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Abstract—In order to reduce the energy cost of data centers,
recent studies suggest distributing computation workload among
multiple geographically dispersed data centers, by exploiting the
electricity price difference. However, the impact of data center
load redistribution on the power grid is not well understood yet.
This paper takes the first step towards tackling this important
issue, by studying how the power grid can take advantage of
the data centers’ load distribution proactively for the purpose
of power load balancing. We model the interactions between
power grid and data centers as a two-stage problem, where the
utility company chooses proper pricing mechanisms to balance
the electric power load in the first stage, and the data centers seek
to minimize their total energy cost by responding to the prices in
the second stage. We show that the two-stage problem is a bilevel
quadratic program, which is NP-hard and cannot be solved
using standard convex optimization techniques. We introduce
benchmark problems to derive upper and lower bounds for the
solution of the two-stage problem. We further propose a branch
and bound algorithm to attain the globally optimal solution, and
propose a heuristic algorithm with low computational complexity
to obtain an alternative close-to-optimal solution. We also study
the impact of background load prediction error using the theo-
retical framework of robust optimization. The simulation results
demonstrate that our proposed scheme can not only improve the
power grid reliability but also reduce the energy cost of data
centers.

Index Terms—Smart grid, data center, demand response,
dynamic electricity pricing, load balancing, proactive design.

NOMENCLATURE

Acronyms
PS1 Stage-1 problem
PS2 Stage-2 problem
PI Integrated problem
RS1 Stage-1 of the restricted problem
RS2 Stage-2 of the restricted problem
PE1 Equivalent problem of the Stage-1 problem
PE2 Equivalent problem of the Stage-2 problem
PR1 Relaxed Stage-1 problem
WCP Worst-case performance optimization problem
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Sets
T Set of time slots
N Set of data centers

Indices
t Index of time slots
i Index of data centers

Parameters
T Number of time slots
N Number of data centers
Lt Total incoming workload within time slot t
Mi Total number of servers in data center i
µi Service rate of servers in data center i
dti Transmission delay to data center i in time slot t
D Delay bound
Pidle Average idle power of server
Ppeak Average peak power of server
Ri Power usage effectiveness of data center i
ξ Empirical parameter of power consumption
αti Base price for data center i in time slot t
βi Sensitivity parameter of price for data center i
Qti Available supply to data center i in time slot t
Bti Background load in location i and time slot t
Ci Power capacity in location i
πti Price lower bound for data center i in time slot t
πti Price upper bound for data center i in time slot t
πtmax Maximum average price in time slot t
θi Coefficient for energy consumption of data center i
Et Total energy required in time slot t
Eti Energy lower bound for data center i in time slot t
E
t

i Energy upper bound for data center i in time slot t
∆t
i,min Error lower bound in location i and time slot t

∆t
i,max Error upper bound in location i and time slot t

Variables
λti Workload assigned to data center i in time slot t
xti Number of active servers in data center i and time t
eti Energy consumption of data center i in time slot t
sti Billing reference for data center i in time slot t
πti Unit energy price for data center i in time slot t
rti Electric load ratio in location i and time slot t
zti Binary variables
zti Binary variables
δti Load prediction error in location i and time slot t
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I. INTRODUCTION

Energy management of large and distributed data centers
has become an increasingly important problem. With the fast
development of cloud computing services, it is now common
for a cloud provider (e.g., Google, Microsoft, and Amazon)
to build multiple, large, and geographically dispersed data
centers across the continent. Each data center may include
hundreds of thousands of servers, massive storage equipment,
cooling facilities, and power transformers. The energy con-
sumption and cost of data centers hence can be significant
[2]. For example, Google reported in 2011 that its data
centers continuously draw almost 260 MW of power, which
is more than what Salt Lake City consumes [3]. Microsoft’s
data center in Washington US consumes 48 MW of power,
which is equivalent to the power consumption of about 40,000
households. This has motivated growing research activities
toward optimizing the data center operations to reduce the total
energy cost. For example, Qureshi et al. in [2] proposed an
energy cost minimization method for distributed data centers
to exploit electricity price difference. The idea is later extended
in [4]–[10].

However, most existing studies of energy management of
distributed data centers have focused on the energy cost
minimization from the viewpoint of data centers, but fail to
consider the impact of such energy management practice on
the power grid. Note that, due to their enormous energy con-
sumption, data centers are expected to have a great influence
on the operation of the power grid [11]. Without taking such
impact into account, these energy management schemes may
adversely affect power-grid stability and load balancing.

In this paper, we aim to study the energy cost minimization
of distributed data centers based on their impact to the power
grid. We seek to benefit from the recent advances in two-way
communications that are available in smart grid [12] to allow
interactions and coordinations between energy suppliers and
consumers in real time to improve demand side management.
In our proposed framework, the utility company can set
dynamic prices to the demand-responsive data centers, and
the data centers can dynamically change energy consumption
in response to the price changes. This can effectively coordi-
nate demand with supply, and hence avoid unintended power
overloading.

The overall framework of our proposed system setup is
shown in Fig. 1. Cloud service users send computing requests
via Internet to the cloud provider. Exploiting various electricity
prices at different locations, the cloud provider minimizes the
total energy cost by assigning users’ requests to different data
centers. The utility company utilizes the demand response of
data centers, and tries to achieve power load balancing by
altering the electricity consumption of data centers through
dynamic pricing.

The main contributions of this paper are as follows:

• Data center and smart grid interaction: To the best of
our knowledge, this is the first paper that studies the
interactions between smart grid and data centers by con-
sidering the active decisions on both sides. In particular,
how does the utility company properly incentivize data
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Fig. 1: Smart grid and data center interaction.

centers to provide demand response services toward a
reliable power grid?

• Modeling and solution methods: We formulate the in-
teractions between smart grid and data centers as a
two-stage price optimization problem. In its original
form, this problem cannot be solved by standard convex
programming techniques. Therefore, we reformulate the
problem as a mixed integer quadratic program, and de-
sign a customized branch-and-bound algorithm to attain
the globally optimal solution. We also design a low-
complexity descent algorithm to attain a close-to-optimal
solution.

• Performance benchmarks: To help characterizing the op-
timal solution of the two-stage price optimization prob-
lem, we construct two single-level optimization problems,
namely an Integrated Problem and a Restricted Problem,
which correspond to the performance upper and lower
bounds of the two-stage price optimization problem.

• Case studies and implications: Our proposed method can
not only balance the power load for smart grid but also
reduce total energy cost for data centers, hence achieving
a win-win result.

The remainder of the this paper is organized as follows. We
review the related work in Section II. After that, we formulate
the system model as a two-stage price optimization problem in
Section III. In Section IV, we study two benchmark problems
to provide performance bounds for the formulated two-stage
price optimization problem. In Section V, we analyze the
solution of the two-stage price optimization problem, design a
branch-and-bound algorithm to yield the global optimum, and
propose an alternative heuristic algorithm to solve the sub-
optimal solution. In Section VI, we analyze the worst-case
performance by considering the prediction error in background
power load. Performance of the proposed scheme is evaluated
in Section VII. This paper is concluded in Section VIII.

II. RELATED WORK AND MOTIVATION

A. Literature Review

There are many existing research results on managing data
center’s workload to reduce energy cost, such as those studying
the energy cost minimization problem with multi-electricity-
market environment [4], green renewable generators [5], online
optimization [6], service level agreements [7], and deregulated
electricity price [8]. Zhang et al. [9] designed a Vickrey-
Clarke-Groves auction mechanism, in which tenants of data
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centers voluntarily bid for emergency demand response. How-
ever, these results did not consider the active response by
the utility companies, nor did they consider how the data
centers’ demand response may bring large load fluctuations
across different locations over time. This motivates us to
study the interactions between smart grid and geographically
dispersed data centers, and examine how smart grid can
properly incentivize data centers through dynamic pricing to
improve the grid reliability.

There has been a large body of research on demand response
of strategic energy consumers [13]–[16]. For example, in
[13], Mohsenian-Rad and Leon-Garcia suggested scheduling
household devices based on the predicted prices to minimize
the electricity cost. In [14], Nguyen et al. proposed a game
theoretic model, in which an electricity provider dynamically
updates the energy prices to reduce the peak load, by con-
sidering the load profiles of users. In [15], Li et al. studied
demand response based on utility maximization, and proposed
a distributed algorithm to compute optimal prices and power
schedules. In [16], Wong et al. designed a time-dependent
price to incentivize users to shift power load so as to relieve
stress during peak hours.

B. Motivation

Different from traditional residential or industrial con-
sumers, data centers are special electricity consumers. This
is not only because of their enormous energy consumption,
but also because of flexibility of energy consumptions over
multiple locations. The previous studies in [4]–[9] mainly
focused on the workload distribution from the perspective of
data centers. As reported in [10], such workload distribution
of data centers has great impact on power load balancing in
the smart grid.

In the power system, the utility company is responsible for
supplying power to meet the demand, and for maintaining the
safe operation of the smart grid system. The utility company
can utilize the demand response of data centers to manage
their energy consumption. However, most of the existing
demand response programs focused on the time flexibility
of residential demands, without considering the demand side
management over multiple locations. The latter is difficult to
do for residential demands, but is very suitable in the case
of geographically dispersed data centers.1 This motivates us
to design the dynamic pricing incentive mechanism from the
grid operator’s point of view, in order to incentivize the proper
demand response from multiple geographically dispersed data
centers. Tran et al. [17] studied demand response of data
centers in a multi-utilities environment, and modeled the
interactions between utilities and data centers as a Stackelberg
game. Different from [17], we study the interaction between
one utility company and one cloud provider (with multiple
data centers) as a bi-level optimization problem, propose two

1The cloud provider owns multiple data centers located in different geo-
graphical locations, and thus gains flexibility of power loads over locations via
workload assignment over different data centers. As an example, when Google
responds to a user’s web search query, the corresponding computation can be
done in any of the Google’s data centers (as long as certain service quality
agreement is satisfied).
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Fig. 2: The architecture for data center demand response.

benchmark problems to estimate the performance bounds, and
propose two algorithms to solve the optimal prices and close-
to-optimal prices, respectively.

III. SYSTEM MODEL

We consider a discrete time model t ∈ T = {1, ..., T},
where the length of a time slot matches the time-scale at which
the workload allocation decisions and dynamic pricing deci-
sions are updated, e.g. once an hour [4]. Let N = {1, ..., N}
denote the set of geographically dispersed data centers, where
each data center i ∈ N has Mi homogeneous servers, and
has the same function in terms of supporting various kinds of
applications (e.g., Internet services, image processing). As we
will explain later, not all servers are turned on during each
time slot.

Fig. 2 illustrates the system architecture of data centers
and smart grid. We assume that a group of geographically
dispersed data centers are operated by a single cloud provider,
and there is a traffic aggregator (e.g., a front-end portal server)
responsible for distributing the total incoming computing
workload Lt within time slot t to data centers in different
regions [4]. Each data center is powered by a dedicated
power substation in the power grid, and all the substations
are operated by the same utility company.2 In each time slot
t, we model the interactions between utility company and data
centers in two stages. In Stage 1, the utility company sets a
billing reference sti, which determines the electricity tariff as
we will explain later for each data center i to balance the load
on the power grid. In Stage 2, we assume that the data centers
can predict the workload accurately at the beginning of each
time slot. Then data centers cooperate with each other (as they
belong to the same cloud operator) so as to minimize the total
energy cost by determining the computing workload allocation
λti and the number of active servers xti in each data center i.
Next, we discuss these decisions in details.

A. Stage 2: Data Center’s Energy Cost Minimization

First, we consider the Stage-2 problem, where a cloud
provider (such as Google) wants to minimize the total energy
cost of multiple data centers. In practice, data centers directly

2Many practical examples motivates our assumption of one utility company.
For example, Alibaba cloud, a Chinese cloud provider, runs five data centers
at different locations in China, and three of which are served by the State
Grid Corporation of China. Such scenarios also exist in deregulated electricity
markets, such as in California US [18].
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negotiate with the utility company regarding the electricity
rates [19]. In time slot t, the utility company charges data
center i with the following regional electricity price πti per
unit of energy:

πti = αti + βi(e
t
i − sti), (1)

where eti is the data center’s the electricity consumption, sti is
called the billing reference, βi > 0 is a sensitivity parameter,
and αti > 0 denotes the base price, all at location i in time
slot t. The dynamic pricing scheme in (1) is motivated by the
tiered electricity pricing, which has been widely implemented
in various power markets such as the United States, Japan, and
China. The key idea of tiered pricing is to set several pricing
tiers for the energy consumption, and the unit price per unit
of energy increases with the tiers progressively [20]. In (1),
the term βi(e

t
i − sti) reflects the difference between electricity

consumption eti and the billing reference sti. The unit price πti
will be higher than the base price if eti > sti.

Next, we discuss the data centers’ optimization constraints.
1) Workload constraint: In each time slot t, users’ com-

puting requests (workload to the cloud provider) are received
by a front-end portal server. Then a total of N data centers
should work together to complete the total workload of Lt,
with the allocation to data center i as λti:

N∑
i=1

λti = Lt, λti ≥ 0, ∀i ∈ N , t ∈ T . (2)

2) QoS (delay) constraint: It is important for data centers
to provide QoS guarantees to the users, and QoS can be
specified by the service level agreement (SLA) [21]. SLA
usually measures the average performance for the operation
of a data center during a period of time. We consider both the
transmission delay (incurred before the request arrives at a data
center) and the queuing delay (experienced after the request
arrives at a data center). We define dti as the transmission delay
experienced by a computing request from the aggregator to
data center i during time slot t. Notice that dti is usually much
less than the length of a time slot. To model the queuing delay,
we use queuing theory to estimate the average processing time
in data center i when there are xti active servers processing
workload λti with a service rate µi per server.3 Applying the
results from M/M/1 queuing theory [5], the average waiting
time is approximately 1

µixt
i−λt

i
. To meet the QoS requirement,

the total time delay experienced by a computing request should
satisfy some delay bound D, which is the maximum waiting
time that a request can tolerate. For simplicity, in this paper, we
will assume homogeneous requests that have the same delay
bound D. Therefore, we have the following QoS constraint

dti +
1

µixti − λti
≤ D, ∀i ∈ N , t ∈ T , (3)

where µixti > λti.

3We assume that the servers in the same data center i are homogeneous
and have the same service rate µi.

3) Server constraint: At each data center i, there are tens
of thousands of servers providing cloud computing services
to meet users’ requests. Let Mi denote the maximum number
of available servers. The cloud provider can switch on and
off servers to adjust the service time. Since the number of
servers is usually large, we can relax the integer constraint
on the number of active servers without significantly affecting
the optimal result. Therefore, we have the following server
constraint4

0 ≤ xti ≤Mi, ∀i ∈ N , t ∈ T . (4)

4) Energy consumption constraint: The energy consump-
tion of data centers consists of IT energy consumption (e.g.,
CPU, memory, and storage) and ancillary energy consumption
(e.g., cooling, lighting, and power facility). The quantitative
relation between IT energy consumption and ancillary energy
consumption is measured by the power usage efficiency (PUE)
[22], which is defined as the ratio of total energy consumption
to IT energy consumption. The energy used by computing
equipments is considered to be productive. On the contrary,
the energy for ancillary infrastructure (e.g., cooling, lighting,
and power facility) is auxiliary. PUE helps us understand the
total energy consumption based on the IT energy consumption.
Therefore, we can calculate the total energy consumption of
a data center using PUE, amount of computing workload, and
number of active servers. Precisely, based on the data center
power model in [11], we formulate the energy consumption
of data center i in time slot t as

eti = xti (Pidle + (Ri − 1)Ppeak) + xti(Ppeak − Pidle)γti + ξi,

where Pidle and Ppeak represent the average idle power and
average peak power of a single server, respectively. The power
efficiency parameter Ri > 1 denotes PUE of data center
i. The parameter ξi is an empirical constant indicating the
base energy consumption of data center i, and γti denotes the
average server utilization of data center i in time slot t.

We substitute the average server utilization γti = λti/(µix
t
i),

and rewrite eti in the following equivalent form:

eti = (Pidle + (Ri − 1)Ppeak)xti +
Ppeak − Pidle

µi
λti + ξi,

∀i ∈ N , t ∈ T ,
(5)

which is an affine function with respect to the number of active
servers xti and the computing workload λti.

Given the operational requirements of the power substation,
we limit the maximum power that can be consumed by data
center i in time slot t as

0 ≤ eti ≤ Qti, ∀i ∈ N , t ∈ T . (6)

where Qti denotes the available power supply to data center i
in time slot t.

With the above constraints, we can formulate the cloud
provider’s energy cost minimization problem in Stage 2.

4We set the minimum required number of active servers in each data
center as zero. It can also be set as a non positive to reflect operational
requirements for the data center, without changing the engineering insights
from the analysis.
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The objective is to minimize the data centers’ total energy
cost over all locations and all time slots by choosing the
workload allocation λti and the number of active servers xti
for each data center i ∈ N and each time t ∈ T . As the
operational constraints (2)-(6) are decoupled across time slots,
we formulate the energy cost minimization problem in time
slot t as follows:

Stage-2 Problem (PS2): Total Energy Cost Minimization

min
λt, xt

∑
i∈N

(
αti + βi(e

t
i − sti)

)
eti

subject to Constraints (2)–(6),

where λt = {λti, ∀i ∈ N} and xt = {xti, ∀i ∈ N} denote
the workload allocation vector and active server number vector
for each time slot t ∈ T , respectively. The energy cost of data
center i is calculated as the product of its energy consumption
eti and the corresponding unit price αti + βi(e

t
i − sti).

Note that, the optimal value of workload allocation λti,
number of active servers xti and energy consumption eti in
(5) are functions of the billing references st = {sti, ∀i ∈ N}
in time slot t. Given st, we can solve Problem PS2, and will
present the optimal solutions of λti, x

t
i and eti in Section V.

B. Stage 1: Smart Grid’s Power Load Balancing Problem

We are now ready to consider the Stage-1 power load
balancing problem for the smart grid. We classify the load
into two groups: data centers and others. We focus on the
data centers’ loads as they have geographical flexibility, and
let the latter group as background loads. With the emergence
of smart grid communications technologies, it is possible for
the utility company to incentivize the data centers to shift
loads from heavily loaded regions to lightly loaded regions.
In our proposed framework, the smart grid optimizes dynamic
tiered prices by setting the billing references st in each time
slot t to balance power load across geographical locations. To
measure the power load levels in different locations, we define
the electric load ratio in location i and time slot t as

rti(s
t) =

eti(s
t) +Bti
Ci

, (7)

where Bti is the background power load, and Ci is the capacity
of power substation i. Note that the load ratio rti is a function
of the energy consumption eti, and thus also depends on the
billing reference st for all locations in time slot t. The utility
company aims at balancing the load ratio rti(s

t) at all locations
in each time slot.

Let Qti = Ci−Bti be the maximum available power supply
to data center i in time slot t. Since our study focuses on
the demand response of data centers, we denote the aggregate
energy usage of all the users other than data centers as the
background energy load. We assume that the utility company is
able to accurately forecast5 the background energy load ahead
of each time slot [23].

5We first solve the two-stage problem assuming perfect background load
prediction. In section VI, we will further study the impact of prediction error.

Based on the load ratio rti , we define the electric load index
(ELI) across all locations in time slot t as

ELI ,
∑
i∈N

(
rti(s

t)
)2
Ci, (8)

where ELI measures the overall load ratio across all locations.
Note that electric load ratio rti is a normalized indicator,
which does not reflect the importance of those locations
with large capacities. Therefore, we introduce the capacities
Ci as the weighted coefficients in ELI. We can show that
minimizing ELI with respect to eti yields an equal load ratio
across all locations in the ideal case (without considering any
constraints):

et1 +Bt1
C1

= · · · = etN +BtN
CN

,

which indicates no overloading problem occurs in any of the
locations. Therefore, the system reliability is improved at these
locations.

However, such even load distribution may not be achievable
in practice, because the energy consumption eti should also
satisfy the operational constraints for workload allocation and
number of active servers in (2)–(6). Moreover, the cloud
provider and the utility company are independent entities. Data
centers are operated by the cloud provider, which implies that
the energy consumption of data centers cannot be directly
controlled by the utility company.

In order to balance the electricity load, in this paper we
focus on the scenario where the utility company charges
dynamic prices to incentivize users to shift their electricity
usage to less loaded locations. To encourage the participation
of data centers into the demand response program and prevent
the utility company from abusing its market power, constraints
should be set to regulate the dynamic prices. In practice, the
utility company and data centers usually negotiate with each
other and enter into a contract [19] to specify the pricing
structure. Based on related studies [24], we set the following
constraints for the energy price πti :

πti ≤ αti + βi(e
t
i − sti) ≤ πti, ∀i ∈ N , t ∈ T , (9)

1

N

∑
i∈N

[
αti + βi(e

t
i − sti)

]
≤ πtmax, t ∈ T , (10)

where (9) ensures that the price charged to the data centers
is always contained within the range [πti, π

t
i]. Constraint (10)

enforces that the dynamic prices across all locations have
an average price ceiling πtmax, which is specified by the
contract between the utility company and data centers [24].
Constraint (10) can prevent the utility company from charging
the maximum possible price in all locations. More precisely,
the utility company has to provide lower prices to other
locations if it charges a higher prices at some locations, so
that (10) can be satisfied. This will give a guarantee to the
cloud provider, such that the dynamic price will not arbitrarily
increase the energy cost of the data centers.

After the contract terms (e.g., constraints (9) and (10)) are
settled, the utility company is responsible of enforcing the
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price constraints (9) and (10).6 We formulate the smart grid’s
load balancing problem in time slot t as follows:

Stage-1 Problem (PS1): Electric Power Load Balancing

min
st

∑
i∈N

(
rti(s

t)
)2
Ci

subject to Constraints (9) and (10),

where the electric load ratio rti depends on the energy con-
sumption eti, which is the optimal solution of Stage-2 Problem
PS2.

C. Two-stage Price Optimization Problem

For Problem PS2, we can show that constraints (2)–(6) can
be equivalently rewritten as constraints of data centers’ energy
consumption: ∑

i∈N
θie

t
i = Et, (11)

Eti ≤ eti ≤ E
t

i, ∀i ∈ N , (12)

where θi, Et, Eti and E
t

i are system parameters. Constraint
(11) is derived from the workload constraint in (2), which
specifies that the summation of θi-weighed energy consump-
tion of all the data centers should reach Et in order to process
the total workload Lt. The box constraint (12) sets the energy
consumption upper bound Eti and lower bound E

t

i for each
data center, to meet all the inequality constrains in (3)–(6).
For the proof and detailed representation of the parameters,
please see [33].

Using constraints (11) and (12), we can simplify Problem
PS2 into an equivalent energy consumption distribution prob-
lem, in which the cloud provider directly decides the energy
consumption of data center eti to minimize the energy cost.
The equivalent energy consumption distribution problem is
presented as follows:

PE2: Equivalent Problem of PS2

min
et

∑
i∈N

(
αti + βi(e

t
i − sti)

)
eti

subject to Constraints (11) and (12),

where et = {eti, ∀i ∈ N}. Once the energy consumption eti is
determined, we can find the corresponding workload allocation
λti and number of active servers xti.

Fig. 3 shows the relation between the two-stage problems
PS1 and PE2, each of which is executed once in each time
slot. In Stage 1, at the beginning of each time slot, the utility
company sets billing references for data centers to optimize
the ELI performance. This leads to the tiered price πti = αti +
βi(e

t
i−sti) for each data center i. In Stage 2, the cloud provider

optimizes the energy consumption eti of each data center in
order to minimize the total energy consumption

∑
i∈N π

t
ie
t
i

in time slot t.

6To enforce constraints (9) and (10), the utility company should carefully
determine the dynamic prices and consider the corresponding responses from
the data centers, as the price constraints (9) and (10) involve both dynamic
prices and energy consumption responses of data centers.

Dynamic pricing 
as in Equation (1)

Power consumption

Stage 1: Smart grid operator determines the optimal dynamic price 
for electric power load balancing

Stage 2: Cloud computing provider decides the optimal workload 
allocation to minimize the total energy cost of data centers

Stage 1: Power Load Balancing.
Utility company solves the Stage-1 

Problem PS1 and determines the optimal 
billing references for the data centers.

Stage 2: Energy Cost Minimization.
Cloud provider solves the Stage-2 Problem 

PE2 and decides the optimal energy 
consumption of all the data centers.

Energy consumption 
of data centers

In each time slot t =1,…,T

Utility Company

Data Centers

Fig. 3: Two-stage optimization problem.

The two-stage problem is a challenging optimization prob-
lem to solve, due to the coupled variables and constraints. As
the utility company aims to balance the electric load across
locations, it will consider the response of the cloud provider
in Stage 2, when computing the optimal billing references
st in Stage 1. Before solving the two-stage problem, we
will introduce two benchmark problems to bound the optimal
solution.

IV. PERFORMANCE BENCHMARKS

The two-stage problem is a quadratic bilevel program with
coupled constraints, which is NP-hard in general and cannot be
solved effectively by standard convex optimization algorithms.
Before proposing solution methods to solve the two-stage
problem, we construct two benchmarks, the integrated problem
and the restricted problem, to provide lower bound and upper
bound of the ELI performance, which are helpful in terms of
solving the two-stage problem in Section V.

A. The Integrated Problem

We consider the following integrated problem as a bench-
mark, where the utility company directly decides the optimal
workload assignments and the number of active servers for
each data center (without the need of dynamic pricing). This
will reveal the minimum ELI that the system can achieve if
the utility company and the data centers fully cooperate with
each other.

The integrated problem is formulated as follows.

PI: Integrated Problem

min
λt, xt

∑
i∈N

(
rti

)2
Ci

subject to Constraints (2)–(6).

We can see that the objective is consistent with the utility
company’s objective of load balancing in Problem PS1. The
constraints are the same in Problem PS2 for data centers’
operation. Problem PI is a convex quadratic program, which
can be solved by standard convex optimization techniques
[25].



7

Intuitively, compared with the scenario where the utility
company incentivizes data centers through dynamic pricing,
direct control of data centers’ operation would be more
efficient in terms of load balancing. This can lead to a
lower bound of the ELI performance stated in the following
proposition.

Proposition 1: The optimal solution of the integrated prob-
lem PI provides a lower bound of the optimal ELI performance
of PS1.

To prove Proposition 1, we need to the show that the
feasible set of the integrated problem PI is larger than that of
the original two-stage optimization problem. In the integrated
problem PI, the utility company directly controls the workload
allocation and the number of servers in the data centers, subject
to the data center operation constraints (2)-(6). Whereas in
the two-stage problems PS1 and PS2, the utility company
aims at indirectly managing data centers’ operation in PS2
through price incentives in PS1, subject to both data center
operation constraints (2)-(6) and pricing constraints (9)-(10).
Intuitively, when the utility company directly controls data
centers’ operation in PI, the decision is more flexible than
incentive-based in through the two-stage problems PS1 and
PS2. Hence, the performance of PI should be better, which
means a lower ELI. For the detailed proof, see [33].

Note that the ELI performance gap between the estimated
lower bound and the optimal solution is affected by constraints
(9) and (10) in the two-stage problem. For example, enlarging
the price range [πti, π

t
i] in price constraint (9) can improve the

optimal ELI performance to be close to the ELI lower bound,
as the dynamic pricing scheme of the utility company has a
larger feasible set.

B. The Restricted Problem

After we provide a lower bound for ELI by solving PI, we
present another benchmark problem namely restricted problem
RS.

In order to construct the restricted problem, first, we note
that in the two-stage problem, different stages have different
constraints that cannot be moved across stages. The Stage-1
problem is the upper-level problem, while the Stage-2 problem
is the lower-level problem. The constraints of the Stage-1
problem PS1 also apply to the Stage-2 problem PE2, but the
operational constraints of data centers in the Stage-2 problem
PE2 only need to be satisfied by the data centers. Intuitively,
moving constraints from the Stage-2 problem to the Stage-1
problem shrinks the utility company’s action set. Thus, the way
we formulate the restricted problem is to move the bounding
constraint on energy consumption (12) in PE2 to the Stage-
1 problem PS1. Thus we formulate the restricted problem in
time slot t with the modified Stage-1 and Stage-2 problems as
follows.

RS1: Stage 1 of the Restricted Problem

min
st

∑
i∈N

(
rti(s)

)2
Ci

subject to Constraints (9), (10) and (12).

RS2: Stage 2 of the Restricted Problem

min
et

∑
i∈N

(
αti + βi(e

t
i − sti)

)
eti

subject to Constraints (11).

We use backward induction to solve RS1 and RS2. We first
solve Problem RS2. Since RS2 is a convex quadratic program
with equality constraints, we obtain the optimal solution in the
closed form as

eti =
sti
2
− αti + θiσ

t

2βi
, ∀i ∈ N , (13)

where σt is the Lagrangian multiplier corresponding to the
energy equality constraint (11).

Substituting the optimal solution of Problem RS2 (13) into
Problem RS1, we have the restricted problem as a single-level
optimization problem:

RS: Restricted Problem

min
{st,et,σt}

∑
i∈N

(
rti

)2
Ci

subject to Constraints (9)–(13),

which is a convex quadratic program, and can be solved by
standard convex programming algorithms [25].

Intuitively, moving constraints (12) from the Stage-2 prob-
lem to the Stage-1 problem shrinks the utility company’s
action set. This can lead to a performance degradation in term
of a higher ELI, which serves as a upper bound stated in the
following proposition.

Proposition 2: The optimal solution of the restricted prob-
lem RS provides an upper bound of the optimal ELI perfor-
mance of PS1.

To prove Proposition 2, we need to the show that the
feasible set of the restricted problem RS is smaller than that
of the original two-stage optimization problem. Notice that the
constraints (12) were in PS2 of the original two-stage problem
formulation, but here we move them to the Stage-1 problem
RS1 of the restricted two-stage formulation. Compared with
PS1, in RS1 the utility company’s pricing decision in the
restricted problem is more conservative, because the utility
company has to satisfy the additional data center operation
constraints (12). Intuitively, the restricted two-stage problem
has a smaller feasible set than that of the original two-stage
problem. Therefore, the solution that is obtained from the
restricted problem provides an upper bound for the original
two-stage problem. For the detailed proof, see [33].

Note that the estimation of the upper bound is affected by
the parameter configurations in constraints (9), (10) and (12).

V. SOLVING THE ORIGINAL TWO-STAGE PROBLEM

After presenting ELI performance upper and lower bounds
from the benchmark problems, we next solve the original two-
stage problem through backward induction. We first solve the
Stage-2 problem PS2, where data centers minimize the total
energy cost. Then, we design a branch-and-bound algorithm
for the Stage-1 problem PS1 to attain the globally optimal
solution.
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A. Solving the Stage-2 Problem

In the Stage-2 problem PS2, data centers decide the work-
load allocation λti and number of active servers xti at all
locations to minimize the total energy cost in each time
slot, given the charging reference st announced by the utility
company ahead of each time slot.

We have reformulated PS2 as en equivalent problem PE2
in Section III. As Problem PE2 is strictly convex, we can
compute the optimal solution et∗i through the Lagrangian dual
method. This leads to the following result.

Theorem 1: The unique optimal solution of Problem PE2
is

et∗i (st) = min

{
max

{
Eti,

sti
2
− αti + θiσ

t

2βi

}
, E

t

i

}
, ∀i ∈ N .

(14)
where et∗i (st) is called the best response of data center i to
the billing reference st, and σt is the Lagrangian multiplier
corresponding to the equality constraint (11).

Problem PE2 can be solved by the standard subgradient
method with a constant stepsize [25]. For the detailed proof,
see [33].

B. Solving the Stage-1 Problem

After solving the Stage-2 problem PE2, we obtain the
optimal energy consumption of data centers as functions of
the given charging references st. We next solve the Stage-1
problem PS1. Under the assumption of complete information,
the utility company knows how the data centers will respond to
the dynamic prices, and can predict the energy consumptions
of data centers given the dynamic prices. Therefore, we can
replace Problem PE2 with its Karush-Kuhn-Tucker (KKT)
conditions and transform the two-stage problem to a single-
level optimization problem [26] by incorporating the KKT
conditions of Problem PE2 into Problem PS1.

Theorem 2: (Reformulation) The Stage-1 problem PS1 can
be written in the following equivalent problem with quadratic
objectives, linear constraints, and complementarity constraints,
denoted as PE1.

PE1: Equivalent Problem of the Two-stage Problem

min
{sti,eti,σt,ωt

i,ω
t
i},i∈N

∑
i∈N

(rti)
2Ci

subject to
πti ≤ αti + βi(e

t
i − sti) ≤ πti, ∀i ∈ N , (15)

1

N

∑
i∈N

[
αti + βi(e

t
i − sti)

]
≤ πtmax, (16)

αti + 2βie
t
i − βisti + θiσ

t − ωti + ωti = 0, ∀i ∈ N , (17)

ωti(E
t
i − eti) = 0, ∀i ∈ N , (18)

ωti(e
t
i − E

t

i) = 0, ∀i ∈ N , (19)∑
i∈N

θie
t
i = Et, (20)

Eti ≤ eti ≤ E
t

i, ∀i ∈ N , (21)
ωti ≥ 0, ωti ≥ 0, ∀i ∈ N , (22)

where (17)-(22) are the KKT conditions of Problem PE2, and
σt, ωti, and ωti are the Lagrange multipliers associated with
the equality and box constraints of PE2. Since Problem PE2
is strictly convex, the KKT conditions (17)-(22) are necessary
and sufficient for the optimal solution of Problem PE2.

Problem PE1 is a quadratic program with nonconvex
constraints, which cannot be solved efficiently by standard
convex optimization techniques. However, we find that the
nonconvexity only comes from the complementarity slackness
conditions (18) and (19). We can linearize the complementarity
slackness conditions (18) and (19) by introducing binary
variables zti ∈ {0, 1} and zti ∈ {0, 1}, and replace (18) and
(19) by the following constraints:

eti − E
t
i ≤ ztiK, ∀i ∈ N , (23)

ωti ≤ (1− zti)K, ∀i ∈ N , (24)

E
t

i − eti ≤ ztiK, ∀i ∈ N , (25)
ωti ≤ (1− zti)K, ∀i ∈ N , (26)

where K is a sufficiently large constant. We can show that
(18) is equivalent to (23) and (24).
• We first show that if (18) is satisfied, then (23) and (24)

are also satisfied. There are three combinations to make
(18) be satisfied. 1) When eti = Eti and ωti > 0, we have
zti ∈ [0, 1 − ωt

i

K ] from (23) and (24). As zti is a binary
variable, we obtain that zti = 0. 2) When eti > Eti and
ωti = 0, we obtain that zti = 1. 3) When eti = Eti and
ωti = 0, we obtain that zti ∈ [0, 1], and thus either zti = 0
or zti = 1.

• We then show that if (23) and (24) are satisfied, then (18)
is also satisfied. We discuss the following two cases by
exhausting the choices of the binary variable zti. 1) When
zti = 0, we have eti ≤ Eti from (23). Together with the
constraint eti ≥ Eti as in (21), we obtain eti = Eti, and
thus (18) is satisfied. 2) When zti = 1, we have ωti ≤ 0
from (24). Together with the constraint ωti ≥ 0 as in (22),
we have ωti = 0, and thus (18) is also satisfied.

Following a similar reasoning, we can show that (25) and (26)
can replace (19).

To solve PE1, we design a branch-and-bound algorithm
[27] to attain the optimal solution. We first relax the binary
variables {0, 1} to continuous variables within the range [0, 1],
and define the following relaxed quadratic problem PR1.

PR1: Relaxed Problemof PE1

min
∑
i∈N

(
rti

)2
Ci

subject to Constraints (15)− (17), (20)− (26),
0 ≤ zti ≤ 1, ∀i ∈ N ,
0 ≤ zti ≤ 1, ∀i ∈ N ,

Variables: {sti, eti, σt, ωti, ωti, zti, zti}, i ∈ N .

Initially, the algorithm takes the optimum of the integrated
problem PI as the lower bound F , and the optimum of
the restricted problem RS as the upper bound F . Then the
algorithm start to solve the relaxed problem PR1 and builds
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PR1

……

Fig. 4: Branch and bound tree.

the branch and bound tree by splitting the binary variables
to enforce the binary variable constraints. Specifically, the
algorithm adds the following constraints, zti = 0 or zti = 1,
to the relaxed problem PR1, and derives two new convex
quadratic problems (e.g., two first-level children nodes in
the branch-and-bound tree shown in Fig. 4). The algorithm
continues to expand the tree by adding other constraints
zti = 0 or zti = 1 until all the binary variables constraints
are completely enforced. Meanwhile, the algorithm updates
the lower bound F after solving each relaxed problem in the
children node, and updates the upper bound F , when a feasible
solution with lower optimum is found. The branch-and-bound
algorithm terminates at a globally optimal solutions when the
lower bound meets the upper bound or all the nodes in the
branch and bound tree have been evaluated [27]. In the worst-
case, the branch-and-bound algorithm will traverse 22N nodes.

C. Heuristic Algorithm

The branch-and-bound algorithm in general has a very high
worst-case computational complexity, and hence may not be
suitable for solving a large-scale load balancing problem.
Therefore, we propose a heuristic algorithm to solve the two-
stage problem PS1 and PS2 for suboptimal solutions. Our
heuristic algorithm is designed based on the descent approach,
and iteratively reduces the value of ELI in Problem PS1.

We view the solution of Problem PE2 as a function of the
variables of Problem PS1. Observing the best response (14)
in Problem PE2, we find the following monotonic relation be-
tween the charging reference sti, the optimal energy consump-
tion et∗i , and the unit price πti = αti+βi(e

t∗
i −sti). Specifically,

increasing sti leads to increase in et∗i and σt, and decrease in
et∗j , ∀j ∈ N\i, and all the unit prices πti also decrease. On
the contrary, decreasing sti causes decrease in et∗i and σt, and
increase in et∗j , ∀j ∈ N\i and all the unit prices πti . Note that
minimizing the ELI performance (8) yields even load ratio rti
across all locations. Thus, we design a descent algorithm to
redistribute the total energy consumptions, by decreasing sti
in high energy-consumption locations, and increasing sti in
low energy-consumption locations. The detailed algorithm is
described in Algorithm 1. The utility company and data center
iteratively compute the prices and energy consumption. In each
iteration, the utility company provides a set of prices, and data
centers respond to the prices and report the corresponding
schedule of energy consumption (and do not reveal private
information such as parameters and constraints). Algorithm 1

reduces ELI and its convergence to a feasible and possibly
sub-optimal solution is guaranteed since the ELI performance
is lower bounded by Problem PI. For the detailed proof, see
[33].

Algorithm 1 Descent algorithm to solve the two-stage prob-
lem

1: Initialization: In each time slot t ∈ {1, ..., T}, set the
iteration count k = 1, convergence tolerance ε > 0,
and step-size η(k). Initialize the starting point st(k) ,
{sti(k), i ∈ N} by solving the restricted problem RS, and
compute the average load ratio rtavg(k) =

∑
i∈N rti(k)

N .
2: repeat
3: Step1: Compute the descent direction gt(k) for st(k):

if rti(k) > rtavg(k), then set gti(k) = − θi
βi , i ∈ N ;

otherwise, set gtj(k) =
θj
βj , j ∈ N\i.

4: Step2: Perform the search by using the iterations
5: st(k + 1) = st(k) + η(k)gt(k);
6: Step3: Given st(k + 1), solve the optimal energy

consumption eti(k + 1) according to (14).
7: Step4: Check the feasibility based on (9) and (10). If

yes, update rtavg(k + 1) =
∑

i∈N rti(k+1)

N . If not,

eti(k + 1) = eti(k), sti(k + 1) = sti(k),

rtavg(k + 1) = rtavg(k), η(k + 1) =
1

2
η(k).

8: k ← k + 1;
9: until the convergence criteria ‖ELI(k)−ELI(k−1)‖ ≤ ε

is satisfied;
10: Return the sub-optimal solutions ŝt, êt.
11: end

VI. IMPACT OF BACKGROUND LOAD PREDICTION ERROR

In Section V, we solved the two-stage problem based on
the assumption that the utility company can forecast the back-
ground power load Bti accurately. In practice, the prediction
may have errors and the actual background load may deviate
from the predicted values. We define the prediction errors
for the background load in location i and time slot t as δti .
Then, we can represent the actual background load B̂ti as the
summation of predicted value and the prediction error:

B̂ti = Bti + δti .

Next we use the robust optimization approach [28] to
analyze the impact of prediction errors. We assume that the
prediction errors are bounded in known uncertainty sets as
follows:

∆t
i,min ≤ δti ≤ ∆t

i,max, ∀i ∈ N , (27)

where ∆t
i,min and ∆t

i,max denote the lower bound and upper
bound of the background load prediction error in location i
and time slot t, respectively.

We let δt = {δti , i ∈ N} denote the prediction-error vector.
Our aim is to maximize the worst-case performance of power
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load balancing. We formulate the worst-case performance
optimization problem as:

WCP: Worst-case Performance Optimization Problem

min
st

max
δt

∑
i∈N

(
eti(s

t) +Bti + δti

)2
Ci

subject to Constraints (9), (10), (27),

which is a min-max optimization problem.
To solve Problem WCP, we first solve the inner ELI

maximization problem of WCP (namely IWCP):

max
δt

∑
i∈N

(
eti(s

t) +Bti + δti

)2
Ci

subject to Constraints (27),

which corresponds to the worst-case ELI performance. We can
show that the objective function of Problem IWCP is convex
in the prediction errors δt. Hence, the optimal solution of the
IWCP problem must reach the boundary of the uncertainty
set in (27). Moreover, as the total actual energy consumption
eti(s

t) + Bti + δti is always non-negative, hence the objective
function of Problem IWCP is a monotonically increasing
function in δt. Thus we have the following result:

Proposition 3: The optimal solution of Problem IWCP, i.e.,
the worst-case prediction error, lies at the upper bounds of the
uncertainty set, i.e. δt,∗i = ∆t

i,max, ∀i ∈ N .
Hence, we substitute the worst-case prediction error δt,∗ =

{δt,∗i , ∀i ∈ N} into Problem WCP, and obtain the following
worst-case optimization problem:

min
st

∑
i∈N

(
eti(s

t) +Bti + δt,∗i

)2
Ci

subject to Constraints (9) and (10),

which solves the optimal billing references st to optimize the
worst-case performance of ELI. Note that the above problem
shares the same structure as Problem PS1, and thus can be
solved by the same methodology presented in Section V.

VII. SIMULATION RESULTS

In this section, we evaluate our proposed algorithms based
on realistic system parameters, and compare the corresponding
electric load index and energy cost between the solutions with
that of the benchmark problems.

We consider four data centers that are geographically lo-
cated in four different regions in the United States: New York,
Maine, Rhode Island, and Boston. In each location, there is
one data center powered by a power station. The numbers
of servers in the four locations are 80000, 60000, 60000,
and 80000, respectively. The service rates are 4, 3, 4 and
3 requests per server, and each server consumes 200watts
electricity in the peak mode and 100watts when it is idle. We
set power usage effectiveness as 1.5, 1.2, 1.2 and 1.5 for four
data centers, respectively. We took hourly locational marginal
prices and demands of the four locations on 4th March 2013 as

the base prices and background power load, according to [29],
[30]. The dynamic computing requests are simulated based on
the normalized workload trace of Google data centers on 20th
December 2013 [31], [32].

A. Performance of the proposed algorithms
We first evaluate the optimal solutions of the two-stage

problem and benchmark problems. The upper bound and lower
bound for ELI over 24 hours are shown in Fig. 5. The optimal
solution to the integrated problem provides a lower bound
for ELI, and the optimal solution to the restricted problem
provides an upper bound for ELI. Input the upper bound
and lower bound into the branch-and-bound algorithm, we
can solve the optimal solution to the two-stage problem. The
corresponding optimal ELI lies in between the upper bound
and lower bound, and is very close to the lower bound.
Specifically, the optimal ELI is on average 1.5% higher than
the lower bound across 24 hours.

In Fig. 6, the solid blue curve represents the optimal ELI
performance of the branch-and-bound algorithm. The dash red
curve represents the sub-optimal ELI performance obtained
by the heuristic algorithm, which is close to the solid blue
curve. This suggests that the heuristic algorithm achieves a
performance close to the optimal result.
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Fig. 5: Upper and lower bounds for ELI.
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Fig. 6: Optimal and suboptimal ELI.

B. Effectiveness of optimized dynamic pricing
We demonstrate the effectiveness of our proposed dynamic

pricing by comparing to the base pricing benchmark. Fig. 7
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Fig. 7: Base pricing and optimized dynamic pricing.

shows the base prices (dash red curves) and the optimized
dynamic prices (solid blue curves) for four data centers,
respectively. We can see that the optimized prices may signifi-
cantly deviate from the base prices. Take hour 10 for example,
the optimized prices in location 1 and 4 are higher than the
base prices, and in location 2 and 3 are lower than the base
prices. This implies that the loads in location 1 and 4 are
heavier than those in location 2 and 3. The utility company
optimizes the prices for the data centers to re-distribute their
energy consumption for load balancing.

In Fig. 8, the dash red curve represents the ELI of the base
price benchmark, where the data centers are charged based on
the fixed base prices. The solid blue curve represents the ELI
with dynamic pricing, which shows that our proposed dynamic
pricing scheme reduces ELI by an average of 4% across 24
hours comparing with the base pricing benchmark.

We also evaluate data centers’ total energy cost over 24
hours, shown in Fig. 9. The energy cost with dynamic pricing
is less than the base pricing benchmark. Specifically, the data
centers reduce the total energy cost by an average of 28%
across 24 hours, by taking advantage of dynamic prices and
reallocating the workload. Fig. 8 and Fig. 9 show that the
dynamic interactions between smart grid and data centers bring
benefits to both sides and achieve a win-win situation.

0 5 10 15 20 25
2

3

4

5

6

7

8

9
x 10

7

Time (hour)

E
le

ct
ric

 lo
ad

 in
de

x

 

 

Base pricing
Dynamic pricing

Fig. 8: Comparison of ELI.
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Fig. 9: Comparison of energy cost.

We examine the power load distribution within one par-
ticular hour (e.g., hour 24), and plot the background power
load, power load of data centers, and the total load across
four locations. Fig. 10 shows the load distribution with base
pricing. The data centers’ load (the white bar) is not balanced,
since data centers assign workload to the location with the
lowest base price as much as possible to minimize the energy
cost. The consequence is that the power load is extremely high
in the lowest-price location 2, bringing a risk of overloading.
Fig. 11 shows the load distribution in the two-stage model with
dynamic pricing. We can see the utility company tries to drive
the load more evenly across different locations. Therefore,
our proposed scheme can effectively improve the reliability of
smart grid through re-balancing power load across different
locations.
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Fig. 10: Power load (base pricing).
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C. Impact of prediction errors

We conduct a case study to show the impact of prediction
errors on the ELI performance. We set the bounds (∆t

i,min

and ∆t
i,max) of the prediction errors as ±10% of the predicted

values Bti in location i and time slot t. Solving problem WCP
in Section VI, we obtain the optimized worst-case ELI perfor-
mance as dash red curve in Fig. 12. We also randomly gen-
erate a realization of prediction errors, and compare the ELI
performance under the scenario with and without considering
the prediction errors. If prediction errors are considered when
optimizing the Stage-1 problem, the realized ELI performance
(solid blue curve) can be guaranteed to be better than the
worst-case ELI. However, if the prediction is assumed to be
accurate with zero error (while in reality it is not), then the ELI
performance (dash black curve) can be even worse than the
worst-case benchmark (e.g. in the 20th time slot). Therefore,
the results demonstrate the effectiveness of our proposed
worst-case performance optimization problem, which provides
a performance guarantee for ELI under prediction errors.
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Fig. 12: ELI performance with prediction error.

VIII. CONCLUSIONS

In this paper, we studied the dynamic interactions between
smart grid and data centers as a two-stage price optimization
problem. To solve the two-stage optimization problem, we
reformulated it as a mixed integer quadratic programming
problem, and proposed a branch-and-bound algorithm to attain
the globally optimal solution, and a low complexity heuristic
descent algorithm to yield a close-to-optimal solution. The
simulation results showed a win-win solution for both the
utility company and data centers.

For future work, we would like to study the interaction
between the utility company and data centers with high pene-
tration of renewable energy and under incomplete information.
Some cloud provides installed renewable energy facilities to
power data centers. How to manage the renewable-powered
data centers and what is the impact on the power system
are worth of study. The utility company may not able to
acquire private information of data-center operation, so how
to incentivize data centers with asymmetric information is an
interesting and practical problem for future study.
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