code for the standard-z transform code that 
follows.

PartialExpand[polelist_, gain_, zeros_, poles_] :=
If [Length[polelist] == 1,

FindResidue[First[polelist],gain,zeros,poles]/
(s-First[polelist]),

FindResidue[First[polelist],gain,zeros,poles]/
(s-First[polelist]) + 

 FindResidue[Last[polelist],gain,zeros,poles]/
(s-Last[polelist])]

PartialExpand[{-1},2,{2},{3,-1}]

    3
----------------- 
2 (1 + s)

PartialFractions[{gain_,zeros_,poles_}] :=
Apply[Plus,Map[PartialExpand[#,gain,zeros,poles]&,

GroupRoots[poles]]]

PartialFractions[{2,{2},{3,-1}}]

    1            3
---------- + ------------------    -------- 
2 (-3 + s)   2 (1 + s)

A seventh order Chebychev polynomial is a more difficult function to transform into partial 
fractions form. We plot the resulting transfer function to insure that it is equivalent to the original 
gain, zero, pole form.
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PartialFractions[ChebychevLp[7,3]]//N

  0.0186432 - 0.021997 I      0.0272631 + 0.00938959 I
-------------------------- + -------------------------- + -------------------------    -------------------------    
0.0281456 + 0.982696 I + s   0.0281456 - 0.982696 I + s
 
   -0.0634134 + 0.0515983 I
  -------------------------- +   -------------------------    
  0.0788623 + 0.788061 I + s
 
   -0.0808722 - 0.0119726 I
  -------------------------- +   -------------------------    
  0.0788623 - 0.788061 I + s
 
   0.120281 - 0.00874408 I     0.107875 - 0.0539153 I
  ------------------------- + ------------------------- +   ------------------------    ------------------------    
  0.113959 - 0.437341 I + s   0.113959 + 0.437341 I + s
 
  -0.129777 + 0.0356411 I
  -----------------------  ---------------------- 
       0.126485 + s

ContinuousFreqResponseRadians[
PartialFractions[ChebychevLp[7,3]]//N,2];
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Using the impulse-invariant technique, a simple pole in the s-domain is transformed into the 
z-domain using the substitution

  r        T r
----- -> ------------     ------- 
s - p         T p
             E
         1 - ----             --- 
              z

The r term represents the residue corresponding to the pole at p in the original s-domain filter and 
T is the sampling interval in the new digital filter. The resulting digital filter has the same impulse 
response (within the limits due to aliasing) as the original continuous filter. Note that when a pair 
of complex conjugate poles are transformed the two complex first order filters can be combined 
into a single second order filter with real coefficients.
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StandardZExpand[polelist_, gain_, zeros_, poles_,T_] :=
If [Length[polelist] == 1,

T FindResidue[First[polelist],gain,zeros,poles]/
(1-E^(T First[polelist]) z^-1),

Block[{r1,r2,p1,p2},
p1 = First[polelist];
p2 = Last[polelist];
r1 = T FindResidue[p1,gain,zeros,poles];
r2 = T FindResidue[p2,gain,zeros,poles];
zp1 = E^(T p1);
zp2 = E^(T p2);
(r1 + r2 - (r1 zp2 + r2 zp1)/z)/

(1 - (zp1+zp2)/z + zp1 zp2 / z^2)]]

StandardZTransform[{gain_,zeros_,poles_},T_] :=
Chop[Apply[Plus,Map[StandardZExpand[#,gain,zeros,poles,T]&,

GroupRoots[poles]]]]

StandardZTransform[LpToBp[ButterworthLp[3,3],1000,2000],
1/8000.]//N

             0.442098                   0.125444
   0.78602 - --------       -0.308588 + --------             -------                    ------- 
                z                          z
------------------------ + ---------------------- + -----------------------    ---------------------    
     0.455655   0.684739        0.75856   1.20597
1. + -------- - --------   1. + ------- - -------     -------    -------         ------    ------ 
         2         z               2         z
        z                         z
 
                0.307017
    -0.477432 + --------                ------- 
                   z
  ------------------------  ----------------------- 
       0.600684   0.130048
  1. + -------- - --------       -------    ------- 
           2         z
          z

FreqResponse[
StandardZTransform[LpToBp[ButterworthLp[3,3],

1000,2000],
1/8000.]//N,

8000];
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PhaseResponse[
StandardZTransform[LpToBp[ButterworthLp[3,3],

1000,2000],
1/8000.]//N,

8000];
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The bilinear z-transform is an alternative to the impulse invariant, or standard-z, transform. The 
impulse-invariant technique endeavors to match the impulse response of the original analog filter. 
But there is no guarantee that the impulse response is bandlimited.  In fact, there is usually 
significant energy above the Nyquist frequency which aliases and corrupts the frequency 
response.  Thus the impulse response will be “correct” but the frequency response is wrong.

 The bilinear transform applies a conformal mapping to the original Laplace transform. This 

conformal mapping compresses the entire jω axis into the region between DC and Fs, thus it is 

necessary to adjust the design parameters of the original continuous filter design so that the 
transformed poles  will be at the proper location. The filter design process is more complicated 
but the frequeny domain results are more accurate.

The bilinear z-transform changes a continuous domain filter into the z-domain by using the 
transformation

            -1
     2 1 - z
s -> - -------       ------ 
     T      -1
       1 + z

The following function warps frequencies in the continuous domain into the bilinear-z domain. 
Note that the bilinear transform maps frequencies in the sampled filter between 0 and the Nyquist 
rate into the entire frequency range from 0 to infinity. When designing filters that are to be 
transformed using the bilinear transform, it is necessary to first warp the corner frequencies using 
this transformation and then design the continuous filter. The BinlinearPreWarp  is a function 
of the desired frequency in the digital domain and the sampling interval of the digitial filter.

BilinearPreWarp[f_,fs_] :=
fs / Pi Tan [ Pi f/fs ]
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Plot[BilinearPreWarp[f,8000],{f,0,3000}];
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ButterworthLp[3,3]

{1.00238 + 0. I, {}, {-0.500396 + 0.866711 I, -1.00079, 
 
   -0.500396 - 0.866711 I}}

The following 3rd order filter will be used as an example for the rest of the bilinear-z transform 
functions. A third order polynomial is first transformed into a bandpass filter, but the passband 
frequencies have been prewarped.

ASampleGZP = LpToBp[ButterworthLp[3,3],
BilinearPreWarp[1000,8000],
BilinearPreWarp[2000,8000]]//N

           11
{8.25295 10   + 0. I, {0, 0, 0}, 
 
  {-1467.47 - 6792.22 I, -3222.53 + 14915.5 I, 
 
   -4690. + 9167.47 I, -4690. - 9167.47 I, 
 
   -1467.47 + 6792.22 I, -3222.53 - 14915.5 I}}

Note, the passband is not between 1000 and 2000Hz in the resulting filter.

ContinuousFreqResponse[FilterFromGZP[ASampleGZP],8000];
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BilinearExpand is a helper function for the BilinearZTransform function which does the real 
work.

BilinearExpand[root_,T_] :=
(2/T + root)/(2/T - root)

BilinearZTransform[{gain_,zeros_,poles_},T_] :=
Block[{RootDiff,ExtraZeros,ExtraPoles},

RootDiff = Length[zeros] - Length[poles];
If [RootDiff > 0,

ExtraPoles = Table[-1,{RootDiff}];
ExtraZeros = {},

ExtraZeros = Table[-1,{-RootDiff}];
ExtraPoles = {}];

{gain * Apply[Times,Map[(2/T-#)&,zeros]] /
Apply[Times,Map[(2/T-#)&,poles]],

 Join[Map[BilinearExpand[#,T]&,zeros],ExtraZeros],
 Join[Map[BilinearExpand[#,T]&,poles],ExtraPoles]}]

We can now apply the bilinear-z transform to the filter derived above.

aBilinearGZP = BilinearZTransform[ASampleGZP,1/8000]//N

                      -21
{0.0317453 + 1.2504 10    I, {1., 1., 1., -1., -1., -1.}, 
 
  {0.591357 - 0.618799 I, 0.0390923 + 0.806274 I, 
 
   0.292825 + 0.572834 I, 0.292825 - 0.572834 I, 
 
   0.591357 + 0.618799 I, 0.0390923 - 0.806274 I}}

Finally, the SOSFromBilinearGZP function is used to transform the GZP result of the 
bilinear-z transform into second-order sections. This is done by grabbing pairs of poles or zeros, 
preferably in complex-conjugate pairs, and creating a second-order biquadractic section from 
them. The DropPair  and GrabPair  functions are used to pick out pairs of roots from a list.

GrabPair[rootlist_] :=
If [ Length[First[rootlist]] == 2,

First[rootlist],
Join[First[rootlist],

If[Length[rootlist] > 1,
First[Rest[rootlist]],
{0}]]]

DropPair[rootlist_] :=
If [ Length[First[rootlist]] == 2,

Rest[rootlist],
Rest[Rest[rootlist]]]

FilterDesign 51



SosFromBilinearGZP[{gain_,zeros_,poles_}] :=
Block[{pg,zg,pp,zp,filt},

filt = gain;
pg = Sort[GroupRoots[poles],Length[#1]>Length[#2]&];
zg = Sort[GroupRoots[zeros],Length[#1]>Length[#2]&];
While[Length[pg] > 0,

pp = GrabPair[pg];
pg = DropPair[pg];
zp = GrabPair[zg];
zg = DropPair[zg];
filt = filt (z^-2 - Re[First[zp]+Last[zp]]z^-1 + 

Re[First[zp]Last[zp]])/
(z^-2 - Re[First[pp]+Last[pp]]z^-1 + 

Re[First[pp]Last[pp]]);
];

Chop[filt]
]

The following shows the resulting biquadratic realization of the original 1000-2000Hz continuous 
bandpass filter.  We can plot the frequency response to verify that the result is correct. Note, now 
the filter has the proper passband.

theSOSFilter = SosFromBilinearGZP[aBilinearGZP]

                   -2         -2
(0.0317453 (-1. + z  ) (1. + z   - 2./z) 
 
           -2
    (1. + z   + 2./z))/
 
                -2
  ((0.732615 + z   - 1.18271/z) 
 
                 -2
    (0.413886 + z   - 0.585651/z) 
 
                 -2
    (0.651606 + z   - 0.0781846/z))

FreqResponse[theSOSFilter,8000];
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PhaseResponse[theSOSFilter,8000];
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 2.6 - Digital Usage

FindImpulseResponse::usage = "FindImpulseResponse[filter,
maxn] returns an array of the first maxn samples of the 
impulse response of the input filter.";

PolyCoeff::usage = "PolyCoeff[coeffs, n] returns the n'th
entry of a coefficient list.  Zero is returned for all 
indices past the end of the list.";

MakePoly::usage = "MakePoly[coeflist] converts a list of
coefficients into a polynomial in z.";

FilterEval::uage = "FilterEval[filter,x] evaluates the 
given filter at the argument x.";

RationalPoles::usage = "RationalPoles[rationalfunc] returns
the poles of a ratio of polynomials in z.";

RationalZeros::usage = "RationalZeros[rationalfunc] returns
the zeros of a ratio of polynomials in z.";

EpsilonFromTauFS::usage = "EpsilonFromTauFS[tau, fs] 
returns the epsilon in the equation 1/(1-epsilon z) that
will give a time constant of tau with a sampling frequency
of fs.";

FirstOrderFromTau::usage = "FirstOrderFromTau[tau,fs]
returns a first order polynomial in z that represents a
digital filter with time constant tau and sampling 
frequency fs.";

FirstOrderFromCorner::usage = "FirstOrderFromCorner[f,fs]
returns a first order polynomial in z that represents a 
digital first with corner frequency f and sampling 
frequency fs.";
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SecondOrderFromCenterQ::usage = "SecondOrderFromCenterQ[f,
q,fs] returns a second order digital filter (represented
in the z-domain) with a center frequency of f, a quality
factor of q and a sampling frequency of fs.";

MakeFilter::usage = "MakeFilter[forward,feedback,fs,f,gain]
creates a filter by dividing a feedforward (zeros) 
polynomial by the feedback (poles) polynomial.  The gain
of the resulting filter is adjusted so that it has the
desired gain at the frequency f.  The sampling interval is
fs.";

FilterGain::usage = "FilterGain[filter,f,fs] evaluates the
filter's gain (sampling interval of fs) at the frequency
f.";

FilterMag::usage = "FilterMag[filter,f,fs] evaluates the
magnitude of the filter's response (sampling interval of fs)
at the frequency f.";

FilterPhase::usage = "FilterPhase[filter,f,fs] evaluates the
filter's phase (sampling interval of fs) at the frequency
f.";

FilterDb::usage = "FilterDb[filter,f,fs] evaluates the
filter's gain in decibels (sampling interval of fs) at the 
frequency f.";

FreqResponse::usage = "FreqResponse[filter,fs] plots the
frequency response of a digital filter.  The filter is 
represented in the z domain (function of z) and fs is the
sampling interval.";

PhaseResponse::usage = "PhaseResponse[filter,fs] plots the 
phase response of a digital filter.  The filter is  
represented in the z domain (function of z) and fs is the
sampling interval.";

StandardZTransform::usage = "StandardZTransform[GZP, T] 
transforms an analog filter in Gain-Zero-Poles (GZP) form
into a digital filter (with sample rate T) using the Standard 
Z transform (impulse invariant).  This function transforms 
each pair of complex conjugate poles into the equivalent 
digital filter.  Note, this function fails if there are 
multiple poles at one location.";

BilinearPreWarp::usage = "BilinearPreWarp[f, fs] prewarps a
a frequency (f) so that after the Bilinear Z-transform the
poles or zeros will be at the right spot.";

BilinearExpand::usage = "BilinearExpand[GZP, T] transforms
an analog filter described by the Gain-Zero-Poles (GZP)
structure into a digital filter with a sampling rate of T.
Note, this function fails if there are  multiple poles at 
one location.";
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SOSFromBilinearGZP::usage = "SOSFromBilinearGZP[GZP] rearranges
the poles and zeros of a digital filter so that complex 
conjugate roots are combined.  The resulting filter will have
real coefficients and can be easily implemented.";
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