
Multi-Objective Order Dispatch for Urban Crowd
Sensing with For-Hire Vehicles

Jiahui Sun†, Haiming Jin†,∗, Rong Ding†, Guiyun Fan†, Yifei Wei‡, Lu Su§
†Shanghai Jiao Tong University, ‡Carnegie Mellon University, §Purdue University

Email: {jhsun1997, jinhaiming, dingrong, fgy726}@sjtu.edu.cn, yifeiwei@andrew.cmu.edu, lusu@purdue.edu

Abstract—For-hire vehicle-enabled crowd sensing (FVCS) has
become a promising paradigm to conduct urban sensing tasks in
recent years. FVCS platforms aim to jointly optimize both the
order-serving revenue as well as sensing coverage and quality.
However, such two objectives are often conflicting and need to
be balanced according to the platforms’ preferences on both
objectives. To address this problem, we propose a novel cooper-
ative multi-objective multi-agent reinforcement learning frame-
work, referred to as MOVDN, to serve as the first preference-
configurable order dispatch mechanism for FVCS platforms.
Specifically, MOVDN adopts a decomposed network structure,
which enables agents to make distributed order selection deci-
sions, and meanwhile aligns each agent’s local decision with the
global objectives of the FVCS platform. Then, we propose a novel
algorithm to train a single universal MOVDN that is optimized
over the space of all preferences. This allows our trained model
to produce the optimal policy for any preference. Furthermore,
we provide the theoretical convergence guarantee and sample
efficiency analysis of our algorithm. Extensive experiments on
three real-world ride-hailing order datasets demonstrate that
MOVDN outperforms strong baselines and can support the
platform in decision-making effectively.

Index Terms—urban crowd sensing, order dispatch, multi-
objective multi-agent reinforcement learning

I. INTRODUCTION

Urban crowd sensing, which is a type of spatial crowdsourc-
ing paradigm that leverages humans or vehicles distributed
in the city to collect data on urban metrics (e.g., traffic
condition, infrastructure strain, air quality), has become in-
creasingly popular. Compared to humans and private vehicles,
for-hire vehicles (FHVs), such as taxis and those operated by
ride-hailing platforms, are usually the most desirable forces
for urban crowd sensing. On one hand, since sensory data
often contains locations and many other personal information
(e.g., identity, arrival time), humans and private vehicles are
normally unwilling to upload their data because of the privacy
leakage risk. On the other hand, the installation of specialized
sensing hardwares on private vehicles is not as convenient as
FHVs that are managed by a centralized ride-hailing platform.

In FHV-enabled crowd sensing (FVCS) systems, order-
serving revenue as well as sensing coverage and quality are
two critical objectives. To jointly optimize both objectives,
the order dispatch mechanism that decides which FHVs serve
which orders plays an important role, since it not only directly
affects the order-serving revenue, but also has a critical impact
on the sensing outcome as it changes the distribution of
FHVs across the city. However, such two objectives are often
inconsistent in FVCS systems [1, 2]. In practice, FHVs tend to

*Corresponding author.

concentrate in busy areas, such as tourist attractions, business
centers, and railway stations, where they often encounter
considerably more passenger requests than neighborhoods that
are socio-economically disadvantaged. However, many urban
sensing tasks inherently require FHVs to distribute uniformly
both spatially and temporally, so that sufficient sensory data
can be collected continuously from everywhere in the city.

Clearly, different platforms may have different preferences
on the order-serving and sensing outcomes, and even for the
same platform, its preferences over different objectives could
also evolve over time. As a result, the order-serving and sens-
ing objectives have to be balanced according to the platforms’
preferences. Therefore, in this paper, we aim to design a
preference-configurable order dispatch mechanism for FVCS
systems, which allows platforms to flexibly determine their
preferences on the order-serving and sensing objectives.

Designing such a mechanism is naturally a sequential
decision-making problem that aims to maximize the platform’s
cumulative rewards. A centralized decision-making framework
(e.g., single-agent reinforcement learning) faces the issue of
the exponential explosion in the action and state spaces caused
by the large scale of a real-world FHV fleet, and is thus infeasi-
ble in FVCS systems. To resolve this challenge, we utilize the
multi-agent reinforcement learning (MARL) framework, which
views each FHV as an agent and trains a distributed policy for
each agent that generates its own order selection decisions.

However, designing such a multi-agent distributed decision-
making framework further raises the critical task of aligning
each agent’s local decision with the global objectives of the
whole FVCS system. To tackle this problem, we factorize the
joint state-action value function among agents by designing a
value decomposition network (VDN). Specifically, our VDN
consists of one network for each agent that only depends on
its local observations, and a mixing network that combines all
agent networks’ outputs as well as the global state to model
the joint state-action value function. Such a mixing network is
no longer needed in the execution stage as each agent can take
actions according to its own network. Our carefully designed
mixing network ensures that the optimal joint action performed
using the joint state-action value function is consistent with the
collection of each agent’s optimal action that is individually
performed using its own network.

Another challenge comes from the conflicting order-serving
and sensing objectives of the FVCS system, which makes it
impossible to simultaneously maximize both objectives. To
this end, we adopt Pareto-optimal as the solution concept, and
different preferences correspond to different Pareto-optimal

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

29
10

3

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

policies. However, as there are typically infinitely many prefer-
ences, it is intractable to train a VDN for each possible pref-
erence. Therefore, we meticulously design a multi-objective
value decomposition network (MOVDN) that takes as input
the platform’s preference, and propose a novel sample-efficient
algorithm to train a single universal MOVDN that is optimized
over the space of all preferences. This allows our trained model
to produce the Pareto-optimal policy for any preference.

In summary, this paper makes the following contributions.
• To the best of our knowledge, this is the first work that de-

signs a preference-configurable order dispatch mechanism,
which allows FVCS platforms to flexibly determine their
preferences on order-serving and sensing objectives.

• Technically, we (i) design a multi-objective MARL frame-
work, which helps FHVs make distributed order selection
decisions that cooperatively optimize the system-wide goals,
(ii) propose a novel algorithm to train a single universal
network that generates actions based on the input prefer-
ence, and (iii) further provide the theoretical convergence
guarantee and sample efficiency analysis of our algorithm.

• We conduct extensive experiments with three public large-
scale real-world ride-hailing order datasets, including over
2 million orders in Haikou, China, over 5 million orders
in Chengdu, China, and over 6 million orders in New York
City, USA. The experimental results show that our MOVDN
outperforms strong baselines and can support the platform
in decision-making effectively.

II. PRELIMINARIES

A. System Overview

Our FVCS system consists of a cloud-based platform and a
set N = {1, 2, · · · , N} of FHVs managed by the platform.
In addition to serving the ride-hailing orders, FHVs also
carry out urban sensing tasks via either specialized sensors
or simply those on-board drivers’ smartphones. The status
of each FHV is either on-service, if it is serving orders at
present, or idle, otherwise. As an industrial common practice
[3], the time horizon is discretized into T time slots, denoted
as T = {1, 2, · · · , T}, and the city area is divided into G
grids, denoted as G = {1, 2, · · · , G}. Figure 1 demonstrates
the workflow of our FVCS system, the details of which in
each time slot are explained as follows.
• At the beginning of a time slot, the platform sends each

idle FHV the information (e.g., the number of orders and
vehicles) of its current and neighboring grids.

• Based on such information, each idle FHV uses its local
decision module to select an order from nearby1 candidate
orders. Afterwards, the idle FHVs who pick up passengers
become on service and drive to the passengers’ destinations.

• Both the idle and on-service FHVs continuously collect
sensory data while traveling in the city, and upload the
collected data to the platform at the end of each time slot.

1Different platforms may have different rules of defining the maximum
allowable serving distance. Our model is compatible with any such rule.

Cloud-Based Platform

……

SelectGrid InfoIdle FHV Sensory DataOn-Service FHV Not Select

Fig. 1: A demonstration of interactions between FHVs and the
cloud-based platform.

We in this paper consider to design and train the local de-
cision module for FHVs, which helps them make appropriate
order selection decisions.

B. Problem Description

In this paper, we aim to jointly optimize both the sensing
and order-serving outcomes. As is the industrial common
practice, we use the gross merchandise volume defined in Def-
inition 1 to evaluate the platform’s order-serving performance.

Definition 1 (GMV). Let Ot be the set of orders whose
service start from time slot t. The order-serving revenue of the
platform in time slot t is rot =

∑
j∈Ot

pj , where pj denotes the
price of order j ∈ Ot. The gross merchandise volume (GMV)
is defined as

∑
t∈T rot =

∑
t∈T

∑
j∈Ot

pj , which is the sum
of rot along the whole time horizon.

Next, we define system sensing utility in Definition 2 to
measure the platform’s sensing performance.

Definition 2 (SSU). Let Ng,t be the number of vehicles that
traverse grid g during time slot t, and f(·) be the function
that maps Ng,t to the local sensing utility of grid g. Then,
the platform’s global sensing utility in time slot t is defined
as rst =

∑
g∈G αgf(Ng,t), where αg is the weight of grid

g. The overall system sensing utility (SSU) is defined as∑
t∈T rst =

∑
t∈T

∑
g∈G αgf(Ng,t), which is the sum of rst

along the whole time horizon.

In practice, the function f(·) in Definition 2 is usually
monotonically increasing with decreasing marginal returns.
The reason lies in the fact that more sensory data will be
collected when more FHVs pass a grid, but when the sensory
data are already adequate in a grid, further increase of FHVs
in that grid will bring minor gain to the sensing utility.
Although the specific expression of the function f(·) differs in
different applications, our model is compatible with any f(·).
Furthermore, the weight αg associated with each grid g helps
the platform distinguish the importance degrees of different
grids according to its own needs.

As which FHVs serve which orders highly affects both the
sensing and order-serving outcomes, we thus aim to optimize
FHVs’ order selection decisions in order to jointly maximize
the GMV and SSU of our FVCS system.

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

III. FORMULATION

In a real-world FVCS system, order selection decisions are
made in every time slot with the objective of maximizing
the platform’s cumulative rewards. A typical way to resolve
such sequential decision-making problems is to consider the
platform as an agent, who makes centralized order selection
decisions for all FHVs. However, such a method faces the
exponential explosion issue in the action and state spaces due
to the large scale of FHVs that typically exist in a real-world
FVCS system, and is thus unscalable. Therefore, we adopt
a decentralized multi-agent decision-making framework that
implements an agent at each FHV, who works cooperatively
with the other agents to jointly optimize GMV and SSU.
Specifically, we formulate this multi-objective multi-agent
decision-making problem as a cooperative multi-objective
Markov game (referred to as FVCS-CMOMG), which contains
the following elements.

• Agent: An agent is a local decision module that the platform
implements at an FHV to make order selection decisions.
We use N to denote the agent set.

• State: At the beginning of each time slot t, state s =[
t, [fg,t]g∈G

]
of FVCS-CMOMG consists of the current time

slot index t and each grid g’s feature vector fg,t that contains
the grid index g and the current number of idle FHVs, on-
service FHVs, and orders waiting to be served in grid g.

• Observation: At the beginning of each time slot t, each
agent i receives the feature vector fg,t of the grid g where
it currently locates as its local observation oi.

• Action: At the beginning of each time slot t, the set of idle
FHVs’ agents, denoted as Nt, take actions, and the action ai
of each agent i ∈ Nt indicates whether it remains idle, and
which order it chooses to serve, if it decides to terminate
idleness. We denote the action space of each agent i as At

i,
and the agents’ joint action as a = [ai]i∈Nt

at time slot t.
• Policy: Each agent i’s policy πi specifies the probability
πi(ai|oi) that agent i takes each action ai given obser-
vation oi. The joint policy of the agents are denoted as
π =

[
π1, · · · , πN

]
.

• Transition probability function: Given the state s and joint
action a, the current state s transits to the next state s′ with
the probability P (s′|s,a).

• Reward: At the end of each time slot t, the platform receives
a vector immediate reward r(s,a) = [rot , r

s
t], which consists

of the order-serving revenue rot and the global sensing utility
rst of the platform in time slot t. Note that both rot and rst
are team rewards that are non-decomposable among agents,
since they are the results of the cooperation of agents.
Furthermore, a discount factor γ ∈ [0, 1) is introduced to
determine the importance of future rewards.

In our FVCS-CMOMG, the platform aims to find the joint
policy π that maximizes the expected discounted cumulative
vector reward Jπ = [Jπ

o , Jπ
s], where Jπ

o = Eπ

[∑
t∈T γtrot

]
,

and Jπ
s = Eπ

[∑
t∈T γtrst

]
.

However, Jπ
o and Jπ

s are often conflicting, i.e., improving
one of them is at the cost of reducing the other. As a result,

MLP

…
…

…

…

… …

Qi
<latexit sha1_base64="Ipwc4MYE6AA7AgmqzuWxdgFQEno=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5ct2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+Y3ud+74kpzWP5aGYJ8yMyljzklBgreV5EzCQIs/Z8yIfVmlN3FsDrxC1IDQq0htUvbxTTNGLSUEG0HrhOYvyMKMOpYPOKl2qWEDolYzawVJKIaT9bZJ7jC6uMcBgr+6TBC/X3RkYirWdRYCfzjHrVy8X/vEFqwls/4zJJDZN0eShMBTYxzgvAI64YNWJmCaGK26yYTogi1NiaKrYEd/XL66TbqLtX9Ub7uta8K+oowxmcwyW4cANNeIAWdIBCAs/wCm8oRS/oHX0sR0uo2DmFP0CfP0T9kdU=</latexit>

Qj
<latexit sha1_base64="ht9aAe7xSK+lJsmLLMG6IhBKiJA=">AAAB83icbVBNSwMxFHypX7V+VT16CRbBU9mtgh6LXjy2YGuhu5Rsmm1js9klyQpl6d/w4kERr/4Zb/4bs+0etHUgMMy8x5tMkAiujeN8o9La+sbmVnm7srO7t39QPTzq6jhVlHVoLGLVC4hmgkvWMdwI1ksUI1Eg2EMwuc39hyemNI/lvZkmzI/ISPKQU2Ks5HkRMeMgzNqzweOgWnPqzhx4lbgFqUGB1qD65Q1jmkZMGiqI1n3XSYyfEWU4FWxW8VLNEkInZMT6lkoSMe1n88wzfGaVIQ5jZZ80eK7+3shIpPU0CuxknlEve7n4n9dPTXjtZ1wmqWGSLg6FqcAmxnkBeMgVo0ZMLSFUcZsV0zFRhBpbU8WW4C5/eZV0G3X3ot5oX9aaN0UdZTiBUzgHF66gCXfQgg5QSOAZXuENpegFvaOPxWgJFTvH8Afo8wdGgZHW</latexit>

Qk
<latexit sha1_base64="hroAW8cp7vw/rME9jJXglykHw1Y=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy5bsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+c3ud+74kqzWL5aGYJDQQeSxYxgo2VfF9gMwmjrD0fTofVmlt3F0DrxCtIDQq0htUvfxSTVFBpCMdaDzw3MUGGlWGE03nFTzVNMJniMR1YKrGgOsgWmefowiojFMXKPmnQQv29kWGh9UyEdjLPqFe9XPzPG6Qmug0yJpPUUEmWh6KUIxOjvAA0YooSw2eWYKKYzYrIBCtMjK2pYkvwVr+8TrqNundVb7Sva827oo4ynME5XIIHN9CEB2hBBwgk8Ayv8Oakzovz7nwsR0tOsXMKf+B8/gBIBZHX</latexit>

eQ
<latexit sha1_base64="tgP/BdQrY9zYMAVuEsl0zjcK/hg=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkpSBV0W3bhswT6gDWUyuWmHTiZhZqKUmIW/4saFIm79DXf+jZM2C209MHA4517umePFjEpl299GaWV1bX2jvFnZ2t7Z3TP3DzoySgSBNolYJHoelsAoh7aiikEvFoBDj0HXm9zkfvcehKQRv1PTGNwQjzgNKMFKS0PzaPBAfVCU+ZAOQqzGXpC2smxoVu2aPYO1TJyCVFGB5tD8GvgRSULgijAsZd+xY+WmWChKGGSVQSIhxmSCR9DXlOMQpJvO8mfWqVZ8K4iEflxZM/X3RopDKaehpyfziHLRy8X/vH6igis3pTxOFHAyPxQkzFKRlZdh+VQAUWyqCSaC6qwWGWOBidKVVXQJzuKXl0mnXnPOa/XWRbVxXdRRRsfoBJ0hB12iBrpFTdRGBD2iZ/SK3own48V4Nz7moyWj2DlEf2B8/gDwD5ax</latexit>

o
<latexit sha1_base64="9z/w1bxHrPR+R6uGrPPDbTfdI4M=">AAAB8XicbVDLSgMxFL3xWeur6tJNsAiuykwVdFlw47KCfWA7lEyaaUMzyZBkhDL0L9y4UMStf+POvzHTzkJbDwQO59xLzj1hIrixnveN1tY3Nre2Szvl3b39g8PK0XHbqFRT1qJKKN0NiWGCS9ay3ArWTTQjcShYJ5zc5n7niWnDlXyw04QFMRlJHnFKrJMe+zGx4zDK1GxQqXo1bw68SvyCVKFAc1D56g8VTWMmLRXEmJ7vJTbIiLacCjYr91PDEkInZMR6jkoSMxNk88QzfO6UIY6Udk9aPFd/b2QkNmYah24yT2iWvVz8z+ulNroJMi6T1DJJFx9FqcBW4fx8POSaUSumjhCqucuK6ZhoQq0rqexK8JdPXiXtes2/rNXvr6qNelFHCU7hDC7Ah2towB00oQUUJDzDK7whg17QO/pYjK6hYucE/gB9/gDsCpEH</latexit>

s
<latexit sha1_base64="tw6hZVIMt+W0PCJ2v9Bk58wFDm4=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclaQKuiy4cVnBPrANZTK9aYdOJmFmIpTQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5zf3OEyrNY/lgpgn6ER1JHnJGjZUe+xE14yDM9GxQqbo1dw6ySryCVKFAc1D56g9jlkYoDRNU657nJsbPqDKcCZyV+6nGhLIJHWHPUkkj1H42Tzwj51YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhDd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSyrYEb/nkVdKu17zLWv3+qtqoF3WU4BTO4AI8uIYG3EETWsBAwjO8wpujnRfn3flYjK45xc4J/IHz+QPyHpEL</latexit>

oi
<latexit sha1_base64="lhg63cS3Znpp8Y9F/MQXdrHixSY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZcFNy4r2Ad0hpJJM21oJhmSjFCG+Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS0zJVhHaJ5FINQqwpZ4J2DTOcDhJFcRxy2g9nd4Xff6JKMykezTyhQYwngkWMYGMl34+xmYZRJvMRG9UbbtNdAK0TryQNKNEZ1b/8sSRpTIUhHGs99NzEBBlWhhFO85qfappgMsMTOrRU4JjqIFtkztGFVcYokso+YdBC/b2R4VjreRzaySKjXvUK8T9vmJroNsiYSFJDBVkeilKOjERFAWjMFCWGzy3BRDGbFZEpVpgYW1PNluCtfnmd9FpN76rZerhutFtlHVU4g3O4BA9uoA330IEuEEjgGV7hzUmdF+fd+ViOVpxy5xT+wPn8AW3/keM=</latexit>

w
<latexit sha1_base64="o71HerdmG6YkziekhUYSHjARjmw=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZcFNy4r2Ae2pWTSO21oJjMkGaUM/Qs3LhRx69+482/MtLPQ1gOBwzn3knOPHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLV8alGwSU2DTcCO7FCGvoC2/7kJvPbj6g0j+S9mcbYD+lI8oAzaqz00AupGftB+jQblCtu1Z2DrBIvJxXI0RiUv3rDiCUhSsME1brrubHpp1QZzgTOSr1EY0zZhI6wa6mkIep+Ok88I2dWGZIgUvZJQ+bq742UhlpPQ99OZgn1speJ/3ndxATX/ZTLODEo2eKjIBHERCQ7nwy5QmbE1BLKFLdZCRtTRZmxJZVsCd7yyaukVat6F9Xa3WWlXsvrKMIJnMI5eHAFdbiFBjSBgYRneIU3RzsvzrvzsRgtOPnOMfyB8/kD+DKRDw==</latexit>

c(s)
<latexit sha1_base64="NoK4Fs+Lm1Bys/Olw7E1M7h3ssk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBItQN2WmCrosuHFZwT6gHUomzbShSWZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QcyZNq777RQ2Nre2d4q7pb39g8Oj8vFJW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpf5nSlVmkXy0cxi6gs8kixkBBsr+X2BzTgIU1LVl/NBueLW3AXQOvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwum81E80jTGZ4BHtWSqxoNpPF6Hn6MIqQxRGyj5p0EL9vZFiofVMBHYyC6lXvUz8z+slJrz1UybjxFBJlofChCMToawBNGSKEsNnlmCimM2KyBgrTIztqWRL8Fa/vE7a9Zp3Vas/XFca9byOIpzBOVTBgxtowD00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDfm+R3Q==</latexit>

Q
<latexit sha1_base64="FRxliCgR2/DRtiF1FnirrWC+CLE=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUL9oFtKZk004ZmMkNyRyhD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx1IYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJRoxpsskpHu+NRwKRRvokDJO7HmNPQlb/uTu8xvP3FtRKQecBrzfkhHSgSCUbTSYy+kOPaDtDEblMpuxZ2DrBIvJ2XIUR+UvnrDiCUhV8gkNabruTH2U6pRMMlnxV5ieEzZhI5411JFQ2766TzxjJxbZUiCSNunkMzV3xspDY2Zhr6dzBKaZS8T//O6CQY3/VSoOEGu2OKjIJEEI5KdT4ZCc4ZyagllWtishI2ppgxtSUVbgrd88ippVSveZaXauCrXbvM6CnAKZ3ABHlxDDe6hDk1goOAZXuHNMc6L8+58LEbXnHznBP7A+fwBw0SQ+Q==</latexit>

ai<latexit sha1_base64="+EQnsRacv/xGto8SSXSIb+0xKFw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ5lsN+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfy0UwT5kc4kjzkFI2VHnDAB+WKW3UXIOvEy0kFcjQH5a/+MKZpxKShArXueW5i/AyV4VSwWamfapYgneCI9SyVGDHtZ4tTZ+TCKkMSxsqWNGSh/p7IMNJ6GgW2M0Iz1qveXPzP66UmvPEzLpPUMEmXi8JUEBOT+d9kyBWjRkwtQaq4vZXQMSqkxqZTsiF4qy+vk3at6l1Va/f1SsPN4yjCGZzDJXhwDQ24gya0gMIInuEV3hzhvDjvzseyteDkM6fwB87nDzlqjbM=</latexit>

Ww
<latexit sha1_base64="4P33hDIn0o3TOlc5aP3QIkj1oFg=">AAACAHicbZDLSsNAFIZP6q3WW9SFCzeDRXBVkirosuDGZQV7gTaUyXTSDp1MwsxEKSEbX8WNC0Xc+hjufBsnbQRt/WHg4z/nMOf8fsyZ0o7zZZVWVtfWN8qbla3tnd09e/+graJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp3XO/dUKhaJOz2NqRfikWABI1gba2Af9UOsx36QdrJB+sMPWTawq07NmQktg1tAFQo1B/ZnfxiRJKRCE46V6rlOrL0US80Ip1mlnygaYzLBI9ozKHBIlZfODsjQqXGGKIikeUKjmft7IsWhUtPQN535imqxlpv/1XqJDq68lIk40VSQ+UdBwpGOUJ4GGjJJieZTA5hIZnZFZIwlJtpkVjEhuIsnL0O7XnPPa/Xbi2rDKeIowzGcwBm4cAkNuIEmtIBABk/wAq/Wo/VsvVnv89aSVcwcwh9ZH9/rWZc0</latexit>

Wo
<latexit sha1_base64="ZZvyB7M/j7ygBPE/vIzFzNje5Zw=">AAACAHicbZDLSsNAFIZPvNZ6i7pw4SZYBFclqYIuC25cVrAXaEOYTCft0MlMmJkIJWTjq7hxoYhbH8Odb+OkjaCtPwx8/Occ5pw/TBhV2nW/rJXVtfWNzcpWdXtnd2/fPjjsKJFKTNpYMCF7IVKEUU7ammpGeokkKA4Z6YaTm6LefSBSUcHv9TQhfoxGnEYUI22swD4exEiPwyjr5kH2wyLPA7vm1t2ZnGXwSqhBqVZgfw6GAqcx4RozpFTfcxPtZ0hqihnJq4NUkQThCRqRvkGOYqL8bHZA7pwZZ+hEQprHtTNzf09kKFZqGoems1hRLdYK879aP9XRtZ9RnqSacDz/KEqZo4VTpOEMqSRYs6kBhCU1uzp4jCTC2mRWNSF4iycvQ6dR9y7qjbvLWtMt46jACZzCOXhwBU24hRa0AUMOT/ACr9aj9Wy9We/z1hWrnDmCP7I+vgHfKZcs</latexit>

Wa
<latexit sha1_base64="OTnbFqrhjjDZuwhyo2PgJv3gqGU=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuCG5cV7APasWTSTBuayQxJRinD/IcbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnG+UWltfWNzq7xd2dnd2z+oHh51dJQoyto0EpHq+UQzwSVrG24E68WKkdAXrOtPb3K/+8iU5pG8N7OYeSEZSx5wSoyVHgYhMRM/SLvZMCXZsFpz6s4ceJW4BalBgdaw+jUYRTQJmTRUEK37rhMbLyXKcCpYVhkkmsWETsmY9S2VJGTaS+epM3xmlREOImWfNHiu/t5ISaj1LPTtZJ5SL3u5+J/XT0xw7aVcxolhki4OBYnAJsJ5BXjEFaNGzCwhVHGbFdMJUYQaW1TFluAuf3mVdBp196LeuLusNZ2ijjKcwCmcgwtX0IRbaEEbKCh4hld4Q0/oBb2jj8VoCRU7x/AH6PMHCOCSzQ==</latexit>

Wk,1
<latexit sha1_base64="gST080E+gdGVfbQCgMm+Y4/bkF8=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZSkCrosuHFZwT6gDWUynbRDJ5MwM1FKzKe4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VaW9/Y3CpvV3Z29/YP7OphR0WJJLRNIh7Jno8V5UzQtmaa014sKQ59Trv+9Cb3uw9UKhaJez2LqRfisWABI1gbaWhXByHWEz9Iu9kwnZ4jNxvaNafuzIFWiVuQGhRoDe2vwSgiSUiFJhwr1XedWHsplpoRTrPKIFE0xmSKx7RvqMAhVV46j56hU6OMUBBJ84RGc/X3RopDpWahbybzoGrZy8X/vH6ig2svZSJONBVkcShIONIRyntAIyYp0XxmCCaSmayITLDERJu2KqYEd/nLq6TTqLsX9cbdZa3pFHWU4RhO4AxcuIIm3EIL2kDgEZ7hFd6sJ+vFerc+FqMlq9g5gj+wPn8AzaOTow==</latexit>

Wq,1
<latexit sha1_base64="eMWZ5Qjke1tlbpQtsOQ0wzb0AM8=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4kJJUQZcFNy4r2Ae0oUymk3boZBJnJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP+ZMacf5tlZW19Y3Nktb5e2d3b19u3LQVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/uc79zgOVikXiTk9j6oV4JFjACNZGGtiVfoj12A/STjZI78+Qmw3sqlNzZkDLxC1IFQo0B/ZXfxiRJKRCE46V6rlOrL0US80Ip1m5nygaYzLBI9ozVOCQKi+dRc/QiVGGKIikeUKjmfp7I8WhUtPQN5N5ULXo5eJ/Xi/RwZWXMhEnmgoyPxQkHOkI5T2gIZOUaD41BBPJTFZExlhiok1bZVOCu/jlZdKu19zzWv32otpwijpKcATHcAouXEIDbqAJLSDwCM/wCm/Wk/VivVsf89EVq9g5hD+wPn8A1tOTqQ==</latexit>

�1
<latexit sha1_base64="m3hlhPVK9CsP+Vw1V8R7CTGw6G8=">AAAB/3icbVDLSsNAFL3xWesrKrhxEyyCq5JUQZcFNy4r2Ac0IUwm03boZCbMTIQSu/BX3LhQxK2/4c6/cdJmoa0Xhjmccw9z5kQpo0q77re1srq2vrFZ2apu7+zu7dsHhx0lMolJGwsmZC9CijDKSVtTzUgvlQQlESPdaHxT6N0HIhUV/F5PUhIkaMjpgGKkDRXax34kWKwmiblynxljjKahF9o1t+7OxlkGXglqUE4rtL/8WOAsIVxjhpTqe26qgxxJTTEj06qfKZIiPEZD0jeQo4SoIJ/lnzpnhomdgZDmcO3M2N+OHCWqiGg2E6RHalEryP+0fqYH10FOeZppwvH8oUHGHC2cogwnppJgzSYGICypyergEZIIa1NZ1ZTgLX55GXQade+i3ri7rDXdso4KnMApnIMHV9CEW2hBGzA8wjO8wpv1ZL1Y79bHfHXFKj1H8Geszx9005ZR</latexit>

�H
<latexit sha1_base64="40r5q98xsO6h9qZcc137sGn46/s=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQPI12CnoceNlxgvuAtZQ0TbewNClJKoy6g/+KFw+KePXf8OZ/Y7r1oJs/CHm893vk5YUpo0o7zrdVWVvf2Nyqbtd2dvf2D+zDo54SmcSkiwUTchAiRRjlpKupZmSQSoKSkJF+OLkt9P4DkYoKfq+nKfETNOI0phhpQwX2iRcKFqlpYq7cY8YYoVnQDuy603DmA1eBW4I6KKcT2F9eJHCWEK4xQ0oNXSfVfo6kppiRWc3LFEkRnqARGRrIUUKUn8/zz+C5YSIYC2kO13DO/nbkKFFFRLOZID1Wy1pB/qcNMx3f+DnlaaYJx4uH4oxBLWBRBoyoJFizqQEIS2qyQjxGEmFtKquZEtzlL6+CXrPhXjaad1f1llPWUQWn4AxcABdcgxZogw7oAgwewTN4BW/Wk/VivVsfi9WKVXqOwZ+xPn8Al6+WaA==</latexit>

…

g(·)
<latexit sha1_base64="683YMqOe/gd3+hsD71+RI3FaFRM=">AAAB73icbVBNS8NAEJ34WetX1aOXYBHqpSRV0GPBi8cK9gPaUDabbbt0sxt3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemAhu0PO+nbX1jc2t7cJOcXdv/+CwdHTcMirVlDWpEkp3QmKY4JI1kaNgnUQzEoeCtcPx7cxvPzFtuJIPOElYEJOh5ANOCVqpM6z0aKTwol8qe1VvDneV+DkpQ45Gv/TVixRNYyaRCmJM1/cSDDKikVPBpsVealhC6JgMWddSSWJmgmx+79Q9t0rkDpS2JdGdq78nMhIbM4lD2xkTHJllbyb+53VTHNwEGZdJikzSxaJBKlxU7ux5N+KaURQTSwjV3N7q0hHRhKKNqGhD8JdfXiWtWtW/rNbur8p1L4+jAKdwBhXw4RrqcAcNaAIFAc/wCm/Oo/PivDsfi9Y1J585gT9wPn8AYH2Peg==</latexit>

Agent k
<latexit sha1_base64="kYmCe/dYSt92KEdUwWqrJqL84Fs=">AAAB+nicbVDLSgNBEOz1GeNro0cvg0HwFHajoMeIF48RzAOSJcxOepMhsw9mZtWw5lO8eFDEq1/izb9xkuxBEwsGiqouuqf8RHClHefbWlldW9/YLGwVt3d29/bt0kFTxalk2GCxiGXbpwoFj7ChuRbYTiTS0BfY8kfXU791j1LxOLrT4wS9kA4iHnBGtZF6dqmr8VH7QXY1wEiTCRn17LJTcWYgy8TNSRly1Hv2V7cfszQ0eSaoUh3XSbSXUak5EzgpdlOFCWUjOsCOoRENUXnZ7PQJOTFKnwSxNM/sn6m/ExkNlRqHvpkMqR6qRW8q/ud1Uh1cehmPklRjxOaLglQQHZNpD6TPJTItxoZQJrm5lbAhlZRp01bRlOAufnmZNKsV96xSvT0v15y8jgIcwTGcggsXUIMbqEMDGDzAM7zCm/VkvVjv1sd8dMXKM4fwB9bnD/1Gk8I=</latexit>

Agent j
<latexit sha1_base64="tH3jBa7VTqe+Mtaj2t7LvrMxnLA=">AAAB+nicbVDLTgJBEOzFF+Jr0aOXicTEE9lFEz1ivHjERB4JEDI79MLI7CMzsypZ+RQvHjTGq1/izb9xgD0oWMkklaqudE95seBKO863lVtZXVvfyG8WtrZ3dvfs4n5DRYlkWGeRiGTLowoFD7GuuRbYiiXSwBPY9EZXU795j1LxKLzV4xi7AR2E3OeMaiP17GJH46P2/PRygKEmE3LXs0tO2ZmBLBM3IyXIUOvZX51+xJLA5JmgSrVdJ9bdlErNmcBJoZMojCkb0QG2DQ1pgKqbzk6fkGOj9IkfSfPM/pn6O5HSQKlx4JnJgOqhWvSm4n9eO9H+RTflYZxoDNl8kZ8IoiMy7YH0uUSmxdgQyiQ3txI2pJIybdoqmBLcxS8vk0al7J6WKzdnpaqT1ZGHQziCE3DhHKpwDTWoA4MHeIZXeLOerBfr3fqYj+asLHMAf2B9/gD7wpPB</latexit>

Agent i
<latexit sha1_base64="vfTbVvw9v70aPv5jK7VjSA6drYA=">AAAB+nicbVDLSgNBEOz1GeNro0cvg0HwFHajoMeIF48RzAOSJcxOepMhsw9mZtWw5lO8eFDEq1/izb9xkuxBEwsGiqouuqf8RHClHefbWlldW9/YLGwVt3d29/bt0kFTxalk2GCxiGXbpwoFj7ChuRbYTiTS0BfY8kfXU791j1LxOLrT4wS9kA4iHnBGtZF6dqmr8VH7QXY1wEiTCeE9u+xUnBnIMnFzUoYc9Z791e3HLA1NngmqVMd1Eu1lVGrOBE6K3VRhQtmIDrBjaERDVF42O31CTozSJ0EszTP7Z+rvREZDpcahbyZDqodq0ZuK/3mdVAeXXsajJNUYsfmiIBVEx2TaA+lziUyLsSGUSW5uJWxIJWXatFU0JbiLX14mzWrFPatUb8/LNSevowBHcAyn4MIF1OAG6tAABg/wDK/wZj1ZL9a79TEfXbHyzCH8gfX5A/o+k8A=</latexit>

Mixing Network
<latexit sha1_base64="g/iGaThuQBdaAwpL1r8O/CEBUD8=">AAACAHicbVA9SwNBEN3zM8avqIWFzWIQrMJdFLQM2NgoEcwHJCHsbeaSJXt7x+6cJhxp/Cs2ForY+jPs/DduPgpNfDDweG+GmXl+LIVB1/12lpZXVtfWMxvZza3tnd3c3n7VRInmUOGRjHTdZwakUFBBgRLqsQYW+hJqfv9q7NceQBsRqXscxtAKWVeJQHCGVmrnDpsIA/SD9EYMhOrSW8DHSPdH7VzeLbgT0EXizUiezFBu576anYgnISjkkhnT8NwYWynTKLiEUbaZGIgZ77MuNCxVLATTSicPjOiJVTo0iLQthXSi/p5IWWjMMPRtZ8iwZ+a9sfif10gwuGylQsUJguLTRUEiKUZ0nAbtCA0c5dASxrWwt1LeY5pxtJllbQje/MuLpFoseGeF4t15vuTO4siQI3JMTolHLkiJXJMyqRBORuSZvJI358l5cd6dj2nrkjObOSB/4Hz+AGGGlto=</latexit>

Dot product
<latexit sha1_base64="mKUCUpqOzkA5iRxNzXb4eRkKg1A=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwICWpgh4LevBYwX5AG8pms2mXbrJhdyItIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zM8xPBNTjOt7W2vrG5tV3aKe/u7R8c2keVtpapoqxFpZCq6xPNBI9ZCzgI1k0UI5EvWMcf3878zhNTmsv4EaYJ8yIyjHnIKQEjDexKH9gEsjsJOFEySCnkA7vq1Jw58CpxC1JFBZoD+6sfSJpGLAYqiNY910nAy4gCTgXLy/1Us4TQMRmynqExiZj2svntOT4zSoBDqUzFgOfq74mMRFpPI990RgRGetmbif95vRTCGy/jcZICi+liUZgKDBLPgsABV4yCmBpCqOLmVkxHRBEKJq6yCcFdfnmVtOs197JWf7iqNi6KOEroBJ2ic+Sia9RA96iJWoiiCXpGr+jNyq0X6936WLSuWcXMMfoD6/MHhQqUrg==</latexit>

Softmax
<latexit sha1_base64="sr6i5NCrNlx1Gmu3d8BG4VcGvZk=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgQcpuFfRY8OKxov2Adi3ZNNuGZpMlmdWWpf/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMC2LBDbjut5NbWV1b38hvFra2d3b3ivsHDaMSTVmdKqF0KyCGCS5ZHTgI1oo1I1EgWDMYXk/95iPThit5D+OY+RHpSx5ySsBKDx1gI0jvVAgRGU26xZJbdmfAy8TLSAllqHWLX52eoknEJFBBjGl7bgx+SjRwKtik0EkMiwkdkj5rWypJxIyfzq6e4BOr9HCotC0JeKb+nkhJZMw4CmxnRGBgFr2p+J/XTiC88lMu4wSYpPNFYSIwKDyNAPe4ZhTE2BJCNbe3YjogmlCwQRVsCN7iy8ukUSl75+XK7UWpepbFkUdH6BidIg9doiq6QTVURxRp9Ixe0Zvz5Lw4787HvDXnZDOH6A+czx9Ch5Lv</latexit>

Scaled dot product
<latexit sha1_base64="n8MfN2nRfWfPjH3ke8s0Q3zE3ng=">AAACAnicbVDLSgNBEJyNrxhfUU/iZTAIHiTsRkGPAS8eI5oHJCHMznaSIbM7y0yvGJbgxV/x4kERr36FN//GyeOgiQUNRVU33V1+LIVB1/12MkvLK6tr2fXcxubW9k5+d69mVKI5VLmSSjd8ZkCKCKooUEIj1sBCX0LdH1yN/fo9aCNUdIfDGNoh60WiKzhDK3XyBy2EB0xvOZMQ0EAhjbUKEo6jTr7gFt0J6CLxZqRAZqh08l+tQPEkhAi5ZMY0PTfGdso0Ci5hlGslBmLGB6wHTUsjFoJpp5MXRvTYKgHtKm0rQjpRf0+kLDRmGPq2M2TYN/PeWPzPaybYvWynIooThIhPF3UTSVHRcR40EBo4yqEljGthb6W8zzTjaFPL2RC8+ZcXSa1U9M6KpZvzQvl0FkeWHJIjckI8ckHK5JpUSJVw8kieySt5c56cF+fd+Zi2ZpzZzD75A+fzB549l4A=</latexit>

Fig. 2: The MOVDN framework.

the optimal joint policy that achieves the maximum on both
objectives no longer exists in our FVCS-CMOMG. Thus, we
adopt Pareto-optimal as the solution concept of our FVCS-
CMOMG, which is defined in Definition 3.

Definition 3 (Pareto-Optimal). In our FVCS-CMOMG, policy
π dominates policy π′, if Jπ

o ≥ Jπ′

o , Jπ
s ≥ Jπ′

s , and at least
one of the inequalities is strict. A policy π is Pareto-optimal,
if and only if it is not dominated by any other policies.

Solving FVCS-CMOMG is thus equivalent to finding the
set of all Pareto-optimal policies. However, such a set is
prohibitively expensive to obtain [4], especially when policies
are represented by functions with large-scale parameters, e.g.,
neural networks leveraged in this paper. Instead, we consider
to obtain the convex coverage set defined in Definition 4.

Definition 4 (CCS). In our FVCS-CMOMG, the convex cov-
erage set (CCS) is defined as {πw = argmaxπ wJπ|w ∈ Ω}
with Ω = {[w1, w2]|w1 ≥ 0, w2 ≥ 0, w1 + w2 = 1}
representing the space of the weight vector w.

By Definition 4, CCS contains the policy πw that maxi-
mizes the linearly scalarized objective for each weight vector
w ∈ Ω. In fact, it is sufficient to compute CCS for episodic
tasks as our FVCS-CMOMG that treats a day as one episode,
since we can construct such mixture policies by selecting some
πw under a probability distribution at the start of each episode,
which can dominate the policies that are not in CCS [4]. The
weight vector w formally represents the platform’s preference,
which specifies the relative importance of each objective.

In this paper, we aim to obtain the CCS of our FVCS-
CMOMG. As we consider the practical scenario where the
transition probability function is unknown a priori, we take
the approach of learning the policies in the CCS via a
novel framework of MARL, which will be elaborated in the
following Section IV.

IV. SOLUTION METHOD

A. Method Overview

Intuitively, one could learn the policy πw by solving the
problem maxπ wJπ for each w separately. However, such a
method that trains different policies for the infinitely many w’s
in Ω is obviously intractable. Instead, we represent the vector
state-action value function Qπw(s,a) under policy πw as one
single neural network Q(s,a,w) that treats the weight vector
w as an input in addition to the state s and action a. Our
proposed training algorithm guarantees that Q(s,a,w) will
converge to Qπw(s,a) theoretically. As long as Q(s,a,w)

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

is well-trained, πw(s) for any s and w could then be well
approximated by a∗ = argmaxa wQ(s,a,w). In this way,
our model can produce the Pareto-optimal policy for any
weight vector scalably.

To enable distributed decision making which avoids the
computationally intractable operation of searching for a∗ in
the entire joint action space, we design a novel multi-objective
value decomposition network (MOVDN) shown in Figure 2 as
the structure of Q(s,a,w). In MOVDN, there exists a neural
network Qi(oi, ai,w) (referred to as an agent network) for
each agent i, whose inputs include agent i’s observation oi

and action ai, and the weight vector w. Furthermore, MOVDN
implements another neural network (referred to as the mixing
network), which takes as inputs the global state, all agents’
observations, as well as all agent networks’ outputs, and yields
the final output for Q(s,a,w).

After MOVDN is well-trained, the mixing network is no
longer used, and each agent i distributedly select its action
by maximizing its own wQi(oi, ai,w) during execution. In
fact, such distributed execution is equivalent to maximizing the
global team rewards, because our carefully designed mixing
network (further elaborated in Section IV-B2) ensures that the
optimal joint action that maximizes wQ(s,a,w) is consistent
with the collection of each agent i’s optimal action that
individually maximizes wQi(oi, ai,w), i.e.,

argmax
a

wQ(s,a,w) =
[
argmax

ai

wQi(oi, ai,w)
]
i∈Nt

,

which is the individual global maximization (IGM) property.

B. MOVDN Framework

1) Agent Network: As aforementioned, each agent i’s net-
work Qi(oi, ai,w) takes its observation oi, its action ai,
and the weight vector w as inputs. The agent network then
multiplies the inputs oi, ai, and w respectively by matrices
Wo, Wa, and Ww to transform them into embeddings, which
are further concatenated and fed to a series of MLP layers to
obtain a vector output Qi(oi, ai,w) ∈ R2. That is, the entire
operation of each agent i’s network is

Qi(oi, ai,w) = g
(
[Wooi||Waai||Www]

)
, (1)

where || denotes the concatenation operation of two vectors,
and g(·) denotes the computation of the MLP layers. Due to
the fact that At

i of each agent i will change over time in our
setting, we accept ai as an input, and evaluate all available
actions for decision-making.

2) Mixing Network: Although only the agent networks are
used in the execution stage, MOVDN introduces a mixing
network to help us train the agent networks that satisfy the
aforementioned IGM property, such that agents are able to
work cooperatively to maximize the system-wide goals in a
decentralized manner. Specifically, the mixing network takes
all agent networks’ outputs, as well as the global state and all
agents’ observations as inputs. It then feeds these values into
a multi-head attention mechanism [5], whose output is further
added to a bias term c(s) obtained by feeding the state s into

a stack of several MLP layers. That is, the entire operation of
the mixing network at each time slot t is

Q(s,a,w) =

H∑
h=1

∑
i∈Nt

λi,hQi(oi, ai,w) + c(s), (2)

where H denotes the number of heads, and the weight λi,h

that corresponds to each head h of each agent i is calculated
by jointly performing a scaled dot-product and softmax nor-
malization as

λi,h =
exp

((
oiWk,hWq,hs

T
)

1√
F

)
∑

j∈Nt
exp

((
ojWk,hWq,hsT

)
1√
F

)
with Wq,h and Wk,h denoting respectively the matrices that
transform s into a query and oi’s into keys, and F denoting
the number of rows that the matrix Wq,h has.

Note that, in each time slot t, the summation in the denom-
inator of λi,h is over the set of agents Nt that actually take
actions in the current time slot. Thus, such a mixing network is
applicable in our FVCS-CMOMG where Nt changes in every
time slot. By our carefully designed mixing network, MOVDN
achieves the IGM property as shown in Theorem 1.

Theorem 1. MOVDN satisfies the IGM property.

Proof. By our design of the mixing network given by Equation
(2), we have that

wQ(s,a,w) =w

H∑
h=1

∑
i∈Nt

λi,hQi(oi, ai,w) +wc(s)

=
∑
i∈Nt

(H∑
h=1

λi,hwQi(oi, ai,w)

)
+wc(s).

Then, we let λ̂i =
∑H

h=1 λi,h, and have λ̂i > 0 for each i as
each λi,h is the output of a softmax calculation. Thus,

a∗ =argmax
a

wQ(s,a,w) = argmax
a

∑
i∈Nt

λ̂iwQi(oi, ai,w)

=
[
argmax

ai

wQi(oi, ai,w)
]
i∈Nt

,

which proves that MOVDN satisfies the IGM property.

C. MOVDN Training Algorithm

1) Algorithm Overview: We provide the overall training
algorithm of MOVDN in Algorithm 1. Firstly, the algorithm
initializes a replay buffer D that is used to store experiences
as an empty set, and randomly initializes the parameters of
all agent networks and the mixing network (line 2). The
algorithm then enters an episodic training process (line 3-
16). In each episode, agents interact with the environment
under uniformly sampled weight vector, and the experiences of
such interactions are collected into buffer D (line 5-10). Then,
the algorithm samples a random mini-batch of experiences
from D (line 11), and updates the parameters of MOVDN by
minimizing the TD error over the mini-batch (line 12-16).

2) Experience Collection: At the start of each episode,
the algorithm samples a weight vector w from Ω (line 4),
under which agents make decisions. At the beginning of each

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: MOVDN Training Algorithm
1 // Initialization.
2 Initialize replay buffer D as ∅, and randomly initialize the

parameters θ of MOVDN;
// Episodic training process.

3 foreach episode n = 0 to max-episodes do
// Experience collection.

4 Uniformly sample a weight vector w from Ω;
5 foreach time slot t ∈ T do
6 foreach agent i ∈ Nt do
7 Observe oi and generate ai by Equation (3);

8 Collect joint observation o, and joint action a;
9 Observe global vector reward r, next state s′, and

next joint observation o′;
10 Store experience (s,o,a, r, s′,o′,w) in D;

// Parameter updating.
11 Uniformly sample a mini-batch B from D;
12 foreach experience bk = (s,o,a, r, s′,o′,w) ∈ B do

// TD target computation.
13 (a′,w′)← argmaxã,w̃ wQ(s′, ã, w̃);
14 yk ← r+ γQ

(
s′,a′,w′);

// Squared TD error computation.
15 Lk(θ) = ||yk −Q

(
s,a,w

)
||22;

16 Update parameters θ by minimizing the loss function
L(θ) = 1

|B|
∑

k:bk∈B Lk(θ);

time slot t, each agent i who is about to take an action gets
observation oi, and takes action ai ϵ-greedily (line 6-7) as

ai =

{
argmaxa∈At

i
wQi(oi, a,w), w.p. 1− ϵ,

uniformly sampled action in At
i, w.p. ϵ,

(3)

with ϵ ∈ (0, 1). At the end of each time slot t, the envi-
ronment returns a vector reward r, and transits to the next
state s′ (line 9). The algorithm then stores the experience
(s,o,a, r, s′,o′,w) into buffer D (line 10). Such an expe-
rience collection procedure repeats until the end of training.

3) Parameter Updating: In the parameter updating phase
of each episode, the algorithm samples a mini-batch of expe-
riences B uniformly at random from the buffer D (line 11). For
each experience bk = (s,o,a, r, s′,o′,w) in B, the algorithm
firstly finds the (a′,w′) that solves maxã,w̃ wQ(s′, ã, w̃) (line
13). In our actual implementation of Algorithm 1, we restrict
w′ to be in a discrete and finite set Ω′ uniformly sampled
from Ω for computational efficiency. For each w̃ ∈ Ω′,
instead of directly searching in the joint action space for the
joint action aw̃ that maximizes wQ(s′, ã, w̃), we set each
agent i’s action as argmaxa′

i
wQi(o

′
i, a

′
i, w̃), and combine

them as a vector of actions to obtain aw̃. We then search
the weight vector w′ = argmaxw̃ wQ(s′,aw̃, w̃) within the
space Ω′, and finally set the value for (a′,w′) as (aw̃′ ,w′).
After obtaining (a′,w′), the algorithm sets the TD target yk as
r+ γQ(s′,a′,w′) (line 14), and the squared TD error Lk(θ)
of experience bk as ||yk−Q

(
s,a,w

)
||22 (line 15). Finally, the

algorithm updates the parameters θ of MOVDN by minimizing
the following loss function (line 16)

L(θ) =
1

|B|
∑

k:bk∈B

Lk(θ)

via stochastic gradient descent, which represents the mean
squared TD error over the mini-batch B.

D. Convergence Analysis

We now prove the convergence of Algorithm 1. To improve
the readability, we leave the proofs for all the following
theorems and lemmas in the appendix. Firstly, we present in
Lemma 1 that Algorithm 1 is an approximation of repeatedly
applying an augmented Bellman optimality operator.

Lemma 1. Given that Q(s,a,w) is represented in a tabular
form and Es′∼P (s′|s,a)[·] is calculated exactly, the parameter
updating process in Algorithm 1 is equivalent to applying the
operator H, which is defined for any (s,a,w) as

HQ(s,a,w) = r(s,a) + γEs′∼P (s′|s,a)
[
Q(s′,a′,w′)

]
,

where (a′,w′) = argmaxã,w̃ wQ(s′, ã, w̃).

We use Q∗(s,a,w) to denote the optimal function that
accurately fits Qπw(s,a) for any (s,a,w). The following
theorem demonstrates that Q∗(s,a,w) is a fixed point of H.

Theorem 2. Q∗(s,a,w) is a fixed point of H, i.e.,

Q∗(s,a,w) = HQ∗(s,a,w), ∀s,a,w.

In the following, we use Qk(s,a,w) to denote the function
produced by applying for k times the operator H. Naturally,
the immediate reward rot is bounded. Without loss of general-
ity, we choose such αg and f(·) that the immediate reward
rst defined in Definition 2 is also bounded. Q0(s,a,w) is
initialized as zero for each (s,a,w). We now prove that H
is a contraction at Q∗(s,a,w) in Theorem 3, which is also
known as the pseudo-contraction [6].

Theorem 3. Let d be a metric that satisfies

d
(
Q,Q′) = max

s,a,w

∣∣w(
Q(s,a,w)−Q′(s,a,w)

)∣∣, ∀Q,Q′.

Then, we have d
(
HQk,HQ∗) ≤ γd

(
Qk,Q

∗),∀k ≥ 0, i.e.,
H is a pseudo-contraction at Q∗(s,a,w).

Based on Theorem 2 and 3, we are now in position to
present the convergence of Algorithm 1 in Theorem 4.

Theorem 4. By iteratively applying H for infinite times, the
distance given by d between Qk(s,a,w) and Q∗(s,a,w) will
converge to zero, i.e., limk→∞ d

(
Qk,Q

∗) = 0.

According to the definition of CCS in Definition 4,
Qk(s,a,w) is as optimal as Q∗(s,a,w) when k approaching
infinity, since they have the same value under w. Theorem 4
thus provides a desirable theoretical convergence guarantee of
applying the proposed operator H.

E. Sample Complexity Analysis

Recall that the operator H jointly computes (a′,w′) =
argmaxã,w̃ wQ(s′, ã, w̃), which differs from the correspond-
ing operation in traditional Bellman optimality operator
that would only search the joint action that maximizes
wQ(s′, ã,w). As we will see in Theorem 5, such additional

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

dimension of optimization that H conducts over the weight
vector space greatly benefits the sample complexity for learn-
ing the policies in CCS.

We adopt the widely used generative model setting [7, 8]
for sample complexity analysis, which assumes the existence
of an oracle that takes as input a state-action pair (s,a), and
returns a sampled s′ ∼ P (·|s,a) and the reward r(s,a). Under
such a setting, we collect K transitions for each state-action
pair (s,a). Based on these transitions, we iteratively apply H
for infinite times to obtain a joint state-action value function
Q̂∗(s,a,w;K). The policy induced by Q̂∗(s,a,w;K) for
each w is denoted as π̂K

w .

Theorem 5. Under the generative model setting, given δ ∈
(0, 1) and ϵ > 0, there exists constants c1, c2, if

K ≥ c1m

ϵ2(1− γ)3
log

c2m|S||A|
(1− γ)ϵδ

,

where m is the number of objectives, S is the state space, and
A is the joint action space, we have d

(
Qπ̂K

w ,Q∗) ≤ ϵ with
probability at least 1− δ, i.e., π̂K

w is ϵ−optimal almost surely.

Theorem 5 implies that the sample complexity of applying
H for learning CCS is independent of the weight vector
space Ω. In contrast, the naive approach that trains one policy
for each w causes the sample complexity to depend on the
cardinality of Ω, as it needs to repeatedly collect experiences
for |Ω| times. Therefore, the operator H used in Algorithm 1
greatly benefits the sample complexity for learning CCS.

V. EXPERIMENTS

A. Experimental Setups

1) Dataset: Our experiments are based on three real-world
ride-hailing order datasets, two of which are released by Didi
Chuxing GAIA Initiative [9], and one of which is released by
New York City Taxi and Limousine Commission [10]. The
first dataset contains over 2 million orders in Haikou, China,
from September 1st to September 30th, 2017. The second
dataset contains over 5 million orders in Chengdu, China,
from November 1st to November 30th, 2016. The last dataset
contains over 6 million orders in New York City, America,
from September 1st to September 30th, 2019.

2) Simulator: Based on the datasets, we design an urban
crowd sensing simulator to support the training and evaluation
of MOVDN. Specifically, we divide the city area into square
grids whose lengths are approximately 2 kilometers. The
location of each driver or order is represented by a grid ID.
For each grid g, we set the function f(·) as natural logarithm
and the coefficient αg as 1.0 in the following experiments.
The length of each time slot is set as 2 minutes. We assume
orders will get cancelled, if not served for more than 3 time
slots since they are submitted. To evaluate MOVDN under
different traffic conditions, we conduct experiments in three
time periods, i.e., the morning period from 7 a.m. to 11 a.m.,
the noon period from 11 a.m. to 3 p.m., and the evening period
from 3 p.m. to 7 p.m.. Similar to [1, 2], there are 500 FHVs in

our simulation, whose initial locations are randomly sampled
from a discrete uniform distribution defined over the grids.

3) Baselines: Since there is no off-the-shelf baselines, we
adapt the state-of-the-art algorithms that are capable to fit into
our setting for comparison. (I) CVN-S: CVN [3] is a state-of-
the-art order dispatch framework, where each agent aims to
maximize its own cumulative reward. To make CVN suitable
in our setting, the immediate global vector reward r is de-
composed into each agent’s individual vector reward ri, which
consists of the order-serving reward (i.e., the price of the order
chosen by the agent), and the sensing reward (i.e., the average
global sensing utility). CVN-S uses scalarized Q-learning [11]
to train CVN, which utilizes a traditional Bellman optimality
operator. (II) CVN-E: CVN-E also follows CVN to make order
selection decisions. The only difference between CVN-E and
CVN-S is that CVN-E uses the same training algorithm as
MOVDN. (III) SOVDN: SOVDN modifies MOVDN to output
a scalar value that estimates the function wQπw(s,a) for
each (s,a,w), and is trained using multi-objective fitted Q-
iteration [6]. (IV) VDN-S: VDN-S has the same framework
as MOVDN, but is trained by scalarized Q-learning.

4) Metrics: In our experiments, after training MOVDN
and the baselines, we test each of them under the same
set of weight vectors Ω =

{
w ∈ Ω|w1 = 0.05n, n ∈

{1, 2, · · · , 20}
}

. Specifically, for each method, we collect its
GMV and SSU under each weight vector w ∈ Ω, filter out the
dominated outcomes, and refer to the remaining set of undom-
inated ones as the Pareto frontier of the method under Ω. We
then compare the performances of all methods by evaluating
their Pareto frontiers using two common metrics hypervolume
and coverage of two sets (CTS) [4]. More specifically, we treat
any solution J = [J1, J2] in a Pareto frontier J as a point in
a 2-D x-y coordinate system, and denote the rectangular area
bounded by x = 0, y = 0, x = J1, and y = J2 as R(J). The
hypervolume of J represents the area of

⋃
J∈J R(J). A larger

hypervolume indicates a better Pareto frontier. Furthermore,
given two Pareto frontiers J and J ′, the CTS of J to J ′ is
the fraction of outcomes in J ′ that are dominated by at least
one outcome in J . We are only interested in, and thus only
show the CTS of MOVDN’s Pareto frontier to those of the
baseline methods in Section V-B.

B. Experimental Results

1) Metrics Comparison: Table I and Table II compare the
results of the hypervolume and CTS respectively. Table I
demonstrates that our algorithm achieves the largest hypervol-
ume compared with baselines in all scenarios. Table II further
shows that more than 90% solutions computed by baselines are
dominated by ours. Therefore, the Pareto frontier constructed
by MOVDN is superior to those constructed by baselines.

2) Pareto Frontier Visualization: To see clearly the relation-
ship between GMV and SSU, we visualize the Pareto frontiers
of all considered methods in Figure 3, from which we can
observe that GMV and SSU are two conflicting goals that
need to be balanced appropriately. Overall, MOVDN’s Pareto
frontier covers a wider area and is more evenly distributed

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Hypervolume comparison of MOVDN and baselines in three periods on three datasets. The values are written in
scientific notations that omit ×108. Each value denotes the mean and standard deviation over 6 runs with different seeds.

Method Morning Noon Evening

Haikou Chengdu NYC Haikou Chengdu NYC Haikou Chengdu NYC

CVN-S 5.02± 0.07 0.94± 0.10 3.08± 0.11 5.04± 0.37 0.72± 0.04 3.27± 0.12 4.67± 0.26 0.75± 0.03 3.27± 0.13
CVN-E 4.65± 0.22 1.03± 0.13 3.11± 0.14 4.91± 0.38 0.73± 0.06 3.16± 0.03 5.08± 0.11 0.77± 0.01 3.26± 0.09
SOVDN 5.37± 0.32 1.03± 0.07 3.02± 0.23 5.12± 0.11 0.82± 0.13 3.60± 0.20 5.05± 0.15 0.79± 0.02 3.80± 0.17
VDN-S 6.65± 0.31 1.79± 0.22 3.79± 0.14 6.75± 0.12 1.57± 0.16 5.79± 0.08 8.26± 0.15 1.75± 0.15 6.00± 0.31

MOVDN 7.31± 0.10 2.08± 0.26 4.23± 0.10 7.76± 0.12 1.95± 0.03 6.28± 0.05 9.37± 0.25 2.17± 0.03 6.67± 0.38

TABLE II: CTS of MOVDN’s Pareto frontier to those of baseline methods in three periods on three datasets. Each value
denotes the mean and standard deviation over 6 runs with different seeds.

Method Morning Noon Evening

Haikou Chengdu NYC Haikou Chengdu NYC Haikou Chengdu NYC

CVN-S 0.98± 0.02 0.97± 0.04 0.97± 0.05 0.97± 0.04 0.96± 0.05 0.98± 0.04 0.96± 0.06 0.96± 0.04 0.98± 0.04
CVN-E 0.97± 0.05 0.95± 0.06 0.97± 0.04 0.96± 0.04 0.95± 0.05 0.96± 0.05 0.97± 0.04 0.95± 0.06 0.98± 0.03
SOVDN 0.97± 0.04 0.97± 0.04 0.96± 0.05 0.96± 0.05 0.97± 0.04 0.93± 0.06 0.94± 0.07 0.93± 0.07 0.96± 0.06
VDN-S 0.91± 0.03 0.94± 0.01 0.92± 0.06 0.92± 0.06 0.95± 0.03 0.91± 0.06 0.93± 0.05 0.91± 0.03 0.91± 0.03

40 60 80 100 120 140
GMV

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

SS
U

MOVDN
VDN-S
SOVDN
CVN-E
CVN-S

(a) Haikou (Morning).

10 15 20 25 30 35
GMV

3

4

5

6

7

8

9

SS
U

MOVDN
VDN-S
SOVDN
CVN-E
CVN-S

(b) Chengdu (Morning).

10 20 30 40 50 60
GMV

5.5

6.0

6.5

7.0

7.5

SS
U

MOVDN
VDN-S
SOVDN
CVN-E
CVN-S

(c) New York City (Morning).
Fig. 3: Pareto frontier visualization in morning period. Both GMV and SSU are written in scientific notations that omit ×103.

than the Pareto frontiers of all baselines, which validates the
results in Table I and II.

Figure 3 shows that the outcomes of both CVN-S and
CVN-E gather in a small range, and are mostly dominated by
MOVDN. Our reasoning of MOVDN’s superior performance
compared with CVN-S and CVN-E is as follows. First, in
CVN-S and CVN-E, each agent learns independently to max-
imize its own cumulative reward instead of the team reward.
Thus, agents compete with each other, which will degrade
the system-wide performance. Second, the equal allocation of
the team reward to each agent in CVN-S and CVN-E cannot
precisely represent each agent’s credit. Therefore, it is hard for
agents to learn proper policies for team reward maximization
for any weight vector.

Compared with MOVDN, SOVDN adopts a similar frame-
work but outputs a scalar Q(s,a,w) that fits wQπw(s,a) for
each (s,a,w). However, SOVDN is not able to distinguish the
input weight vectors, which can be seen from the following
example. Suppose r1 is the cumulative vector reward if agents
start in state s and always act according to πw1

, r2 is the
cumulative vector reward if agents also start in state s but act
according to a different policy πw2 , and w1r1 = w2r2 = C.
Then, SOVDN learns towards minimizing the gap between
maxa Q(s,a,w) and C, no matter whether the input weight
vector w is w1 or w2. In that case, the neural network will
homogenize the inputs, and fails to learn different policies for
different weight vectors. In Figure 3, the outcomes of SOVDN

Morning Noon Evening
0

50

100

150

200

G
M
V

MOVDN VDN-S SOVDN CVN-E CVN-S

(a) Prefer GMV scenario.
Morning Noon Evening

 0

 1

 2

 3

 4

 5

SS
U

MOVDN VDN-S SOVDN CVN-E CVN-S

(b) GMV no-less-than scenario.
Fig. 4: Two scenarios in Haikou dataset. ρo are set as 4500.
The values omit ×103.

almost gather into one point, which validates our thoughts.
VDN-S is the most competitive baseline as it uses the same

framework as MOVDN. However, VDN-S trains each weight
vector separately, and does not use the information of the
weight vectors that have been explored before, which makes it
suffer from sample inefficiency and performs less satisfactorily
than our MOVDN.

C. Discussion of Usage

Next, we discuss how MOVDN supports the platform for
decision making in practice. First, the platform can evaluate
MOVDN under a large number of weight vectors offline, and
stores the GMV and SSU of each weight vector in advance.
Then in the planning phase, the platform chooses one weight
vector whose outcomes meet its requirements, and sends that
weight vector to FHVs. FHVs’ decision modules take as input
such a weight vector to make order selection decisions. If

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

the platform changes its requirements on order-serving and
sensing objectives, it only needs to update the weight vector
to FHVs. In the following, we design 2 scenarios that are
often met by platforms in practice. (I) Prefer GMV scenario:
The platform wants to maximize GMV. (II) GMV no-less-
than scenario: The platform wants to maximize SSU under
the condition that GMV is no less than a threshold ρo. In
our experiments, we evaluate all methods under Ω. As shown
in Figure 4, MOVDN achieves the maximum outcomes in 2
scenarios, which demonstrates that MOVDN can support the
platform in decision-making effectively.

VI. RELATED WORK

Researchers have devoted much effort [12–38] to design
mobile crowd sensing (MCS) systems. Among them, [12–16]
design incentive mechanisms to motivate workers’ participa-
tion, [17–22] conduct truth inference for the collected data,
[23–26] focus on preserving workers’ privacy, [27, 28] inves-
tigate pricing strategies, and [29–33] utilize RL to navigate
unmanned vehicles to optimize the data collection. A series
of works [34–38] study task assignment problems, where [36–
38] optimize the system utility under time or budget constrains,
and [34, 35] takes workers’ preferences on tasks into account
when assigning tasks. Different from the above works, we
focus on the FVCS system and study an essential unsolved
problem of balancing the sensing and order-serving objectives
according to the platforms’ preferences.

Similar to this paper, [1, 2] also deal with the inconsistency
of sensing and order-serving objectives in FVCS systems.
Specifically, [2] prioritizes sensing over order-serving and
incentivizes FHVs with a limited budget. [1] maximizes a
compound objective of order-serving and sensing by designing
a route planning mechanism. However, existing works fail to
meet the diverse needs of FVCS platforms. Our paper differs
from such works on two aspects. First, we optimize the order
selection mechanism for FHVs instead of the incentive mech-
anism or route planning mechanism. Second, we formulate the
problem from a multi-objective view, and solve a set of Pareto-
optimal policies for platforms. To the best of our knowledge,
we are the first work to obtain CCS in support of the platform.

MOVDN itself is also a novel multi-objective MARL frame-
work. Specifically, the independent learning approach [39]
train a policy for each agent to maximize its own cumulative
reward. [40] stimulates multi-agent cooperation by designing
a counterfactual baseline for credit assignment. [41, 42] co-
ordinates agents’ actions by designing value decomposition
networks that satisfy the IGM principle. MOVDN also falls
into this category. However, previous works focus on the multi-
agent cooperation with single objective, while our problem
contains multiple conflicting objectives that needs to be bal-
anced according to the platforms’ preferences.

VII. CONCLUSION

We have proposed a cooperative multi-objective MARL
framework, referred to as MOVDN, to help FHVs make order
selection decisions in FVCS systems. MOVDN is preference-
configurable that allows platforms to flexibly determine their

preferences on order-serving and sensing objectives. Specif-
ically, MOVDN adopts a decomposed network structure to
factorize the joint state-action value function among agents,
where each agent possesses a network to take actions based
on its local observations, and a mixing network ensures that the
optimal joint action is consistent with the collection of each
agent’s optimal action. To obtain the Pareto-optimal policy
for any preference, we propose a novel algorithm to train a
single universal MOVDN that is optimized over the space of
all preferences. The key of our algorithm is utilizing an aug-
mented Bellman optimality operator, which enjoys theoretical
convergence guarantee and is provably more sample-efficient
than the traditional Bellman optimality operator. Extensive
experiments on three real-world ride-hailing order datasets
illustrate that MOVDN outperforms strong baselines and can
support the platform in decision-making effectively.

ACKNOWLEDGMENT

This work was supported in part by NSF China (No.
U21A20519, U20A20181, 62202298), and in part by Fel-
lowship of China Postdoctoral Science Foundation (No.
22Z020702116).

APPENDIX

VIII. PROOF OF LEMMA 1

Ideally, H is applied as Qk+1(s,a,w) = HQk(s,a,w).
However, as the transition function is unknown in practice, we
approximate the expectation in HQ(s,a,w) by Q(s′,a′,w′)
(line 15), which is calculated on one sampled next state s′

and is an unbiased approximation. In addition, Q(s,a,w)
is represented by a neural network, whose parameters are
updated by minimizing the mean squared TD error over a
mini-batch of experiences B, instead of the naive operation of
assigning HQk(s,a,w) to Qk+1(s,a,w).

IX. PROOF OF THEOREM 2

For any given weight vector w, we have

wQ∗(s,a,w) = wQπw (s,a) ≥ wQπw′ (s,a) = wQ∗(s,a,w′)

for each (s,a,w′), where the equalities result from the defi-
nition of Q∗(s,a,w), and the inequality holds because of our
definition of the CCS given in Definition 4. Thus, we have
w = argmaxw̃ wQ∗(s′, ã, w̃) for any (s′, ã). Then, we have

HQ∗(s,a,w) = r(s,a) + Es′∼P (s′|s,a)
[
Q∗(s′,a′,w′)

]
= r(s,a) + Es′∼P (s′|s,a)

[
Q∗(s′,πw(s′),w)

]
= Q∗(s,a,w)

for each (s,a,w), which ends the proof of Theorem 2.

X. PROOF OF THEOREM 3

Lemma 2. ∀k ≥ 0, Q∗(s,a,w) and Qk(s,a,w) satisfy

wQ∗(s,a,w) ≥ wQk(s,a,w
′),∀s,a,w,w′.

Proof. We prove Lemma 2 by induction. First, we rewrite the
operation of applying H as

Qk+1(s,a,w
′) = r(s,a) + γE

[
Qk(s

′,a′′,w′′)
]
,

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

where (a′′,w′′) = argmaxã,w̃ w′Qk(s
′, ã, w̃).

For k = 0, we have wQ∗(s,a,w) ≥ wQ0(s,a,w
′) for

any (s,a,w,w′). Suppose for k = l > 0, it also holds that
wQ∗(s,a,w) ≥ wQl(s,a,w

′),∀s,a,w,w′. For k = l + 1,
wQl+1(s,a,w

′) = wr(s,a) + γE
[
wQl(s

′,a′′,w′′)
]

≤ wr(s,a) + γE
[
wQ∗(s′,a′′,w)

]
≤ wr(s,a) + γE

[
max
ã,w̃

wQ∗(s′, ã, w̃)
]

= wQ∗(s,a,w).

The last equality holds because Q∗(s,a,w) is a fixed point
of H as shown in Theorem 2. Therefore, for any k ≥ 0,
wQ∗(s,a,w) ≥ wQk(s,a,w

′),∀s,a,w,w′ holds.

By the definition of d, we have

d
(
HQk,HQ∗) = max

s,a,w

∣∣∣w(
HQk(s,a,w)−HQ∗(s,a,w)

)∣∣∣
= γmax

w

∣∣∣E[wQk(s
′,a′,w′)−wQ∗(s′,a′′,w)

]∣∣∣,
where (a′,w′) = argmaxã,w̃ wQk(s

′, ã, w̃), and (a′′,w) =
argmaxâ,ŵ wQ∗(s′, â, ŵ).

d
(
HQk,HQ∗) ≤ γmax

s′,w

∣∣wQk(s
′,a′,w′)−wQ∗(s′,a′′,w)

∣∣
= γmax

s′,w

∣∣max
ã,w̃

wQk(s
′, ã, w̃)−max

â
wQ∗(s′, â,w)

∣∣,
where the first inequality is because

∣∣E[·]
∣∣ ≤ E

[
|·|
]
≤ max |·|,

and the second equality results from the cancellation of
argmax operation. Based on Lemma 2, we can easily get
maxã,w̃ wQk(s

′, ã, w̃) ≤ maxâ wQ∗(s′, â,w). Thus,

d
(
HQk,HQ∗)

≤ γmax
s′,w

(
max
â

wQ∗(s′, â,w)−max
ã

wQk(s
′, ã,w)

)
= γmax

s′,w

(
max
â

wQ∗(s′, â,w)−wQk(s
′, â,w)+

wQk(s
′, â,w)−max

ã
wQk(s

′, ã,w)
)

≤ γmax
s′,w

(
max
â

wQ∗(s′, â,w)−wQk(s
′, â,w)

)
≤ γ max

s′,â,w

∣∣wQk(s
′, â,w)−wQ∗(s′, â,w)

∣∣ = γd
(
Qk,Q

∗),
which proves H is a pseudo-contraction at Q∗(s,a,w).

XI. PROOF OF THEOREM 4
Based on Theorem 2 and 3, we have

d
(
Qk,Q

∗) = d
(
HQk−1(s,a,w),HQ∗(s,a,w)

)
≤ γd

(
Qk−1(s,a,w),Q∗(s,a,w)

)
≤ γkd

(
Q0(s,a,w),Q∗(s,a,w)

)
.

We use Rmax to denote the largest possible immediate reward
of rot and rst . Then, ||Q∗(s,a,w)||∞ ≤ Rmax

1−γ , which indi-
cates Q∗(s,a,w) is also bounded. Thus, with k approaching
infinity, we have limk→∞ d

(
Qk,Q

∗) = 0.

XII. PROOF OF THEOREM 5
For any w1,w2 ∈ Ω, and any (s,a), we have

w1Q
∗(s,a,w1)−w2Q

∗(s,a,w2)

=w1Q
∗(s,a,w1)−w2Q

∗(s,a,w1)

+w2Q
∗(s,a,w1)−w2Q

∗(s,a,w2)

≤w1Q
∗(s,a,w1)−w2Q

∗(s,a,w1)

≤||w1 −w2||∞||Q∗(s,a,w1)||1 ≤
mRmax

1− γ
||w1 −w2||∞,

where the second inequality holds due to Holder’s in-
equality, and the last one holds since ||Q∗(s,a,w1)||1 ≤
m||Q∗(s,a,w1)||∞ ≤ mRmax

1−γ . By taking maximum over
(s,a), we have

max
s,a

|w1Q
∗(s,a,w1)−w2Q

∗(s,a,w2)|
mRmax

1− γ
||w1 −w2||∞. (4)

Let Cξ be ξ−covering set of Ω in terms of ℓ∞−norm.
Then, ∀w ∈ Ω,∃wξ ∈ Cξ, ||w − wξ||∞ ≤ ξ, and Cξ

satisfies |Cξ| ≤ (2ξ)
m. Under the generative model set-

ting, we construct an empirical transition probability function
P̂ (s′|s,a) = count(s,a,s′)

K , where count(s,a, s′) is the number
of times that (s,a) transitions to s′. The sub-optimality bound
[7] in single-objective RL is that, with probability at least 1−δ,

||Q∗(s,a)−Qπ̂K
(s,a)||∞ ≤ γ

√
c

(1− γ)3
log(c|S||A|/δ)

K
, (5)

where Qπ̂K

(s,a) is the optimal state-action value function
under P̂ (s′|s,a). By the definition of Q(s,a,w), for a given
w, we have

Q∗(s,a) = wQ∗(s,a,w), Qπ̂K
(s,a) = wQπ̂K

w (s,a,w). (6)

For the ease of notation, we omit the superscript K of π̂K
w in

the following proof. By substituting Equation (6) into Equation
(5) and take an union bound over all wξ ∈ Cξ, we have that
with probability at least 1− δ,

max
s,a

|wξQ
∗(s,a,wξ)−wξQ

π̂wξ (s,a,wξ)|

≤γ

√
c

(1− γ)3
log(c|S||A||Cξ|/δ)

K
.

(7)

Now, we are in position to prove Theorem 5. For any w ∈ Ω,
max
s,a

|wQ∗(s,a,w)−wQπ̂w (s,a,w)|

=max
s,a

|wQ∗(s,a,w)−wξQ
∗(s,a,w) +wξQ

∗(s,a,w)

−wξQ
π̂w (s,a,w) +wξQ

π̂w (s,a,w)−wQπ̂w (s,a,w)|
≤max

s,a
|wQ∗(s,a,w)−wξQ

∗(s,a,w)|

+max
s,a

|wξQ
∗(s,a,w)−wξQ

π̂w (s,a,w)|

+max
s,a

|wξQ
π̂w (s,a,w)−wQπ̂w (s,a,w)|

≤
2mRmax

1− γ
||w −wξ||∞ + γ

√
c

(1− γ)3
log(c|S||A||Cξ|/δ)

K

≤
2mRmaxξ

1− γ
+ γ

√√√√ c

(1− γ)3

log(c|S||A|(2
ξ
)m/δ)

K

=
2mRmaxξ

1− γ
+ γ

√
c′m

(1− γ)3
log(c′′|S||A|/(δξ))

K
,

where the first inequality holds due to triangle inequality, the
second inequality holds due to Equation (4) and (7), the third
inequality holds due to the property of ξ−covering set.

Finally, uniformly splitting the error ϵ by setting ξ =
(1−γ)ϵ

4mRmax
, and selecting N that

γ

√
c′m

(1− γ)3
log(c′′|S||A|m/(δξ))

K
≤

ϵ

2
,

we can have d
(
Qπ̂w ,Q∗) ≤ ϵ with probability at least 1− δ.

Solving out N ends our proof.

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Ding, Z. Yang, Y. Wei, H. Jin, and X. Wang, “Multi-agent
reinforcement learning for urban crowd sensing with for-hire
vehicles,” INFOCOM, 2021.

[2] C. Xiang, Y. Li, Y. Zhou, S. He, Y. Qu, Z. Li, L. Gong, and
C. Chen, “A comparative approach to resurrecting the market
of MOD vehicular crowdsensing,” in INFOCOM, 2022.

[3] X. Tang, Z. T. Qin, F. Zhang, Z. Wang, Z. Xu, Y. Ma, H. Zhu,
and J. Ye, “A deep value-network based approach for multi-
driver order dispatching,” KDD, 2019.

[4] D. M. Roijers, P. Vamplew, and S. Whiteson, “A survey of multi-
objective sequential decision-making,” Journal of Artificial In-
telligence Research, 2013.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, and L. Kaiser, “Attention is all you need,” NIPS, 2017.

[6] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm
for multi-objective reinforcement learning and policy adapta-
tion,” NIPS, 2019.

[7] A. Agarwal, S. M. Kakade, and L. F. Yang, “Model-based
reinforcement learning with a generative model is minimax
optimal,” COLT, 2020.

[8] M. G. Azar, R. Munos, and B. Kappen, “On the sample
complexity of reinforcement learning with a generative model,”
ICML, 2012.

[9] https://gaia.didichuxing.com.
[10] https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
[11] A. Abels, D. M. Roijers, T. Lenaerts, and A. Nowé, “Dynamic

weights in multi-objective deep reinforcement learning,” ICML,
2019.

[12] Z. Shi, G. Yang, X. Gong, S. He, and J. Chen, “Quality-
aware incentive mechanisms under social influences in data
crowdsourcing,” TON, 2022.

[13] B. Li and J. Liu, “Achieving information freshness with selfish
and rational users in mobile crowd-learning,” JSAC, 2021.

[14] M. Karaliopoulos, I. Koutsopoulos, and L. Spiliopoulos, “Op-
timal user choice engineering in mobile crowdsensing with
bounded rational users,” INFOCOM, 2019.

[15] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “Incentive mechanism
for privacy-aware data aggregation in mobile crowd sensing
systems,” TON, 2018.

[16] G. Fan, Y. Zhao, Z. Guo, H. Jin, X. Gan, and X. Wang,
“Towards fine-grained spatio-temporal coverage for vehicular
urban sensing systems,” in INFOCOM, 2021.

[17] E. Wang, M. Zhang, Y. Xu, H. Xiong, and Y. Yang, “Spatiotem-
poral fracture data inference in sparse urban crowdsensing,” in
INFOCOM, 2022.

[18] X. Gong and N. B. Shroff, “Truthful mobile crowdsensing for
strategic users with private data quality,” TON, 2019.

[19] X. Li, K. Xie, X. Wang, G. Xie, D. Xie, Z. Li, J. Wen, Z. Diao,
and T. Wang, “Quick and accurate false data detection in mobile
crowd sensing,” TON, 2020.

[20] M. Zhang, B. Swenson, J. Huang, and H. V. Poor, “Truthful
mobile crowd sensing with interdependent valuations,” Mobi-
hoc, 2020.

[21] Z. Shi, S. Jiang, L. Zhang, Y. Du, and X.-Y. Li, “Crowdsourcing
system for numerical tasks based on latent topic aware worker
reliability,” in INFOCOM, 2021.

[22] C. Huang, H. Yu, J. Huang, and R. A. Berry, “Strategic informa-
tion revelation in crowdsourcing systems without verification,”
in INFOCOM, 2021.

[23] X. Pang, Z. Wang, D. Liu, J. C. S. Lui, Q. Wang, and J. Ren,
“Towards personalized privacy-preserving truth discovery over
crowdsourced data streams,” TON, 2022.

[24] M. Zhang, L. Yang, S. He, M. Li, and J. Zhang, “Privacy-
preserving data aggregation for mobile crowdsensing with ex-
ternality: An auction approach,” TON, 2021.

[25] H. Jiang, P. Zhao, and C. Wang, “Roblop: Towards robust
privacy preserving against location dependent attacks in con-
tinuous LBS queries,” TON, 2018.

[26] Y. Huang, Z. Xiao, D. Wang, H. Jiang, and D. Wu, “Exploring
individual travel patterns across private car trajectory data,”
TITS, 2020.

[27] W. Liu, Y. Yang, E. Wang, H. Wang, Z. Wang, and J. Wu, “Dy-
namic online user recruitment with (non-) submodular utility in
mobile crowdsensing,” TON, 2021.

[28] Q. Hu, S. Wang, X. Cheng, J. Zhang, and W. Lv, “Cost-efficient
mobile crowdsensing with spatial-temporal awareness,” TMC,
2021.

[29] Z. Dai, C. H. Liu, Y. Ye, R. Han, Y. Yuan, G. Wang, and J. Tang,
“Aoi-minimal UAV crowdsensing by model-based graph convo-
lutional reinforcement learning,” in INFOCOM, 2022.

[30] D. Zhao, M. Cao, L. Ding, Q. Han, Y. Xing, and H. Ma,
“Dronesense: Leveraging drones for sustainable urban-scale
sensing of open parking spaces,” in INFOCOM, 2022.

[31] Z. Dai, H. Wang, C. H. Liu, R. Han, J. Tang, and G. Wang,
“Mobile crowdsensing for data freshness: A deep reinforcement
learning approach,” in INFOCOM, 2021.

[32] C. H. Liu, Z. Dai, H. Yang, and J. Tang, “Multi-task-oriented
vehicular crowdsensing: A deep learning approach,” in INFO-
COM, 2020.

[33] C. H. Liu, C. Piao, and J. Tang, “Energy-efficient UAV crowd-
sensing with multiple charging stations by deep learning,” in
INFOCOM, 2020.

[34] F. Yucel, M. Yuksel, and E. Bulut, “Qos-based budget con-
strained stable task assignment in mobile crowdsensing,” TMC,
2021.

[35] C. Dai, X. Wang, K. Liu, D. Qi, W. Lin, and P. Zhou,
“Stable task assignment for mobile crowdsensing with budget
constraint,” TMC, 2021.

[36] R. Zhou, Z. Li, and C. Wu, “A truthful online mechanism for
location-aware tasks in mobile crowd sensing,” TMC, 2018.

[37] Y. Sun, C. Lin, H. Dai, P. Wang, L. Wang, G. Wu, and
Q. Zhang, “Trading off charging and sensing for stochastic
events monitoring in wrsns,” TON, 2022.

[38] G. Einziger, C. Chiasserini, and F. Malandrino, “Scheduling
advertisement delivery in vehicular networks,” TMC, 2018.

[39] M. Tan, “Multi-agent reinforcement learning: Independent vs.
cooperative agents,” ICML, 1993.

[40] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-
son, “Counterfactual multi-agent policy gradients,” AAAI, 2018.

[41] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. N.
Foerster, and S. Whiteson, “QMIX: monotonic value func-
tion factorisation for deep multi-agent reinforcement learning,”
ICML, 2018.

[42] K. Son, D. Kim, W. J. Kang, D. Hostallero, and Y. Yi, “QTRAN:
learning to factorize with transformation for cooperative multi-
agent reinforcement learning,” ICML, 2019.

Authorized licensed use limited to: Purdue University. Downloaded on January 01,2024 at 16:47:08 UTC from IEEE Xplore. Restrictions apply.

