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Abstract—Driven by a wide range of essential applications, significant achievements have recently been made to explore WiFi-based

Human Activity Recognition (HAR) techniques that utilize the information collected by commercial off-the-shelf (COTS) WiFi

infrastructures to infer human activities without the need for the subject to carry any devices. Although existing WiFi-based HAR

systems achieve satisfactory performance in some instances, they are faced with a severe challenge that the impacts of ubiquitous Co-

channel Interference (CCI) on WiFi signals are inevitable. This downgrades the performance of these HAR systems significantly. To

address this challenge, we propose PhaseAnti in this paper, a novel WiFi-based HAR system to exploit the CCI-independent phase

component, Nonlinear Phase Error Variation (NLPEV), of WiFi Channel State Information (CSI) to cope with the negative effects of

CCI. The stability of NLPEV data and the sensibility of this component to motions are rigorously analyzed. Furthermore, validated by

extensive properly designed experiments, this phase component across subcarriers is invariant under various CCI scenarios while

sufficiently distinct for different motions. Therefore, the NLPEV data can be used and processed effectively to perform HAR in CCI

scenarios. Extensive experiments with various daily activities in different indoor rooms demonstrate the superior effectiveness and

generalizability of the proposed PhaseAnti system under various CCI scenarios. Specifically, PhaseAnti achieves a 96:5% recognition

accuracy rate (RAR) on average in different CCI scenarios, which can improve up to a 16:7% RAR compared with the amplitude

component in the presence of CCI. Furthermore, the recognition speed is 10.3 � faster than the state-of-the-art solution.

Index Terms—Activity recognition, WiFi-based, co-channel interference, interference-independent component

Ç

1 INTRODUCTION

WITH the widespread deployments of the Internet of
Things (IoT), Human Activity Recognition (HAR) has

become a crucial service in many IoT applications, such as
smart cities, smart homes, and healthcare [1]. Significant
attention has been received from both academia and indus-
try, with diverse solutions based on cameras [2] and wear-
able sensors [3]. However, camera-based approaches have
the fundamental limitations of requiring enough light, and
the privacy leak problem cannot be ignored. Wearable sen-
sor-based approaches are sometimes inconvenient and
uncomfortable due to the sensors that subjects have to wear
on their bodies. Recently, WiFi-based HAR systems [4], [5],

[6], [7] have been proposed since different human activities
cause distinct multipath distortions in WiFi signals. Their
key advantages over the camera and wearable sensor-based
systems are that they do not need light, preserve user pri-
vacy, and do not require subjects to carry any devices as
they rely on the signals reflected by the human body.

However, the crucial limitation of WiFi-based HAR sys-
tems lies in ignoring the impact of Co-channel Interference
(CCI) on WiFi signals, which results in a sharp drop in their
system performance under CCI scenarios. Unfortunately,
CCI becomes more ubiquitous due to the proliferating of
the number and types of WiFi devices in the last decade
and often varies due to the channel hopping mechanism [8].
Thus, it is almost impossible to find a channel that is clean
or only occupied by one device within the signal range. As
shown in Fig. 1, the mobile phone receives multiple router
signals in one place, but the spectrum of some router chan-
nels is overlapped with the connection channel spectrum.
Thus, CCI happens. Moreover, CCI has severe negative
effects on WiFi signals, e.g., the reduction of received packet
number [8], the confusion of signal amplitude [9], and the
weakening of subcarrier correlation [10], which further
results in the degradation of WiFi HAR system perfor-
mance. Therefore, an anti-CCI WiFi-based HAR system to
recognize motions accurately in CCI scenarios is necessary
and valuable.

Indeed, for an anti-CCI HAR system, the signal compo-
nent used for recognition should be invariant across various
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CCI scenarios and time but sensitive and distinct for differ-
ent motions. If the signal component itself changes with CCI,
it is difficult to extract the only motion-related part from this
signal component. However, the Channel State Information
(CSI) amplitude used by most WiFi-based HAR systems [5],
[11], [12] is varying in CCI scenarios since different devices
within the signal coverage adjust their transmitter power to
better compete for the channel [10]. Thus, CSI amplitudes do
not satisfy the requirement of the anti-CCI signal component.
Fortunately, CSI phases are not affected by the varying trans-
mission power caused by CCI. Therefore, the CCI-indepen-
dent component can be extracted from the CSI phase.

Three challenges need to be formally addressed before
realizing a novel anti-CCI CSI-based HAR system.

� Varying CSIs: The CSI amplitude used by most state-
of-the-art HAR systems is varying when CCI
changes. In addition, due to the significant variations
caused by noises and the unsynchronized time and
frequency at transmitter and receiver, the CSI phase
initially contains many errors [13], and these phase
errors are difficult to eliminate. Therefore, it is chal-
lenging to extract the CCI robustness and only
motion-related signal component from varying CSIs.

� Based on universal equipment: The specialized radio fre-
quency equipment can select a unique channel to
avoid CCI, and the impact of CCI can also be
degraded by boosting the transmitter power. How-
ever, these methods are expensive to implement in
daily life or have side effects on otherwireless signals,
e.g., Bluetooth and Zigbee. Thus, how to realize the
complex function of anti-CCI with universal equip-
ment becomes a questionworthy of consideration.

� Varying CCI scenarios: The impact levels of various
CCI scenarios on CSIs are distinct. Therefore, a fixed
scheme is unsuitable for all cases since the tradeoff
between accuracy and recognition speed in different
CCI scenarios is distinct. Apparently, how to design
a flexible scheme to deal with different CCI scenarios
validly becomes an inevitable problem.

To tackle these challenges, we propose PhaseAnti, an
anti-CCI HAR system based on WiFi CSI. Specifically, in
CCI-scenarios, by eliminating irrelevant errors, the phase
component Nonlinear Phase Error Variation (NLPEV) is
leveraged from the commercial off-the-shelf (COTS) WiFi
device since this component keeps constant for various CCI
scenarios and contains motion information. By using this
extracted phase data to perform HAR in CCI scenarios, the

activity can be recognized accurately with a low recognition
time. On the contrary, in non-interfering scenarios, the
amplitude data are exploited to further improve the recog-
nition speed.

In total, we make the following contributions:

� We propose a novel Anti-interference, Non-intrusive
HAR system PhaseAnti leveraging CSI from a single
COTS WiFi device. As far as we know, this work is
the first to present a CCI-independent component of
WiFi signals and the first to exploit the CSI phase
component to perform HAR in CCI scenarios. We
carefully verify the invariance of the proposed com-
ponent NLPEV to various CCI scenarios and the dif-
ference of this component to different activities.

� Instead of simply using a fixed component, we
design a flexible scheme to adaptively choose differ-
ent WiFi CSI components in different CCI scenarios
to better balance the recognition accuracy rate (RAR)
and the recognition speed of the system. Specifically,
the NLPEV is exploited in CCI scenarios to improve
the system performance, and the amplitude is used
in non-interfering scenarios for further boosting the
recognition speed.

� Extensive experiments with different activities have
been performed in various CCI scenarios. The results
show that PhaseAnti improves up to 19:7% RAR on
average in the presence of complex CCI, reaching
96:9%, and the recognition speed is 10:3� faster than
the pioneer anti-CCI HAR solution [10].

The rest of the paper is organized as follows. Section 2
discusses the related works. Then, we present the prelimi-
naries of CSI and the analysis of NLPEV data in Section 3.
Next, we describe the PhaseAnti system design in Section 4.
Implementation, evaluation, and the impacts of various fac-
tors on PhaseAnti performance are presented in Section 5.
Finally, we conclude our work in Section 6.

2 RELATED WORK

According to the signal employed for motion detection,
existing device-free wireless sensing systems can be broadly
classified into three categories: Dedicated Radio Frequency
(DRF)-based, Received Signal Strength Indication (RSSI)-
based, and CSI-based. Specifically, there are three require-
ments for these HAR systems, including informative meas-
urements, universal, and robustness to CCI.

� Informative measurements: Contain information to rec-
ognize different activities accurately.

� Universal: Use existing equipment or deployable on
COTS infrastructures and do not affect other
functions.

� Robustness to interference: Mitigate or eliminate the
effects of CCI.

To summarize the pros and cons of different wireless
sensing HAR methods, a Venn diagram with the three fea-
tures of informative measurements, universal, and robust-
ness to CCI is drawn in Fig. 2. This diagram is employed to
differentiate various approaches and shows which solution
can deal with which requirements.

Fig. 1. Indoor environment of electromagnetic.
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DRF-Based. Fine-grained radio frequency signals can be
collected by the dedicatedly designed hardware [14], [15],
[16]. WiSee [14] used Universal Software Radio Peripheral
to capture the Doppler shift in body reflected signals to rec-
ognize a set of nine gestures with high accuracy. TagFree
[16] employed the Thingmagic reader to collect the multi-
path signals from different RFID tags to classify the working
motions. Although the RARs of these systems are usually
satisfactory, the specialized equipment used by these meth-
ods is irreplaceable but expensive. Thus, DRF-based sys-
tems are expressed as a black circle in Fig. 2.

RSSI-Based. RSSI is an indication to measure the power of
received radio signals. Since different activities cause dis-
tinct RSSI fluctuations, activities can be recognized accord-
ingly by effective signal processing. PAWS [6] explored
WiFi ambient signals to establish RSSI fingerprints of differ-
ent activities. Wigest [7] leveraged RSSI changes to sense in-
air hand gestures around the mobile device. However, the
RSSI used by these methods falls entirely in the time
domain, while the frequency domain is totally neglected.
Suffering from performance degradation due to the multi-
path effect is also a problem for RSSI-based systems. There-
fore, a blue diamond in Fig. 2 can clearly represent RSSI-
based HAR systems.

CSI-Based. In contrast, CSI is a fine-grained value derived
from the physical layer of the COTS WiFi device. Features
are descriptions of activities from different perspectives,
i.e., time domain and frequency domain. Thus, compared
with RSSI, more information can be obtained from CSIs.

Many good solutions have been proposed. E-eyes [17]
presented location-oriented activity identification, such as
cooking and gaming. The profile can be adaptively updated
by E-eyes to accommodate the movement or replacement of
wireless devices, and thus the day-to-daymotion profile was
calibrated. Considering that traditional methods are based
on similarity classification to achieve recognition, CARM
[18] first quantified the correlation between CSI value
dynamics and humanmovement speeds as well as the corre-
lation between the movement speeds of different human
body parts and a specific human activity. By this way,
CARMquantitatively built the correlation betweenCSI value
dynamics and a specific human activity for the more robust
recognition of motions. FinderDraw [19] proposed a CSI-
quotient model leveraging two antennas of aWiFi receiver to
achieve finger motion sensing. However, the metal plate
with the specific dielectric coefficient is necessary for Finder-
Draw to act as a perfect signal reflector. The Convolutional
Neural Network was used by SignFi [20] as the classification
algorithm to process WiFi packets for the sign language

gesture recognition. Widar 3.0 [21] developed a one-fits-all
deep learningmodel to fully exploit spatial-temporal charac-
teristics of the proposed domain-independent feature for
gesture recognition. Comparedwithmachine learningmeth-
ods, these two deep learning classifiers achieve more satis-
factory performance but cost more recognition time.
FallDeFi [22] employed the conventional Short-Time Fourier
Transform to extract time-frequency features and a sequen-
tial forward selection algorithm to single out features that
are resilient to environmental changes to further achieve a
high fall detection rate. The relation between Doppler shifts
and motion directions was calculated by WiDance [23] to
achieve the human-computer interaction on the dance-pad.
PhaseBeat [24] exploited the CSI phase difference to monitor
breathing and heartbeats. However, these existing works
based on WiFi do not consider the impacts of CCI caused by
other WiFi devices, and their experimental results are based
on a non-CCI environment. Furthermore, the performance of
these systems degrades due to CCI. Based on these reasons,
these traditional CSI-based HAR systems are expressed as a
green octagon.

The specialized radio frequency equipment can select a
unique channel to avoid CCI (represented by a yellow
oval), and the impact of CCI can also be degraded by
increasing the transmitter power (expressed by a gray hexa-
gon). However, since these approaches are expensive to
implement in daily life or have side effects on other wireless
signals, e.g., Bluetooth and Zigbee, these methods do not
satisfy the universal requirement. Although WiAnti [10]
proposed a subcarrier selection algorithm to select the most
informative subcarriers to realize anti-interference, this
algorithm still stays at the signal processing level and does
not propose the CCI-independent CSI component. Further-
more, the varying CSI amplitude caused by CCI limits its
performance.

To overcome these drawbacks, we present PhaseAnti, a
CSI-based HAR system that is robust to CCI. Inspired by
the prior works, our work’s contribution lies in obtaining
the CCI-independent CSI component NLPEV. To the best of
our knowledge, it is the first to leverage the CCI-indepen-
dent CSI component from a COTS WiFi device to recognize
activities accurately in CCI scenarios. This means the pro-
posed system PhaseAnti satisfies all three requirements.

3 PRELIMINARIES AND OBSERVATIONS

3.1 Overview of Channel State Information

Network interface cards (NICs) continuously capture varia-
tions in the wireless channel using CSI, which is fine-
grained physical layer information and characterizes the
Channel Frequency Response (CFR) of the wireless channel
[8]. CSI reveals the channel characteristics experienced by
the received signals, such as the effect of scattering, multi-
path effect, and power decay [9]. Since WiFi systems com-
monly apply Orthogonal Frequency Division Multiplexing
(OFDM) technology, the channel between each transmitter-
receiver (Tx-Rx) antenna pair consists of multiple subcar-
riers [11]. Let XXi and YY i be the frequency domain represen-
tations of the transmitted and the received signals of the ith

Tx-Rx pair, respectively. Hence, the two signals can be
related by the expression

Fig. 2. Difference among various wireless signal-based HAR systems.
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YY i ¼ HHiXXi þ ssi; (1)

where HHi is the complex-valued CFR of the ith Tx-Rx pair,
which can be estimated by transmitting a known preamble
of OFDM symbols between the transmitter and the receiver
[11], and ssi is the additive white Gaussian noise [24].

As the IEEE 802.11n standard [8] is a protocol based on
OFDM technology, the 2.4 to 2.4835GHz band is divided
into 14 channels, where each channel has 56 subcarriers in
20M bandwidth. Therefore, the estimated value of HHi for 56
subcarriers can be represented as

HHi ¼ ½hhi
ð1Þ; hhi

ð2Þ; . . . ; hhi
ðkÞ; . . .hhi

ð56Þ�; (2)

where hhi
ðkÞ is complex-valued CFR of the kth subcarrier in

ith Tx-Rx pair. CSI measurements basically contain these
CFR values, and hhi

ðkÞ can be expressed as

hhi
ðkÞ ¼ hhi

ðkÞ�� �� � e�j�ffhhiðkÞ ¼ Ii
ðkÞ þ jQi

ðkÞ k 2 KK; (3)

where hhi
ðkÞ�� �� and ffhhi

ðkÞ denote the amplitude and the phase
of kth subcarrier in ith Tx-Rx pair. Besides, the raw CFRs
estimated in NICs can also be recorded as the I=Q signal. I
and Q are the in-phase component and the quadrature com-
ponent, respectively. KK contains the subcarrier indexes.
Although the WiFi system has 56 subcarriers over a 20 MHz
channel, the Intel 5300 NIC we use can only report CSI for
30 of the 56 subcarriers [4]. Specifically, for the Intel 5300
NIC, KK ¼ ½�28;�26; . . . ;�2;�1; 1; 3; . . . ; 27; 28�. The phase
ffhhi

ðkÞ (ff) can be calculated from the I=Q component

ff ¼ arctan
Q

I

� �
: (4)

3.2 Effect of Motion on CSI

Since human bodies and surrounding objects reflect radio
signals, a transmitted signal arrives at the receiver through
multiple paths. If a wireless signal (kth subcarrier in ith Tx-
Rx pair) arrives at the receiver through � different paths,
hhi

ðkÞð#; tÞ can be given by the following equation [18], [25]

hhi
ðkÞð#; tÞ ¼ e�j�2pD#t X�

}¼1

$}ð#; tÞ � e�j�2p#t} ðtÞ; (5)

where j is the imaginary unit, # denotes the kth subcarrier
frequency, $}ð#; tÞ denotes the complex-valued representa-
tion of attenuation and initial phase offset of the }th path,
and e�j�2p#t} ðtÞ is the phase shift on the }th path which has a
propagation delay of t}ðtÞ. In addition, e�j�2pD#t is the phase
shift caused by the subcarrier frequency difference between
the transmitter and the receiver.

The movements indeed cause CSI fluctuations by chang-
ing the electromagnetic distribution in the environment.
According to [13], [18], [25], the path length changing by one
wavelength causes the receiver to experience a phase shift of
2p in the corresponding subcarrier. Furthermore, since
human movements change different path phases at the
receiver, the different paths are superimposed according to
the new phase relationship [9], which finally results in the
fluctuations of subcarrier amplitudes. Thus, human activities
make both phases and amplitudes fluctuate. Additionally,

PhaseBeat [24] demonstrates that the true phase at the
receiver is a periodic signal for the same frequency with the
periodic activity. Therefore, the movement frequency can be
captured by the corresponding CSI frequency responses.

3.3 Impact of CCI on CSI

The negative impacts of CCI on CSI significantly down-
grade the recognition performance of the WiFi-based HAR
systems. Specifically, three main negative effects are intro-
duced as follows.

First, the sampling rate is reduced by CCI. According to
the Carrier Sense Multiple Access with Collision Avoidance
mechanism, a node can send packets only when it detects
that the working channel is idle. The waste of time is inevi-
table for the nodes to wait for the channel idle, which even-
tually leads to the number reduction of the packets received
per unit time. Therefore, the sampling rate of the HAR sys-
tem is reduced accordingly, and the motion capture ability
of the WiFi-based HAR systems downgrades.

Second, CCI weakens the subcarrier correlation, which
leads to the data dimensionality reduction algorithms of the
state-of-the-art HAR systems invalid. This is because the data
dimensionality reduction algorithms of most existing WiFi-
based HAR systems [5], [10] rely on the strong correlation of
subcarriers.However, to copewithCCI, different nodeswithin
the range increase the energy of subcarriers in the overlapping
area, which leads to the energy imbalance between subcarriers
and weakens the subcarrier correlation. The weak subcarrier
correlation makes these data dimensionality reduction algo-
rithms ineffective and ultimately leads to the performance
degradation of theseWiFi-basedHAR systems.

Third, CCI makes the difference between different sam-
ples of the same motion under different CCI conditions
become significant, which affects the normal classification
of the activity. Since different CCI conditions in the varying
CCI scenario lead to different subcarrier energy distribu-
tions, for the same activity, the power difference between
the different motion samples under different CCI conditions
becomes larger, which directly leads to the unstableness of
the activity features and further downgrades the recogni-
tion performance of the WiFi-based HAR systems.

CCI is very universal, and it can significantly affect the
performance of the existing WiFi-based HAR systems.
Therefore, it is necessary to propose a CCI robust WiFi-
based HAR system for accurately recognizing human activi-
ties in various CCI scenarios.

3.4 NLPEV

Due to the unstable signal transmission environment and
imperfect hardware design, the receiver’s measured phases
are different from the phases at the transmitter. Generally,
the phase difference between transmitter and receiver can
be grouped into two categories, i.e., linear phase error (LPE)
and nonlinear phase error (NLPE) [26]. Particularly, LPE
and NLPE mean that the phase errors vary linearly and
nonlinearly with subcarrier indexes, respectively.

According to [13], [25], [27], for a particular pair of trans-
mitter and receiver, the subcarrier phases ff measured at the
receiver can be expressed as
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ff ¼ ’’re þ LLpbd þ LLsfo þ LLcfo þ LLtof þNNto; (6)

where ’’re represents the real phases at the transmitter. LLpbd,
LLsfo, LLcfo, and LLtof denote the phase offsets due to packet
boundary detection (PBD), sampling frequency offset
(SFO), carrier frequency offset (CFO), and time of flight
(ToF) respectively, and these phase offsets are LPEs [27].
According to [26], imperfect hardware design causes an
NLPE. Besides, by affecting multipath, the activity also
causes an NLPE [18]. Thus, the last element NNto can be writ-
ten as

NNto ¼ NNha þNNmo; (7)

where NNha and NNmo are the NLPEs caused by imperfect
hardware design and human motion, respectively. Since
NNha is proved to be a constant for each specific NIC [26], the
change of NNto equals the variation of NNmo caused by human
movements. Therefore, by comparing the NNto in the move-
ment with the NNem

to in an empty room without the human
motion, the NLPE NNmo caused by human movements can
be estimated as

NNto �NNem
to ¼ NNha þNNmo � ðNNha þNNem

moÞ
NNmo ¼ NNto �NNem

to ;
(8)

where NNem
mo is the variation of NLPE without the human

motion and equals to 0 [26]. Thus, NNmo can be estimated by
Nonlinear Phase Error Variation (NLPEV) when NICs are
fixed. Section 4 shows the specific derivation process of
NNmo. The NLPEV means the variation of the nonlinear
phase error. In particular, most authoritative related works
[24], [26], [27], [28] define the phase difference between the
phases ff measured at the receiver and the real phases ’’re at
the transmitter as the phase errors. Since the proposed com-
ponent is the variation of the nonlinear part of these phase
errors, we call the proposed component as Nonlinear Phase
Error Variation (NLPEV).

4 SYSTEM DESIGN AND METHODOLOGY

4.1 System Overview

To make the WiFi-based HAR system robust to CCI, we
design PhaseAnti, and its framework is shown in Fig. 3.
First, we consider the classification of ten common activities
or states. Specifically, nine different activities (standing,
walking, running, sitting, push-ups, lift dumbbells, squats,
stoop-down, and sit-ups) and a reference state (the empty
room) are designed to observe the impacts of CCI on CSI
signals with or without human movement. The sketch of
each motion is shown in Fig. 4. The activities are divided
into two categories, i.e., in-place activities (IPAs) and walk-
ing activities (WAs), according to whether they contain loca-
tion changes. The IPAs are standing, sitting, push-ups, lift
dumbbells, squats, stoop-down, and sit-ups. The WAs are
walking and running. The walking and running motions
are the shuttle walk and the shuttle run, respectively. It is
worth mentioning that the PhaseAnti system can be easily
extended according to specific motions in other real-life
applications.

Fig. 3. PhaseAnti workflow.

Fig. 4. Activity set: nine regular motions and one reference state.
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The PhaseAnti system workflow mainly contains four
parts: Judgment of CCI, Adaptive Data Processing, Feature
Extraction, and Classification. Since different CCI states,
e.g., non-interfering, and CCI existing, have distinct impacts
on CSI, to better balance the recognition performance and
the recognition speed of the system, the CCI state is first
detected. The CCI existence is determined by recording the
number of received frames per unit time due to the fact that
the existence of CCI causes the number of received frames
per unit time to decrease [10].

Next, according to the judgment result, different sig-
nal components are extracted and processed accordingly
to cope with different CCI scenarios. Specifically, in CCI
scenarios, the NLPEV information is extracted to miti-
gate the impacts of CCI on CSI since this component is
CCI-independent. On the contrary, in non-interfering
scenarios, the amplitude information is employed to fur-
ther reduce the calculation complexity. After the HAR
CSI component is determined and extracted, the same
data processing algorithms, i.e., Hampel Filter, the similar
motion morphology-based segmentation, and the PCA-
based subcarrier fusion, are used for high-frequency
noise elimination, motion segmentation, and data dimen-
sion reduction, respectively.

Then, PhaseAnti applies the Discrete Wavelet Transform
(DWT) on the processed CSI component to obtain the
motion shape features. In this part, WAs and IPAs are first
distinguished based on the DWT threshold since they have
the essential difference that is whether this activity contains
position changes. For WAs, due to the fact that different
WAs have direct frequency difference of the movement, to
further reduce system computation cost, these activities are
directly classified by the threshold of the fixed scale DWT
coefficients. For IPAs, since the frequency difference
between these activities is not apparent and the main differ-
ence is reflected on the motion shapes in the time domain,
the DWT features are first extracted from these motion
shape waveforms and then fed into the classification part
for the final activity recognition.

Finally, the classification models are generated by feed-
ing these motion shape features to recognize the specific
IPA. PhaseAnti trains an ensemble classifier voted by each
classifier of Tx-Rx pair components to generate a classifica-
tion model for each IPA using the training NLPEV data.
We choose the k-Nearest Neighbor (kNN) classifier since it
essentially searches the entire feature space to match the
shape features with high efficiency [11]. Thus, it is most
suitable for CSI data classification. Unlike the traditional
kNN, PhaseAnti employs the Dynamic Time Warping
(DTW)-based distance metric while training the kNN clas-
sifier to better compare the shape features of any two
motions.

4.2 CCI Detection

In non-interfering environments, the channel is only occu-
pied by one device in the range. This device sends and
receives frames as usual, and hence the number of received
frames per unit time is not decreased and stays almost
invariant. Whereas in CCI scenarios, the probability that
this device senses an ongoing transmission becomes larger,

and the number of delay increases [10], which finally leads
to a decrease of the received frame number per unit time.
Therefore, by recording the number of received frames per
unit time, the CCI existence is judged.

Fig. 5 depicts the number of frames received by the rec-
ognition laptop in six minutes as the channel of the only one
interference AP varies. We repeat each experiment ten times
and take the average as the number of received frames per
unit time to reduce errors. When the channel of the recogni-
tion AP is channel 6, the number of received frames per unit
time first decreases rapidly, then rises quickly, and finally
stabilizes. This is because CCI exists when the adjacent
space between two channels is less than 4, which results in
the decreasing of the received frame number per unit time.
Similar results are obtained when the recognition AP is set
to channel 1 and channel 9. In particular, the CCI existence
is determined by the following equation:

P � S � trej j
S � tre

< THpa; (9)

where P is the number of received frames during time tre,
and S represents the sampling rate. THpa is the threshold
corresponding to this equation. Eq. (9) limits that the differ-
ence between the number of the received frames during
time tre and that received in the non-interfering scenario
during time tre should within a given threshold THpa. THpa

is an empirical value independent of different CCI scenar-
ios. Although the CCI is different in different CCI environ-
ments, the non-interference states of different environments
are similar. We find that when the THpa is set to 0.069, any
CCI environment that satisfies Eq. (9) does not affect the
accuracy of the amplitude component used for motion rec-
ognition and can be considered as the non-interfering sce-
nario. Since 0.069 is the dividing line of the CCI intensity
whether the amplitude value is affected by CCI in different
environments, we set the value of THpa to 0.069 to deter-
mine the existence of CCI.

4.3 Phase Data Processing

Phase Extraction and Unwrapping. As introduced in Section 3,
the raw phases at the receiver can be measured according to
Eq. (4). However, as shown in Fig. 6, the raw phases distrib-
ute between �p and p due to the periodicity of the tangent
function, which leads to the ambiguity of the subcarrier
relationship. Therefore, to recover the real phases of all sub-
carriers, the raw phases are unwrapped by tracking the cor-
responding periodic integers of subcarriers [26]. With such
unwrapping, the unwrapped phases of each subcarrier
become an approximately linear curve.

Fig. 5. The number of received frames in six minutes.
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Algorithm 1. Phase Filter Based on Gradient Fluctuations

Input: subcarrier phases of frames UU ¼ fff1;ff2; . . .g.
Output: randomly changing phase frame indexes IndexIndex.
1: for i :¼ 1; i <¼ lengthðUUÞ; iþþ do
2: GGi :¼ gradientðffiÞ. //Gradient of phases.
3: RRi :¼ gradientðGGiÞ.
4: var :¼ 0. //Variation of gradient.
5: for k :¼ 1; k <¼ 30; kþþ do
6: var :¼ varþ absðRi

kÞ.
7: end for
8: if var=ð30� ðmaxðRRiÞ �minðRRiÞÞÞ > �hmax then
9: Index:addIndex:addðiÞ.
10: end if
11: end for
12: return IndexIndex.

Gradient Estimate and Phase Compensation. Due to the low
RSSI of received signals and the unstable CSITOOL [4], not
all subcarrier phases are measured accurately and
unwrapped successfully [26], [27]. Moreover, these incor-
rectly measured phases are harmful to HAR due to phase
aliasing. Thus, it is necessary to eliminate and then smooth
the incorrectly measured phases of the sampled CSI frames.
Fig. 7a depicts that some incorrectly unwrapped phases
(marked with black triangles) change from one subcarrier to
another subcarrier randomly with different gradients. As
shown in Fig. 7b, we observe that the gradients of regularly
changing phases are more concentrated than the gradients
of randomly changing phases (marked with red circles).
Also, the gradient variances of randomly changing phases
are steep and prominent in all frames (marked with black
rectangles). To find the frames with incorrectly measured
phases, inspired by the above observation, we design an
algorithm based on the phase gradient fluctuation threshold

to seek out the frames with larger phase gradient fluctua-
tion. Algorithm 1 describes the searching process. Specifi-
cally, the gradient is a MATLAB function that calculates the
numerical gradient. We first use the gradient function twice
to calculate the two-step gradient of different subcarrier
phases in one frame (e.g., 30 subcarriers for CSITOOL).
Then, we calculate the average of the absolute values of the
subcarrier two-step gradients. Finally, by employing the
Min-Max Normalization algorithm to normalize the average,
we calculate the final phase fluctuation metric, and its range
is between 0 and 1.

From the cumulative distribution of the normalized gra-
dient variances shown in Fig. 7c, we observe that the frames
with randomly changing phases (larger variance) are few in
all frames. Furthermore, Fig. 7b shows that these frames
appear discontinuously. Thus, the frames with randomly
changing phases can be smoothed and compensated to cap-
ture motions continuously. Specifically, the moving average
filtering [29] with time weight is exploited to smooth the ran-
domly changing phase frames. The smoothed phases of the
frames in the IndexIndex can be expressed

ff0 ¼ 1

Norj j
X
i2Nor

ffi Nor � W (10)

Wj j ¼ S � tact; (11)

where ff0 are the smoothed subcarrier phases, and W is the
window set of the moving average filter, whose size is deter-
mined by the sampling rate S and the motion-related time
factor tact. To minimize the deviation caused by smoothing,
based on empirical knowledge, tact is set to 0.3s.Nor is the set
of correctly unwrapped frames in W , and Norj j is the num-
ber of the correctly unwrapped frames inW .

Elimination of Environmental Impacts. As introduced in
Section 3.4, the subcarrier phases ffmeasured at the receiver
can be expressed as

ff ¼ ’’re þ LLpbd þ LLsfo þ LLcfo þ LLtof þNNto: (12)

In particular, the phase errors of PBD (LLpbd) and SFO
(LLsfo) in the same frame are related to the subcarrier index
setKK, which can be represented as

LLpbd ¼ 2pa �KK (13)

Fig. 6. Phase unwrapping.

Fig. 7. Unwrapped phase observation and filtering.
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LLsfo ¼ 2pb �KK; (14)

where a and b are constant depending on PBD and SFO.
The offset of ToF LLtof is related to subcarrier frequencies

LLtof ¼ 2ptfFF; (15)

where tf is ToF and affected by device locations. FF is the set
of subcarrier frequencies represented by the center subcar-
rier frequency fc, the identity matrix~q~q, the frequency differ-
ence between two adjacent subcarriers fb (equals to 312.5
kHz [8]), and the subcarrier index set KK, i.e., FF ¼
fc �~q~q þ fbKK. Therefore, the phase error caused by ToF LLtof

can be rewritten as

LLtof ¼ 2ptfFF

¼ 2ptfðfc �~q~q þ fbKKÞ
¼ 2ptffc �~q~q þ 2ptffbKK

¼ ZZ þ 2ptffbKK;

(16)

where 2ptffc �~q~q is independent of KK. In one frame, tf is a
constant value, thus we use ZZ to replace the first part. In
this respect, the phase measured at the receiver can be refor-
mulated as

ff ¼ ’’re þ LLpbd þ LLsfo þ LLcfo þ LLtof þNNto

¼ ’’re þ 2pa �KK þ 2pb �KK þ LLcfo þ ZZ þ 2ptffbKK þNNto

¼ ’’re þ 2pðaþ bþ tffbÞKK þ LLcfo þ ZZ þNNto

¼ ’’re þ 2p� �KK þ LLcfo þ ZZ þNNto:

(17)

For a specific frame, � is a constant value and represents
the sum of a, b, and tffb. Besides, LLcfo is also a constant for
each subcarrier in the same frame and can be estimated by
ff [13]. Thus, we use CC to replace the sum of LLcfo and ZZ.
Then the received phases can be rewritten as

ff ¼ ’’re þ 2p� �KK þ CC þNNto

¼ 2p� �KK þ ð’’re þ CCÞ þNNto

¼ 2p� �KK þ C	C	 þNNto;

(18)

where C	C	 contains the real phase ’’re and the constant CC.
According to [13], C	C	 can be estimated by the phases of a
pair of mirror subcarriers measured at the receiver. Specifi-
cally, we sum the phases (f�1 and f1) measured at the
receiver of a pair of mirror subcarriers -1 and 1 (subcarriers

15 and 16 in CSITOOL) as the following equation:

f�1 þ f1 ¼ 2p� � ð�1þ 1Þ þ 2 � C	C	 þNto;�1 þNto;1

¼ 2 � C	C	 þNto;�1 þNto;1;
(19)

where Nto;�1 and Nto;1 are the NLPEs of subcarrier -1 and
subcarrier 1 respectively, and Nto;�1 þNto;1 
 0 [26]. There-
fore, C	C	 can be calculated approximately as

C	C	 
 f�1 þ f1

2
: (20)

Here, C	C	 is subtracted from the phases of all received
frames for the elimination of environmental impacts. In par-
ticular, the elimination of environmental impacts is neces-
sary to extract the CCI-independent phase component NNmo.
This is because different environments cause different LPEs
on CSI. If this effect is not filtered out, the remaining part is
not only be related to the activity but also related to the spe-
cific environment. However, since we want to extract the
only activity-related component to perform HAR, it is very
important to filter out environmental impacts. As shown in
Fig. 8a, after eliminating the environmental impacts, the
normalized phases across subcarriers are evenly distributed
on both sides of Y = 0 and approximately centrosymmetric.

Elimination of Hardware Impacts and Obtain NLPEV. After
eliminating the environmental impacts, the total NLPE NNto

caused by imperfect hardware design and human motion
can be expressed as

NNto 
 ffE � 2p� �KK; (21)

where ffE denotes the normalized phases after subtracting
C	C	. Since C	C	 is obtained through an approximately equal
relationship, this processing generates a bias in ffE . To
obtain a relatively steady NLPE NNto and to mitigate the bias
generated by eliminating the environmental impacts, simi-
lar to [26], we use the deviation between the normalized
phases ffE and the fitted line gg to represent the stable NLPE
NNst

to. Particularly, the fitted line gg is generated by connecting
two points, i.e., ð�28;fE;�28Þ and ð28; fE;28Þ, which can be
expressed as

gg ¼ slope �KK þ bias

¼ fE;28 � fE;�28

56
�KK þ fE;�28 þ fE;28

2
:

(22)

Here bias is not equal to C	C	 since C	C	 is the deviation of
the curve after unwrapping while bias is the bias of the

Fig. 8. Normalized phases and obtained NLPEV data.
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fitted straight line gg. After the fitted line gg is determined, the
stable NLPENNst

to can be obtained by

NNst
to ¼ ffE � gg: (23)

Since the NLPE caused by the imperfect hardware design
NNha is a constant for the specific network card [26] and NNem

mo

equals 0 when there is no motion in the range, we can calcu-
late NNem

ha in an empty room without human motion

NNem
ha þNNem

mo ¼ ffE;em � ggem

NNem
ha ¼ ffE;em � ggem;

(24)

where ffE;em and ggem denote the normalized phases and the
fitted line in the empty room, respectively. Then, NNem

ha is
used to represent the NLPE caused by the imperfect hard-
ware design in all frames. Here, we subtract NNem

ha from the
stable NLPE NNst

to of each received frame for the elimination
of hardware impacts. Hence, the NLPEV NNmo caused by
human movements of each frame can be obtained by

NNmo ¼ NNst
to �NNem

ha

¼ ffE � gg �NNem
ha :

(25)

Hampel Filtering and Adaptive Segmentation. Since the DC
component and high-frequency noises affect motion seg-
mentation and feature extraction, to obtain robust NLPEV
motion samples, we perform the data calibration to remove
the DC component and the high-frequency noises. Specifi-
cally, we leverage Hampel Filter [30] to diminish the high-
frequency NLPEV glitches using a sliding window of 500
frames and the threshold of 0.01. Fig. 8b presents the
smoothed NLPEV data. The original NLPEV of all subcar-
riers has high-frequency noises. Nevertheless, after imple-
menting the proposed filtering scheme, the high-frequency
noises are removed. Subsequently, we use the dynamic slid-
ing window-based filtering algorithm [24] for the detrend of
the NLPEV. After removing the trend of the NLPEV, as
shown in Fig. 8b, the sum of the absolute values of each sub-
carrier NLPEV clearly shows that the same motion (marked
as red rectangles) has similar NLPEV fluctuations. Due to
the motion information loss, the sum of the absolute values
of each subcarrier NLPEV is not suitable for HAR. Thus,
Fig. 8b is only a schematic diagram showing that NLPEV
periodically fluctuates with the periodic activity. The spe-
cific processing of NLPEV is introduced in the PCA-based
Subcarrier Fusion part and Section 4.5.

Fig. 8c shows the NLPEV series patterns for the running
frames, which further verifies that NLPEV has similar
waveforms for periodic activities. Therefore, following the

Motion-Fi+ [15] work, the goal of our segmentation algo-
rithm is to find optimized start and end points, based on
which we can make the difference between each segmenta-
tion sample of one activity as small as possible. Since differ-
ent activity samples have different time durations, we
define the similarity of the two activity samples by stretch-
ing or compressing these activities to an equal length using
DTW. The specific algorithm can be found in Motion-Fi+
[15]. Besides, for the empty room and the activities with
small fluctuations, i.e., the standing, and the sitting in the
activity set, we use a sliding window with a fixed length of
500 to segment the samples.

PCA-Based Subcarrier Fusion. After the motion segmenta-
tion, the CSI motion waveforms of all subcarriers from each
Tx-Rx pair are extracted. In particular, we use Vi;k to repre-
sent the CSI waveform of ith motion sample extracted from
the kth Tx-Rx pair. We apply PCA on these CSI waveforms
to remove the noisy component and to perform subcarrier
fusion for data dimension reduction.

After performing PCA, top � principal components for all
cases of Vi;k are retained, including � � 1 motion compo-
nents and one noise component. Considering the tradeoff
between the projection contribution level of the component
and the computation complexity, we set � to 4. Next, we fol-
low the fluctuation variance-based algorithm [11] to deter-
mine the location of the noise component. Finally, the noise
component is removed accordingly from the top 4 principal
components Vi;k

1:4f g to get 3 motion component waveforms.

4.4 Amplitude Data Processing

To minimize computational cost, the amplitude information
( hhj j in Eq. (3)) is employed for realizing HAR in the scenar-
ios without CCI. Similar to NLPEV processing methods, the
Hampel Filter, the similar motion morphology-based seg-
mentation algorithm, and the PCA-based subcarrier fusion
approach, are employed for high-frequency noise filtering,
motion segmentation, and data dimensional reduction of
the amplitude data hhj j, respectively.

4.5 Feature Extraction

Due to the fact that the shapes retain both time and fre-
quency domain information of the waveforms and can intu-
itively reflect the impacts of motions on signals, we thus
employ the shapes of the motion waveforms as their fea-
tures for the activity classification. Figs. 9a and 9b show the
motion component waveforms after PCA from the first Tx-
Rx pair, and the noisy component is removed accordingly.
We can observe that the shape components of different
motions are quite distinct from each other after the suitable
processing.

Fig. 9. The motion component waveforms after PCA and the extracted DWT shape features of the selected PCA components, for the walking and
running motion samples from the first Tx-Rx pair.
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In addition, the computational complexity problem
needs to be further solved. Particularly, directly using the
extracted waveforms as motion features leads to the high
computational cost since the component waveforms contain
hundreds of data points for one motion sample. Therefore,
we apply DWT to compress these waveforms while main-
taining most of the time and frequency domain information.

Discrete Wavelet Transform. The DWT of a discrete sam-
pling signal can be written in terms of wavelet basis func-
tions as

y½n� ¼ 1ffiffiffiffi
B

p
X
k

n i0; kð Þ‘‘i0;kðnÞ þ
1ffiffiffiffi
B

p
X1
i¼i0

X
k

&ði; kÞrri;kðnÞ:

(26)

Where B is the length of the signal y½n�. The functions
‘‘i0;kðnÞ are scaling functions, and its corresponding coeffi-
cients n i0; kð Þ are known as approximation coefficients. Sim-
ilarly, the functions rri;kðnÞ are known as wavelet functions,
and the corresponding coefficients &ði; kÞ are called as detail
coefficients. To calculate approximation and detail coeffi-
cients, the orthonormal scaling and wavelet functions
should be first chosen. Based on the orthonormal basic func-
tions, the approximation and detail coefficients of the ith

scale can be expressed as

nði; kÞ ¼ 1ffiffiffiffi
B

p
X
n

y½n�‘‘iþ1;kðnÞ (27)

&ði; kÞ ¼ 1ffiffiffiffi
B

p
X
n

y½n�rriþ1;kðnÞ: (28)

In order to perform the satisfactory compression on the
selected PCA component waveforms using DWT, the
appropriate wavelet and scaling filters are needed. Specifi-
cally, we choose Daubechies D4 wavelet and scaling filters
since Daubechies D4 filters can perform orthogonal transfor-
mation faster [11] and have a better ability to characterize
the local features of the signal in both time domain and fre-
quency domain.

The DWT structure design is directly determined by the
movement frequencies of recognized activities. Considering
the motion frequency in the activity set, the average speed
of running is about 10km/h, not less than 5km/h, and the
corresponding cadence is 170 (2.833Hz) and 85 (1.417Hz),
respectively. According to Section 3.2, the true phase at the
receiver is a periodic signal with the same frequency as the
periodic movement, and thus the CSI frequency response
caused by the running motion is ranging from 1.417Hz to
2.833Hz. Similarly, since the walking speed is usually less
than 5km/h and its cadence is less than 85 correspondingly,
the frequency response of CSI caused by walking is less
than 1.417Hz. Besides, for other activities, i.e., sitting and
standing, the main motor element of these motions is the
heartbeat. Since the heartbeat of people in the stationary
state usually ranges from 60 to 110 per minute, the CSI fre-
quency response caused by these motions ranges from 1Hz
to 1.833Hz accordingly. Based on the above analysis and
combined with the 100 frames/s sampling rate, the DWT
structure scales are set to 5. Therefore, the DWT can obtain
an approximation coefficient nð5; kÞ (0 ! 1:5625Hz) and a

sequence of detail coefficients &ð1; kÞ; &ð2; kÞ; � � � ; &ð5; kÞ
(1:5625 ! 3:125Hz).

Activity Type Judgment. The WAs, e.g., walking and run-
ning, are difficult to distinguish from each other accurately
by traditional methods since the movement steps of these
two activities are extremely similar. Nevertheless, these
WAs are easy to be distinguished from IPAs since they have
the essential difference, which is whether this activity con-
tains position change. Therefore, before classifying the spe-
cific activity, the classification between WAs and IPAs is
performed. Specifically, the IPAs and the WAs are distin-
guished by the High-Frequency Energy (HFE) of CSI and
can be calculated by the detail coefficients for level 5

HFE ¼
XLen
k¼1

½&ð5; kÞ�2; (29)

where Len is the length of the detail coefficients &ð5; kÞ.
When HFE is larger than the threshold (THst), the activity is
judged as WA. Otherwise, the activity is judged as IPA.
Since there are too many factors affecting THst, even the
antenna feeder length and antenna gain can affect this
parameter, we cannot quantify the impact of various factors
in different environments on THst. Therefore, to deal with
this problem, in a new environment, we collect ten empty
room samples and ten walking samples, respectively, to
determine the specific threshold in this new environment.
Since these samples can be collected in a short time, the
threshold value in the new environment can be quickly and
easily determined. Specifically, according to Eq. (29), we
use the average of the maximum HFE value of ten empty
room samples and the minimum HFE value of ten walking
samples as the value of THst. By this way, the value of THst

in the conference room (Fig. 10) is 1.05.
Walking Activity Processing. Since the walking frequency

usually less than 1.417Hz and the running frequency nor-
mally larger than 1.417Hz, according to the DWT frequency
interval of the detail coefficients for level 5 (range from
1.5625 to 3.125Hz), the strength of the CSI frequency
response in this interval can directly determine whether it is
walking or running. Thus, when motions are judged as
WAs, the detail coefficients for level 5 are used to distin-
guish between walking and running. In particular, the aver-
age peak to peak (APTP) value of the detail coefficients for
level 5 is employed to recognize the specific WA. When the
APTP value is larger than the threshold (THrun), the motion
is regarded as running. Otherwise, the motion is classified
as walking. Similar to the calculation process of THst, in a
new room, we employ the average value of the maximum

Fig. 10. Evaluation scenario in a conference room.
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APTP of ten walking samples and the minimum APTP of
ten running samples as the value of THrun in this room.
According to this calculation method, the THrun in the con-
ference room (Fig. 10) is 0.512. Figs. 9c and 9d show the
detail coefficients for level 5 of running and walking sam-
ples. Since the movement frequencies of running and walk-
ing are different, the fluctuation range and frequency of
corresponding coefficients for these motions are obviously
different. Running motion has a more significant frequency
response on this fixed bandpass filter. Additionally, the
motion sequences are significantly shorter after the DWT
feature extraction, and the computation complexity is
reduced accordingly.

In-Place Activity Processing. When motions are regarded
as IPAs, combining the frequency range of these motions,
the sum of the approximation and detail coefficients for
level 5 is employed to extract the special shape features for
each motion. Then, these shape features of IPAs are fed to
the classification part for the final activity recognition.

4.6 Classification

After getting the DWT-based shape features of motions, Pha-
seAnti uses them to establish the training models for classifi-
cation. Since a comparison metric that provides the valid
measurement of similarity between different motion shape
features is crucial for classification, PhaseAnti employs DTW
to calculate the distance between two waveforms by realiz-
ing optimal alignment between them. Then, PhaseAnti trains
an ensemble of kNN classifiers using the DWT shape fea-
tures from all Tx-Rx pairs. Notably, PhaseAnti obtains deci-
sions from all classifiers in the ensemble and employs
majority voting to get the final selection. Here, the appliance
of DTW on the motion shape features and the training pro-
cesses of the ensemble classifier are explained in detail.

Dynamic Time Warping. DTW is a similarity measurement
by obtaining the minimum distance alignment between any
two waveforms. Compared with other measurements of
similarity, DTW is able to handle waveforms with different
lengths and allows a nonlinear mapping of one waveform
to another by minimizing the distance between these two
waveforms. Compared with euclidean distance, DTW can
show an intuitive distance between two waveforms by
determining the minimum distance warping path between
them even if they are shifted or distorted versions of each
other. In our experiments, PhaseAnti employs the open-
source implementation of DTW in the Machine Learning
Toolbox (MLT) [31] to realize this algorithm quickly.

Classifier Training. In order to obtainmultiplemotion char-
acteristics from different Tx-Rx pairs, the separate classifiers
for each of theses shape feature components are built. In par-
ticular, we build an ensemble of 3�MTx �MRx classifiers
using the kNN algorithm. The number 3 means the three
motion shape components projected by PCA from each Tx-
Rx pair.MTx andMRx are the antenna numbers of Tx and Rx,
respectively. Each classifier is trained using the correspond-
ing feature component. To recognize various activities accu-
rately, PhaseAnti puts the motion shape feature components
into their corresponding kNN classifiers and obtains a sepa-
rate decision from each classifier in the ensemble. Each kNN
classifier uses the DTW distance metric to search for the

majority class label among k nearest neighbors of the corre-
sponding motion shape features. The value of the parameter
k is 3. The 10-fold cross-validation algorithm [32] is used in
the proposedDTW-based kNNmethod to avoid over-fitting.
Specifically, for each fold in each CCI scenario, nine out of
ten samples for one motion are used as templates and one-
tenth of the samples for thismotion are used for testing. After
all folds complete the cycle, each sample is taken as a testing
sample once. In order to better compare the impact of differ-
ent CCI scenarios on CSI and make CCI as the only variable
to test system performance, for each CCI scenario in each
indoor room, the corresponding templates are all collected
from this scenario. Finally, PhaseAnti decides the final choice
throughmajority voting on the decisions of all kNN classifiers
in the ensemble.

5 EXPERIMENTAL EVALUATION

5.1 Implementation

In the experiments, we use two Lenovo laptops as a recogni-
tion access point (RAP) and a recognition laptop (RLTP),
respectively, both equipped with the Intel 5300 NIC with
three antennas. In addition, we employ three TP-link WiFi
routers as interference APs (IAPs) and three other laptops
as interference laptops (ILTPs). PhaseAnti is implemented
on the Ubuntu desktop 14.04 LTS OS for both RAP and
RLTP. PhaseAnti exploits the RLTP to collect per frame CSI
at a rate of 100 frames per second using CSITOOL [4].

We conduct extensive experiments with 8 persons over
one month. As shown in Fig. 10, the 4� 6:1m2 test room
includes a computer table and several chairs. As introduced
in Section 4.1, nine daily activities and a reference state, i.e.,
the empty room, are designed to observe the impacts of CCI
on CSI signals with or without human movements. The
WAs, i.e., walking and running are performed according to
the direction of the green arrow, while the IPAs are per-
formed at point 1.

A comparison experiment is given to measure the
impacts of various CCI on CSI, including the following
scenarios:

� Non-interfering scenario: RAP A is set to channel 1 and
forms a wireless link with RLTP E. AP B, laptop F,
and other devices are powered off.

� Simple and constant CCI scenario: Based on the above
setting, AP B is powered on and set to channel 3
since half of channel 3 subcarriers are overlapped
with the subcarriers of channel 1. Then, Laptop F is
powered on and connected to AP B with a 2.5MB/s
CCI interference traffic rate (ITR) (100 frames/s with
25000 bytes packet length).

� Complex and varying CCI scenario: In addition to the
above settings, laptops G and H are powered on and
connected to APs C and D, respectively. The ITRs of
laptops G and H are 1MB/s and 5MB/s, respec-
tively. Moreover, IAPs B, C, and D, are adjusted
from channel 1 to channel 5 to produce a varying
CCI since only channels 1 to 5 overlap with the chan-
nel of RAP A.

We examine the performance of single-user activity rec-
ognition in three given scenarios. For each participant in
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each CCI scenario, we collect 54 samples for each activity or
state. The activity is performed continuously when we col-
lect the CSI data for this activity. Therefore, a total of 3� 8�
10� 54 (12960) activity samples are collected for training
and testing.

5.2 Experimental Setting of Multipaths and NLOS

To comprehensively evaluate the performance of PhaseAnti
in different practical scenarios, we add two scenarios with
rich multpath and behind-wall cases, i.e., the student office
and the corridor. Specifically, the schematic diagrams of
these two scenarios are shown in Figs. 11a and 11b, respec-
tively. The 16:3� 10:4m2 office room contains multiple
desks and chairs. Since the office is big and spacious, we
can also test the effective range of one wireless link. Besides,
in the corridor, the wireless signal of the RAP passes
through the wall and reaches the receiver (RLTP) through
multiple paths. Therefore, the corridor scenario can test the
recognition performance of PhaseAnti under the electro-
magnetic condition of complex multipath and NLOS. In
particular, as shown in Figs. 11a and 11b, the WAs are exe-
cuted along the green arrow, while the IPAs are performed
at the place marked as the red dot. Three IAPs and three
ILTPs are included in these two rooms and the setting of
CCI conditions in these rooms is the same as the complex
and varying CCI scenario in the conference room
(Section 5.1).

Similarly, we evaluate the performance of single-user
motion recognition in these two rooms. For every partici-
pant of the 8 people in each room, we collect 54 samples of
each motion or state. Therefore, a total of 2� 8� 10� 54
(8640) activity samples are collected for training and testing.

5.3 CCI Detection Evaluation

In this section, we evaluate the performance of the CCI
detection algorithm. Specifically, we set up 50 different CCI
scenarios in three different rooms, i.e., the conference room,
the office room, and the corridor. The 50 scenarios contain
15 non-interfering scenarios and 35 CCI existing scenarios.
For each CCI existing scenario in each room, the number of
the CCI APs is randomly chosen between 1 and 5 and the
ITR of each interference link randomly varies from 2.5MB/s
to 10MB/s. For each of the 8 participants in each CCI sce-
nario, we collect 10 samples of each motion or state. There-
fore, a total of 50� 8� 10� 10 (40000) activity samples are
collected for training and testing. We employ the PhaseAnti
system to process these data, and use 10-fold cross-valida-
tion to avoid over-fitting [32].

Table 1 shows the CCI detection results. The detection
accuracy rate (DAR) is calculated by the ratio of the number
of the correctly detected CCI scenarios to the number of the
total CCI scenarios. We can observe that the proposed CCI
detection algorithm in all CCI scenarios has a high average
DAR, which can reach 98%. Especially for CCI existing sce-
narios, the DAR of the algorithm can reach 100%. These
results show that through effective statistics and threshold
judgment of the number of the received packets per unit
time, the existence of CCI in the environment can be effec-
tively detected.

Table 2 depicts the comparison of the recognition perfor-
mance with or without the CCI detection algorithm. The
RAR in this table denotes the average RAR of all 50 different
CCI scenarios. In particular, when running the CCI detection
algorithm, the system selects the corresponding component
(amplitude or NLPEV) for activity recognition according to
the CCI detection result. However, when the CCI detection
algorithm does not work, the system randomly selects com-
ponents for activity recognition in different CCI scenarios.
As shown in Table 2, with the effective use of the CCI detec-
tion algorithm, the average recognition performance of Pha-
seAnti is significantly improved. This demonstrates that the
accurate use of the NLPEV component for HAR in CCI sce-
narios according to the detection result can significantly
improve the recognition performance.

5.4 Motion Segmentation Result

For a given activity, the uure \ uupr
�� ��=maxf uurej j; uupr

�� ��g is defined
as the segmentation accuracy rate (SAR), where uure is the real
set of packet indexes for one activity, and uupr is the predicted
set. �j j represents the length of the set. Accurate segmentation
is helpful to the activity classification. Nevertheless, the
activity classification accuracy may be larger than the SAR
since an activity can be correctly recognized by the classifica-
tion model even though the start and end of this activity are
not precisely detected. If the predicted start and end points
are close to the real ones, the majority of the activity data can
be extracted andmight be adequate for activity classification.

Table 3 shows the SAR of the proposed segmentation
method for different activities. The empty room and the
activities with small fluctuations, i.e., standing, and sitting,
are not in the Table 3, because they are segmented with a
fixed sliding window. The segmented samples come from
the three different CCI scenarios introduced in Section 5.1.
We can observe that all motions in the activity set can be

Fig. 11. Evaluation scenarios in a student office room and in a non-line-
of-sight (NLOS) environment with multipath, i.e., a corridor.

TABLE 1
The Performance of the CCI Detection Algorithm

CCI type Non-interfering CCI exists Average DAR

DAR 93:33% 100% 98%

TABLE 2
The RAR Improvement of the CCI Detection Algorithm

Without CCI detection With CCI dection

RAR 92.89% 97.24%
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accurately segmented, and the average SAR for all motions
can reach 95:4%. The results show that the segmentation
algorithm can accurately realize the effective segmentation of
the motion CSI series. Compared with IPAs, it is easier to
identify the start and end points of the motions with position
change, so the WAs (walking and running) have higher
SARs.

5.5 NLPEV Robustness Assessment

Invariant to different CCI scenarios, and stable across time
are essential attributes for a CCI robustness HAR compo-
nent. Therefore, we demonstrate the invariance of NLPEV
to different CCI scenarios, and time. To avoid the impacts of
human movements, all the invariance verification experi-
ments do not contain motions.

Time Invariance. For HAR systems, the signal component
used for recognition should be invariant at different sam-
pling time. However, it is non-negligible that CSIs may
change due to different weather conditions, temperatures,
and humidity of different days [26]. Since NLPEV is also a
phase component extracted from CSI, it is vital to ensure
the stability of NLPEV across time. Fig. 12a shows ampli-
tude, phase, and NLPEV at different time without human
motion. We measure the CSIs in the conference room, as
shown in Fig. 10, and extract NLPEVs day and night for a
month. We can see that the amplitude changes with differ-
ent sampling days and the phase changes randomly due to
phase errors. However, NLPEVs are relatively stable and
invariant across time.

Transmitter Power Invariance. In order to examine the
invariance of NLPEV to the change of transmitter power
caused by APs competing for the channel, we change the
NIC power of RLTP E from 10dBm to 15dBm (maximum
power of 5300 NIC) and fix the power of RAP A. Then, the
sampled CSIs and the extracted NLPEVs in different trans-
mitter power are shown in Fig. 12b. It is evident that the
amplitude increases with the rising transmitter power. How-
ever, the NLPEV changes negligibly with the increasing

transmitter power, which clearly demonstrates that the
NLPEV is more stable and independent of the varying signal
strength.

CCI Intensity Invariance. The increase of CCI intensity
causes a decrease in the sampling rate and the confusion of
the receiving packet order [10]. Thus, the stability of CSI is
affected. To evaluate the impacts of this factor on NLPEV,
we keep one IAP (AP B in Fig. 10) and adjust ping rates and
packet lengths of the interferer to generate different ITRs.
Fig. 12c depicts that the amplitude increases significantly
due to the increasing transmitter power caused by APs com-
peting for the channel in more severe CCI scenarios. Never-
theless, the NLPEV stays almost constant even if the CCI
ITR is changing. This experiment confirms that NLPEV is
invariant to various CCI intensities.

Invariance Performance Evaluation. To quantitatively eval-
uate the invariance of NLPEV to environmental factors, we
also compare the RARs of different signal components
under different sampling time, different transmitter power,
and different CCI intensities. Take different sampling time
as an example, for each participant of the 8 people in each
sampling day (days 1, 5, 10, 15, 20, 25, 30 as shown in
Fig. 12a), we collect 54 samples of each motion or state.
Therefore, a total of 7� 8� 10� 54 (30240) activity samples
are collected for training and testing. We employ the Pha-
seAnti system to process these data, and use 10-fold cross-
validation to avoid over-fitting [32]. The experiment method
of different transmitter power and different CCI intensities
is same with that of the different sampling days.

Fig. 13 shows the RARs of different CSI components
under different influencing factors. The RAR can directly
reflect the robustness of the recognition component to these
influencing factors. The smaller reduction in the RAR under
one environmental factor impact indicates that the compo-
nent is more robust to this environmental factor. As shown
in Fig. 13, since a lot of phase errors are contained, the origi-
nal phase cannot accurately recognize the motion under
any circumstances. Besides, the amplitude component is rel-
atively robust to different sampling times, and achieve a sat-
isfactory RAR in different sampling days. However, under
the CCI impacts, i.e., different transmitter power, and differ-
ent CCI intensities, the RAR of the amplitude component is
obviously degraded. In contrast, since the components
affected by the CCI are filtered out and the only motion-
related HAR component is extracted, PhaseAnti can not
only maintain a high RAR stably in different sampling
times, but also recognize motions accurately in different

TABLE 3
The Performance of the Motion Segmentation Method

Motion SAR Motion SAR

Push-ups 96.2% Sit-ups 94.5%
Lift dumbbells 94.3% Walking 98.2%
Squats 93.5% Running 97.7%
Stoop-down 93.6% Total 95.4%

Fig. 12. Observation of the properties of NLPEV and other components in various CCI scenarios. Each CCI scenario contains 500 consecutive CSI
frames, and the sampling rate is 100Hz.
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CCI environments. This shows that compared with the orig-
inal phase and the amplitude, the proposed component
NLPEV has better invariance to the environment change
caused by CCI.

These observations demonstrate that the amplitude-
based systems can hardly realize anti-CCI due to the unsta-
ble subcarrier amplitudes caused by varying CCI, which
seriously downgrade the system classification performance.
The original phase does not contain enough motion infor-
mation due to lots of contained phase errors. Nevertheless,
the proposed CSI phase component NLPEV remains invari-
ant across various CCI and time. Moreover, the NLPEVs
caused by different human activities are distinct (shown in
Fig. 9). Therefore, by extracting NLPEV data from the CSI
phase to perform HAR, PhaseAnti can achieve anti-CCI.

5.6 Recognition Performance

The recognition performance measurement RAR used in
this paper is defined as the ratio of the correctly classified
motion number Numcor to the whole testing motion number
Numwhole, which can be expressed as follows:

RAR ¼ Numcor

Numwhole
� 100%: (30)

Performance of Different Components. We first compare the
recognition performance of different CSI components, i.e.,
amplitude, original phase, and phase difference data [24],
with the proposed component NLPEV in various CCI sce-
narios. To perform a fair comparison, except for respective
signal component extraction processes, all the processing,
feature extraction, and classification methods for baseline
components are the same as that of the NLPEV component.
Furthermore, the training and testing motion samples for
different CSI components are the same.

Fig. 14a depicts the RARs of different CSI components in
various CCI scenarios. Although the processing methods
for all components are the same, we can observe that
NLPEV still achieves better performance compared with
other CSI components in all CCI scenarios. Since the CCI
environment for each component is consistent, higher RARs
mean less impact of CCI on the proposed component and
better ability to maintain motion information. The original
phase has low RARs since many irrelevant phase errors are
contained. The performance of the phase difference is not
good because not all error components in the phase differ-
ence data are effectively filtered out. In addition, the ampli-
tude component achieves a high RAR in the non-interfering
scenario, reaching 91:31%. However, the performance of the
amplitude component has a significant decrease in CCI sce-
narios. Furthermore, the more complex CCI environment
further downgrades the amplitude component perfor-
mance. This obviously shows that the amplitude informa-
tion is indeed affected by CCI since each AP changes the
transmission power to better compete for the channel in the
CCI environment, which makes the amplitude difference
between different samples of the same motion more signifi-
cant. Nevertheless, the RAR of the NLPEV component does
not decrease in CCI scenarios and it reaches 96:89% even in
the complex CCI scenario. Moreover, in the non-interfering
scenario, the NLPEV component also achieves a higher
RAR than the amplitude information. This demonstrates
that the NLPEV contains more motion information than the
amplitude, even without the impact of CCI.

Performance of Different HAR Systems. To verify the perfor-
mance of different systems in CCI scenarios, we compare
the proposed system with the pioneer amplitude-based fall
detection system WiFall [5], the state-of-the-art amplitude-
based keystroke recognition system WiKey [11], the novel
handwriting recognition system WiReader [33], the state-of-
the-art anti-CCI system WiAnti [9], and the pioneer phase-
based system PhaseBeat [24]. All these baseline systems are
based on commercial WiFi devices without adding any
additional devices, and these recognition systems can be
built through a single AP and a single client, which are
same with the implementation of PhaseAnti. For a fair com-
parison, all these WiFi-based HAR systems use the same
training data to train their corresponding recognition
models and the same testing data to measure their recog-
nition performance. In particular, these baseline systems
use their own CSI processing methods, i.e., different pre-
processing methods, different feature extraction methods,

Fig. 13. The performance of different components under different influ-
encing factors.

Fig. 14. Comparison of different HAR systems in the conference room. PhaseAnti uses the amplitude information to perform HAR in non-interfering
scenarios.
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and different classifiers, to recognize the motions in the
activity set.

Fig. 14b reports the performance of different WiFi-based
HAR systems in various CCI scenarios. Compared with
WiFall, the RARs of WiKey and WiReader are significantly
improved in the non-interfering scenario due to the use of
advanced signal processing methods and classification tech-
nologies. However, in the constant CCI scenario and the
complex CCI scenario, CCI significantly downgrades the
recognition performance of WiKey and WiReader, which
indicates that these novel WiFi-based HAR systems are not
robust to CCI. Although only three amplitude components
are used in the non-interfering scenario, PhaseAnti achieves
a similar RAR with WiAnti using 6 subcarriers and outper-
forms WiFall using six subcarriers. This demonstrates that
the amplitude component used in PhaseAnti can accurately
recognize the motion in the non-interfering scenario, and
reduce the extraction time of the recognition component as
much as possible, which finally improves the recognition
efficiency. Furthermore, in CCI scenarios, PhaseAnti
achieves more satisfactory RARs and outperforms all the
baselines by adopting the NLPEV component to realize
HAR. This shows that the recognition ability of the Pha-
seAnti system in the CCI environment is improved signifi-
cantly by extracting the CCI-independent component for
behavior recognition.

Recognition Time. The recognition time for each motion
sample of all systems is shown in Fig. 14c. The recognition
time for each system contains the time of signal processing,
feature extraction, and classification. Compared with WiFall
using six subcarriers, WiAnti has a slower recognition
speed because it takes a lot of time to calculate the subcar-
rier correlation. Nevertheless, under the same processed
data volume, PhaseAnti-NLPEV can realize a 10:3� faster
speed than WiAnti in CCI scenarios. Moreover, in non-
interfering scenarios, the recognition speed of PhaseAnti
(PhaseAnti-Am) is further boosted when using the ampli-
tude data to perform HAR. Compared with all baseline
methods, PhaseAnti-Am has the fastest recognition speed
and the average recognition time of PhaseAnti-Am for one
motion sample is 0.033s. Instead of increasing much calcula-
tion cost to achieve the CCI robustness, the PhaseAnti sys-
tem use more time-efficient way to accurately recognize the
activities in CCI scenarios. Specifically, by employing the
CCI-independent component to perform HAR and effective
data dimensionality reduction, PhaseAnti can accurately
recognize the motion in the CCI environment, reduce the
computational complexity as much as possible, and further
achieve a faster recognition speed.

Performance in Complex Multipath Scenarios. We add two
rooms with rich multipath and behind-wall cases, i.e., the
student office and the corridor, to comprehensively evaluate
the PhaseAnti performance in complex electromagnetic
environment. The experimental settings are described in
Section 5.2.

Fig. 15 shows the performance of the PhaseAnti system
and other baseline methods in various multipath indoor
environments. The performance of PhaseAnti in the office
room is similar to that in the conference room. The results
show that the large-scale indoor range can not affect the
effective recognition of PhaseAnti. Compared with the

environments with less propagation paths, i.e., the confer-
ence room and the office room, the rich multipath and the
wall in the corridor downgrade the recognition perfor-
mance of each system. Nevertheless, since PhaseAnti is
not affected by the varying CCI in electromagnetic envi-
ronment, PhaseAnti can still recognize daily motions
accurately in the multipath environment (corridor) with a
high RAR, reaching 95:67%, and consistently realize the
best performance in all multipath scenarios. Furthermore,
the multipath effect does not significantly degrade the
recognition performance of PhaseAnti, which is reflected
in the small reduction of RAR. Since more motion infor-
mation is maintained due to the valid error component
elimination, PhaseAnti is more robust to various rich
multipath environments.

Performance of Processing Algorithms. In order to verify the
recognition performance improvement brought by the pro-
posed DWT feature extraction algorithm and the ensemble
DTW-based classifier, we design a set of comparison experi-
ments including the experimentswith orwithout the proposed
DWT feature extraction algorithmand the experimentswith or
without the ensemble DTW-based classifier. When the pro-
posed DWT feature extraction algorithm is not used, the sys-
tem extracts 10 common features, which are widely used in
existing WiFi-based HAR systems. The specific features are
mean, variance, maximum, minimum, median, first quartile,
third quartile, information entropy, spectrum energy, and
maximum frequency domain. Besides, when the ensemble
DTW-based classifier is not used, PhaseAnti employs the gen-
eral Support Vector Machine (SVM) classifier to realize quick
classification. Similar to Section 5.1, all motion data in this part
are collected from the conference room, and the corresponding
CCI scenario is the complex and varying CCI.

Table 4 shows the improvement of the proposed feature
extraction algorithm and the ensemble DTW-based classifier
for the PhaseAnti system. Compared with the traditional
feature extraction, the PhaseAnti performance (without
DTW) is significantly boosted by employing the pertinent
DWT feature extraction algorithm and the RAR is increased
from 92:11% to 95:35%. This demonstrates that the targeted
analysis of the motion frequency can significantly enhance
the system recognition performance. Similarly, the Pha-
seAnti performance (without DWT) is also improved by
using the ensemble DTW-based classification method,
which shows that the multi-angle voting can capture more
motion characteristics to improve the recognition perfor-
mance. As for the recognition speed, the use of the pertinent
DWT feature extraction algorithm significantly boosts the
recognition speed of the PhaseAnti system (without DTW)

Fig. 15. The performance of different recognition systems in various
indoor rooms.
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and the recognition time for one motion sample is decreased
from to 0:218s to 0:064s. This clearly shows that the valid
data dimensional reduction in the wavelet decomposition
decreases the computational complexity and finally
improves the recognition speed. Besides, the ensemble
DTW-based classifier is also helpful to improve the recogni-
tion speed of the PhaseAnti system. Therefore, the proposal
of the pertinent DWT feature extraction algorithm and the
ensemble DTW-based classifier is beneficial for both the rec-
ognition accuracy and the recognition speed.

6 CONCLUSION

In this paper, we have presented PhaseAnti, an anti-CCI
HAR system based on WiFi CSI. The core of PhaseAnti is
the use of the HAR component NLPEV. In particular, under
CCI scenarios, by eliminating irrelevant errors, the CCI-
independent phase component NLPEV has been leveraged
from the COTS WiFi device since this component remains
constant for different CCI scenarios and contains motion
information. We have also introduced a suitable calibration
method to ensure that NLPEV data are stable and sensitive
to the motions. Then, the PCA-based subcarrier fusion algo-
rithm and the DWT-based feature extraction method are
employed with minor information loss in order to reduce
the data dimension. By using these extracted NLPEV shape
features to realize HAR in CCI scenarios, the activity can be
recognized accurately with low recognition time. Besides, in
non-interfering scenarios, the amplitude information is
employed to further reduce the system computation cost.
Extensive experiments with different motions have been
implemented in various CCI scenarios, and the results
show that PhaseAnti can achieve superior performance on
RAR and recognition time over existing systems in all cases.

REFERENCES

[1] O. D. Lara and M. A. Labrador, “A survey on human activity rec-
ognition using wearable sensors,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 3, pp. 1192–1209, Third Quarter 2013.

[2] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao, “A key volume mining
deep framework for action recognition,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2016, pp. 1991–1999.

[3] G. Laput and C. Harrison, “Sensing fine-grained hand activity
with smartwatches,” in Proc. CHI Conf. Hum. Factors Comput. Syst.,
2019, pp. 1–13.

[4] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release:
Gathering 802.11 n traces with channel state information,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, pp. 53–53, 2011.

[5] Y. Wang, K. Wu, and L. M. Ni, “WiFall: Device-free fall detection
by wireless networks,” IEEE Trans. Mobile Comput., vol. 16, no. 2,
pp. 581–594, Feb. 2017.

[6] Y. Gu, F. Ren, and J. Li, “PAWS: Passive human activity recogni-
tion based on WiFi ambient signals,” IEEE Internet of Things J.,
vol. 3, no. 5, pp. 796–805, Oct. 2016.

[7] H. Abdelnasser, M. Youssef, and K. A. Harras, “WiGest: A ubiqui-
tous WiFi-based gesture recognition system,” in Proc. IEEE Conf.
Comput. Commun., 2015, pp. 1472–1480.

[8] IEEE Standard for Information Technology, IEEE Standard 802.11n-
2009, pp. 1–565, Oct. 2009.

[9] J. Huang et al., “Towards anti-interference human activity recog-
nition based on WiFi subcarrier correlation selection,” IEEE Trans.
Veh. Technol., vol. 69, no. 6, pp. 6739–6754, Jun. 2020.

[10] J. Huang, B. Liu, H. Jin, and Z. Liu, “WiAnti: An anti-interference
activity recognition system based on WiFi CSI,” in Proc. IEEE Int.
Conf. Internet of Things IEEE Green Comput. Commun. IEEE Cyber
Phys. Soc. Comput. IEEE Smart Data, 2018, pp. 58–65.

[11] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Recognizing key-
strokes using WiFi devices,” IEEE J. Sel. Areas Commun., vol. 35,
no. 5, pp. 1175–1190, May 2017.

[12] Z. Shi, J. A. Zhang, Y. D. R. Xu, and Q. Cheng, “Environment-
robust device-free human activity recognition with channel-state-
information enhancement and one-shot learning,” IEEE Trans.
Mobile Comput., pp. 1–1, 2020, doi: 10.1109/TMC.2020.3012433.

[13] N. Yu, W. Wang, A. X. Liu, and L. Kong, “QGesture: Quantifying
gesture distance and direction with WiFi signals,” Proc. ACM
Interactive Mobile Wearable Ubiquitous Technol., vol. 2, no. 1, 2018,
Art. no. 51.

[14] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proc. 19th Annu. Int. Conf.
Mobile Comput. Netw., 2013, pp. 27–38.

[15] N. Xiao, P. Yang, Y. Yan, H. Zhou, X.-Y. Li, and H. Du, “Motion-Fi
+: Recognizing and counting repetitive motions with wireless
backscattering,” IEEE Trans. Mobile Comput., vol. 20, no. 5,
pp. 1862–1876, May 2021.

[16] X. Fan, W. Gong, and J. Liu, “TagFree activity identification with
RFIDs,” Proc. ACM Interactive Mobile Wearable Ubiquitous Technol.,
vol. 2, no. 1, 2018, Art. no. 7.

[17] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-
eyes: Device-free location-oriented activity identification using
fine-grained WiFi signatures,” in Proc. 20th Annu. Int. Conf. Mobile
Comput. Netw., 2014, pp. 617–628.

[18] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu,
“Understanding and modeling of WiFi signal based human activ-
ity recognition,” in Proc. 21st Annu. Int. Conf. Mobile Comput.
Netw., 2015, pp. 65–76.

[19] D. Wu et al., “FingerDraw: Sub-wavelength level finger motion
tracking with WiFi signals,” Proc. ACM Interactive Mobile Wearable
Ubiquitous Technol., vol. 4, no. 1, pp. 1–27, 2020.

[20] Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “SignFi: Sign lan-
guage recognition using WiFi,” Proc. ACM Interactive Mobile Wear-
able Ubiquitous Technol., vol. 2, no. 1, 2018, Art. no. 23.

[21] Y. Zheng et al., “Zero-effort cross-domain gesture recognition with
Wi-Fi,” in Proc. 17th Annu. Int. Conf. Mobile Syst. Appl. Services,
2019, pp. 313–325.

[22] S. Palipana, D. Rojas, P. Agrawal, and D. Pesch, “FallDeFi:
Ubiquitous fall detection using commodity Wi-Fi devices,”
Proc. ACM Interactive Mobile Wearable Ubiquitous Technol.,
vol. 1, no. 4, pp. 1–25, 2018.

[23] K. Qian, C. Wu, Z. Zhou, Y. Zheng, Z. Yang, and Y. Liu, “Inferring
motion direction using commodity Wi-Fi for interactive exer-
games,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2017,
pp. 1961–1972.

[24] X. Wang, C. Yang, and S. Mao, “PhaseBeat: Exploiting CSI
phase data for vital sign monitoring with commodity WiFi
devices,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst.,
2017, pp. 1230–1239.

[25] Y. Zeng, D. Wu, R. Gao, T. Gu, and D. Zhang, “FullBreathe: Full
human respiration detection exploiting complementarity of CSI
phase and amplitude of WiFi signals,” Proc. ACM Interactive
Mobile Wearable Ubiquitous Technol., vol. 2, no. 3, 2018, Art. no. 148.

[26] P. Liu, P. Yang, W.-Z. Song, Y. Yan, and X.-Y. Li, “Real-time iden-
tification of rogue WiFi connections using environment-indepen-
dent physical features,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 190–198.

TABLE 4
The Performance of the Proposed Feature Extraction Algorithm and the Ensemble DTW-Based Classifier in the

Complex and Varying CCI Scenario

Measurement Without DWT Without DTW Without DWT and without DTW PhaseAnti

RAR 93.17% 95.35% 92.11% 96.89%
Recognition time 0.196s 0.064s 0.218s 0.053s

HUANG ETAL.: PHASEANTI: AN ANTI-INTERFERENCEWIFI-BASEDACTIVITY RECOGNITION SYSTEM USING... 2953

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:28:40 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TMC.2020.3012433


[27] Y. Zhuo, H. Zhu, H. Xue, and S. Chang, “Perceiving accurate CSI
phases with commodity WiFi devices,” in Proc. IEEE Conf. Com-
put. Commun., 2017, pp. 1–9.

[28] J.Hua,H. Sun, Z. Shen, Z.Qian, andS. Zhong, “Accurate and efficient
wireless device fingerprinting using channel state information,” in
Proc. IEEEConf. Comput. Commun., 2018, pp. 1700–1708.

[29] J. S. Hunter, “The exponentially weighted moving average,” J.
Qual. Technol., vol. 18, no. 4, pp. 203–210, 1986.

[30] R. K. Pearson, “Outliers in process modeling and identification,”
IEEE Trans. Control Syst. Technol., vol. 10, no. 1, pp. 55–63, Jan.
2002.

[31] J.-S. R. Jang, “Machine learning toolbox,” 2014. [Online]. Avail-
able: mirlab.org/jang/matlab/toolbox/machineLearning, (Dec 1,
2014)

[32] Y. Liu and S. Liao, “Preventing over-fitting of cross-validation
with kernel stability,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl.
Discov. Databases, 2014, pp. 290–305.

[33] Z. Guo, F. Xiao, B. Sheng, H. Fei, and S. Yu, “WiReader: Adaptive
air handwriting recognition based on commercial WiFi signal,”
IEEE Internet of Things J., vol. 7, no. 10, pp. 10 483–10 494, Oct.
2020.

Jinyang Huang received the BEng degree from
Anhui University, Hefei, China, in 2017, and he is
currently working toward the PhD degree in the
School of Cyberspace Security, University of Sci-
ence and Technology of China, Hefei, China. His
research interests include human-computer inter-
action, wireless sensing, wireless communica-
tion, and machine learning.

Bin Liu received the BS and MS degrees in elec-
trical engineering from the University of Science
and Technology of China, Hefei, Anhui, China, in
1998 and 2001, respectively, and the PhD degree
in electrical engineering from Syracuse University,
Syracuse, New York, in 2006. Currently, he is an
associate professor with the School of Information
Science and Technology, University of Science
and Technology of China. His research interests
include signal processing and communications in
wireless sensor and body area networks.

Chenglin Miao (Member, IEEE) received the PhD
degree in computer science and engineering from
the State University of New York at Buffalo, Buf-
falo, New York, in 2020. He is currently an assis-
tant professor with the Department of Computer
Science, University of Georgia. His research inter-
ests include security and privacy, Internet of
Things, and machine learning. He is a member of
the ACM.

Yan Lu received the bachelor’s degree in tele-
communication engineering from Anhui Polytech-
nic University, Wuhu, China, in 2017, and the
master’s degree in electronics and communica-
tions engineering from the University of Science
and Technology of China, Hefei, China, in 2020.
Currently, he is working toward the PhD degree
at the University of Sydney, Sydney, Australia,
and his research interests include computer
vision and deep learning.

Qijia Zheng received the BE degree from the
Nanjing University of Posts and Telecommunica-
tions, Nanjing, China, in 2020. He is currently
working toward the graduate degree in the
School of Cyberspace Security, University of Sci-
ence and Technology of China, Hefei, China. His
research interests include wireless sensing, wire-
less communication, and machine learning.

Yu Wu received the BS and ME degrees in infor-
mation security and electrical engineering from the
University of Science and Technology of China,
Hefei, China. He is currently working toward the
PhDdegree at Rutgers University, NewBrunswick,
New Jersey. His research interests include human
activity recognition, human-computer interaction,
andmachine learning theory.

Jiancun Liu received the BS degree from the
North China Electric Power University, Beijing,
China, in 2017. He is currently working toward
the PhD degree in the School of Data Science,
University of Science and Technology of China
(USTC), Hefei, China. His research interests
include software-defined networks, network func-
tion virtualization, edge computing, and federated
learning.

Lu Su (Member, IEEE) received the MS degree in
statistics and the PhD degree in computer sci-
ence, both from the University of Illinois at
Urbana-Champaign, Champaign, Illinois, in 2012
and 2013, respectively. He is currently an associ-
ate professor with the School of Electrical and
Computer Engineering, Purdue University. His
research interests include Internet of Things and
cyber-physical systems, with a current focus on
wireless, mobile, and crowd sensing systems. He
has also worked with IBM T. J. Watson Research

Center and National Center for Supercomputing Applications. He has
published more than 100 papers in referred journals and conferences,
and serves as an associate editor of the ACM Transactions on Sensor
Networks. He is the recipient of NSF CAREER Award, University at Buf-
falo Young Investigator Award, ICCPS’17 Best Paper Award, and the
ICDCS’17 Best Student Paper Award. He is amember of the ACM.

Chang Wen Chen (Fellow, IEEE) is currently a
professor of computer science and engineering
with the State University of New York at Buffalo,
Buffalo, New York. Previously, he was Allen S.
Henry endowed chair professor with the Florida
Institute of Technology from 2003 to 2007, a faculty
member with the University of Missouri-Columbia
from 1996 to 2003 and with the University of
Rochester, Rochester, New York, from 1992 to
1996. He has been the editor-in-chief of the IEEE
Transactions on Multimedia since 2014. He has

also served as an editor of theProceedings of IEEE, IEEETransactions on
Multimedia, IEEE Journal on Selected Areas in Communications, IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, and
IEEE Multimedia Magazine. He is an SPIE fellow. Since 2017, he serves
as dean of the School of Science and Engineering, Hong Kong Polytechnic
University, Shenzhen.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2954 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:28:40 UTC from IEEE Xplore.  Restrictions apply. 

mirlab.org/jang/matlab/toolbox/machineLearning


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


