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During the last few years, microcomputers have become powerful and inexpensive 
enough so that every technical person has access to significant computer power on 
his or her desk.’ These machines have changed the way many facets of business and 
research are conducted because users can easily interact with the computer. 

Spreadsheets are a common example of how a relatively simple computer 
program has enhanced personal productivity by allowing users to harness the avail- 
able computer power. Spreadsheet programs allow the user to develop a model and 
ask many “what-if” questions, thus gaining a better understanding of the system 
being modeled. High-level languages and spreadsheets do not make the most effi- 
cient use of the machine’s computational power, but their speed and ease of use make 
them valuable to users. 

A similar revolution is now possible in the world of signal processing. Recently 
it has become possible to combine a powerful mathematical program with a word 
processor and thus create interactive scientific documents. An interactive document 
includes text and a computer model so that it.is easier for readers to understand the 

‘This chapter is an expanded version of [l]. 
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material. These documents can be read like a normal technical paper, but since the 
document includes computer models, the reader can ask it questions. In this way, 
the material is learned much more quickly. I believe that interactive documents will 
eventually change publishing as much as did Gutenberg’s invention of movable type. 
This chapter will describe the important features of an interactive document and why 
it helps make research and learning more efficient. 

An important characteristic of an interactive signal processing document is the 
ability of the reader to simulate, change, and inquire about properties of the system 
being described. This chapter describes how a symbolic manipulation program can 
be used to model a DSP system and present it to a reader in a highly interactive form. 
Many programs have been written to aid portions of a DSP problem, but symbolic 
math programs allow a system to be modeled at any number of levels. Symbolic 
manipulation programs use their mathematical knowledge to automate common 
mathematical operations such as manipulating polynomials, calculating integrals, 
and finding limits. The resulting interactive signal processing document, or note- 
book, can be a very efficient method to teach DSP concepts. 

The ideas expressed in this chapter evolved as I wrote an electronic notebook 
describing a cochlear model developed by R. F. lLyon [2]. This technical report began 
as a modest notebook for my own use as I wrote a conventional paper. As the work 
evolved, I realized that the examples in the notebook would also be useful to the 
reader. The original notebook was not comprehensible to other readers, but by 
combining the original paper with electronic models and interactive examples, a new 
type of document was created. 

This electronic notebook was created using Mathematics. As suggested in 
Chapter 3, Mathematics notebooks exemplify many of the desirable characteristics 
of a system for research in signal processing. The resulting document is a powerful 
tool for research and development and an effective tool for teaching. Not only is 
Mathematics an example of a tool for symbolic mathematics, but it includes elements 
of hypermedia, interactive modeling, and literate programming. The ability to 
perform symbolic manipulations is important for reasoning about the models, and 
its other characteristics make it easier for readers to learn the material. How 
Mathematics uses these ideas is discussed in Chapter 3 and section 5.2. 

This chapter is not a review of a software product. That function has been ably 
covered in many articles [3-51. Instead, Mathematics notebooks are used to illustrate 
many useful features and as a framework to describe additional functionality. Some 
of the needs of an interactive signal processing document are met by Mathematics 
and related software, while others are not. 

Figure 5.1 shows a portion of the type of interactive document this chapter 
describes. In this case, an animation of wave motion in the cochlea is included as 
part of the document. The reader can see the animation by clicking on the button 
with a mouse. Most important, the animation is not just a pretty picture, or even 
just a pretty animation. The computational model is defined elsewhere in the 
document, but it is available to the user to change. The reader can modify the 
parameters of the model and see how the animation changes. If the reader has a 
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This animation shows a gray scale representation of the pressure in the cochlea due to a single 
tone at 1 OOOHz. Darker and lighter regions correspond to pressures above and below the 
average. The basilar membrane is shown along the horizontal center line. 
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The change in propagation speed means that the long-wave, or one-dimensional, 
approximation is only valid in the early part of the wave’s travel. Near the response peak the 
wavelength is short enough that energy can flow both down the cochlea and perpendicular to 
the membrane, so a two-dimensional model is needed. 

Figure 5.1 An electronic notebook combines many features to make it easier for 
the reader. This example combines text, a mathematical model, graphics. and sound 
with a user inrerfacc that helps guide the reader. One frame of a real Muthemufica 
animation computed by R. F. Lyon showing fluid pressure in the cochlea (inner ear) 
is shown here. The reader can press the button with the mouse and see an animated 
representation of the fluid flow. The user can modify the frequency of the tone or 
the parameters of the model and see how the animations change. 

favorite model of the middle ear, it can be added to the model. It is important to 
realize that, except for the buttons, this example is possible with commercially 
available software. Examples of similar notebooks will be presented throughout this 
chapter, and I hope it will encourage other researchers to build the necessary 
software and prepare additional electronic notebooks. 

Today, many signal processing problems are easily described using such an 
interactive scientific notebook. Recent work described in other chapters of this book 
demonstrates the ability to automatically reason at a high level about a signal 
processing problem. In addition, personal computers are now powerful enough to 
implement the digital signal processing algorithms with real data. The problem that 
remains is, how can authors describing signal processing results take advantage of 
these technologies to better interact with their readers? This question is the primary 
focus of this chapter. 

There are two concerns in the design of an interactive signal processing docu- 
ment: the content and the form. Certainly the most important part of such a 
document is the intellectual content. This chapter describes the techniques an author 
can use to write an interactive document. The second concern, the form of an 
interactive document. is set by the available tools. This chapter describes the ideal 
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tool and how the tools available today can be used to describe real signal processing 
problems. 

First, the form of an interactive signal processing document is discussed. 
Section 5.2 describes some of the important properties of an electronic document 
and some of the characteristics of an ideal tool for researching and teaching signal 
processing. It is important that the system have powerful tools for modeling and also 
that this power is easily available to casual readers. Section 5.3 describes the state 
of DSP tools today. It describes conventional tools for DSP research and develop- 
ment and explains the use of Mathematics to create signal processing notebooks, and 
is illustrated with two Mathematics notebooks. The first example shows features of 
Mathematics; the second notebook shows how Mathematics can be used for signal 
processing research. 

Given the tools that are currently available for writing an interactive signal 
processing document, how should the intellectual content be structured? Section 5.4 
presents some of the design issues that must be faced by an author of an electronic 
document. All writing is difficult, and making it interactive adds another dimension. 
Some problems become easier to explain, but the additional flexibility can be 
difficult to manage. Finally, section 5.5 talks about research issues that should be 
addressed in the future. 

5.2 PROPERTIES OF AN INTERACTIVE DOCUMENT 

Communicating results is an important part of research. While developing the 
solution to a problem, it is often useful to share the results with colleagues. Later, 
when the results are polished, the report will be copied and more widely distributed. 

An important characteristic of an interactive system for signal processing is that 
the work can be developed and documented in the same system. Results can be 
discovered and easily presented to colleagues. If changes are necessary, they can be 
made quickly without having to transfer the results between a symbolic math system 
and a word processor. Most important, the reader has the same tools available and 
can modify or extend the model as desired. 

Signal processing is an ideal subject for an interactive document. It is hard to 
imagine using a computer to teach a carpenter, for example, how to hammer a nail, 
but computers are a necessary part of most signal processing work. Signal processing 
researchers already use computers to calculate and simulate algorithms. An interac- 
tive signal processing document can provide test data and an evaluation function so 
students can design a filter and automatically verify that it meets the design goals. 

An interactive system is the most effective means to teach and disseminate 
signal processing results. Much is learned from passive documents, like books, but 
the learning process is more effective when the reader can ask questions. With 
interactive documents, readers effectively ask the document questions. 

During the last ten years much effort has been expended to create interactive 
learning environments. The results have been mixed. Perhaps the biggest impedi- 
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ment to their success has been their goal to create an all-encompassing environment. 
This goal has brought with it the need for specialized and expensive computer 
systems, which are only available to a small number of users. 

Interactive notebooks are an important intermediate step between paper and 
fully interactive environments. If written well a notebook can be printed on paper 
and read without any special technology. But if the reader does have the appropriate 
hardware and software, he or she will benefit from a much richer interaction. 

This section describes the ideal properties of an interactive signal processing 
document; the current state of the art will be described in section 5.3. A well- 
designed interactive document will have several features. It will be an example of 
hypermedia; the user will be able to explore the document, study the sections that 
are new, and dig deeper into those that are at first not understood. It will be easy 
to refer to other parts of the document where references are first explained. In 
addition, computer models will allow the reader to ask questions and more easily 
integrate the new material with what is already known. Finally, the algorithm must 
be explained in a way that is easy for both a reader and a computer to understand. 
This is known as Literate Programming, or the creation of a document that is both 
a well-written program and a well-written paper. 

The features of an interactive signal processing document as previously de- 
scribed will be discussed in the remainder of this section. But, these features are only 
part of a complete system. A researcher will also need drawing programs to create 
graphics to explain the work and spelling checkers to help get the descriptions right. 
These other components of a complete system are vital but are not discussed here. 

5.24 Symbolic Manipulation 

Perhaps the most important characteristic of an interactive signal processing docu- 
ment is the ability to reason symbolically about a system or a design. Certainly, many 
very important signal processing problems have been solved without symbolic ma- 
nipulation programs, but their use allows much of the drudgery involved in the 
mathematics to be automated. This makes it easier for the casual reader to verify 
the results and to explore new ideas. 

Many tools are good at numerical math. These tools might be used to calculate 
the eigenvalues of a matrix or to design a filter with a specified pass-band. The 
software might be supplied as a subroutine library that is used with a conventional 
language (such as IMSL [6]) or as a complete environment with a customized 
language and graphical output (such as MATLAB [7]). 

There are many problems, however, where numerical answers do not provide 
much insight into the solution. Numerically integrating an equation to discover that 
the maximum transmission rate of a channel is 29 kbits/sec is useful, but an answer 
in terms of the bandwidth of the system and the antenna gain provides more insight. 
Symbolic math software allows the user to perform algebraic manipulations, do 
symbolic calculus, and find the solutions to equations. In addition, symbolic math 
packages include numerical routines to deal with problems that cannot be done 
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symbolically. This makes symbolic math packages a superset of numerical software, 
but often this generality makes strictly numerical calculations slower.* 

Although symbolic math tools can be used to perform numerical calculations 
similar to those done by conventional programming tools, their real power is in 
manipulating the algebraic expressions that describe the system’s behavior. An 
introduction to Mathematics as it relates to our goals in this chapter, follows shortly. 

A symbolic system allows a filter to be studied in many different forms. For 
example, an expression that makes clear the poles and zeros of a filter can be 
expanded into the direct-form polynomial often used in a digital filter. This is how 
it can be done with Mathematics (Note: Mathematics uses In and Out to represent 
what the user typed and Mathematics’s response): 

In[L]:=Expand[(z-b/2-l/ZI)(z-2/2+2/21)(z+2/2)] 

Out[L]=q - $ + 23 

The filter’s characteristics can then be shown graphically in any number of forms. 
This chapter shows several examples: the magnitude of the frequency response, 
pole-zero plots, and rubber sheet diagrams of the filter’s z-domain response. 

A symbolic math package allows a user to reason about a system in ways that 
are not possible with conventional tools. One question that came up when preparing 
this chapter is: where did the algorithm for designing a second-order digital filter with 
a given center frequency and bandwidth come from? A reader, unsure about the 
source of an algorithm in a paper, might want to do a bit of exploration. There will 
be false starts, but eventually the user should be able to find the correct answer. Note 
that a symbolic manipulation program does not answer the question automatically, 
but it does provide some of the necessary mathematical knowledge and expertise to 
allow the question to be answered. 

Symbolic math programs do not normally contain domain-specific knowledge 
about fields such as DSP, but they can be easily extended. One such knowledge base 
for use with Mathematics is described in Chapter 3; their packages allow Mathemat- 
ica to perform Fourier, Laplace, and z-transforms [8]. It is easy to add other 
packages containing, for example, knowledge about acoustics or speech synthesis. 

Other types of common DSP operation that are difficult with symbolic math 
programs’ are the algorithm optimization built into ADE [9] and described in 
Chapter 2, and the morphological algorithm manipulation described by Richardson 
in Chapter 4. ADE allows a user to describe a signal processing algorithm in such 
a way that ADE can reason about the design, try alternate implementations of the 
algorithm, and show an equivalent design that is more efficient. Symbolic math 
programs will often rearrange an equation to put it in a standard form for display 

‘On the other hand; a symbolic package can evaluate a definite integral by first performing 
symbolic integration and then substituting the numerical limits. This might be faster than numerically 
evaluating the integrand and summing the results. 
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to the user, but the standard form is defined more by mathematical convention than 
by computational complexity. Thus, a calculation might produce the result 

ax + b + cx* 

which will be displayed to the user as 

cx* + ax + b 

yet a potentially more efficient computational form is 

(cx + a)x + b 

As far as I know, there is no symbolic math program that allows users to specify the 
relative costs of different representations, let alone suggest the changes that might 
be made to optimize the algorithm as is done in AIDE. 

52.2 Hypermedia 

At one time, information was passed from generation to generation via the story 
teller. This was inherently an interactive process, but it also limited the speed at 
which information could be conveyed. By the middle ages, publishing was well 
established. This increased the rate at which information could be disseminated, but 
it lost its interactive nature. 

Most papers and books are designed to be read in a linear fashion. (Dictionar- 
ies and encyclopedias are examples of works that are meant to be accessed ran- 
domly.) The order of presentation is determined by the author, and the reader is 
expected to make the best of it. Some browsing is possible, but the paper medium 
makes this inconvenient. The reader is a passive part of the learning process. 

Readers have questions to be answered. Often readers do not have the same 
goals as the original author and might want to skip around in the material. Sometimes 
they will look in the index for the subject in which they are interested and then work 
backwards until they understand enough to solve their problem. This sometimes 
involves just paging back through a few pages of material, but at other times the 
necessary preliminary information spans many chapters of the book, often with 
intervening material the reader does not need to understand to solve the problem 
at hand. 

Hypermedia is often described as a solution to this problem [lo]. Using a 
computer, the reader can browse through a document and then quickly move to 
other sections based on what is read. Thus, if a reader encounters a new concept, 
it might be accompanied by a button on the screen that will display more detailed 
information. In this way, the reader can fashion his or her own path through the 
material. 

Hypermedia has many forms, but they all represent enhancements of the paper 
world. There are four hypermedia features of an electronic notebook that will be 
considered here. The simplest is using multiple media: sound, animations, and other 
ways of presenting information that are hard to print on paper. Second, the notebook 
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can be easily changed by the reader, to emphasize the points that are more interest- 
ing, or to add additional notes. Third, the most traditional form of hypermedia is 
represented by links, or the ability to move quickly from one topic to another in the 
paper. Finally, an electronic notebook has many functional links based on the 
mathematical definitions and algorithms in the paper. Each of these ideas will be 
considered in turn. 

Multimedia 

Hypermedia can mean the use of more than one type of media in a document. 
There are many examples of papers that would be much more effective by adding 
audio and visual demonstrations. Why should a paper on sound perception not 
include audio examples so readers can make their own judgments about what is 
heard? A paper on speech coding should have audio examples so the results are 
meaningful to readers not familiar with intelligibility scores. A paper on acoustics 
is more readable with simple animations showing the propagation modes. A discus- 
sion of video compression algorithms should include a sequence of images so the 
reader can modify the algorithms and see how their changes affect performance. 

Modifiable 

An electronic notebook can be easily changed. Users can rearrange the report 
to make the presentation more natural for their background. In addition, users can 
add their own material. Since there does not have to be any difference in appearance 
between the original text and the “margin” notes, the document becomes personal- 
ized for the reader. 

Links 

The most conventional form of hypermedia allows the reader to browse 
through a document in any desired order. In its ideal form, the reader should be able 
to follow ideas anywhere they might go within a hypermedia document. But this 
leads to a multidimensional web of links that is difficult to organize on paper. 

Instead, an electronic notebook has a hierarchical organization which can then 
be flattened when rendered on paper. Text, equations, output, and graphs are 
grouped into sections, and the entire paper organized into a hierarchy. Most papers 
have a tree-like structure, but the electronic version of a paper’s most detailed 
sections can be hidden from the user so as to make the presentation easier to follow. 
These hidden sections can be easily opened by the user and can be used to hide details 
of the presentation, attempts that did not work, or test code that is not strictly 
necessary for the presentation. 

Most writing efforts include unpublished examples that were used to test and 
refine the material in the paper. This material is probably not interesting to most 
readers, but in some cases it is. Inquisitive readers might want to know where a 
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derivation came from or would like to double check a result. For instance, an 
interactive signal processing document that I wrote describing the classic algorithms 
for filter design includes many examples that were used to test the algorithms in the 
paper. Some of these examples are interesting to the casual reader and are shown 
in the main body of the paper. Other examples were used to explore more difficult 
cases or to compare my solution to published designs. These examples are hidden, 
yet still available to the interested reader. The purpose of writing is to communicate 
a result to the reader. Allowing the reader to peek behind the scenes, so to speak, 
is beneficial to the’ communication process. 

On top of this hierarchy, a separate set of links is represented by the functions 
and algorithms that are defined. This set of links might take the form of a help facility 
to make it easier for the user to understand the paper. Since the help facility includes 
information about any function defined in the paper, it is a very simple form of 
hypermedia. A user can select any function name in the paper, select help, and read 
a short description of the function. When more information is needed about a 
function, the system can take the reader to the point in the paper where the function 
is first defined. 

Smart links 

The links defined by the functions in an interactive notebook are not just 
navigational aids. Instead, these functions have mathematical meaning, and their 
links often include dependencies on other mathematical definitions. For example, 
my report describing a cochlea model includes a relatively simple model of the outer 
and middle ears. This model is used when showing the neural firings due to a 
particular sound. But if a reader has a better model, it can be substituted in the report 
and the new graphs can be computed. 

Thus; a scientific notebook extends the hypermedia concept because a function 
is not just a collection of symbols, but, more important, has a mathematical meaning. 
Using a function in a notebook not only implies a link back to the original definition, 
but its usage implies a specific mathematical operation. These “smart links” are an 
important part of an interactive signal processing notebook. 

52.3 Interactive Models 

An interactive signal processing document extends the hypermedia concept by 
casting each of the new results as an equation or computer model with which the user 
can interact. Since the system includes a computation engine, readers can change 
the model and see the effect. The results are shown graphically. By controlling the 
parameters of the model or system, the user can gain a better understanding of how 
it works. 

This book describes several tools for signal processing research and develop- 
ment. Just as an interactive system for signal processing is a useful research tool, such 
a system can also be valuable to a reader trying to understand the results. A good 
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instructor or piece of writing should guide the student to the same conclusions that 
were reached by the research. Hopefully, the learning process will be more efficient 
than the original research, but the same tool’s are useful in both cases. 

An interactive signal processing document contains equations and computer 
models that the reader can manipulate. In some cases, the reader will be content to 
change the parameters of a model and see how the results change. Other readers 
might want to study the model from a different angle. Perhaps due to a different 
background, the reader will want to analyze the system response in the time domain 
instead of a frequency domain approach more natural to the original author. With 
a symbolic math package, readers can apply the appropriate transformation and 
study the result in their preferred domain. 

Users should be able to interact with a signal processing document in two ways. 
First, a mathematical model can be modified to extend it into the reader’s own 
domain. For example, a reader of a paper on reconstruction theory might want to 
try the algorithm using data from his or her own research problems. This makes the 
solution described in the notebook more realistic to the reader. 

A second, more important, aid to learning is direct manipulation. In many 
systems, the behavior is controlled by a numerical parameter. A paper describing 
such a system will probably include an equation describing the system’s behavior as 
a function of this parameter. But the user would have a much better feel for the 
behavior of the system if there was a knob (or slider) that could be manipulated with 
a mouse and would immediately vary the system’s output. A simple example of this 
behavior in an interactive signal processing document is shown in Figure 5.2. 

A prototype of a system like this is distributed with version 1.0 of the NeXT 
workstation software. Unfortunately, many problems cannot be recomputed at rates 
fast enough to be interactive. Designing a simulation that can be solved with easily 
accessible hardware is a problem that is addressed in section 5.4. 

Most symbolic math packages are interactive. An electronic notebook is 
unique, though, because the writer can guide the reader by suggesting areas to 
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Figure 5.2 Animated Figures. Two samples are shown of a proposed scheme for allowing 
the reader to modify a figure in an interactive signal processing document. As the reader uses 
a mouse to change the position of the slider, the order of the band-pass filter is changed and 
a new response curve is calculated. 
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explore. The notebook should encourage the reader to try new ideas. The symbolic 
math package can show the result as an equation, a figure, or even an animation. 

It is unfortunate that a Mathematics notebook does not support direct graph- 
ical manipulation like that shown in Figure 5.2. Currently, notebooks have to be 
carefully written so that the reader does not have to understand much of Mathemut- 
icu to know what parts of an expression to change. A graphical control, such as a 
slider, would make it possible for users, both novice and experienced users, to 
directly control an electronic notebook in a very intuitive fashion. Even the ability 
in a notebook to place a mousable button that would perform some action would 
be useful. An example of this capability is shown in Figure 5.1. 

5.24 Literate Programning 

Documenting a computer model or a signal processing algorithm is a useful way 
to transfer knowledge about a new result. Conventionally, this has been done using 
a simplified form of a language like Algol or Fortran. It is difficult within the 
constraints of these languages to eloquently express the ideas that went into the 
model. 

An alternate style of expressing an algorithm is known as Literate Program- 
ming. Denning’s introduction to Van Wyk’s column on Literate Programming 
says [ll]: 

A literate program contains not only the needed statements in a programming language, 
but also a precise problem statement, a summary of trade-offs between the running time 
and space, or between running time and programming time, and suggestions on how 
to modify the program. Program code segments are inserted in the text at points logical 
to the intellectual development of the algorithm. A literate program pays careful 
attention to lucidity of presentation and presents all arguments needed to understand 
why the program will actually work as intended. 

The combination of an interactive computer model and literate programming 
is a very powerful tool for learning. Before a reader can intelligently change a model, 
the description must be read and understood. Expecting the reader to understand 
the program from just the embedded comments is not very practical. Instead, a 
literate program should include graphics, examples, and even interactive controls. 
All these techniques will help the reader to better understand the results. 

Changing the focus of the programming effort can have a great benefit. A 
computer language is designed to make it easy to implement algorithms, not to 
explain material to another reader. Comments and sometimes even pictures are 
added to a program to describe an algorithm, but the text of the program is still 
one-dimensional. In a literate program the primary goal should be to describe an 
algorithm for a reader, but to do it in such a way that the computer can also 
understand it. This is especially true when describing highly mathematical material 
such as signal processing algorithms. 
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5.3 DSP TOOLS 

Unfortunately, there is no software that possesses all the features needed to build 
the interactive signal processing document described in section 5.2. Most conven- 
tional tools for signal processing are libraries or environments that are designed for 
programmers. Although these tools are powerful, they are difficult for casual readers 
to use. 

There are many programs that can perform symbolic manipulations, and one 
of them, Muthemuticu, has an electronic notebook interface. Muthemuticu and its 
notebooks come closest to the ideal interactive signal processing environment de- 
scribed here. Using a symbolic math program to do signal processing problems is not 
new (MACSYMA, the grandfather of all symbolic math programs, has built-in 
support for Fourier and Laplace transforms), but adding a notebook interface allows 
an author to make the DSP knowledge more accessible to a reader. 

It is not possible to describe all the tools designed to help solve DSP problems. 
This section describes several of the conventional tools and then describes the use 
of Muthemuticu to research and teach signal processing ideas. The purpose of this 
chapter is to discuss the use of a symbolic manipulation program to describe in an 
interactive manner the solution of a signal processing problem. To provide some 
context, several conventional tools will first be reviewed. 

5.3.1 ConventIonal Tools 

Perhaps the most commonly used tools for signal processing are subroutine libraries. 
The two best-known libraries for signal processing are IMSL [6] and the IEEE Signal 
Processing Library [12]. These libraries include code to perform many common 
signal processing operations in a user’s program. The user must still do much of the 
programming, but the difficult numerical work is handled by these subroutine 
libraries. Much research has gone into these algorithms and they represent a signif- 
icant step in the use of structured programming techniques. The routines in these 
libraries, especially in IMSL, are highly optimized, and their numerical stability is 
well documented. Most of the work required to use these libraries consists of reading 
in the data and putting it in the proper form for the appropriate subroutine. 

Subroutine libraries eventually led to complete programming environments for 
signal processing. SRL (the Signal Representation Language) [13] and SPLICE [14, 
151 are two examples of specialized programming environments- for signal process- 
ing. These systems are built on top of the Lisp programming language, and use 
object-oriented techniques to make it easy for researchers to extend the environ- 
ment. Two extensions for computing sine wave signals in SRL are shown in Fig- 
ure 5.3. 

Systems such as SRL and SPLICE are very powerful, but their nonstandard 
programming methodology (object-oriented Lisp) requires much effort to learn. In 
a sense, these tools are programmer friendly but not necessarily user friendly. This 
has limited their success. 
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(defsigtypesine-wave-signal-type 
:a-kind-ofbasic-signal-type 
:parameters (ncycleslengthphase) 
:findersignal-sine-wave 
:init (setq-my dimensions (list length)) 
:fetch ((i) (sin(*3.1415922.0ncycles (/ilength ))))) 

(defsigtypesine-wave-with-zero-phase-signal-type 
:a-kind-ofsine-wave-signal-type 
:parameters (ncycleslength) 
:finder’signal-sine-wave-with-zero-phase 
:init(setq-myphaseO.O)) 

Figure 5.3 Two examples of signal definitions in Kopec’s Signal Representation 
Language(SRL).Thefirstexample,sine-wave-signal-type,definesthe 
scheme to calculate a sine wave with ncycles in length samples. The second 
example, sine-wave-with-zero-phase-signal-type, further re- 
fines this signal type to include a default phase of 0 degrees. The rest of the 
behavior of the sine-wave-with-zero-phase is inherited from the sig- 
nal’sparents, sine-wave-signal-type and basic-signal-type. 

As the number of people wanting to solve signal processing problems has 
grown, the need for systems that do not require any programming has also increased. 
These environments include a large number of specialized signal processing al- 
gorithms that can be applied in a cookbook fashion to solve a problem. With a 
high-level tool the language becomes more specialized, making it easier to express 
some algorithms. A drawback of such specialization is that concepts that do not fit 
within the tool’s model are much harder to program. 

MATLAB is another example of a specialized signal processing environment [7]. 
MATLAB includes a large number of routines for linear algebra and signal processing 
which can be used interactively or combined by the user into new functions. MATLAB 
also includes functions to import data and to plot the results. A large number of 
common signal processing operations are part of MATLAB'S libraries, and it is easy 
to add new functions. MATLAB provides a simple command line interface for the user 
and a single window for graphics. 

An even more specialized tool that can be used for image processing is Adobe’s 
Photoshop [16]. Photoshop is designed to make it easy to perform many common 
operations on images and see the results immediately. This tool is very powerful but 
is not programmable. 

Other tools have been designed to deal with specific signal processing prob- 
lems. For example, there are tools for speech analysis, all sorts of filter designs, and 
even VLSI layout for signal processing algorithms. The price paid for this power is 
the limited domain. For example, it would be difficult to design a filter using one 
of the filter design programs and then use the results in one of the speech analysis 
tools. 
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5.3.2 About Mathematics 

Muthemuticu is an example of a system for creating interactive scientific documents 
[17]. It is first and foremost a program for doing mathematics on a computer. The 
program allows a user to pose both symbolic and numerical mathematics questions. 
Thus, a user can symbolically integrate an expression, and then find its numerical 
solution over any domain. Muthemuticu includes a programming language to allow 
more complicated models to be described and graphical functions to allow the user 
to visualize the results more easily. When mathematical definitions, graphics, and 
words are all combined, the resulting document is called a notebook,\-Muthematica 
is available for most of the popular scientific and personal computers, but the 
notebook feature is only currently available on the Apple Macintosh and the NeXT 
Machine. Notebook support for other machines has been promised. 

Like its predecessors (MACSYMA, SMP, Maple, Reduce, etc.), Mathematics 
includes many facilities for doing symbolic mathematics and numerical calculations. 
The fact that these systems can easily work with polynomial equations makes them 
useful, for example, when designing filters. A family of filters can be designed and 
then analyzed for their behavior at DC. This section will talk about some of the 
features of Muthematica and how it can be used to create an interactive signal 
processing document. 

The Muthemutica system is divided into two halves. The user interacts with 
a front end while a back-end kernel provides the computational engine. The front 
end is unique for each type of machine, defines the behavior due to typed commands 
and mouse actions, and provides an interface to the host’s window system. The back 
end is relatively machine independent and does all the calculations. 

One useful feature of Muthematica is that the user interface (front end) and 
the kernel (back end) do not have to be on the same machine. Thus, a user can 
interact with a relatively inexpensive graphics machine on the desktop, while a more 
powerful shared back-end machine does all the calculations. The communications 
between the front end and the back end can be carried out over a serial line or a 
network connection. 

On some machines, the Muthematicu front end allows the user to create what 
is called a notebook. A Mathematics notebook is much like a scientist’s notebook 
since it can contain data and thoughts about work in progress. However, these 
notebooks are unique in that they also contain computer models and even anima- 
tions. The ability to create a live mathematical notebook is probably the feature that 
most distinguishes Muthematica from other systems. 

Notebooks contain text, equations, and graphics. When a problem is first 
proposed, the notebook will reflect the steps actually used to carry out the calcula- 
tion. It might contain false starts and notes understood only by the author. As the 
theory and calculations are refined, the notebook becomes more polished. Eventu- 
ally, the notebook is cleaned up and the necessary text written so it can be distributed 
to colleagues. The finished.notebook will contain explanatory text, symbolic and 
numerical models, and graphs and animations to explain the system and its solution. 
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Figures 5.4 and 5.5, my own technical report [2], and a recent book by Gray [ 181 
are examples of notebooks in their polished form. 

A notebook showing some of the capabilities of Mathematics is shown in Fig- 
ure 5.4. Muthemutica can be used as a calculator, even with arbitrary precision, but 
its real power comes from the symbolic functions. Equations can be integrated and 
differentiated, and algebraic manipulations can be performed to put the result into 
a simpler form. The results can be plotted to help understand how the system works. 
A second, more complete example showing the use of Mathematicu in a signal 
processing application is shown in Figure 5.5. 

The signal processing example in Figure 5.5 uses a special data structure to 
represent each filter. Ratios of polynomials are supported by Muthemuticu, but then 
any filter operation that needed the location of the poles and zeros would have to 
factor a polynomial with floating point coefficients. This can be done but is prone 
to errors and is time consuming. 

Instead of representing filters as ratios of polynomials, the filter design func- 
tions shown here use a special structure that contains the gain, zero locations, and 
pole locations. This structure is called a GZP (Gain, Zeros, and Poles). The GZP 
structure is represented in Muthemuticu as a three-element list with the zeros and 
poles each being represented as a list of points in the complex plane. Choosing the 
appropriate data structure to model a system is important both for computational 
efficiency and for literate programming. One advantage a symbolic environment has 
over a purely numeric system such as MAT-LAB is that arrays and lists can be combined 
in arbitrary ways to represent the data at hand. 

Both the GZP and ratio of polynomial representations of filters have their 
advantages. The GZP is used in Figure 5.5 because it is more accurate (roots of 
polynomials are already known) and it is easy to transform a filter from the GZP 
form to a ratio of polynomials. Consider the following filter design. The call to 
ChebychevLp returns an eighth-order filter ,with a 1 dB pass-band ripple. The gain 
of this filter has been adjusted so that it has unity gain at IX. Here, the GZP 
structure returned by the C heb yc hevLp function, the Laplace domain representa- 
tion, and finally an expanded version are shown. 

In[m]: = 
ChebychevLp[B, L] 

Out[L] = 
.01720755 

{---- ------, {} - 

~o~/20 

{-0.0350082-0.99b4S21,-0.099b95-0.844?521, 
-O.l,49204-0.5644441, -0.275998-0.2982061, 
-O.~?S998+0.29020bI,-O.L49204 +O.S644441, 
-0.099b9S+0.8447521,-0.03S0082+0.99b4521}} 
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Malhematica Introduction 

This notebook is a short introduction to the features 
of Mathematics. In the two notebooks accompanying this 
chapter, the Mathematics input is shown in a bold face 
Courier font and the Mathematics output is shown 
in a normal Courier font. See Wolfram’s Mathematics 
book for more examples. 

Numerical Calculations 

Mathematics can be used like a calculator to do numerical 
arithmetic. Here is Pi calculated to 50 decimal places. 

M [Pi, SO] 

3.14159265358979323846264338327950288419716 

93993751 

Or Mathematics can bc used to numerically integrate 
an expression which can’t be integrated symbolically. 

HIntsgrate [Sin [Sin [xl], {x, 0, 1.011 

0.4306061031206906045 

Polynomial Manipulation 

Manipulating algebraic expressions is easy for Mathematics. 
Here are some examples. First we multiply out the terms 
of an expression. 

Expand [(x + 1) (x + 2) (x + 3) -3 (x + 4)] 

216 + 594 x + 639 x2 + 350 x' + 104 x4 + 16 x5 

+ x 6 

We can then factor this equation to find the original 
expression. 

Factor [216 + 594.x + 639*x-2 + 35O*x"3 + 
104*x-4 + 16*x-5 + x-61 

(1 + xl (2 + x) (3 + x)3 (4 + x) 

Solve [216 + 594.x + 639.x-2 + 350*x-3 + 

104*x-4 + 16*x*5 + x-6 - = 0, x] 

((x -> -11, !x -> -21, (x -> -41, 

{x -> -3),(x -> -3), (x -> -3)) 

Here is a graph showing the behavior of this function 
as x varies between -5 and 0. 

Plot[(x + 1)(x + 2)(x + 3)-3(x + 4),1x,-5,OIlr 

Calculus 

Mathematics knows a lot about calculus. After reading 
in Mathemutica’s integration rules, we can easily find the 
integral of x/( 1 -x3). 

<<IntegralTable&3.m; 
Integrate [x/(1-x-3), xl 

1 + 2 x 
- (Sqrt (31 ArcTan [---------I) 

Sqrt [31 

Log [l - xl Log 11 + x + x21 
---___--__--- + _-___-----_______ 

3 6 

Now let’s differentiate this result and see if we get the 
original expression. 

Simplify [D [- (3- (l/2) *ArcTan [(l + 
24x) / 3- (l/2)1/ 
3 - Log (1 - xl/3 + 
Log I1 + x + x*21/6, x I] 

X 
-_-___ 
1 - x3 

We can also find the series expansion of an expression. 

Serha [ESQ [xl COP [4x], (x, 0, 6) I 

15 x2 47 x3 161 x4 
1 tx - ------ - ------ + ---__-- + 

2 6 24 

1121 x5 11 x6 
7 - -_____ _ _-____ + O[X] 

120 16 

Figure 5.4 An example of a Muthctnaticu notebook showing elementary numerical, symbolic 
manipulation, graphing, analysis, and programming features. 
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_;.- . 

da9 

Solving Equations 

Mathematics can be used to solve simultaneous equations. 
Here is a simple example. 

Solve [(x^3 + yA3 =* 1. x + Y == 2).(x, Yll 

6 - Sqrt [-6) 
( (x -> _-____-_--_-____ 

6 

12 + 2 Sqrt (-61 
y -, ---_-__________-_ ) 

12 

6 + Sqrt f-61 
(x -> -d-i -----_- ----- 

6 

12 - 2 Sqrt f-61 

Y -’ --_---------_---- )) 

12 

Graphics 

Mathematics can graphically show you the results of your 
calculations. Here is a plot showing the previous two 
equations. Note: there are no solutions for real values of 
x and y. 

Plot [((l - xL.3) A (l/3), 2 - Jc), 

b. -2, 211 

4 ” 

Data Analysis 

Mathematics can be used to analyze the results of 
your experiments. Let’s create a sample data set by adding 
random noise (uniform between 0 and 1) to 
a sine wave. 

data = Table [N [Sin [l/25] + 
Random tl 

ListPlot [data] ; 

log lx Y”2 zl 
1 , 11, 20011; 2 log[xl log [yl 

log [X/Y1 

-(loglxl log[yl) 

Now let’s fit the data to a constant term (to get the mean 
of the random variable) and a sine and cosine of the 
appropriate frequency. Note that the term multiplying the 
cosine in the result is small compared to the factor 
multiplying the sine. 

Fit [data,(l, Sin [x/251, Cos [x/2511,x1 

0.499471 - 0.0565294 cos (-‘-I + 
25 

0.944494 Sin C-x-1 
25 

Programming by Example 

Rules can be added to Mathematics to specialize it for your 
own problem domain. Here is an alternate definition of 
factorial. The first rule defines the stop condition. The second 
rule is the basic recursion to solve the problem. 

Fact [O] = 1 

Fact [x-l I = x Fact [x - 11 

Fact [6] 

720 

Here is an example of defining rules for simplifying 
logarithms in Mathematics. 

log [a- b-1 : = log [al log [bl 

log [x yA2 21 

loCllx1 log[y21 log[zl 

Now we can tell Mathematics about powers 

log Ix-^n-I : = n log [xl 

Figure 5.4 (continued) 

log [zl 
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Signal Processing Example 

This notebook is an example of using Mathematics to describe 
continuous filter design. This notebook is fully functional. It 
includes some Mathematics notation, but readers who are not 
Mathematics users should have no problem understanding the 
notebook by just reading the text. See lJVolfram88]. for an 
explanation of the special notation used by Mathematics. 
Thanks to Ray DeCarlo at Purdue University for providing the 
original motivation to write this notebook. 

There are a number of design techniques for high-order filter 
design. This notebook will show how to design a Chebychev 
low-pass filter, and then how to transform the original lowpass 
poles into a bandpass filter. Section 1 of this example defines a 
number of functions used to work with filter polynomials. 
Section 2 describes the techniques to design Chebychev 
lowpass filters with a comer frequency of I radian per second 
(rps), and Section 3 shows how to transform these generic 
lowpass filters into bandpass filters with arbitrary passbands. 

1 Continuous Filter Functions 

Continuous-time filters are described using polynomials of 
complex frequency s. A filter’s response function is evaluated 
along the imaginary axis by making the substitution s->I w (or 
jo in conventional EE notation.) The following function is 
used to evaluate the complex response of a filter radians. 
Additional functions compute the gain, magnitude, and phase 
response of the filter. The expression filter can be an arbitrary 
function of the complex frequency s. 

FilterGain[filter-, w-1 t= 
ReplaceAll[filter, P --> I WI; 

FilterMag [filter-, w-1 : = 
Abs[FilterGain[filter,w]] 

FilterPhase [filter-, w-1 : = 
Arg[FilterGain[filter,w]] 

FilterDb [filter-, w-1 : = 
20 Log[lO,FilterMag[filter,w]] 

The following function is used to display the 
frequency response of a continuous filter. (The 
plot starts at 0.01 Hz to avoid any problems with 
filters that have a zero at DC.) 

FreqReaponoe[filter-, roaxf-, 
oPta_:Ol := 

Block[(reeponoe), 
reeponoe I N[FilterDb[filter, 2 Pi f]]l 
Plot[reoponee,{f,.01,maxf), 

Axedabel->{" Hz","dB"), 
PlotLabel->WReeponoe**, 
OPtall t 

We define a similar function for displaying the frequency 
response of a filter as a function of radian frequency (o or 
radians per second, rps). 

Pre~ReaponmeRadiana[filter-, IIUBXW-, 
OmL: 01 I- 

Block[{reoponse), 
reqonse - 

N[PilterDb[filter,w]] J 
Plot [reapomo, {w, .Ol,maxw) , 

AxesLabel-a(" RPS", "dB"), 
PlotLabel->"Reaponee", 

opto11i 

Note that for each of these functions there is a third optional 
argument that allows additional options to be set. We use this 
feature to pass special parameters to the Plot function. The 
frequency response of a fourth-order filter is shown below. 

FreqRe~poneeRadiano I.197 0*2/ 
((0.09 - 1.31 4 e)(0.09 + 1.31 + a) 

(.12-1.m + e) I.12 + 1.81 + 8)),4]i 

I-=----- Response 

The AdjustGain function is used to modify a filter 
so ‘that it has unity gain at any desired frequency. 

AdjuetGain[filter-,f-] X- 
filter/FilterMag[filter,f] 

Higher order filters could be designed with Mathematics using 
either rational polynomials or lists of poles and zeros. Rational 
polynomials would be nice because all intermediate results 
would look like filters. Unfortunately, we sometimes need to 
talk about individual poles and zeros, for example when doing 
partial-fraction expansions. This is difficult if the filter is 
described as a polynomial. If a filter is described by its poles, 
zeros, and gain, we can always regenerate the polynomial. 

A list of polynomial roots is turned into a polynomial in s 
using this Mathemkica expression. 

PoIynoinialFraraRoota [roote-J I - 
If[Length[rootm] -I 0, 

1, 
Firat[&gly[Timeo, 

MaP1~6418,rootal I I I 
PolyncmialFromRooto[(4,2,1)] 

t-4 + 5) (-2 + 5) (-1 + s) 

Figure 5.5 A sample notebook shows the use of Mathematics to design and document a filter 
design paper. 
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In this notebook we use a list to keep track of the zeros, poles, 
and gain of a filter. Functions that transform filters will take as 
input a list of these three items and return a similar structure. 
We abbreviate the name of this structure to just GZP (Gain, 
Zeros, and Poles). The following function is then used to take 
one of these lists and transform it into a filter in the s domain. 
Note that we have used the pattern matching facilities of 
hfathematica to pick out the three elements of the 
input list. 

PiltsrFromGZP [(gain-, zeros-, 

polen~~l I- 
gain*Po]ynauialFrota [zeroz] / 

PolynaaialFrcznRooto [polezl //N 
FilterFromGZP[(2.4, (4,2,1), 

(12,10,73]1 

2.4 (-4. + s) C-2.+ s) (-1. + s) 
-----------------_-_______________ 

(-12. + s) (-10. t 5) (-7. + s) 

2 Chebychev Filters 

The simplest high-order filters to design are the Butterworth 
and the Chebychev. The poles of a Butterworth low-pass filter 
are arrayed so that the filter’s response is flat through most of 
its passband. As the frequency approaches the corner 
frequency, the gain quickly falls off. In some cases this 
characteristic is an advantage because the gain between DC 
and the corner frequency is nearly flat. 

For a given stopband or transition band specification, filters 
with a much smaller variation in gain in the passband can be 
designed using the Chebychev polynomials. Chebychev filters 
do not have a flat response in the passband, but, as in 
Butterworth filters, the passband error can be made arbitrarily 
small. 

The poles of the Chebychev polynomials are given 
by the following expression [Daryanani76]. This expression is 
a function of the desired order of the polynomial (n) and the 
maximum error (amax) in dB in the passband. 

ChebychevPolee [n-, amax-] : = 

Block [(a), 
e = Sqrt [lO*(amax/lO)-11 ; 
Table[Sin[Pi/2(1 + 2k)/n] 

Sinh IArcSinh [ l/e] /II] + 
I Coo[Pi/2(1 + 2k)/n] 

Cooh[ArcSinh[l/e]/n], 
(k,n,ln - l]ll 

The ChebychevPoles function returns the location of the poles 
of a n-th order low-pass Chebychev filter with a cutoff 
frequency of 1 rps and a maximum pass-band error of amax 
dB. 

ChabychsvPolso t6,1] //N 

(-0.0469732 - 0.981705 I, 

-0.128333 - 0.718658 I, 

-0.175306 - 0.263047 I, 

-0.175306 + 0.263047 I, 

-0.128333 + 0.718658 I, 

-0.0469732 + 0.981705 I) 

As can be seen from the pole plot below, the roots of a 
Chebychev polynomial fall on an ellipse. This plot shows the 
roots as the maximum error in the passband is varied from 
10-l’ (the ones that look most like a circle) to a passband error 
of 1 dB (the rightmost arc). 

PlotPoleS [Flattsn[Map[N[ 
ChebychevPoleo[l6,#]]&, 
(10~-10,10~-4,.1,1l111~ 

.5 

0.5 

1 

The next function computes a Chebychev low-pass filter and 
returns a list with the gain, zeros, and poles. Note that a 0 
Chebychev low-pass filter has only poles so the list of zeros is 
empty. The resulting GZP list can be passed to the filter 
transform routines to realize other types of filters (band-pass, 
band-reject, and high-pass). In this filter design function the 
gain at the corner frequency (1 rps) is adjusted so that it has a 

Figure 5.5 (continued) 
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loss of runax. As will be seen in the plots to follow, this will 
set the maximum gain of the filter (at the peaks in the 
passband) to 0 dB. 

ChebychevLptn-,amaxJ I= 
Block[{poles, gain), 

polso=ChebychevPoleatn, amaxl//N; 
gain I FilterNag[ 

PolynomialFronRooto[polea], 
l/ (2 Pi)l//Nt 

gain I lO*(-amax/ l gain; 
Retum[Igain, 0, polenlll 

The following plot shows the magnitude and phase response 
of an eighth-order Chebychev low-pass filter with a pass-band 
error of 1 dB. 

ft=FilterFromOZP[ChebychevLp[8,1]]~ 
Fre~eopommRadiana[ft,2, 

PlotRange->I-lO,O)]r 

dB Response 
: RPS 

0.5 1 1.5 2 

-2. 

- 4 -- 

- 6-- 

- 8-- 

-1 o- 

Plot[FilterPha~e~ft,rl,~r,0,2), 
&reoLabel-> ( * PPS” , “Radians” ) , 
PlotLabel->"Phaae Rengonee"1; 

RPS 

Chebychev filters can have an arbitrarily small error in the 
passband but this does not come for free. The following plot 
shows the gain at twice the corner frequency as a function of 
pass-band error. In each case an eighth-order Chebychev low- 

pass filter was designed. Note that if more error in the 
passband can be tolerated then a much sharper cutoff can be 
real&d. 

Plot[FilterDb[ 
FilterFrorrGZP[Ch~chevLP~8,ell,21, 

(0, .01,31, 
AxeoLabetl-~(“Paoaband Error*, 

"Gain at 2x90 (dB)*)]; 

Gain at 2rps (dB) 

-6O+ 

3 Band-pass Filters 

Section 2 showed how to design a generic Chebychev low- 
pass filter. These low-pass filters can then be transformed into 
low-pass, high-pass, band-pass, and band-reject filters with 
arbitary cutoff frequencies. This section will show how to 
transform a low-pass filter into a band-pass filter. We use the 
gain, zero, pole structure to keep track of the filter parameters. 

A low-pass filter is transformed into a band-pass by specifying 
the location of the two comer frequencies. We make this 
transform by substituting the following expression for s into 
the normalized low-pass filter [Daryanani76]: 

a2 + wo’ 
S.= ----------- 

BP 

In these expressions B is the difference (in radians) between 
the two edges of the passband and w0 is the geometric mean 
of the frequencies at the edges of the passband. The function 
BpTransform is used to transform a single root of the 
normalized filter into two new roots due to the substitution 
above. (The extra root at zero is ignored for now.) 

BpTranofonQ [roots-, wO_, B-1 I= 
N[Flatten[Map[(B # / 2 + 
Sqrt [BA2#“2-4wOA2]/2, B # / 2 - 
Sqrt [BA2#A2-4w0A21/21L, rootelll 

BpTranPform [ButtexworthPolee 131, 
2Pi sqrt[looo 20001, 
2Pi 10001 

(-1104.8 - 6450.39 I, 

-2036.79 + 11891.8 I, 

-3141.59 + 8311.87 I, 

-3141.59 - 8311.87 I, 

-1104.8 + 6450.39 I, 

-2036.79 - 11891.8 I) 

Figure 5.5 (continued) 
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The function LpToBp transforms each of the Roles and 
zeros in the original low-pass filter according to the 
BpTransfonn function. In addition, each zero in the 
original low-pass filter contributes a pole at zero, 
and, likewise, the original poles contribute a zero at DC. 
The difference between the number of poles and zeros 
tell us the number of roots at zero to add, and extra 
factors of B to add to the gain. 

LfXlbBp t(srain-, zeroa-, pulsar), 
fpl-. bP2-I I- 

Block[(wO, B, RootDiff, 
BxceooPolea, BxceoaZeroa), 

wo = 2 Pi sqrt [fpl fp21; 

B = 2 Pi (fp2 - fpl)t 
RootDiff - Length[zeroa] - 

Lewthbolealr 
IftRootDiff > 0. 

BxcesaZeroa I RootDiff; 
BxcesoPolea - 0, 

ExceaaPolen - -RootDiff; 
BxceaaZeros - 01 I 

(gain/BARootDiff, 
Join[BpTranaform[zeroo, w0, B], 
Table[O,(Exce~oPoles)]], 
Join[BpTranafoxm[polea, w0, B], 
Teble[O, (ExceaaZeroa]]])] 

This transform is applied to a third-order low-pass filter 
to determine a sixth-order band-pass filter with a passband 
between 1 kHzand2kHzandamaximum pass-band 
error of 3dB. 

LpToBp [ChebychevLp [3, 31, 1000,2000] 
//N 

10 

(4.8443 10 , (O., 0.. 0.). 

(-326.13 + 6478.28 I, 

-612.013 - 12157.1 I, 

-938.143 + 8836.1 I, 
-938.143 - 8836.1 I, 

-326.13 - 6478.28 I. 

193 

The frequency and phase response of this sixth-order 
band-pass is shown below. 

fit - PilterFraPOZP [LpToBp[ 
chebychevLp[3, 31, 1000, 200011r 

PreqReoponoe[flt, 40001 

dB Response 

6 O-- 

HZ 
0 

Iwolfram88] S. Wolfram, Muthemutica (Redwood City, 
Calif.: Addison-Wesley, 1988). 

[Daryanani76] G. Daryanani, Principles of Active Network 
Synthesis and Design, (New York: John Wiley and Sons, 
1976). 

Figure 5.5 (continued) 
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In[2]: = 
FilterFromGZP[ChebychevLp[8,1]] 

Out[2] = 
.llbS3S287/ 
((0.350082+0.99645b1+s)(0.0350082-0.99645~1+s) 

(0.099695-O.B4475l,I +s)(O.O9969S +0.8447531+s) 
(0.149204 -0.564444 I+s)(O.149204 +0.564444 I+s) 
(0.27S998+0.19820bI+s)(O,b75998 -0.2982061+s)) 

In[3]: = 
Chop[ExpandDenominator[FilterFromGZP[ChebychevLp[8,~]]]] 

Out[3]= 
. Ol,S3Sl,87/ 

(0.02722b7+0.207345~ +0.44782bs2 +0.84b824s3 + 
1.8369s' +L.bSSLbs' +2.42303sb +0.939821s' +ss) 

-The Chop function is used here to drop the very small imaginary terms that are 
caused by roundoff error in the floating point calculations. 

One of the more useful features of a symbolic math system is that it can be 
extended. Rules can be added or programs written to specialize the behavior of the 
system. In Mathematics, rules are defined using a pattern matching language much 
like Prolog. On the left-hand side of a rule the underscore character (-) indicates 
a wildcard position where any quantity can be substituted. Furthermore, the under- 
score character can be appended to a variable name to make a named wildcard 
variable. The pattern matching capability built into Mathematics is very powerful. 
The simple expression 

foo[a-, b-r c-l 

on the left side of a rule matches the function f oo called with three arguments. The 
expression on the right-hand side of the rule will be used with the appropriate 
substitutions whenever the variables a, b, and c are used. A more complicated 
expression like 

factorial[n-Integer] 

matches any time the factorial function is called with an integer argument. The 
m,atching expression can include arbitrary Mathematics notation. For example 

diff[a-+b-1 

can be used to pick apart a sum and define a new differentiation rule. 
Mathematics notebooks also include the ability to display animations. This is 

a useful as a way to show how simple parameter changes affect the solution, or to rotate 
a three-dimensional graph around its origin so the reader can more easily perceive 
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its form. In my own work we have used Mathematics animations to show wave 
propagation solutions. 

Readers of this chapter can get a sense of the readability of a notebook from 
the examples in Figures 5.4 and 5.5. A problem with Muthemuticu is that the 
language is new and probably unfamiliar to many readers. Consequently, notebooks 
should be written, much like mathematical papers, so that the general flow can be 
understood by skipping the equations [19]. A brief description of unusual syntax 
might be given the first time it is used. In this sense, a notebook is no different from 
a normal paper. 

Muthemuticu includes elements of all the important characteristics of a system 
for creating and exploring interactive signal processing documents. First, Muthemut- 
icu notebooks are organized hierarchically. Within a notebook, equations, para- 
graphs, mathematical results, and graphics are each cells that can be grouped into 
larger cells. Cells can be hidden (or closed) in such a way that only the first line of 
a cell is visible. From this information the reader can decide whether the rest of the 
cell needs further attention. The first line of large, grouped cells is typically used as 
a section title. 

The help system in Mufhemuticu is a simple example of hypermedia. A user 
can select a function in a notebook and ask for more information. A new window 
appears describing the usage of the function. These simple usage statements are 
handy, but the original definition will include a more complete description of the 
algorithm. The system would be even more useful if the user could ask about a 
function and immediately move to the part of the notebook where the function is 
first defined. 

All of these features of a A4uthemuticu notebook would not be interesting if 
notebooks could not be distributed. The essential information in a notebook is 
conventional ASCII text, which is easily moved through the email and computer 
networks. While only some computer systems support the complete notebook con- 
cept, all Muthemuticu systems can understand the data and the mathematics con- 
tained in a notebook. Thus, a reader with a version of Muthemuticu without the full 
notebook capability can study the printed version and still try the examples. 

One disadvantage of systems like Muthemuticu is that strictly numerical calcu- 
lations are not efficient. Symbolic manipulation programs are designed to work with 
any type of mathematical quantity. Thus, when performing a multiplication, the 
terms could be symbols, arbitrary precision integers (bignums), high-precision float- 
ing point numbers, or simple integers or floats in the machine’s native format. Of 
these, only the native format calculations are fast. Still, a symbolic manipulation 
program must check for all of these possibilities each time it does an operation, and 
this type checking can be more expensive than the mathematical operation. Conven- 
tional programming languages do not pay this penalty because all types are known 
at compile time and the proper machine instructions generated ahead of time. 

Finally, Mufhemuticu is a commercial product that not everybody will be able 
to afford. Wolfram Research has put into the public domain a Muthemuticu notebook 
reader. This notebook reader does not have any of Muthemuticu’s mathematical 
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ability, but it does allow people to view a notebook and play the animations on any 
Macintosh computer. My own cochlear notebook [2] has been published on paper 
and with a floppy disc containing the Muthemuticu notebook and the notebook 
reader to allow the material to have the widest possible distribution. 

5.4 DESIGN ISSUES 

Sections 5.2 and 5.3 have described the form an interactive document might use to 
describe a signal processing algorithm. How should the author structure his or her 
writing to make the best use of the technology available to describe a signal process- 
ing problem and its solution? There is no question that an interactive signal process- 
ing document requires new skills from an author. Some of these skills are the subject 
of this section. 

The benefits of interactive signal processing documents described here do not 
come for free. Certainly the design and writing of such a document takes more 
thought and care than conventional papers do. When the interactive document is 
done, there is no easy way to disseminate its electronic form. Both of these problems 
should diminish as people become more familiar with this new medium for research 
and publishing. 

This section describes some of the factors that make an interactive signal 
processing document a success. Certainly the biggest factor is writing the document 
so that it invites the reader to interact with the material. Fortunately, this is easily 
addressed by the author. Other factors, for example distribution and notation, are 
more difficult. Each of these difficulties are addressed in the remainder of this 
section. 

5.4.1 How to Write an interactive Signal 
Processing Document 

Designing an interactive document is not easy, but the effort is worthwhile since 
writing an interactive mathematical document becomes as much a learning experi- 
ence as reading it. Teaching new material is often the best way to learn it. By 
preparing an interactive document, one is forced to study the material as a reader, 
and by having a tool such as Muthemuticu it is possible to explore more of the subject 
area. In addition, when a common system is used to research and present a new 
result, the effort in creating an interactive document is minimized. 

Making a document interactive adds another dimension to the writing task. In 
some ways this makes the task more difficult, but in other ways the task becomes 
simpler. Just as a picture is worth a thousand words, an interactive example showing 
how frequency response changes with pole location can be worth a thousand figures. 

The interactive dimension might require extra work by the author of a signal 
processing document. One can always use the tools described in this chapter to write 
a conventional paper; it would not be any more or less efficient than using a word 
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processor. Fortunately, some of the interactive features described here make the 
writing process easier. It is often easier to show a reader an interactive graphic than 
it is to explain it in words. Other parts of an interactive signal processing document, 
such as working models and simulations that would otherwise never leave the lab, 
require more effort to polish and make ready for publication. As always, it is up to 
the author to decide on the proper amount of effort to apply. A short note explaining 
a new algorithm for a research group probably doesn’t need as much polish as an 
undergraduate signal processing text. 

One might think that this extra work would slow the rate of research. This is 
not necessarily true. Preliminary signal processing ideas are already exchanged 
within one’s research or development group as small code samples and in interactive 
discussions. The point of this chapter is to describe the benefits of allowing a reader 
to more easily benefit from this rich form of interaction. 

There are four skills and practices that should be remembered when writing 
an interactive signal processing document. They are: 

1. Use good writing and graphics. 
2. Iterate the design with real readers. 
3. Guide readers to interactions. 
4. Limit interactions to fit the reader and available computer power. 

That good writing and graphics are important for an interactive document should 
go without saying. It is especially important that the ideas expressed by Tufte [20] 
should be applied to the interactive display and models. The remaining techniques 
for designing an interactive signal processing document will be discussed next. 

Adding an interactive component to a signal processing paper is not a panacea. 
Just as there are bad papers, there will be bad notebooks. Fortunately the technology 
encourages a closer collaboration between the author and the reader. A successful 
interactive document will often go through several iterations. When first writing an 
interactive document it is hard to know how much detail to include or what kinds 
of models are useful to any particular reader. At successive stages, observation of 
how readers interact with the document will help guide its evolution. 

The key task is to design the interactive document so that the reader can profit 
from the information and the changes can be shown at interactive rates. The first 
part of this problem, inviting the reader to play with the model, is easily solved with 
words. Telling the reader, “Here’s some equations, play around.with them,” will 
only help the most motivated readers. Instead, the introduction of an interactive 
document could guide the reader to those parts of the document that can be 
modified, such as is done in this example [2]: 

The best way to interact with this notebook is to read the description, study the 
examples, and then modify an example to see how different parameters give different 
results. For example, an appendix to this report describes digital filtering and provides 
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functions to design first and second order filters. Much can be learned about digital 
filtering by combining these filters and studying the resulting frequency response or 
pole-zero plots. 

Readers might also want to modify this model to better fit their own experience 
or ideas. For example this notebook describes a relatively simple model of the effects 
of the outer and middle ears on the sound. A reader might be interested in providing 
a better model or removing the outer and middle ear filters completely and studying 
the change in response. As another example, this report describes a simple Automatic 
Gain Control (AGC) to compensate for the large range of sounds produced by humans. 
This notebook explores several variations on the basic AGC but readers might want to 
try their own. 

Simple examples, spread liberally through the text, encourage the reader to 
“kick the tires.” It is probably not important that every reader understand the details 
of a filter design algorithm. But labeling a simple figure showing a Butterworth filter 
response with the A4utlzemuticu text 

makes it clear to casual readers that this is a low-pass filter with a cutoff frequency 
of 1,000 Hz. If the LO 00 is changed to 2000, the cutoff frequency should change 
by an octave. The reader might not appreciate exactly what an eighth-order filter 
is but should see that the filter attenuates more quickly with higher order. 

Readers also need to be guided toward those portions of the document that 
are interactive. Not every part of a document can be changed in a meaningful way, 
but those parts that can be changed or perform an action for the user (play a sound 
or display an animation) should be marked. If the reader changes the title of the 
paper it probably will not automatically change the contents. Highlighting the input 
text in a special font or with graphics tells the reader which parts of the document 
can be changed. 

It is ‘easy for both the reader and the computer to be overwhelmed by an 
interactive document. Without adequate guidance the reader might wander down 
paths where there is no hope that any meaningful conclusion can be reached. In 
addition, an all-encompassing simulation would model many details that are not 
interesting to the reader. Limiting the domain over which the reader can change the 
simulation helps control the amount of processing power that is needed to answer 
a reader’s question. If the problem is well defined it might be possible to precompute 
all of the interesting results and then use interpolation to display the correct simu- 
lation result. 

Figure 5.6(a) shows a simulation where the reader has too much freedom. In 
this example, the reader can place the poles of a filter at any place on the s-plane 
and see the resulting frequency response. This gives the reader too much freedom 
and it is unlikely, for example, that the special properties of the classical filter design 
techniques will be found. In addition, it will be hard to find an easily affordable 
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document reader that will have the computational horsepower to keep up with the 
user’s requests. 

Figure 5.6(b) shows a modified version of this example where the reader is 
limited to studying the relationship between the Butter-worth and Chebychev filters. 
By moving a knob that controls the eccentricity of the pole locations, the reader can 
see the effect on the pass-band ripple and the filter attenuation rolloff. This is now 
simple enough that even a dozen precomputed frequency responses would show the 
concept to the reader, without the reader knowing that the computations were done 
ahead of time. It would even be possible to precompute audio examples so that the 
reader can listen to the effect of each filter. 

I do not mean to say that a paper including an example like that shown in Fig- 
ure 5.6(a) is not useful. There will always be readers who will understand the basics 
of such an example and will want to explore the effect that quantization has on pole 
location or any number of ideas that never occurred to the original author. It is up 
to the author to carefully draw the line between guiding the reader and allowing the 
reader to become lost in the details. 

5.42 Problems with Interactive Signal 
Processing Documents 

Other parts of the problem are not as easy for the author to address. These problems 
include choosing a system, publishing the electronic document, and picking a nota- 
tion. Each of these’problems will be addressed in the remainder of this section. Other 
issues, such as version control or keeping track of what has changed between 
versions, and maintaining correctness in the face of changes by the reader, are 
secondary problems and are not discussed ,here. 

Choosing a system for writing an interactive signal processing document is not 
easy; the’ideal system does not exist yet. I have used Muthemuticu for writing several 
interactive signal processing documents. It has many of the desired characteristics 
but is lacking in other areas. Muthemuticu would be a much better environment for 
creating electronic DSP notebooks if it had better multimedia support, was more 
efficient at strictly numerical calculations, and if it had better text formatting and 
graphics support. Hopefully these and other problems will be addressed in future 
releases of the software. 

On the other hand, it is hard to believe that any one system will solve every- 
body’s problems. Large, all-encompassing tools tend to be unwieldy and not solve 
anybody’s problem very well. Instead it will probably be best if a user can mix a tool 
for filter design from one vendor with a special-purpose accelerator from another 
to make the most efficient research and learning environment. 

Publishing notebooks and other forms of electronic documents is not easy. 
Magazines and journals usually used to disseminate research results have evolved 
efficient mechanisms and designs to effectively communicate the printed word. But 
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a single floppy, or other form of electronic media, can cost as much as the magazine 
it accompanies.3 

One of the more successful schemes for electronic publishing is based on the 
international computer networks. Dongarra at Argonne Labs maintains an elec- 
tronic mail system for distributing many large numerical software packages [21]. 
Users can send electronic requests to a special address and receive more information 
or the software by return mail. Another scheme is to broadcast the software on one 
of the computer bulletin boards. This is commonly done, for example, on the Usenet 
bulletin board comp.sources [22]. 

Unfortunately, not everybody has access to the computer networks. Instead, 
electronic material is often made available on floppy disks that can be read on a user’s 
own computer. For instance, my own report on the implementation of a cochlear 
model [2] was published as a technical report so it could be accompanied by a floppy 
disk containing the Mathematics notebook. A recent issue of the Communications 
of the ACM [lo] included an advertisement for floppy disks containing hypermedia 
examples. 

An additional problem is that an electronic document is not as convenient as 
a magazine or a book. Curling up with a computer will probably never have the same 
appeal as curling up with a good book, but the next generations of portable comput- 
ers should make this easier. For example, my own notebook was designed so that 
it can be read as a normal paper but without all the benefits of an electronic 
document. 

Finally, there is the issue of notation. Within any one technical area, 
for example, signal processing or high-energy physics, the notation is well estab- 
lished, but it often differs widely between areas. Even a concept as simple as an 
integral is written in many different ways with marks to indicate different flavors of 
integration. 

Mathematics solves this problem by defining a new language based on the 
ASCII alphabet. Wolfram has exchanged the rich notation that scientists and math- 

‘There are more and more examples of printed works accompanied by electronic media. Often 
books on microcomputer programming include a floppy disc with programming examples [for example, 
Programming with MacApp by David Wilson]. develop, a magazine that Apple publishes for its software 
developers, includes a CD-ROM with every issue. Each CD-ROM contains the complete text for all the 
issues of the magazine published to date and source code. According to the editor, the magazine and 
the CD-ROM each cost approximately $2 in 1990. The Mathematics Journnf distributes a floppy disk 
with source code with each issue, but the articles are written like a conventional paper accompanied by 
source code. 

Hgure 5.6 Two examples are shown of interactive signal processing models. The first 
example (a) allows the user to pick any location for the filter poles. It probably provides too 
much freedom for most users to gain any useful insight. The second example (b) allows the 
user to change the eccentricity of the pole locations and compare the Butterworth and Cheby- 
chev methods. Each figure shows the locations of the poles in the upper left quadrant of the 
s-plane, the magnitude of the response in the same quadrant., and the conventional frequency 
response. 



202 Interactive Signal Processing Documents Chap. 5 

ematicians have evolved through the ages for a very precise functional notation. For 
example, one writes 

Laplace[ f[tll t, s] 

to represent the Laplace transform of a function of t in terms of the complex vari- 
able s. 

Other programs, such as Milo, by a company called Paracomp, use a more 
conventional mathematical notation, but their knowledge of mathematics is limited. 
A research system called CuminoReaf [23] gives authors an interactive interface to 
a writing program and symbolic algebra programs. The result is a nicely formatted 
paper document without the hypermedia and interactive features that are part of an 
electronic notebook. Perhaps the best solution is to allow users of symbolic math 
programs to define graphical templates, which are used when the system wants to 
translate its internal representation into something to be.displayed to the reader. 

5.5 RESEARCH ISSUES 

Electronic notebooks are possible today and the resulting document, for example 
[2], can successfully communicate a signal processing idea. Currently available 
software, however, limits the topics that can be covered readily. A notebook on filter 
design is relatively straightforward. Graphics and animations can show most of the 
ideas, but a notebook on audio compression would be frustrating without the ability 
to include high-quality audio examples in the notebook. 

Some needs of future electronic notebooks go without saying. There will 
always be a need for more computational horsepower to enable more realistic models 
to be built. Higher quality audio and easier ways to integrate video will allow more 
signal processing topics to be described. 

Other needs, such as providing instructional directions and tuning the human 
interface, are difficult issues. It is important that an electronic notebook encourage 
the user to interact with the material by making it easy for the reader to navigate 
through the notebook and ask reasonable questions. 

Before concluding, two areas of future work are worth noting. These ideas have 
been alluded to in other parts of this chapter but they are worth repeating. First, 
more’ powerful symbolic tools will make it easier for researchers and readers to 
explore difficult signal processing problems. Second, there are many software engi- 
neering problems in designing a system that allow users to move between different 
types of simulations and include the necessary tools for a complete system. 

Several improvements to the mathematical symbolic manipulation world 
would be nice to see. More powerful symbolic tools will allow more difficult DSP 
problems to be solved without resorting to brute force. Allowing the user to specify 
the cost of mathematical operations and then automatically optimize an algorithm 
as is done with ADE would make it easier to realize the solution to a DSP problem 
using the available hardware. Finally, better support for strictly numerical calcula- 
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tions will allow a system to be designed and the resulting algorithm applied to real 
data. All of these improvements would make it easier to write an interactive note- 
book to describe the solution to a signal processing problem. 

The remaining problem is one of software engineering. Symbolically manipu- 
lating mathematical symbols is only part of the problem. An author of an interactive 
signal processing document will need other tools. Tools such as text formatters, 
spelling checkers, and drawing programs are needed but probably not within the 
domain of expertise of most people designing signal processing environments. A 
software component system is one solution to this problem. 
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