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Wide-area soil moisture sensing is a key element for smart irrigation systems. However, existing soil moisture sensing methods

usually fail to achieve both satisfactory mobility and high moisture estimation accuracy. In this paper, we present the design

and implementation of a novel soil moisture sensing system, named as SoilId, that combines a UAV and a COTS IR-UWB

radar for wide-area soil moisture sensing without the need of burying any battery-powered in-ground device. Specifically,

we design a series of novel methods to help SoilId extract soil moisture related features from the received radar signals, and

automatically detect and discard the data contaminated by the UAV’s uncontrollable motion and the multipath interference.

Furthermore, we leverage the powerful representation ability of deep neural networks and carefully design a neural network

model to accurately map the extracted radar signal features to soil moisture estimations. We have extensively evaluated SoilId

against a variety of real-world factors, including the UAV’s uncontrollable motion, the multipath interference, soil surface

coverages, and many others. Specifically, the experimental results carried out by our UAV-based system validate that SoilId

can push the accuracy limits of RF-based soil moisture sensing techniques to a 50% quantile MAE of 0.23%.
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1 INTRODUCTION
Timely, accurate, and wide-area soil moisture sensing plays an important role in smart irrigation for agriculture.

First, it helps to preserve the irrigational water usage. Reportedly, more than 15% of the earth’s fresh water is

wasted due to overwatering in agriculture [1]. Such wastage of the invaluable fresh water resource could be
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greatly alleviated, if we could sense when the soil contains enough water, and refrain irrigation accordingly [2].

Besides, the crops grow optimally only when they are irrigated properly at the right time and amount. Thus,

accurate soil moisture sensing in real time enables smart irrigation systems to dynamically optimize the irrigation

schedule to meet the requirements of the specific types of the grown crops, which eventually helps improve

crop yields [3]. Apart from agricultural applications, soil moisture sensing also brings crucial benefits to other

real-world tasks, such as eco-environment monitoring [4], outdoor sports field (e.g., golf court, football field)

maintenance [5], and many others.

Thus far, a series of techniques have been proposed for soil moisture sensing, which can be categorized into

the sensor-based and RF-based ones. Specifically, the operation mode of the sensor-based techniques are to bury

dedicated sensor nodes in the soil, such as electricity resistance sensors [6, 7], tensiometers sensors [8], and

radioactive sensors [9]. However, such techniques typically have the following limitations. First, the sensor-based

techniques have to rely on various types of peripherals, such as data loggers and communication modules, to store

and transmit the collected sensory data. Installing and connecting these devices into the whole moisture sensing

system usually require professional knowledge and much effort. Second, a typical farm oftentimes needs tens or

even hundreds of moisture sensors to provide enough sensing coverage. Clearly, the maintenance operations,

including battery change and faulted device replacement, of an in-ground sensor network with such scale are

rather prohibitive.

Unlike the sensor-based techniques, the RF-based ones employ the RF signals to estimate the soil moisture

without installing the aforementioned dedicated sensors in the soil. However, existing RF-based techniques

have their own limitations, as well. Some of them require to bury battery-powered devices in the soil, such as

Wi-Fi receivers [10], LoRa nodes [11, 12], and radar backscatter tags [13], which thus suffer from the risk of soil

contamination from battery corruption, as well as the excessive labor works for battery change. In contrast, a

variety of other RF-based techniques do not depend on any battery-powered in-ground devices. Among them,

the remote sensing approaches [14–17] use radars attached on satellites or planes for soil moisture estimation

through the RF signals reflected by the soil surface. However, these approaches usually have coarse-grained

geographical sensing resolutions, and could only estimate the surface moisture of the soil. A very recent RF-based

technique CoMEt [18] exploits the RF signals reflected by the boundaries between the adjacent soil layers with

different moisture contents, and achieves a much finer-grained geographical sensing resolution, as well as larger

sensing depth than the remote sensing approaches. However, due to the moderate strength of the RF signals

reflected by the soil layer boundaries, the operating distance between CoMEt’s antenna array to the soil surface

has to be less than 60cm, which prevents CoMEt from being carried by aerial mobile platforms (e.g., UAVs) to

conduct wide-area soil moisture sensing.

Motivated by the above facts, we propose SoilId
1
, an RF-based soil moisture sensing system that overcomes

the above limitations of existing soil moisture sensing techniques. The operation mode of SoilId is illustrated in

Figure 1. Specifically, SoilId deploys at predetermined measurement points battery-free in-ground reflectors (e.g.,

metal plates), which are buried beneath the soil surface and provide strong RF signal reflections. Furthermore,

SoilId deploys a UAV that carries a COTS IR-UWB radar to cruise around the measurement points, and uses the

IR-UWB radar to estimate the soil moisture at each measurement point through the RF signals reflected by both

the soil surface and the reflector. In fact, the radar utilized by SoilId is a COTS IR-UWB radar with a central

operation frequency of 7.29GHz. The reasons to select such type of radar come from its compactness in size, its

lower cost compared with professional RF-based soil moisture sensing devices (e.g., ground penetrating radars

[19]), as well as its sufficient soil penetrating capability validated by a series of experiments
2
that we carefully

1
The name SoilId comes from our overall approach of Soil moisture estimation using IR-UWB radar and deep learning.

2
Please refer to Section 2.1 for our experimental designs and results on radar choices.
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Fig. 1. Operation mode of SoilId.

conducted. In what follows, we elaborate on the challenges of designing SoilId, as well as our approaches that

address them.

The first challenge comes from the discrete sampled form of the received radar signals. Specifically, SoilId

estimates the soil moisture through various moisture related radar signal features, which are extracted from the

basic information of the received radar signals, including the time of flights (ToFs) and amplitudes. However,

the limited sampling rate of the received radar signals makes the precision of the obtained ToFs and amplitudes

unsatisfactory for soil moisture sensing. To address this challenge, SoilId up-samples the received signals via

interpolation, and obtains ToF estimations with a higher precision and more accurate amplitudes from the

interpolated signal, which finally promotes the precision of the extracted soil moisture related features.

The second challenge is that, although the UAV enables SoilId to be highly mobile, the uncontrollable motion

of it (e.g., shaking, deviating from the measurement point) will heavily contaminate part of the received signals,

making them unusable for soil moisture estimation. To address this challenge, SoilId detects and filters out

the distorted collected data caused by the UAV’s uncontrollable motion by employing a distorted data filtering
algorithm. The algorithm automatically filters out the distorted radar signal data according to the representative

signal features when the UAV is under undesirable motion, and thus prevents them from influencing the soil

moisture estimation accuracy.

In practice, however, apart from the uncontrollable motion of the UAV, the multipath interference provided by

the reflections from the objects other than the reflector, such as the stones and bushes around the measurement

points, could also contaminate the received radar signals. To address this challenge, SoilId leverages the mobile

nature of the UAV to collect data at different altitudes, and further employs a multipath interference elimination
algorithm that helps SoilId distinguish and discard the data distorted by multipath interference through carefully

comparing the characteristics of the radar signal data received when the UAV is at different altitudes.

After SoilId filters out the data contaminated by both the UAV’s uncontrollable motion and multipath interfer-

ence, another challenge that arises is how to map the extracted radar signal features to accurate soil moisture

estimations. Instead of simply applying the existing empirical equations (e.g., Topp equation [20]) which use

polynomials to fit such mapping, SoilId leverages the powerful representation ability of deep neural networks

and employs a carefully designed neural network structure, SoilIdNet, to capture the inherent relationships

between the extracted radar signal features and soil moisture estimations. Furthermore, to avoid the tedious

process of collecting a large volume of training data and training SoilIdNet from scratch for each type of soil,
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SoilId augments the existing meta learning framework to pretrain a meta model, named as mSoilIdNet, which

can be fine-tuned to fit any soil type with only a small number of labeled data.

In summary, this paper makes the following contributions.

• In this paper, we design and implement a novel RF-based soil moisture sensing system, named as SoilId, that

combines a UAV and an IR-UWB radar, which is able to quickly perform wide-area soil moisture sensing

without burying any in-ground battery-powered devices.

• Technically, we design a series of novel approaches that make use of the highly mobile nature of the UAV,

and meanwhile eliminate the negative influences of the UAV’s uncontrollable motion and the multipath

interference. We envision that these approaches could potentially be useful in other UAV-based radar

sensing tasks, as well.

• Furthermore, we propose a novel deep neural network model, named as SoilIdNet, to map the extracted

radar signal features to soil moisture estimations, and also augment the meta learning framework to obtain

a meta model, named as mSoilIdNet, which can be quickly fine-tuned to any target soil type with only a

small number of labeled data.

• Finally, we conduct extensive experiments to evaluate SoilId against a variety of real-world factors, including

the UAV’s uncontrollable motion, the multipath interference, soil surface coverage, and many others. Our

experimental results validate that SoilId can push the accuracy limits of RF-based soil moisture sensing

techniques to a 50% quantile MAE of 0.23% on the tests carried out by our UAV-based system.

2 PRELIMINARIES
In this section, we first introduce the principles and the experiments to select a proper radar for soil moisture

sensing. Next, we model the propagation process of the radar signal and extract the soil moisture related radar

signal features for subsequent soil moisture estimation tasks.

2.1 Radar Choices
In order to select a proper radar that can be carried on a UAV for soil moisture sensing, we survey the miniature

on-chip radars in the market for their compact size and light weight, and carry out a set of experiments on

the soil penetrating capabilities of these radars. Specifically, we test three kinds of COTS radars with central

operation frequencies of 77GHz, 24GHz, and 7.29GHz, which covers those of a wide majority of commercial

COTS radars. In our experiments, the radar is placed 1m above the soil surface with the antenna plane parallel to

the soil surface, and an aluminum plate is buried 30cm below the soil surface as the reflector
3
. We conduct the

experiments on four types of soil, including sand, loamy soil, silt soil, and clay soil. As the experimental results

for these different types of soil show similar trends, we only present those for sand as follows for conciseness.

For each of the two FMCW radars, we set it to consecutively transmit 128 chirps and apply Fast Fourier

Transform (FFT) to the Intermediate Frequency (IF) signals of each chirp. Then, we stack the frequency spectrums

of the 128 chirps, as illustrated in Figures 2a and 2b. The horizontal axes in these figures represent the normalized

distance calculated bymultiplying the ToFs of the received signals with the velocity of light in vacuum. Considering

the propagation velocity of radar signals in the sand, if a radar could receive the signal reflected by the aluminum

plate, there will exist a peak at the normalized distances of around 1.5m. However, we could not observe such

peaks in Figures 2a and 2b, which indicates that the FMCW radars tested in our experiments cannot receive

the signals reflected by the aluminum plate. This is because the signals transmitted by the aforementioned two

FMCW radars attenuates rapidly in the soil due to their high frequencies, and thus the signals received by them

are mostly composed of those reflected by the soil surface. For the IR-UWB radar, we obtain the amplitudes of the

3
The reflector can be composed of other materials, such as stainless steel, as long as it can provide enough reflection to radar signals. We

have conducted experiments to test the performance of reflectors of different materials in Section 6.4.5.
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Soil Surface

(a) FMCW radar: 77GHz.

Soil Surface

(b) FMCW radar: 24GHz.

Soil Surface

Aluminium Plate

(c) IR-UWB radar: 7.29GHz.

Soil Surface

Aluminium  
Plate

(d) IR-UWB radar at different
altitudes.

Fig. 2. Experimental results on the soil-penetrating abilities of three types of commercial miniature on-chip radars with
their central operation frequencies specified. The brighter zones indicate higher RSS values for the FMCW radars or larger
amplitudes of the received signals for the IR-UWB radar.

received signals for 100 consecutive frames and also stack them together. From Figure 2c, we could easily observe

the peaks at the normalized distances of both 1m and 1.5m, which means that the IR-UWB radar receives clear

reflections from both the soil surface and aluminum plate. Additionally, we change the distance from the IR-UWB

radar to the soil surface from 1m to 2m and obtain the amplitudes of the received signals for 20 consecutive

frames at each distance. As is shown in Figure 2d, even if the IR-UWB radar is 2m above the soil surface, it can

still clearly receive the signals reflected by the aluminum plate.

The above experiments show that the IR-UWB radar with central operation frequency 7.29GHz is able to

penetrate the soil of enough depth (30cm) for moisture sensing, and from an altitude that is proper for UAV

cruising (2m). Thus, we choose such IR-UWB radar as the sensing device for our soil moisture sensing task.

2.2 Modeling IR-UWB Radar Signals
In this section, we model the propagation of the IR-UWB radar signals in the process of soil moisture sensing.

The IR-UWB radar carried by the UAV cruising in the air transmits pulse signals and collects the reflected signals

from both the soil surface and buried reflector. The baseband signal 𝑠 (𝑡) of the IR-UWB radar takes the form of

Gaussian pulse, i.e.,

𝑠 (𝑡) = 𝛼𝑡𝑥𝑒
−𝑡2
2𝜎2 , (1)

where 𝛼𝑡𝑥 is the amplitude determining the pulse strength and 𝜎2 is the variance determining the pulse width.

The baseband signal is modulated to the carrier with central frequency 𝑓𝑐 and becomes the transmitted signal

𝑥 (𝑡) = 𝑠 (𝑡)𝑒− 𝑗2𝜋 𝑓𝑐𝑡 . (2)

Suppose the distance from the radar to the soil surface is 𝑑1, the signal reflected by the soil surface becomes

𝑟1 (𝑡) = 𝛼1𝑠
(
𝑡 − 2𝑑1

𝑐

)
𝑒− 𝑗2𝜋 𝑓𝑐 (𝑡−

2𝑑
1

𝑐
) 𝑛 − 1
𝑛 + 1 , (3)

where 𝛼1 = 𝑒
−2𝛼𝑎𝑖𝑟𝑑1

is the attenuation of signal propagation in the air with 𝛼𝑎𝑖𝑟 denoting the attenuation factor

of the air, and 𝑛 is the refractive index (RI) of the soil.

Similarly, suppose the reflector is buried at a depth of 𝑑2, then the signal reflected by the reflector can be

expressed as

𝑟2 (𝑡) = 𝛼1𝛼2𝛼3𝑠
(
𝑡 − 2(𝑑1 + 𝑑2𝑛)

𝑐

)
𝑒− 𝑗2𝜋 𝑓𝑐 (𝑡−

2(𝑑
1
+𝑑

2
𝑛)

𝑐
) , (4)

where 𝛼2 = 𝑒
−2𝛼𝑠𝑑2

is the attenuation of signal propagation in the soil with 𝛼𝑠 denoting the attenuation factor of

the soil, and 𝛼3 = 4𝑛(𝑚−𝑛)/((𝑛 + 1)2 (𝑚 +𝑛)) with𝑚 denoting the RI of the reflector. In fact, 𝛼3 is the attenuation

caused by penetrating the soil-air boundary and the reflection by the reflector.
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2.3 Soil Moisture and IR-UWB Radar Signals
After modeling the signals reflected by the soil surface and the reflector, we then aim to find the features of

signals that are related to the soil moisture. The first feature that we exploit is 𝑛, i.e., the RI of the soil. Specifically,

𝑛 is defined by the ratio of the propagation velocity of the IR-UWB signals in vacuum to that in the soil. In fact,

the value of 𝑛 is influenced by the relative permittivity and electrical conductivity of the soil, both of which are

closely related to the soil moisture [21].

Apart from𝑛, another feature influenced by the soil moisture is the in-soil attenuation factor 𝛼𝑠 [10]. Specifically,

𝛼𝑠 influences 𝑟2 (𝑡)’s peak amplitude, i.e., 𝛼1𝛼3𝑒
−2𝛼𝑠𝑑2

. However, this value is also influenced by other parameters

that are hard to obtain, such as the in-air attenuation 𝛼1, and thus, we cannot directly calculate 𝛼𝑠 from 𝑟2 (𝑡)’s
peak amplitude. In fact, from Equations (3) and (4), we notice that the signals 𝑟1 (𝑡) and 𝑟2 (𝑡) are both attenuated

by 𝛼1 because of the same signal propagation distance in the air. Thus, we can utilize this property and obtain the

relative amplitude ratio (RAR) defined in the following Definition 1, which does not depend on the in-air signal

propagation process but is related to 𝛼𝑠 .

Definition 1 (Relative Amplitude Ratio). The relative amplitude ratio 𝑝 is defined as the ratio of 𝑟2 (𝑡)’s peak
amplitude ( i.e., 𝛼1𝛼2𝛼3) to 𝑟1 (𝑡)’s peak amplitude (i.e., 𝛼1 (𝑛 − 1)/(𝑛 + 1)). That is,

𝑝 =
𝛼2𝛼3 (𝑛 + 1)

𝑛 − 1 = 𝑒−2𝛼𝑠𝑑2
4𝑛(𝑚 − 𝑛)

(𝑚 + 𝑛) (𝑛 + 1) (𝑛 − 1) . (5)

By Definition 1, if we fix the material of the reflector and its buried depth, which leads to fixed𝑚 and 𝑑2, the

value 𝑝 will only be determined by 𝛼𝑠 and 𝑛.

Thus, based on the above discussions in Section 2.3, we choose to use the soil RI 𝑛 and RAR 𝑝 extracted from

the IR-UWB radar signals as the features to estimate the soil moisture, as elaborated in Section 4.1.

3 METHODOLOGY OVERVIEW
In this paper, we propose to use an IR-UWB radar carried by a UAV to sense the soil moisture. Figure 3 shows an

overview of our proposed methodology, referred to as SoilId, which contains three major components: (1) data

collection, (2) feature extraction and data selection, and (3) moisture estimation via neural network.

• Data Collection. The function of this component is to collect the IR-UWB radar signals that can be used to

estimate the soil moisture. We first select several representative measurement points in the sensing area
4
. At

each measurement point, we bury in advance a reflector that is highly reflective to the IR-UWB radar signals

(e.g., an aluminum plate) under the soil surface at a specific depth. During the data collection process, the

UAV hovers above each measurement point, and raises its altitude vertically within a pre-defined altitude

range. Meanwhile, the IR-UWB radar attached on the UAV collects the reflected signals continuously. Such

design of vertical raise of the UAV’s altitude is to resolve the multipath interference problem which will be

elaborated in Section 4.3.

• Feature Extraction and Data Selection. This component extracts soil moisture related features (i.e.,

soil RI and RAR) from the received radar signals, and selects the valid data that can be fed to our soil

moisture estimation model. Specifically, we first perform interpolation to acquire more accurate amplitudes

and ToFs of the received signals (Section 4.1). After that, we filter out the unusable data distorted by the

uncontrollable motion of the UAV (Section 4.2). Next, we detect and discard the data influenced by multipath

interference (Section 4.3). The extracted features of the remaining data are used for soil moisture estimation.

4
In practice, it suffices to measure the soil moisture only at a few representative points, as the moisture distribution of the entire sensing area

could usually be estimated using the samples taken at several measurement points using existing methods, such as [22–24]. However, the

method of choosing the measurement points are out of the scope of this paper.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.



Soil Moisture Sensing with UAV-Mounted IR-UWB Radar and Deep Learning • 11:7

Fig. 3. System overview of SoilId, where the red circles indicate the measurement points in the sensing area.

• Moisture Estimation via Neural Network. This component is designed to estimate the soil moisture

through the extracted radar signal features. To achieve this goal, we propose a neural network model that

can directly map the input features to the estimated soil moisture (Section 5.1). Besides, it is typically

tedious to collect a large volume of labeled training data to fit the neural network model for a new type of

soil. Thus, we propose to augment the meta learning framework to enable fast adaptation from the model

trained on existing soil types to the target new soil type with only few labeled training data (Section 5.2).

In the following parts of this paper, we will mainly elaborate upon the feature extraction and data selection, as

well as moisture estimation via neural network components in Sections 4 and 5.

4 FEATURE EXTRACTION AND DATA SELECTION
In this section, we first introduce how to accurately extract the RAR and soil RI from the received radar signals.

Then, we discuss the problem that the UAV’s motion and the multipath interference contaminate the received

radar signal, as well as our proposed distorted data filtering and multipath elimination algorithm to solve it.

4.1 RAR and Soil RI Extraction
In order to extract the RAR and soil RI from the received radar signals, we need to obtain the ToFs

5
and peak

amplitudes of 𝑟1 (𝑡) and 𝑟2 (𝑡). However, the signals we can collect from the IR-UWB radar are actually the discrete

sampled version of the continuous received signals. The time interval between two consecutive samples is 0.343ns,

which is also the ToF precision. However, if the distance from the radar to the soil surface is 1m, which is proper

for a UAV to hover over the measurement point, we can easily calculate that the ToF of 𝑟1 (𝑡) is about 6.67ns. As
a result, such a precision is unsatisfactory for accurate ToF calculation, because it is over 5% of the ToF itself.

Besides, the sampling points do not necessarily coincide with the peaks of 𝑟1 (𝑡) and 𝑟2 (𝑡), so that the obtained

peak amplitudes are imprecise, as well.

In order to obtain more accurate ToFs and peak amplitudes of 𝑟1 (𝑡) and 𝑟2 (𝑡), we propose to up-sample the

received signals via interpolation. Specifically, as illustrated in Figure 4, we apply spline interpolation
6
on the

5
In this paper, we define the ToF of a pulse signal as the ToF of the signal point with the peak amplitude.

6
We have also implemented other interpolation techniques, such as low-pass filtering, and they have similar performances with spline

interpolation.
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Fig. 4. Interpolation of the sampled received signals of the IR-UWB radar.

amplitudes of the collected sampled signals. In fact, we perform 16× interpolation in our experiments, promoting

the ToF precision to 21.3 ps. Such a precision is sufficient, as it is within 0.5% of the ToF values of 𝑟1 (𝑡) and 𝑟2 (𝑡).
Suppose the IR-UWB radar receives totally 𝑘 frames of signals at a measurement point. We then apply

interpolation on the signals of each frame. After that, we calculate the values of the soil RI and RAR of each

frame by the following process. For the 𝑖th frame, we first find the samples of 𝑟1 (𝑡) and 𝑟2 (𝑡) with the highest

amplitudes, and obtain the amplitudes 𝑎1,𝑖 and 𝑎2,𝑖 and ToFs 𝑡1,𝑖 and 𝑡2,𝑖 of these two samples. The values of the

soil RI and RAR that correspond to the 𝑖th frame are then calculated as 𝑛𝑖 = 0.5𝑐 (𝑡2,𝑖 − 𝑡1,𝑖 )/𝑑2 and 𝑝𝑖 = 𝑎2,𝑖/𝑎1,𝑖 ,
respectively. We apply such process to all of the 𝑘 received frames and obtain the sets of peak amplitudes of

𝑟1 (𝑡) and 𝑟2 (𝑡), soil RI, and RAR of each frame, denoted as A1 = {𝑎1,1, 𝑎1,2, · · · , 𝑎1,𝑘 }, A2 = {𝑎2,1, 𝑎2,2, · · · , 𝑎2,𝑘 },
N = {𝑛1, 𝑛2, · · · , 𝑛𝑘 }, and P = {𝑝1, 𝑝2, · · · , 𝑝𝑘 }. These sets of values are further used for distorted data filtering

as described in the following Section 4.2.

4.2 Distorted Data Filtering
4.2.1 Illustration of Data Distortions. The uncontrollable motion of the UAV makes part of the received signals

contaminated and thus unable to be directly used for soil moisture estimation. To illustrate this problem, we

choose three pieces of representative data collected by the IR-UWB radar attached on the UAV at the same

measurement point. Each piece of data contains 240 consecutive frames. We apply the interpolation technique as

described in Section 4.1 to each frame and plot their amplitudes as illustrated in Figure 5.

The data for Figure 5a is collected by the IR-UWB radar attached on a UAV stably hovering above the

measurement point (State S1). From Figure 5a, we observe that the peak amplitudes and the ToFs of 𝑟1 (𝑡) and
𝑟2 (𝑡) are quite steady. Figures 5b and 5c show two representative distorted data caused by the undesirable motion

of the UAV. As illustrated in Figure 5b, when the UAV is shaking (State S2), the orientation of the UAV will change

rapidly, which makes the antenna plane of the IR-UWB radar not always parallel to the soil surface, and thus

causes frequent change to the peak amplitudes of 𝑟1 (𝑡) and 𝑟2 (𝑡). Figure 5c shows the scenario where the UAV

deviates from the measurement point (State S3). In such case, the transmitted signal will not be reflected by the

reflector. Thus, the peak amplitudes of 𝑟2 (𝑡) is becoming much smaller and gradually disappears as the UAV

deviates from the measurement point.

4.2.2 Distorted Data Filtering Algorithm. Based on the above observations, we design the distorted data filtering

algorithm as elaborated in Algorithm 1 to detect and discard the data distorted by the UAV’s undesirable motion

for each measurement point. The algorithm takes the four sets A1, A2, N and P extracted using the technique

in Section 4.1, as well as the sliding window size ℎ, outlier detection threshold 𝛿 as inputs, and outputs the sets of

filtered soil RIs N ′ and RARs P′.
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Soil Surface

Aluminum Plate

(a) The scenario where the UAV is stably
hovering the measurement point and the
corresponding received radar signals.

Soil Surface

Aluminum Plate

Shaking

(b) The scenario where the UAV is shak-
ing above the measurement point and
the corresponding received radar signals.

Soil Surface
Aluminum 

 Plate

Deviating

(c) The scenario where the UAV is deviat-
ing from the measurement point and the
corresponding received radar signals.

Fig. 5. Examples of the flight state of the UAV and the corresponding received signals of IR-UWB radar, where the black, red,
and blue arrow represents the signal transmitted by the IR-UWB radar, reflected by the soil surface, and reflected by the
aluminum plate, respectively.

Algorithm 1: Distorted Data Filtering Algorithm

Input: A1, A2, N , P, ℎ, 𝛿 ;
Output: Sets of filtered soil RIs N ′ and RARs P′;
// Initialization.

1 N ′ ← ∅, P′ ← ∅;
// Peak amplitude averages calculation.

2 𝑎1 ← 1

|A1 |
∑
𝑖:𝑎1,𝑖 ∈A1

𝑎1,𝑖 , 𝑎2 ← 1

|A2 |
∑
𝑖:𝑎2,𝑖 ∈A2

𝑎2,𝑖 ;

// Data selection.

3 for 𝑖 = 1 + ℎ to 𝑘 − ℎ do
// RAR Moving averages calculation.

4 𝑚𝑖,1 ← 1

ℎ

∑𝑖−1
𝑗=𝑖−ℎ 𝑝 𝑗 ,𝑚𝑖,2 ← 1

ℎ

∑𝑖+ℎ
𝑗=𝑖+1 𝑝 𝑗 ;

5 if |𝑝𝑖 −𝑚𝑖,1 | < 𝛿 and |𝑝𝑖 −𝑚𝑖,2 | < 𝛿 and 𝑎𝑖,1 > 𝑎1 and 𝑎𝑖,2 > 𝑎2 then
6 N ′ ← N ′⋃{𝑛𝑖 }, P′ ← P′⋃{𝑝𝑖 };
After initializing the sets N ′ and P′ as empty (line 1), the algorithm calculates the average peak amplitudes of

𝑟1 (𝑡) and 𝑟2 (𝑡) of each frame (line 2). Next, for each of the 𝑖th frame with 𝑖 ∈ [1 + ℎ, 𝑘 − ℎ], the algorithm checks

whether it is usable (lines 3-6). The algorithm first calculates the moving average𝑚𝑖,1 and𝑚𝑖,2 of the RARs in ℎ

previous frames and ℎ subsequent frames (line 4). If the 𝑖th frame is collected when the UAV is stable, the extracted

RAR will have similar values as those calculated RAR moving averages𝑚𝑖,1 and𝑚𝑖,2, which means conditions

|𝑝𝑖 −𝑚𝑖,1 | < 𝛿 and |𝑝𝑖 −𝑚𝑖,2 | < 𝛿 should hold. Besides, if the UAV does not deviates from the measurement point,
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(a) S1. (b) S2. (c) S3.

Fig. 6. Frames of RARs and soil RIs selected and discarded by Algorithm 1 under UAV flight states S1, S2 and S3.

the peak amplitudes of 𝑟1 (𝑡) and 𝑟2 (𝑡) should be no less than the calculated average peak amplitudes over all the

frames, which means conditions 𝑎𝑖,1 > 𝑎1 and 𝑎𝑖,2 > 𝑎2 should hold. Therefore, the algorithm retains the soil RI

and RAR of the 𝑖th frame, if all the aforementioned four conditions are satisfied (line 5-6).

Figure 6 demonstrates the frames of RARs and soil RIs discarded and selected by Algorithm 1, when it takes

the RARs and soil RIs extracted from the frames collected at the same measurement point under different UAV

flight states S1, S2, and S3, as shown in Figure 5. The values of RARs and soil RIs extracted from all the frames

under S1 are in consensus and they are all selected by Algorithm 1. When Algorithm 1 takes the RARs and soil

RIs extracted from the frames collected under S2 or S3, it only selects the frames whose values of RARs and

soil RIs are similar to those extracted from frames collected under S1. Specifically, suppose that the average

extracted RAR and soil RI under S1 are 𝑝𝑆1 and 𝑛𝑆1, the sets of RARs extracted under S2 and S3 are P𝑆2 and P𝑆3,
and the sets of soil RIs extracted under S2 and S3 are N𝑆2 and N𝑆3, respectively. After the selection of Algorithm

1, suppose that the sets of selected RARs under S2 and S3 are P′
𝑆2

and P′
𝑆3
, and the sets of selected soil RIs under

S2 and S3 are N ′
𝑆2

and N ′
𝑆3
. We further define 𝐸 (K, 𝑓 ) = 1

|K |
∑

𝑘∈K |𝑘 − 𝑓 | as the mean absolute errors (MAEs)

between elements in set K and 𝑓 . The values of 𝐸 (P′
𝑆2
, 𝑝𝑆1) and 𝐸 (P′𝑆3, 𝑝𝑆1) are only 0.149 and 0.063, whereas

those of 𝐸 (P𝑆2, 𝑝𝑆1) and 𝐸 (P𝑆3, 𝑝𝑆1) raise to 0.395 and 1.001. Similarly, the values of 𝐸 (N ′
𝑆2
, 𝑛𝑆1) and 𝐸 (N ′𝑆3, 𝑛𝑆1)

are only 0.028 and 0.017, whereas those of 𝐸 (N𝑆2, 𝑛𝑆1) and 𝐸 (N𝑆3, 𝑛𝑆1) raise to 0.062 and 0.104. The quantitative

results validate the effectiveness of Algorithm 1 for automatically discarding the data contaminated by the UAV’s

undesirable motions.

The retained data will be further used for resolving multipath interference as elaborated in the following

Section 4.3.

4.3 Multipath Interference Elimination
Apart from the UAV’s undesirable motion, the multipath interference caused by the reflections from the objects

other than the reflector, such as bushes and stones that may appear near the measurement point, could also

contaminate the collected data. This is because the multipath signals may mix with 𝑟1 (𝑡) and 𝑟2 (𝑡), which
influences the accuracy of the obtained peak amplitudes and ToF of 𝑟1 (𝑡) and 𝑟2 (𝑡), and further makes the

extracted soil RI and RAR unusable for accurate soil moisture sensing.

Our insights to resolve such multipath interference is by leveraging the mobile nature of the UAV. Specifically,

as mentioned in Section 3, we let the UAV hover over each measurement point and raise its altitude vertically

within a predefined range. In practice, multipath interference only happens when the UAV is at some specific
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(a) Received radar signals at M1. (b) Average RARs. (c) Average soil RIs.
Fig. 7. Received radar signals, average RARs and soil RIs at different soil surface-radar distance.

altitudes where the Gaussian pulses of the interference signals overlap with 𝑟1 (𝑡) and 𝑟2 (𝑡). Thus, only at certain

altitudes during the raising process, the received frames will be influenced by multipath interference.

We validate the above insights by carrying out experiments at a measurement point M1 in a garden with plenty

of bushes and trees to provide rich multipath reflections. We change the distance from the IR-UWB radar to the

soil surface vertically from 1.5m to 2m in a 10cm increment, and plot the received signals and average RARs and

soil RIs of the frames collected at each altitude in Figure 7. From Figure 7a, we notice that when the distance

from the IR-UWB radar to the soil surface is 1.5m, the peak amplitude of 𝑟2 (𝑡) is abnormally low, and the ToF

difference between 𝑟1 (𝑡) and 𝑟2 (𝑡) is abnormally large, which lead to the calculated average RAR and soil RI with

abnormal values, as shown in Figure 7b and 7c, compared with those RARs and soil RIs at higher altitudes.

Based on the above insights and experimental results, we design the multipath interference elimination

algorithm as elaborated in Algorithm 2. The algorithm takes the sets of filtered soil RIs N ′ and RARs P′ output
by Algorithm 1, as well as the outlier detection thresholds 𝜖𝑛 and 𝜖𝑝 as inputs, and outputs the sets of valid soil

RIs N ′′ and RARs P′′. At first, the algorithm initializes the sets N ′′ and P′′ as empty (line 1). After that, the

algorithm first calculates the averages of the soil RIs 𝑛 and RARs 𝑝 in the input sets N ′ and P′ (line 2). Next, the
algorithm checks every pair of (𝑛𝑖 , 𝑝𝑖 ) to evaluate whether their values are influenced by multipath interference

(lines 3-5). Since in practice multipath interference only occurs to few frames, the average of soil RIs and RARs

across all the frames should be close to those without multipath interference. Thus, the algorithm regards the

pair (𝑛𝑖 , 𝑝𝑖 ) as valid and keeps it, only if 𝑛𝑖 , and 𝑝𝑖 do not deviate from the averages 𝑛 and 𝑝 too much, i.e., the

conditions |𝑛𝑖 − 𝑛 | < 𝜖𝑛 and |𝑝𝑖 − 𝑝 | < 𝜖𝑝 hold (lines 4-5).

To evaluate the effectiveness of Algorithm 2, we manually collect the soil at the measurement point M1, and

construct another measurement point M2 with the collected soil in a multipath free environment. We then collect

Algorithm 2:Multipath Interference Resolving Algorithm

Input: N ′, P′, 𝜖𝑛 , 𝜖𝑝 ;
Output: Sets of valid soil RIs N ′′ and RARs P′′;
// Initialization.

1 N ′′ ← ∅, P′′ ← ∅;
// Average RI and RAR calculation.

2 𝑛 ← 1

|N′ |
∑
𝑖:𝑛𝑖 ∈N′ 𝑛𝑖 , 𝑝 ←

1

| P′ |
∑
𝑖:𝑝𝑖 ∈P′ 𝑝𝑖 ;

// Data selection.

3 for 𝑖 = 1 to |N ′ | do
4 if |𝑛𝑖 − 𝑛 | < 𝜖𝑛 and |𝑝𝑖 − 𝑝 | < 𝜖𝑝 then
5 N ′′ ← N ′′⋃{𝑛𝑖 }, P′′ ← P′′⋃{𝑝𝑖 };
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the IR-UWB radar signal at M2 following the same procedure at M1 and extract the RARs and soil RIs. Figure

7b and 7c indicate that the averages of RARs and soil RIs extracted from the signals collected at M1 and M2

are similar at most soil surface-radar distance, except for at the height of 1.5m, where the signal collected at

M1 are interfered by the multipath signal. For RARs and soil RIs at M1, Algorithm 2 discards those at the soil

surface-radar distance of 1.5m and retains the others. Specifically, suppose that the average extracted RAR and soil

RI at M2 are 𝑝𝑀2
and 𝑛𝑀2, and the sets of extracted RARs and soil RIs at M1 are P′

𝑀1
andN ′

𝑀1
, respectively. After

the selection of Algorithm 2, suppose the sets of selected RARs and soil RIs at M1 are P′′
𝑀1

and N ′′
𝑀1

. The values

of 𝐸 (P′′
𝑀1
, 𝑝𝑀2
) and 𝐸 (N ′′

𝑀1
, 𝑛𝑀2) are only 0.0125 and 0.0127, whereas those of 𝐸 (P′

𝑀1
, 𝑝𝑀2
) and 𝐸 (N ′

𝑀1
, 𝑛𝑀2)

raise to 0.0495 and 0.0372. The quantitative results validate the effectiveness of Algorithm 2 for automatically

discarding the data contaminated by multipath interference.

After the multipath interference elimination process, the retained data will be further used for soil moisture

estimation introduced in the following Section 5.

5 MOISTURE ESTIMATION VIA NEURAL NETWORKS
In this section, we introduce the proposed novel deep neural network, SoilIdNet, that directly maps the input

radar signal features to soil moisture. After that, we elaborate on augmenting the mata learning framework to

enable fast adaptation from the pretrained meta model, mSoilIdNet, to the new target soil type with only a few

labeled training data.

5.1 Deep Neural Network Model
Although there exist some empirical equations (e.g., Topp equation [20]) that offer mappings from certain physical

properties (e.g., apparent permittivity) of the soil to its moisture, these equations usually use simple polynomials

to fit such mappings, which have limited representation ability, and thus suffer from unsatisfactory moisture

estimation accuracy. Alternatively, we leverage the powerful representation ability of neural networks, and

design a neural network structure (named as SoilIdNet), which uses Multi-Layer Perception (MLP) as its basic

building block, to directly map the extracted radar signal features to soil moisture. Basically, SoilIdNet consists of

three modules, i.e., two encoder modules and one inference module. The two encoder modules take respectively

the RARs and soil RIs as inputs and encode the input data. The inference model then jointly takes the output

of the two encoder modules as input and yields the soil moisture estimations. Compared with Topp equation

that only relies on the soil RIs for moisture estimation, the inference module fully utilizes the rich soil moisture

related information extracted from both RARs and soil RIs, which further promotes the sensing accuracy.

Fig. 8. Structure of our SoilIdNet. The blue blocks indicate the FC layers, the yellow blocks indicate the ReLU layers, and ⊕
indicates the concatenation operation.
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After the process of feature extraction and data selection described in Section 4, we randomly select 𝐾 soil RIs

from N ′′ and 𝐾 RARs from P′′, and then gather them respectively into two 𝐾 dimensional vectors, denoted as n
and p. As illustrated in Figure 8, n and p are fed into two encoder modules respectively. Each encoder module is

an MLP that consists of alternating fully connected (FC) and ReLU activation layers. Then, the features output by

the encoder modules are concatenated and fed into the inference module which is also an MLP composed of

alternating FC and ReLU activation layers. The inference module finally outputs the soil moisture estimation.

Given enough training data
7
collected over one type of soil, we could train SoilIdNet for such soil type by

minimizing the MAE loss between the estimated soil moisture and ground truth. However, due to the variant

physical properties of different types of soil, our SoilIdNet trained on one soil type does not necessarily perform

satisfactorily on others. Moreover, it is clearly tedious to collect a large volume of labeled training data to train an

SoilIdNet model individually for each soil type. To mitigate this issue, we propose to augment the meta learning

framework with details elaborated in the following Section 5.2.

5.2 Meta Learning for Fast Adaptation
In real practice, soil moisture sensing tasks are conducted on a variety of types of soil, which have variant

components, particle sizes, as well as water holding abilities. To avoid complete retraining of SoilIdNet for

every type of soil that we may encounter in real-world tests, we propose to pretrain a meta model (named as

mSoilIdNet), which is an instance of SoilIdNet with parameters that can be fine-tuned to fit any new encountered

soil type with only a small number of labeled training data and a few gradient descent steps.

5.2.1 Meta Model Training. To obtain mSoilIdNet, a straightforward way is to adopt the existing meta learning

framework MAML [25] to train a model that is suitable to construct the latent representations of the input radar

signal features for different types of soil. However, directly applying MAML is problematic in our scenario, and

we elaborate the reasons as follows. In each training epoch, MAML uses a set of training data sampled randomly

from the entire training dataset of all soil types. However, such a mixed-soil-type training data generation policy

is problematic for mSoilIdNet to learn the essential variation trend of RAR and soil RI when the moisture of a

single type of soil varies, as the soil type is agnostic to mSoilIdNet in meta training process. Therefore, to alleviate

such problem, we augment MAML by strictly sampling the training data used in the same epoch from those

collected over the same type of soil, and utilize such augmented MAML to train mSoilIdNet.

5.2.2 Meta Model Adaptation. After the meta model mSoilIdNet is trained, we adapt it to the target soil type by

the following process. We first (1) collect a small dataset on the target soil type under very few (as few as one or

two) moisture levels. After that, we (2) fine-tune mSoilIdNet using stochastic gradient decent to minimize the

MAE loss between the estimated soil moisture and ground truth, over the dataset collected in step (1).

In order to enhance the efficiency of the above adaptation process, we freeze the parameters of the encoder

modules and only update those of the inference module. Our insight for such partial update method is that,

through the meta model training process, the encoder modules of mSoilIdNet learn the encoding principle suitable

for different types of soil. Thus, only fine-tuning the final inference module is sufficient for adaptation.

6 EXPERIMENTS
In this section, we first introduce in detail the implementation of SoilId. Next, we show the experimental setups

and results for evaluating SoilId against variety real-world factors, as well as validating the adaptation ability of

the meta model mSoilIdNet.

7
Our training data collection method will be introduced in Section 6.3.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.



11:14 • Ding et al.

Fig. 9. Overview of the bracket-based system that col-
lects the training data in lab environments.

Fig. 10. Overview of the UAV-based system, where the
numbered components represent 1: mini PC, 2: IR-UWB
radar, 3: power cable from the mini PC to the IR-UWB
radar, and 4: power cable from the UAV to the mini PC.

6.1 Experimental Setup
We evaluate SoilId on four different kinds of representative soil, including sand, loamy soil, silt soil, and clay soil,

which have variant components, particle sizes as well as water holding abilities. We conduct experiments in both

lab environments and in the wild for field tests. For lab environments, we place the soil in a container with a size

35cm × 35cm × 30cm, which can hold the soil with a enough depth, and meanwhile the container’s moderate

volume makes it convenient for us to change the soil moisture and alternate different types of soil. For field

tests, we measure the soil moisture at three measurement points on a lawn. In our experiments, an aluminum

plate with a size 30cm × 30cm is buried below the soil surface. We choose such a reflector size to ensure that the

IR-UWB radar could be easily aligned with the measurement point, which greatly facilitates the data collection

process in our experiments. In practice, the reflector can be smaller to reduce cost. The reasons for selecting

aluminum as the material for the reflector will be elaborated in Section 6.4.5.

We use the volumetric water content (VWC) to depict the soil moisture, which is a standard metric defined

by the ratio of the volume of the water contained in the soil to the total volume of the the soil containing it.

We obtain the moisture ground truths of the training datasets through the oven-based method [26], which is

regarded as the most accurate method to obtain the moisture of the soil samples. Specifically, we first fill up a

container with a known volume by the soil sample. Next, we weigh the soil sample and heat it in the oven for

sufficiently long time to make it totally dry. Then, we reweigh the dried-up soil sample and get the weight of the

water by subtracting the weight of the soil sample before and after the heating process. Finally, we calculate the

volume of the water in the soil sample, and further use it to obtain the VWC value of the soil sample.

6.2 System Implementations
6.2.1 Bracket-Based System. As illustrated in Figure 9, the bracket-based system hangs an IR-UWB radar on

a stable bracket to collect radar signal data. Such system prevents the collected radar signal data from being

contaminated by the uncontrollable motion of the UAV, and is thus primarily used to collect the training datasets.

Furthermore, we also use such bracket-based system to collect the testing datasets in a few experiments which are

further discussed in Sections 6.4.1 and 6.4.3. The core component of our IR-UWB radar is the low-cost Novelda

X4M05 IR-UWB transceiver [27], which transmits the baseband signal with a bandwidth of 1.5 GHz modulated
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onto a 7.29GHz carrier. In such bracket-based system, the IR-UWB radar is controlled and powered by a laptop

through two separate serial ports.

6.2.2 UAV-Based System. Apart from the aforementioned bracket-based system, we also implement a UAV-based

system for the testing process, as is shown in Figure 10. Specifically, we use the DJI Matrix 210 UAV as the mobile

platform that carries a Dell OptiPlex 7040 mini PC and the IR-UWB radar introduced in Section 6.2.1. The UAV

provides power to the mini PC through its XT30 external power interface and a 24V to 19.5V voltage converter.

The IR-UWB radar is further powered by the mini PC through a power serial port. Thus, we do not need to attach

additional batteries on the UAV other than those that power the UAV itself. By the above system design, the total

weight of the attached devices on the UAV is 1.183kg, which is less than the allowable load 1.57kg of our DJI

Matrix 210 UAV. For UAVs with lower loading capacity, we can replace the mini PC by a single-board computer,

such as Raspberry Pi, to decrease the weight of the system.

Apart from powering the IR-UWB radar, the mini PC also runs a piece of python script to control when the

IR-UWB radar begins and stops to collect data. Such control commands are sent from the mini PC to the IR-UWB

radar via a data serial port. The data collected by the IR-UWB radar is sent to the mini PC through the data

serial port. Moreover, on the mini PC, we implement the RAR and soil RI extraction, distorted data filtering, and

multipath interference elimination components in MATLAB and implement the neural networks of the SoilIdNet

and fine-tuned mSoilIdNet in Python. The collected data can be directly processed by the mini PC, and thus, we

can get the soil moisture estimation results in real time.

6.3 More Details on Training and Testing
In our experiments, to further ensure the quality of the collected training data, the bracket-based system is

operated in a multipath-free environment, which helps get rid of the multipath interference. For each combination

of soil type and soil moisture that we consider in our experiments, we extract the soil RIs and RARs from the

received frames and collect 1000 training data instances. For moisture estimation of a single type of soil, the

SoilIdNet model is trained for 2000 epochs. For meta model training, we select all the available training datasets

apart from the dataset of the target soil type to train the mSoilIdNet. The meta model mSoilIdNet is trained for

4000 epochs, and in the adaptation process, it is updated for 20 epochs using the labeled data with only one or

two kinds of moisture labels. All the training and adaptation procedures are conducted on a laptop with Intel

i7-1160G7 CPU, and 12 GB memory. The entire training times of SoilIdNet and mSoilIdNet are around 1 hour and

3 hours. The adaptation time of mSoilIdNet is around 3 minutes.

As mentioned in Section 6.2, the testing datasets are collected by both the UAV-based system and bracket-based

system. In the process of testing with the UAV-based system, the UAV raises its altitude so that the distance from

the IR-UWB radar to the soil surface increases from 1m to 3m. We select such a distance range for the following

three reasons. First, it ensures the received signals reflected by the soil surface and the reflector are strong enough

to be distinguished from the noise. Second, it is included in the distance range (0-5m) that the UAV can rely

on the altitude sensing system [28] (consisting of stereo vision sensors and ultrasonic sensors) to accurately

sense its distance to the ground and further to control its altitude. Moreover, such a distance range prevents

the UAV to be too close to the ground for its flight safety. For the bracket-based system, we also manually raise

the distance from the radar to the soil surface to mimic the raising motion of the UAV. For each combination

of soil type and soil moisture, we collect 200 testing data instances with both systems. The SoilIdNet outputs

the moisture estimation of all the 200 testing data instances, and we use the average of these values as the final

testing moisture estimation.
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Fig. 11. CDF of the overall accuracy
of SoilIdNet and the baseline method.
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Fig. 12. Bracket tests for loamy soil.
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Fig. 13. UAV tests for loamy soil.
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Fig. 14. Bracket tests for sand.
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Fig. 15. UAV tests for sand.
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Fig. 16. MAEs of SoilIdNet with or
without distorted data filtering.

6.4 Performance of SoilIdNet
6.4.1 Overall Accuracy. To evaluate the accuracy of SoilIdNet, we test it in lab environments where we can

accurately control the soil moisture and designate the soil type. We evaluate the accuracy of SoilIdNet on the

test datasets collected by both the bracket-based system (bracket test) and the UAV-based system (UAV test).

We compare the performance of SoilIdNet against the baseline that uses Topp equation [20] to estimate the soil

moisture. The Topp equation uses polynomials to fit the mappings between the extracted soil RI and soil moisture.

For each combination of soil type and data collection system, we construct 7 different measurement points such

that the soil moisture monotonically increases from measurement point 1 to measurement point 7.

Specifically, the errors of SoilIdNet and the baseline method are defined as the MAE between the ground truths

and the estimated VWC values. Figure 11 shows the CDFs of the errors of all the experiments conducted over all

four types of soil in both the bracket and UAV tests. From this figure, we could observe that for SoilIdNet the

50% quantile of VWC errors is just 0.05% in the bracket tests, and 0.23% in the UAV tests. The baseline method

has much higher 50% quantile of VWC errors in both bracket tests and UAV tests, which are 2.04% and 2.07%,

respectively. Clearly, the soil moisture estimation accuracy of SoilIdNet in the UAV tests is slightly lower than that

in the bracket testes due to the distortion of the collected testing data caused by the UAV’s uncontrollable motion

and multipath interference. However, despite of such distortion and interference, our distorted data filtering and

multipath interference elimination algorithms help us control the error of SoilIdNet within an acceptable range.

Besides, we show the experimental results for loamy soil and sand in both the bracket and UAV tests, and omit

those for clay soil and silt soil for conciseness because they show similar trends. As illustrated in Figures 12 to

15, the errors in the bracket and UAV tests for both the loamy soil and sand show a similar trend as the overall

accuracy shown in Figure 11. Note that, if not specifically mentioned, we use the testing dataset collected by our

UAV-based system in lab environments for the following experiments by default.

6.4.2 Impact of the UAV’s Uncontrollable Motion. To validate the effectiveness of our proposed distorted data
filtering algorithm introduced in Section 4.2, we compare SoilIdNet’s estimation accuracy on the original testing

datasets with those on the testing data processed by the distorted data filtering (DDF) algorithm proposed in

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.



Soil Moisture Sensing with UAV-Mounted IR-UWB Radar and Deep Learning • 11:17

Fig. 17. Light coverage on soil sur-
face.

Fig. 18. Heavy coverage on soil sur-
face.

Fig. 19. Reflectors of different mate-
rials in our tests.

Section 4.2. In Figure 16, we show the MAEs of SoilIdNet on the testing datasets of loamy soil, sand, and clay soil.

We notice that the MAE is decreased by 1.61%, 2.14%, and 0.9% on loamy soil, sand, and clay soil respectively,

if we filter the testing data using our distorted data filtering algorithm. Such results validate that our distorted

data filtering algorithm that discards the data contaminated by the UAV’s uncontrollable motion enhances the

moisture estimation accuracy.

6.4.3 Impact of the Multipath Interference. To evaluate the impact of the multipath interference on the soil

moisture estimation, we conduct experiments on loamy soil, sand, and clay soil in an outdoor garden with plenty

of bushes and trees which provide rich multipath reflections. Specifically, in order to exclude the effect of the

uncontrollable factor of the UAV’s motion in this set of experiments, we use the bracket-based system to collect

the testing data. Furthermore, to mimic the raising process of the UAV, we manually raise the altitude of the

IR-UWB radar such that its distance to the soil surface changes from 1m to 3m in a 20cm increment.

In Figure 20, we compare the MAE of SoilIdNet on the original testing data with that on the testing data

processed by the multipath interference elimination (MIE) algorithm proposed in Section 4.3. We notice that the

MAE is decreased by 1.1%, 1.86%, and 1.32% on loamy soil, sand, and clay soil respectively, if we filter the testing

data using our multipath interference elimination algorithm. Such results validate that our multipath interference

elimination algorithm that discards the data contaminated by multipath interference also helps enhance the

moisture estimation accuracy.

6.4.4 Impact of the Soil Surface Coverage. In wild fields, there could be objects, such as leaves and stones,

covering on the measurement points, which might distort the radar signals and thus influence the soil moisture

measurement accuracy. To investigate the feasibility of SoilId in such scenario, we conduct experiments where

soil surface coverage exists. The coverage settings are illustrated in Figure 17 and Figure 18, including the light

coverage and heavy coverage. In the light coverage setting, there exist a few leaves and stones covering part of

the soil surface. In the heavy coverage setting, plenty of grass, leaves, and stones cover the entire soil surface

and the thickness of coverage is around 5cm. We conduct the coverage experiments on on loamy soil, sand, and

clay soil, whose results are shown in Figure 21. From this figure, we could observe that the soil surface coverage

indeed influences the accuracy of soil moisture estimation. Specifically, heavy coverage decreases the estimation

accuracy more significantly than light coverage. However, even in the heavy coverage setting, the maximum

MAE of SoilIdNet is just 0.54%. Thus, SoilIdNet can get satisfactory performance even if there are coverages on

the measurement point.

6.4.5 Impact of the Reflector’s Material. Due to the the stringent FCC power limit for UWB systems, which

is -41.3 dBm/MHz, the reflector buried under the soil surface should be highly reflective and able to provide

strong reflections for radar signals. Besides, the material of the reflector should be stable in the soil so that

we can bury the reflector in the soil for years without replacement. We have tested four reflectors composed
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Fig. 25. MAEs for SoilIdNet under dif-
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of different materials, i.e., aluminum (AL), stainless steal (SS), EVER, and plastic (PLA), as shown in Figure 19.

The reflectors are buried 30cm below the soil surface. We plot the peak amplitude of 𝑟2 (𝑡) corresponding to the

four reflectors in Figure 22. From this figure, we notice that the aluminum and stainless steal reflectors provide

stronger reflections. In our experiments, we choose to use the aluminum plate, since it is cheaper than stainless

steel, which is beneficial for potential wide area deployment. Besides, the dense oxide film that exists on the

surface of the aluminum plate makes it resistive to the erosion by chemicals in the soil
8
.

6.4.6 Impact of the Input Features. As described in Section 5.1, SoilIdNet takes both the soil RI and RAR as the

input features to estimate the soil moisture. To validate that both of the features are useful for SoilIdNet to acquire

accurate moisture estimation, we build two variants of SoilIdNet that only takes either soil RI or RAR as the input

features for comparison. These two models share the same structure as the original SoilIdNet except that they

only consist of one encoder module followed by an inference module. In Figure 23, we show the MAEs of the

trained models with different features as inputs. From this figure, we notice that our SoilIdNet using both the soil

RI and RAR as inputs has a lower MAE than the other two models on all the tested soil types. Such experimental

results validate our design choice to take both the soil RI and RAR as input features, as they carry different soil

moisture related information that helps SoilIdNet make accurate estimation.

6.4.7 Comparison of Different Machine Learning Methods. To validate our design of using the deep neural

network model, i.e., SoilIdNet, to map the relationship between extracted radar signal features to soil moistures,

we train other three machine learning models, i.e., support vector regression (SVR), linear regression (LR), decision

tree (DT), and compare their performances with SoilIdNet. As shown in Figure 24, SoilIdNet outperforms the

other three models on the testing datasets of loamy soil, sand, and clay soil. Such results indicate that employing

the deep neural network structure, SoilIdNet has a more powerful representation ability than the other three

machine learning models.

8
The oxide film of aluminum is stable for years in the pH range of 4.5 to 8.5 [29], and the pH range of most types of soil is 5 to 8.5 [30].
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6.4.8 Impact of the Soil Surface-Radar Distance. To investigate how the soil surface-radar distance influence

the accuracy of SoilIdNet, we divide the testing datasets into four groups, which are collected under the soil

surface-radar distance of 1m-1.5m, 1.5m-2m, 2m-2.5m, and 2.5m-3m, respectively. In Figure 25, we show the

MAEs of SoilIdNets on the testing datasets of loamy soil, sand, and clay soil. The MAEs are below 0.25% for all the

experiments, whereas the MAEs do not show a clear correlation with soil surface-radar distance, which confirms

with our intuition since the values of RARs and soil RIs are independent of the soil surface-radar distance, as

introduced in Section 2.3. The experimental results indicate that the sensing accuracy of SoilIdNet is robust to

the soil surface-radar distance, even if the soil surface-radar distance becomes as far as 3m.

6.4.9 Impact of Hyperparameters of SoilIdNet. To investigate how the hyperfarameters influence the performance

of SoilIdNet, we implement variants of SoilIdNet with different encoder modules. Suppose 𝑁 is the number of

alternating FC layers and ReLU layers in the encoder modules. We implement three SoilIdNet with 𝑁 = 3, 𝑁 = 5,

and 𝑁 = 7, respectively. In Figure 26, we show the MAEs of the SoilIdNets on the testing datasets of loamy soil,

sand, and clay soil. The SoilIdNet with 𝑁 = 5 slightly outperforms the others on the testing datasets of each soil

type. Thus, we choose 𝑁 = 5 for SoilIdNet in all the experiments.

6.5 Performance of Fine-Tuned mSoilIdNet
6.5.1 Impact of the Soil Type. To validate that the SoilIdNet trained on one soil type may not generalize well

to others, we first obtain four SoilIdNet models trained on datasets collected on individual four types of soil,

respectively. Next, we apply each of the four models to estimate the moisture of all four types of soil, and obtain

the estimation results shown in Figure 27. From this figure, we observe that SoilIdNet only obtains lowMAE, when

it is tested on the same type of soil in the training process. In contrast, on other types of soil, the performance of

SoilIdNet is rather unsatisfactory.

6.5.2 Effectiveness of the mSoilIdNet Adaptation. We conduct several experiments to validate the effectiveness of

our meta training and adaptation method proposed in Section 5.2. Specifically, we compare the adaptation ability

of the pretrained mSoilIdNet model and an end-to-end (E2E) model. The E2E model is not pretrained and just

adjusts its paramters from randomly initialized ones. We also prepare two groups of adaptation datasets for the

target soil type. The first group consists of the data instances with only one kind of moisture label, whereas in the

second group the data instances have two kinds of moisture labels. We adapt the pretrained mSoilIdNet and E2E

model on these two groups of data respectively, and test the adapted models on the testing datasets. The results

are shown in Figure 28. From this figure, we could observe that the MAE of the fine-tuned mSoilIdNet is much

lower than that of the fine-tuned E2E model. Besides, we observe that the models adapted on the datasets with

two moisture labels have better performance than those with only one moisture label. Such result is reasonable

since more labels bring more useful information for fine-tuning the model. Furthermore, the average MAE of the

fine-tuned mSoilIdNet is comparable to that yielded by training SoilIdNet with full labels of one type of soil, and
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Fig. 29. (a) M3. (b) M4. (c) M5. (d) Alu-
minum reflector at M3.

Fig. 30. Radar signal collection and soil
moisture measurement at M3 by the UAV-
based system.
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Fig. 31. Ground truth and
estimated soil moisture of
mSoilIdNet in field tests.

testing the trained SoilIdNet on the same soil type, as shown by Figures 27 and 28. Specifically, the former is only

larger than the latter for 0.07%, which indicates the effectiveness of the fine-tuned mSoilIdNet.

6.6 Field Test
To evaluate the performance of our SoilId system in wild fields, we conduct field tests at three measurement

points (M3, M4, and M5) on a lawn. As illustrated in Figure 29, we bury a 30cm × 30cm aluminum plate in the soil

as the reflctor of each measurement point. Since the soil type in the field test is a priori unknown, we first collect
the training data of at M3 using the bracket-based system for meta adaptation. After that, we collect the testing

data of all the three measurement points using the UAV-based system for evaluation, as illustrated in Figure 30.

The UAV is hovering over each measurement point to sense the soil moisture. The distance from the IR-UWB

radar to the soil surface changes from 1m to 3m in a 20cm increment. Moreover, in real field tests, we cannot

accurately control the soil moisture to be uniform at each measurement point as we do in lab environments. Thus,

we manually collect five soil samples at each measurement point, and use the mean value of the ground truth

moisture of the samples at M3 as the label of the dataset for meta adaptation. The meta model is pretrained with

all the training dataset collected in the lab environments. As illustrated in Figure 31, the soil moisture estimation

results of mSoilIdNet accurately fall in the range of the five ground truth moistures of the soil samples collected at

each measurement point. The MAEs between the averages of the ground truth values at each measurement point

and the estimated soil moistures are 0.76%, 0.1%, and 0.17% for M3, M4, and M5, respectively. The experimental

results validate the effectiveness of the meta adaptation mechanism, which enables mSoilIdNet to achieve MAEs

of lower than 0.8% in real-world field tests for all the three measurement points.

7 RELATED WORK
As discussed in Section 1, existing work on soil moisure sensing can be broadly categorized as sensor-based and

RF-based techniques. Sensor-based techniques bury the dedicated sensor nodes in the soil to sense soil moistures.

Several types of sensors have been proposed to measure an appropriate kind of soil property that is sensitive to

moisture. For example, electricity resistance sensors [6] estimate moisture by measuring the electricity resistance

between the two electrodes, and there also exist other types of soil moisture sensors such as capacitive sensors

[31] heat-diffusion sensors [32], tensiometers sensors [8], and radioactive sensors [9] operating by different

principles. The tedious labor work for installing the sensors and changing their batteries prevent these sensors
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Table 1. Comparison with recent RF-based soil moisture sensing methods, where the sensing range refers to the distance
between the soil surface and the above-ground device (e.g., radar board, antenna arrays) utilized by each method.

Method RF Type Avg. Error Sensing Range In-Soil Battery UAV Test

CoMEt [18] SDR 1.1% 0.6m no no

SoilTAG [40] Wi-Fi 2% 6m no no

Tag+Radar [13] IR-UWB radar 1.4% 4m yes no

GreenTag [36] RFID 5% 2m no no

Strobe [10] Wi-Fi 10% 1.5m yes no

Lora+Switch [12] LoRa 3.1% >5m yes no

smol [11] LoRa 1.63% 1.95m yes no

SoilId IR-UWB radar 0.2% 3m no yes

from the widespread usages. Besides, these sensors are either prohibitively expensive or inaccurate to yield

fine-grained soil moisture estimations.

RF-based techniques do not require to deploy any sensor node, but some of them [10–13] also bury battery-

powered devices in the soil. Specifically, Strobe [10] employs the propagation time and amplitude of Wi-Fi signals

received by different antennas in the soil to jointly estimate soil moisture and salinity; The authors in [11, 12]

propose to bury LoRa nodes in the soil to estimate the soil moisture based on the RSSI or the phase of LoRa

signals; [13] proposes to bury a battery-powered tag in the soil and estimate the soil moisture based on the ToF

from the tag to the radar. Other approaches [33, 34] also propose to bury a pair of UWB chips in the soil to

estimate the soil moisture. However, the risk of soil contamination from battery corruption and the extra labor to

replace the batteries limit the usage of these techniques.

Apart from these works, there are also other RF-based techniques that bury battery-free tags to provide

reflections [35–37] of RF-signals, or just use the reflection of the soil surface and the boundaries between different

soil layers for soil moisture sensing [14, 15, 18, 38, 39]. GreenTag [36] senses the moisture of the potted soil by

utilizing the RFID tag attached to the exterior of the pot. However, its operation mode limits its application for

in-ground soil moisture sensing in agricultural, and other wide-area soil moisture sensing scenarios. SoilTag [40]

employs the Wi-Fi tag for soil moisture sensing. However, its accuracy is lower than that of SoilId, and SoilTag is

not tested on UAV for mobile soil moisture sensing. [14–17, 38, 39] estimate the soil moisture through measuring

soil surface reflections of the RF signals from spaceborne GNSS or radars carried on planes. These techniques can

widely estimate soil moisture all over the earth, but could only operate at limited spatial resolutions. Apart from

the remote sensing techniques, CoMEt [18] utilizes the signals reflected by the soil surface, as well as those by

the boundaries of different soil layers to estimate the soil moisture. However, due to the limited power of the

reflected signal strength, the operation range of CoMEt is within 60cm of the soil surface, which restricts its

potential to be carried on aerial mobile platforms (e.g., UAVs) for wide-area soil moisture sensing.

Compared with these approaches, SoilId can quickly measure the soil moisture of multiple measurement points

in a wide area, and can also provide moisture estimation with satisfactory spatial resolution and precision for

agriculture, as well as other applications. We also comprehensively compare SoilId with the aformentioned recent

RF-based soil moisture sensing methods in terms of sensing accuracy, the requirement of burying batteries in the

soil, sensing range, and several other aspects in Table 1. As shown by this table, SoilId is the method with a lower

error, and is the only work that performs system implementation on an actual UAV for soil moisture sensing

compared with other recent RF-based soil moisture sensing methods [10–13, 18, 36, 40] listed in this table.

Apart from soil moisture sensing, the low cost and highly compact commercial miniature on-chip radars

have shown rising popularity among lots of other sensing applications, such as through fog imaging and indoor
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mapping [41–43], material sensing [44, 45], motion recognition and mesh recovery [46–49], as well as localization

and bounding box estimation [50, 51], and many others [52–55]. Our work distinguishes from the above works

[41–55] as we attach a miniature on-chip IR-UWB radar on an UAV and leverage it for a completely different task

of soil moisture sensing.

8 CONCLUSION AND DISCUSSION

8.1 Conclusion
In this paper, we present SoilId, an RF-based soil moisture sensing system that combines a UAV and an IR-UWB

radar to quickly perform wide-area soil moisture sensing without burying any in-ground battery-powered

devices. To measure soil moisture, SoilId extracts soil moisture related features from the received radar signals,

automatically detects and discards the data influenced by the UAV’s uncontrollable motion and the multipath

interference, and finally accurately maps the radar signal features to the soil moisture estimation through a novel

deep neural network model SoilIdNet. Furthermore, we also augment the meta learning framework to obtain a

meta model mSoilIdNet, which can be quickly fine-tuned on new target soil type with only a small number of

labeled data. SoilId achieves a 50% quantile MAE of 0.23% on UAV tests. Besides, the meta model mSoilIdNet also

shows its satisfactory adaptation ability in our extensive experiments.

8.2 Potential for Real-World Applications
8.2.1 Soil Moisture Sensing for a Large Area with SoilId. Clearly, a smart and automatic soil moisture monitoring

system will release much human labor of carrying the sensing devices in a large sensing area. The highly mobile

nature of SoilId makes the automatic soil moisture sensing in a large area possible. Users can program on the

software development kit (SDK) to predefine the UAV’s flight paths, and utilize the RTK modules or the visual

markers to accurately localize the UAV. The soil surface-UAV distance can be accurately sensed by UAV’s altitude

sensing system [28] and automatically controlled through SDK. After that, the UAV can make soil moisture

estimations at different measurement points consecutively in a fully automatic manner. The average time spent

for measuring the soil moisture at a measurement point in our experiments is less than 2 minutes. Thus, SoilId

supports fast measurement of the soil moistures at many measurement points in a wide area.

8.2.2 Low Cost Compared with Existing Systems. Existing large scale soil moisture sensing systems usually

require to bury tens or even hundreds of sensors to provide enough coverage [56]. The high costs of reliable soil

moisture sensor nodes ($100-$400 [7] each) make such systems prohibitively expensive. Compared with these

systems, SoilId buries at each measurement point a battery-free aluminum reflector with attractive price ($5

each), which is 20× cheaper than the dedicated sensors. Meanwhile, SoilId does not require more efforts to deploy

the reflectors, because the deployment density of the reflectors in SoilId is comparable to that of the sensors in

existing systems. However, a soil moisture sensing system with sensors also requires to install various types of

peripherals, such as sensor data loggers (more than $1000 each [7]) for data gathering and LoRa gateways for

communications. These devices also bring extra costs and labor works to install and connect. SoilId does not

require these peripherals because it can directly sense the soil moisture at each measurement point and store

the results on the computing device on the UAV. The aluminum reflectors are chemically stable in soil for years

without any maintenance. The major cost of SoilId comes from the UAV. However, nowadays many farms have

already equipped with UAVs for other purposes (e.g., monitoring the growth of crops, spraying fertilizers and

pesticides). The SoilId framework can be easily implemented on such UAV by integrating a Raspberry Pi and a

commercial IR-UWB radar on it. The extra operation costs for soil moisture sensing are just the charging costs

for extra flights. Thus, from the perspective of price, SoilId is also suitable for soil moisture sensing in large areas

with multiple measurement points.
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8.3 Limitations and Future Works
SoilId takes the first step to implement a UAV-based soil moisture sensing system with commercial IR-UWB radar

and deep learning techniques, making it possible for modern smart agriculture to accurately monitor the soil

moisture of a large sensing area. However, the potential of SoilId has not been fully exploited. We elaborate on

the limitations and potential improvement directions for SoilId as follows.

8.3.1 Smaller Reflectors. In our experiments, we choose the reflector’s size to be 30cm × 30cm, such that the

UAV can easily align with the measurement point. However, it is far from the smallest size we can use. Smaller

reflectors will reduce the deployment cost, and have less impact on the plant growth. Meanwhile, it is more

difficult for the UAV to vertically align with the measurement point if we use smaller reflectors. Various choices

of reflector size can be decided by considering the trade-off between environment friendliness and sensing

convenience.

8.3.2 Other Choices of Radars with Different Operation Frequencies. SoilId employs the COTS IR-UWB radar

whose central operation frequency is 7.29GHz to sense the soil moisture. Although the signals of such IR-

UWB radar show satisfactory soil penetrating ability compared with other miniature on-chip radars radars, the

performance of SoilId might be improved, if it is equipped with radars operating at lower frequencies. Since RF

signal attenuates more slowly when its frequency is lower, if SoilId uses a radar with a lower operation frequency,

it might sense deeper in the soil. Thus, in such case, the strengths of the signals reflected by the reflector will be

higher, which will help promote the soil moisture sensing accuracy.

8.3.3 Effect of Plant Roots. Clearly, plant roots may change composition of the soil at the measurement points and

further impact the soil moisture sensing accuracy. Luckily, such impact can be alleviated by manually removing

the plant roots in advance when we construct a measurement point. However, it is possible that years after there

might be new plant roots spread into the measurement point. We will leave the exploration of such impact on

soil moisture sensing accuracy in our future work.

ACKNOWLEDGMENTS
This work was supported by NSF China (No. U20A20181, U21A20519) and supported by Alibaba Innovative

Research (AIR) program.

REFERENCES
[1] U. S. E. P. Agency, “Watersense notice of intent (noi) to develop a draft specification for soil moisture-based control technologies,” 2013.

[2] D. M. D, “Two decades of smart irrigation controllers in us landscape irrigation,” vol. 63, no. 5, 2020, pp. 1593–1601.

[3] A. Tal, “Rethinking the sustainability of israel’s irrigation practices in the drylands,” Water Research, vol. 90, pp. 387–394, 2016.
[4] B. Garcia, “How to build a soil moisture monitoring system (tutorial),” https://blog.temboo.com/how-to-build-a-soil-moisture-

monitoring-system/.

[5] P. V. Mauri, L. Parra, D. Mostaza-Colado, L. Garcia, J. Lloret, and J. F. Marin, “The combined use of remote sensing and wireless sensor

network to estimate soil moisture in golf course,” Applied Sciences, vol. 11, no. 24, p. 11769, 2021.
[6] H. Tian, Y. Shu, X.-F. Wang, M. A. Mohammad, Z. Bie, Q.-Y. Xie, C. Li, W.-T. Mi, Y. Yang, and T.-L. Ren, “A graphene-based resistive

pressure sensor with record-high sensitivity in a wide pressure range,” Scientific reports, vol. 5, no. 1, pp. 1–6, 2015.
[7] “Soil moisture sensors for irrigation scheduling,” https://extension.umn.edu/irrigation/soil-moisture-sensors-irrigation-scheduling#

electrical-resistance-sensors-1870361.

[8] E. Scientific, “Teros 21,” https://edaphic.com.au/products/soils/mps-6-soil-water-potential-sensor/.

[9] I. Radiation Detection Technologies, “Radioactive Sensor.”

[10] J. Ding and R. Chandra, “Towards low cost soil sensing using wi-fi,” in The Annual International Conference on Mobile Computing and
Networking (Mobicom), 2019.

[11] D. Kiv, G. Allabadi, B. Kaplan, and R. Kravets, “smol: Sensing soil moisture using lora,” in Proceedings of the 1st ACM Workshop on No
Power and Low Power Internet-of-Things, 2022.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.

https://blog.temboo.com/how-to-build-a-soil-moisture-monitoring-system/
https://blog.temboo.com/how-to-build-a-soil-moisture-monitoring-system/
https://extension.umn.edu/irrigation/soil-moisture-sensors-irrigation-scheduling# electrical-resistance-sensors-1870361
https://extension.umn.edu/irrigation/soil-moisture-sensors-irrigation-scheduling# electrical-resistance-sensors-1870361
https://edaphic.com.au/products/soils/mps-6-soil-water-potential-sensor/


11:24 • Ding et al.

[12] Z. Chang, F. Zhang, J. Xiong, J. Ma, B. Jin, and D. Zhang, “Sensor-free soil moisture sensing using lora signals,” Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol (IMWUT)., vol. 6, no. 2, pp. 45:1–45:27, 2022.

[13] C. Josephson, M. Kotaru, K. Winstein, S. Katti, and R. Chandra, “Low-cost in-ground soil moisture sensing with radar backscatter tags,”

in ACM SIGCAS Conference on Computing and Sustainable Societies (Compass), 2021.
[14] N. Sue, “Review and evaluation of remote sensing methods for soilmoisture estimation,” 2011.

[15] N. Eni, G and E. Dara, “Passive microwave remote sensing of soil moisture,” 1996.

[16] K. Wu, G. A. Rodriguez, M. Zajc, E. Jacquemin, M. Clément, A. De Coster, and S. Lambot, “A new drone-borne gpr for soil moisture

mapping,” Remote Sensing of Environment, vol. 235, p. 111456, 2019.
[17] F. Abushakra, N. Jeong, D. N. Elluru, A. K. Awasthi, S. Kolpuke, T. Luong, O. Reyhanigalangashi, D. Taylor, and S. P. Gogineni, “A

miniaturized ultra-wideband radar for uav remote sensing applications,” IEEE Microwave and Wireless Components Letters, vol. 32, pp.
198–201, 2022.

[18] K. Usman, Mahmood and S. Muhammd, “Estimating soil moisture using rf signals,” in The Annual International Conference on Mobile
Computing and Networking (Mobicom), 2022.

[19] A. Klotzsche, F. Jonard, M. C. Looms, J. van der Kruk, and J. A. Huisman, “Measuring soil water content with ground penetrating radar:

A decade of progress,” Vadose Zone Journal, vol. 17, no. 1, pp. 1–9, 2018.
[20] G. C. Topp, “Electromagnetic determination of soil water content: Measurements in coaxial transmission lines.” vol. 16, no. 3, 1980, pp.

574–582.

[21] V. A. e. Rafael, “Moisture effects on the dielectric properties of soils,” vol. 39, no. 1, 2001, pp. 125–128.

[22] L. Brocca, F. Melone, T. Moramarco, and R. Morbidelli, “Spatial-temporal variability of soil moisture and its estimation across scales,”

vol. 46, no. 2, 2010.

[23] J. Martínez-Fernández and A. Ceballos, “Mean soil moisture estimation using temporal stability analysis,” vol. 312, no. 1-4, 2005, pp.

28–38.

[24] A. W. Western, R. B. Grayson, and G. Blöschl, “Scaling of soil moisture: A hydrologic perspective,” vol. 30, no. 1, 2002, pp. 149–180.

[25] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning (ICML), 2017.

[26] K. Noborio, “Measurement of soil water content and electrical conductivity by time domain reflectometry: a review,” vol. 31, no. 3, 2001,

pp. 213–237.

[27] N. AS, “The world leader in ultra wideband (uwb) sensing,” https://novelda.com/technology/.

[28] “Matrice 210 user manual,” https://dl.djicdn.com/downloads/M200/20201120/M200_User_Manual_EN_20201120.pdf.

[29] B. Brown, “Corrosion resistance of aluminum,” https://www.cmilc.com/resources/white-papers/corrosion-resistance-of-aluminum-pdf.

[30] “Soil quality indicators: ph,” http://www.soilquality.org/indicators/soil_ph.html.

[31] Adrafruit, “Capacitive sensor,” https://learn.adafruit.com/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor.

[32] P. C. Dias, W. Roque, E. C. Ferreira, and J. A. S. Dias, “A high sensitivity single-probe heat pulse soil moisture sensor based on a single

npn junction transistor,” Computers and electronics in agriculture, vol. 96, pp. 139–147, 2013.
[33] “Soil type characterization for moisture estimation using machine learning and uwb-time of flight measurements,” Measurement, vol.

146, pp. 537–543, 2019.

[34] M. Malajner and D. Gleich, “Soil moisture estimation using uwb,” in 2016 IEEE/ACES International Conference on Wireless Information
Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 2016.

[35] R. V. Aroca, A. C. Hernandes, D. V. Magalhães, M. Becker, C. M. P. Vaz, and A. G. Calbo, “Calibration of passive UHF RFID tags using

neural networks to measure soil moisture,” Jding. Sensors, vol. 2018, pp. 3 436 503:1–3 436 503:12, 2018.
[36] J. Wang, L. Chang, S. Aggarwal, O. Abari, and S. Keshav, “Soil moisture sensing with commodity rfid systems,” in Proceedings of the 18th

International Conference on Mobile Systems, Applications, and Services (Mobisys), 2019.
[37] S. F. Pichorim, N. J. Gomes, and J. C. Batchelor, “Two solutions of soil moisture sensing with rfid for landslide monitoring,” vol. 18, no. 2,

2018, pp. 452–563.

[38] S. H. Yueh, R. Shah, M. J. Chaubell, A. Hayashi, X. Xu, and A. Colliander, “A semiempirical modeling of soil moisture, vegetation, and

surface roughness impact on cygnss reflectometry data,” vol. 60, 2020, pp. 1–17.

[39] C. Chew and E. Small, “Soil moisture sensing using spaceborne gnss reflections: Comparison of cygnss reflectivity to smap soil moisture,”

vol. 45, no. 9, 2018, pp. 4049–4057.

[40] W. Jiao, J. Wang, Y. He, X. Xi, and X. Chen, “Detecting soil moisture levels using battery-free wi-fi tag,” 2022.

[41] J. Guan, S. Madani, S. Jog, S. Gupta, and H. Hassanieh, “Through fog high-resolution imaging using millimeter wave radar,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[42] C. X. Lu, S. Rosa, P. Zhao, B. Wang, C. Chen, J. A. Stankovic, N. Trigoni, and A. Markham, “See through smoke: robust indoor mapping

with low-cost mmwave radar,” in The 18th Annual International Conference on Mobile Systems (Mobisys), 2020, pp. 14–27.
[43] K. Qian, Z. He, and X. Zhang, “3d point cloud generation with millimeter-wave radar,” Proc. ACM Interact. Mob. Wearable Ubiquitous

Technol (IMWUT)., vol. 4, no. 4, pp. 148:1–148:23, 2020.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.

 https: //novelda.com/technology/
https://dl.djicdn.com/downloads/M200/20201120/M200_User_Manual_EN_20201120.pdf
https://www.cmilc.com/resources/white-papers/corrosion-resistance-of-aluminum-pdf
http://www.soilquality.org/indicators/soil_ph.html
https://learn.adafruit.com/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor


Soil Moisture Sensing with UAV-Mounted IR-UWB Radar and Deep Learning • 11:25

[44] Y. Liang, A. Zhou, H. Zhang, X. Wen, and H. Ma, “Fg-liquid: A contact-less fine-grained liquid identifier by pushing the limits of

millimeter-wave sensing,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol (IMWUT)., vol. 5, no. 3, pp. 116:1–116:27, 2021.
[45] C. Wu, F. Zhang, B. Wang, and K. J. R. Liu, “msense: Towards mobile material sensing with a single millimeter-wave radio,” Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol (IMWUT)., vol. 4, no. 3, pp. 106:1–106:20, 2020.
[46] M. Zhao, Y. Liu, A. Raghu, H. Zhao, T. Li, A. Torralba, and D. Katabi, “Through-wall human mesh recovery using radio signals,” in 2019

IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
[47] C. X. Lu, M. R. U. Saputra, P. Zhao, Y. Almalioglu, P. P. B. de Gusmao, C. Chen, K. Sun, N. Trigoni, and A. Markham, “milliego: single-chip

mmwave radar aided egomotion estimation via deep sensor fusion,” in The 18th ACM Conference on Embedded Networked Sensor Systems
(Sensys), 2020.

[48] T. Liu, M. Gao, F. Lin, C. Wang, Z. Ba, J. Han, W. Xu, and K. Ren, “Wavoice: A noise-resistant multi-modal speech recognition system

fusing mmwave and audio signals,” in The 19th ACM Conference on Embedded Networked Sensor Systems (Sensys), 2021.
[49] H. Xue, Q. Cao, H. H. Yan Ju, H. Wang, A. Zhang, and L. Su, “M4esh: mmwave-based 3d human mesh construction for multiple subjects,”

in The 20th ACM Conference on Embedded Networked Sensor Systems (Sensys), 2022.
[50] E. Soltanaghaei, A. Prabhakara, A. Balanuta, M. G. Anderson, J. M. Rabaey, S. Kumar, and A. G. Rowe, “Millimetro: mmwave retro-

reflective tags for accurate, long range localization,” in The 27th Annual International Conference on Mobile Computing and Networking
(Mobicom), 2021.

[51] K. Bansal, K. Rungta, S. Zhu, and D. Bharadia, “Pointillism: accurate 3d bounding box estimation with multi-radars,” in The 18th ACM
Conference on Embedded Networked Sensor Systems (Sensys), 2020.

[52] K. Cui, Q. Yang, L. Shen, Y. Zheng, and J. Han, “Integrated sensing and communication between daily devices and mmwave radars,” in

The 20th ACM Conference on Embedded Networked Sensor Systems (Sensys), 2022.
[53] R. Ding, H. Jin, and D. Shen, “Rotation speed sensing with mmwave radar,” in The 42nd International IEEE Conference on Computer

Communications (INFOCOM), 2023.
[54] Y. Feng, K. Zhang, C. Wang, L. Xie, J. Ning, and S. Chen, “mmeavesdropper: Signal augmentation-based directional eavesdropping with

mmwave radar,” in The 42nd International IEEE Conference on Computer Communications (INFOCOM), 2023.
[55] L. Fan, L. Xie, X. Lu, Y. Li, C. Wang, and S. Lu, “mmmic: Multi-modal speech recognition based on mmwave radar,” in The 42nd

International IEEE Conference on Computer Communications (INFOCOM), 2023.
[56] T. E. Ochsner, M. H. Cosh, R. H. Cuenca, W. A. Dorigo, C. S. Draper, Y. Hagimoto, Y. H. Kerr, K. M. Larson, E. G. Njoku, E. E. Small et al.,

“State of the art in large-scale soil moisture monitoring,” Soil Science Society of America Journal, vol. 77, no. 6, pp. 1888–1919, 2013.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 11. Publication date: March 2023.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Radar Choices
	2.2 Modeling IR-UWB Radar Signals
	2.3 Soil Moisture and IR-UWB Radar Signals

	3 Methodology Overview
	4 Feature Extraction and Data Selection
	4.1 RAR and Soil RI Extraction
	4.2 Distorted Data Filtering
	4.3 Multipath Interference Elimination

	5 Moisture Estimation via Neural Networks
	5.1 Deep Neural Network Model
	5.2 Meta Learning for Fast Adaptation

	6 Experiments
	6.1 Experimental Setup
	6.2 System Implementations
	6.3 More Details on Training and Testing
	6.4 Performance of SoilIdNet
	6.5 Performance of Fine-Tuned mSoilIdNet
	6.6 Field Test

	7 Related Work
	8 Conclusion and Discussion
	8.1 Conclusion
	8.2 Potential for Real-World Applications
	8.3 Limitations and Future Works

	References

