
1

Design of Scheduling Algorithms for End-to-End
Backlog Minimization in Wireless Multi-hop
Networks under K-hop Interference Models

Shizhen Zhao, Student Member, IEEE, and Xiaojun Lin, Senior Member, IEEE

Abstract—In this paper, we study the problem of link schedul-
ing for multi-hop wireless networks with per-flow delay con-
straints under the K-hop interference model. Specifically, we are
interested in algorithms that maximize the asymptotic decay-
rate of the probability with which the maximum end-to-end
backlog among all flows exceeds a threshold, as the threshold
becomes large. We provide both positive and negative results
in this direction. By minimizing the drift of the maximum
end-to-end backlog in the converge-cast on a tree, we design
an algorithm, Largest-Weight-First (LWF), that achieves the
optimal asymptotic decay-rate for the overflow probability of
the maximum end-to-end backlog as the threshold becomes large.
However, such a drift minimization algorithm may not exist for
general networks. We provide an example in which no algorithm
can minimize the drift of the maximum end-to-end backlog.
Finally, we simulate the LWF algorithm together with a well
known algorithm (the back-pressure algorithm) and a large-
deviations optimal algorithm in terms of the sum-queue (the
P-TREE algorithm) in converge-cast networks. Our simulation
shows that our algorithm performs significantly better not only
in terms of asymptotic decay-rate, but also in terms of the actual
overflow probability.

I. INTRODUCTION

In this paper, we study the link-scheduling problem for
multi-hop wireless networks to improve the end-to-end delay
performance. In such networks, each flow transmits packets
from source to destination in a multi-hop fashion. We assume
that each flow has a fixed route from the source to destination.
Due to the shared nature of the wireless medium, there are both
intra-flow interference (i.e., links at different hops of a flow
may interfere with each other) and inter-flow interference (i.e.,
links of different flows may interfere with each other) in the
system. Further, packets from multiple flows may compete for
the service at a common link. Hence, it becomes a challenging
problem to determine how link transmissions and packet
transmissions should be scheduled in order to minimize some
notion of end-to-end delay, subject to interference constraints.

When only the stability of a network is concerned, it is
well-known that the back-pressure algorithm [2] is throughput-
optimal, i.e., it can stabilize a multi-hop wireless system under

An earlier version of this paper [1] has appeared in the 31st IEEE
International Conference on Computer Communications (IEEE INFOCOM),
2012. This work was partially supported by NSF through grants CNS-
0643145, CNS-0721477 and CNS-0721484, by a grant from the Purdue
Research Foundation, and by the Bilsland Dissertation Fellowship at Purdue
University.

Shizhen Zhao and X. Lin are with the School of Electrical and Com-
puter Engineering, Purdue University, West Lafayette (email: {zhao147,
linx}@purdue.edu).

the largest set of offered-load vectors. However, stability only
means that the backlog in the system remains finite, and is
inadequate for many delay-sensitive applications that require
stringent end-to-end delay guarantees. In fact, it has been
observed that the back-pressure algorithm can have very poor
end-to-end delay performance [3]. On the other hand, It is
predicted that delay-sensitive traffic, e.g., video streaming, will
consume two-thirds of the overall mobile data traffic by 2016
[4]. Therefore, it is important to study finer performance met-
rics for the end-to-end delay and design scheduling algorithms
that are optimal for these metrics.

Characterizing the end-to-end delay in multi-hop wireless
networks is usually a very challenging problem. Although
there has been a considerable body of work on the delay
performance of single-hop wireless networks (e.g., [5][6]),
results on the end-to-end delay performance for multi-hop
wireless networks are more limited [7]. In multi-hop networks,
the packet arrivals at downstream links are the departures from
upstream links. Hence, the statistics of the arrival processes at
downstream links are often unknown beforehand. As a result,
the end-to-end delay performance in multi-hop systems is
much more difficult to characterize and optimize than single-
hop systems.

As is typical in the literature [5][8], we use the end-to-end
backlog of a flow, i.e., the total backlog of the flow over all
links along its path, as a measure for its end-to-end delay
performance. There are different approaches for analysing the
end-to-end backlog. For a tandem network, the work in [9]
provides a scheduling algorithm that is sample-path optimal
for minimizing the total end-to-end backlog. Such sample-
path optimality results attain the strongest sense of optimality.
However, they are also the most demanding, and hence their
applicability is the most restrictive. In fact, for more general
topologies, e.g., a tree topology with converge-cast, it can
be shown that there may not even exist sample-path optimal
algorithms [10]. Other approaches study weaker notions of
optimality. For example, [11][12] study the expected value of
the total end-to-end backlog among all flows. These studies
typically provide upper- and lower-bounds of the expected
total end-to-end backlog. However, it is usually difficult to
identify which algorithm attains the smallest expected end-
to-end backlog. Another approach is to use large-deviations
theory to characterize the probability that some function of
the end-to-end backlog exceeds a large threshold. Our prior
work [7] has applied such a large-deviations approach to
a tree-network with converge-cast for minimizing the large-

2

deviations decay rate of the probability that the sum of the
end-to-end backlog over all flows exceeds a large threshold.
However, similar to [9][11][12], [7] only considers the total
end-to-end backlog among all flows. Such a metric fails to
account for the fairness issue across different flows, which
may lead to network starvation when the channel condition of
one flow is significantly worse than that of other flows.

In this paper, we are interested in the maximum end-to-
end backlog among all flows. Note that in many scenarios
the maximum end-to-end backlog among all flows is more
useful than the total sum. For example, consider again a
converge-cast on a tree where all nodes send packets to
the root of the tree. This setting can model, e.g., a video
surveillance system where all cameras send captured video to
a central monitoring station, or a cellular uplink with multi-
hop relays where all mobiles send data to the base-station
in a multi-hop fashion. Suppose that we need to ensure that
the delay of every video frame or every packet is small. In
this case, it is more important to minimize the maximum end-
to-end backlog among all flows, rather than the sum of the
backlog of all flows1. Unfortunately, the maximum end-to-
end backlog turns out to be more challenging to minimize
than the sum of the end-to-end backlog among all flows.
As we observe in [9], in order to minimize the end-to-end
backlog for a single flow, one needs to give priority to links
closer to the destination. On the other hand, to minimize
the maximum end-to-end backlog among multiple flows, one
needs to give priority to flows with the largest end-to-end
backlog. The key difficulty is that these two priorities are not
always consistent with each other. In another prior work [8],
these two priorities are asymptotically attained by a family
of αβ-scheduling algorithms, which are then shown to be
optimal in the large-deviations sense as one asymptotically
takes the parameters α → 0 and β → ∞. However, in
practice the algorithms approaching the limit can have large
overflow probabilities when the overflow threshold of interest
is small. Hence, it remains a challenge to find algorithms for
minimizing the maximum end-to-end backlog among multiple
flows that are not only large-deviations optimal, but also have
good performance at small overflow thresholds of interest.

In this paper, we provide both positive and negative results
for this open problem. On the positive side, we first focus on a
converge-cast on a tree topology under the K-hop interference
model. We provide a new large-deviations optimal algorithm,
called Largest-Weight-First (LWF), for minimizing the max-
imum end-to-end backlog among all flows. Our proposed
algorithm intelligently combines together the two priorities
that we discussed above in a non-asymptotic manner. As a
result, the LWF algorithm is not only large-deviations optimal,
but also significantly reduces the overflow probability at small
thresholds of interest. To the best of our knowledge, this is the
first such optimal algorithm for minimizing the maximum end-
to-end backlog among all flows in a converge-cast scenario.

The optimality of LWF is shown based on one of our earlier
results in [14] that, under suitable conditions, an algorithm that

1For the same reason, our objective is also different from the studies that
minimize the draining time, e.g., [13], which consider all flows’ performance
as a whole.

minimizes the drift of a Lyapunov function at every time in
every fluid sample path (FSP) is also large-deviations optimal
for minimizing the probability that the Lyapunov function
value exceeds a large threshold. Taking the maximum end-
to-end backlog among all flows as the Lyapunov function, we
show that the LWF algorithm minimizes its drift for converge-
cast on a tree at every time in every FSP. Therefore, it must
be large-deviations optimal. Given that no sample-path optimal
algorithms exist for a general converge-cast setting, our result
illustrates the potential power and flexibility with the drift
minimizing criterion. (We caution, however, that it is not
straightforward at all to find such drift minimizing algorithms
and to verify the drift minimizing property, which we will
elaborate below and in Section III.)

Given the success of the LWF algorithm in converge-cast
scenarios, we are then interested in developing similar optimal
algorithms for more general network topology settings. In
particular, we would like to know whether we can find
algorithms (similar to LWF) that minimize the drift of the
maximum end-to-end backlog in more general settings. It is
along this direction that we report two negative, but important,
results. First, we show that the LWF algorithm is not drift-
minimizing for a tree topology that is not converge-cast. In
fact, we show that it is not even throughput optimal in such
a setting. Second (and perhaps more importantly), we find a
tree topology that is not a converge-cast, where we show that
there exists no algorithm that can possibly be drift-minimizing
at every time in every FSP. Hence, these results indicate
that, while the drift-minimizing criterion is more flexible and
powerful than the sample-path optimality criterion, it also has
its own limitations. For more general settings, we may have to
search for other criteria for designing large-deviations optimal
scheduling algorithms.

II. SYSTEM MODEL

A. Model

We model the topology of a wireless multi-hop network
by a graph G = G(V, E), where V is the set of nodes and
E is the set of directed edges that represent physical links.
There are F single-path flows in the network. Each flow f =
1, 2, ..., F corresponds to a fixed path, which consists of a
subset of the physical links that it traverses. However, for ease
of exposition, we will also view a path as a subgraph of G,
consisting of the nodes and the edges belonging to the path.
Let the subgraph be denoted by P f . Let the path collection
F = {P f |f = 1, 2, ..., F} be the collection of all P f . A
network (G,F) is defined as a network topology G equipped
with a path collection F .

The transmission on one link may interfere with other links.
We consider the following K-hop interference model: two
links interfere with each other if and only if it takes no greater
than K hops to jump from one link to another link [15]. In
other words, there exists a path between them such that the
number of intermediate links is no greater than K − 1. Let
Rl be the capacity of physical link l, i.e., Rl is the maximum
amount of data that can be transmitted over link l in a time
slot if l is active and no other interfering links are active.

3

Consider the network (G,F). For each flow f , we label
the link at the i-th hop from the destination node as lfi , i =
1, 2, ..., nf , where nf is the total number of links on its path
P f . Note that, with such a convention, lf1 is the link next to the
destination node, while lf

nf is the link next to the source node.
Packets of flow f arrive at link lf

nf , travel multiple hops to
lf1 , and then depart from the system. We use P f (lfi) to denote
the sub-path starting from link lfi and ending at its destination
node. Obviously, P f (lf

nf) = P f . Note that, it is possible to
assign multiple labels lfi to the same physical link if the link
is used by more than one flow. In the rest of the paper, it is
more convenient to view these multiple labels on the same
physical link as separate logical links, one for each flow. For
flow f , the logical link at the i-th hop from its destination
is lfi . The capacity of each logical link is the same as its
underlying physical link. Two logical links interfere with each
other if and only if they share the same physical link or their
corresponding physical links interfere. We denote by EL (the
superscript “L” stands for “logical links”) the set of logical
links in network (G,F). For each logical link lfi , we use I(lfi)
to denote the set of all logical links interfering with lfi . In the
rest of the paper, when we refer to links with labels, we will
mean logical links.

Let Af (t) be the amount of data offered to the source node
of flow f at time t. We assume that Af (t) ≤ M for any
t, f . Moreover, we assume that Af (t) is i.i.d.2 across time.
Let λf = E[Af (t)] denote the arrival rate, and ~λ = [λf , f =
1, 2, ..., F]. The capacity region of (G,F) is defined as the
largest set of offered load ~λ that the network can support.
We are interested in the case when the arrival rate vector ~λ is
strictly inside the capacity region. We use Xf

i (t) to denote the
queue length of flow f at link lfi . Let Efi (t) denote the actual
amount of data transmitted over link lfi at time t. Obviously,
Efi (t) ≤ min{Xf

i (t), Rlfi
}. The queue length at link lfi is then

updated in the following way.

Xf
i (t+1) =

{
Xf
i (t) + Efi+1(t)− Efi (t), if i = 1, 2, ..., nf − 1,

Xf
i (t) +Af (t)− Efi (t), if i = nf .

(1)
Then, the total end-to-end backlog of flow f , Xf (t) =

nf∑
i=1

Xf
i (t), is governed by

Xf (t+ 1) = Xf (t) +Af (t)− Ef1 (t). (2)

B. Design Objective

In this paper, we are interested in designing a scheduling al-
gorithm to minimize the maximum end-to-end backlog among
all flows. Specifically, given an algorithm that can stabilize
the system (and thus a steady-state distribution exists), we
consider the steady state probability that the maximum end-

2This assumption can be relaxed. The key requirement for the results in
this paper to hold is that the arrival processes satisfy a sample-path large-
deviations principle. As an example, finite-state irreducible Markov chains
satisfy the sample-path large deviations principle. See Section II-E in [14] for
related discussion.

to-end backlog3 over all flows exceeds a threshold B, i.e.,

P
[
max
f

{
Xf (+∞)

}
≥ B

]
. (3)

If the scheduling algorithm cannot stabilize the system (and
thus the queue length will grow unboundedly), we take

P
[
max
f

{
Xf (+∞)

}
≥ B

]
= 1.

We then want to minimize the quantity in (3). This objective
is extremely useful in practice. For example, for multiple
data flows driven by real-time applications, such as video
streaming, visual web conference, etc., it is very important
to keep the end-to-end backlog among all flows small to meet
the stringent delay constraints. Unfortunately, this quantity is
in general mathematically intractable. Instead, since the above
probability is small, we can focus on its asymptotic decay
rate when B becomes large. Specifically, we can define the
following two quantities:

−I , lim inf
B→∞

1

B
log

(
P
[
max
f

{
Xf (+∞)

}
≥ B

])
(4)

−J , lim sup
B→∞

1

B
log

(
P
[
max
f

{
Xf (+∞)

}
≥ B

])
(5)

Then, for large B, we have e−IB+o(B) ≤
P
[
max
f

{
Xf (+∞)

}
≥ B

]
≤ e−JB+o(B). Therefore,

we can instead focus on finding a scheduling algorithm that
maximizes I and J .

III. END-TO-END BACKLOG MINIMIZATION IN
CONVERGE-CAST NETWORKS

In this section, we are interested in a converge-cast scenario
on a tree topology. For a converge-cast, the root O of the
tree is the destination node of all flows in the network. In
order to emphasize that we are dealing with converge-cast in
a tree topology, we add subscript “T ” to the notations G,
F and EL. Specifically, we use GT (VT , ET) to denote the
graph, FT to denote the path collection, and ELT to denote the
set of all logical links, respectively, for the tree topology. We
will propose a large-deviations optimal algorithm for such a
converge-cast network (GT ,FT) to minimize the maximum
end-to-end backlog among all flows.

A. Largest-Weight-First Algorithm

We first propose the Largest-Weight-First (LWF) algorithm
for the converge-cast network (GT ,FT). For each logical

3The results of this work can also be generalized to study the case with the
maximum weighted end-to-end backlog, i.e., to minimize the overflow prob-
ability P[maxf

{
cfX

f (+∞)
}
≥ B], where cf is a positive weight chosen

for each flow f . Specifically, if we change the link weights (see Eqn. (6)) of
the LWF algorithm to qfi (t) = cfη

f
i (t)

∑nf

j=iX
f
j (t), the LWF algorithm

will be drift-minimizing for the maximum weighted end-to-end backlog. Note
that when cf = 1/λf , the overflow event maxf

{
cfX

f (+∞)
}
≥ B may

have a closer relationship to the delay performance of flow f [16].

4

link lfi ∈ ELT , we define the usage efficiency ηfi (t) ,

min

{
Xf

i (t)

R
l
f
i

, 1

}
. We assign a weight for link lfi as follows:

qfi (t) = ηfi (t)

nf∑
j=i

Xf
j (t). (6)

Note that by multiplying the usage efficiency, the above
definition reduces the weight for those links whose backlog
is less than their capacity. We then use a greedy algorithm
to compute a feasible schedule. Specifically, we first schedule
the link with the largest weight, and delete this link and all
the other links that interfere with this link. Then, we schedule
the link with the largest weight from the remaining links, and
again delete this link and all the other links that interfere with
this link. We repeat this process until there are no remaining
links.

We briefly describe the intuition behind this algorithm.
Recall that link lf1 is closest to the destination O, and lf

nf

is closest to the source of flow f . In Eqn. (6), a link closer
to the destination tends to have a larger weight than another
upstream link from the same flow. Further, links from flows
with larger end-to-end backlog will also tend to have larger
weights. Hence, the weight definition (especially the term
“
∑nf

j=iX
f
i (t)”) in the LWF algorithm can be viewed as a

way to combine two priorities, i.e., giving priority to those
flows with larger end-to-end backlog and to those links closer
to the destination. Note that giving priority to the flow with
the largest end-to-end backlog is natural since we want to
minimize the maximum end-to-end backlog among all flows.
Further, the idea that giving priority to links closer to destina-
tion can help to drain packets faster has been reported for a
simple linear topology with only one flow [9]. Our proposed
algorithm can be viewed as a generalization to the multi-flow
setting, which combines these two ideas together. However,
we note that when there are two different priorities, they may
not always be compatible with each other. Hence, it is not
at all clear why (6) is the right way to combine these two
priorities. The proof of optimality presented next also requires
new techniques and follows very different lines as that in the
prior work [7][9].

We note that the weight definition in (6) also contains
the usage efficiency “ηfi (t)”. This usage efficiency ηfi (t)
is essentially the fraction of capacity that can be utilized
whenever the link lfi is scheduled. ηfi (t) = 1 means that there
is no capacity wasted for the link lfi if this link is scheduled.
Intuitively, if a link has very low usage efficiency, we should
not give this link a high priority no matter how close this
link is to the destination. As readers will see in Lemma 6 and
Section III-C4, this usage efficiency is critical to ensure the
optimality of the LWF algorithm.

The LWF algorithm is formally described in Algorithm 1.
In this algorithm, we use ~γ(t) = [γl(t), l ∈ ELT] to denote the
scheduling decision at time t. γl(t) = 1 if the logical link l is
scheduled, and γl(t) = 0 otherwise.

To implement the LWF algorithm, we need the queue-length
information for all links. Hence, the LWF algorithm can best
be viewed as a centralized algorithm that uses a separate

1 At time slot t, calculate the weight for each logical link l.
2 Let Er = ELT , ~γ(t) = ~0.
3 while Er 6= ∅ do
4 Find a logical link l ∈ Er with the largest weight.
5 Set γl(t) = 1, Er = Er \ (I(l) ∪ {l}).
6 end
7 The scheduling decision is given by ~γ(t).

Algorithm 1: Largest-Weight-First(LWF) algorithm

control channel to gather queue-length information, compute
the schedule, and then distribute the decision back to each
link. This is a reasonable setting when such a central station
and control channel is available, e.g., in a cellular system
with multi-hop relays. In our analysis, we assume that the
LWF algorithm has the up-to-date queue-length information
for every link in every time slot. This assumption simplifies the
analysis, and the results can be viewed as an upper bound for
other more practical settings. Further, as readers will see in the
simulation section, even when such an assumption is relaxed,
the LWF algorithm still performs very well in practice.

B. Mathematical Preliminaries

In this section, we will be mainly interested in the tree
network (GT ,FT) and its subnetworks. Consider the fol-
lowing subnetwork of (GT ,FT) given by a subset of flows
A ⊆ {1, 2, ..., F} and a vector zA = [zf , f ∈ A], where
each zf is an integer between 1 and nf . We denote such a
subnetwork by N (A, zA). For each flow f ∈ A, the route
in the subnetwork is given by a subpath of P f starting from
the zf -th hop and ending at the root O, i.e., P f (lf

zf
). The

subnetwork path collection is then given by {P f (lf
zf

)|f ∈ A}.
The subnetwork topology is a graph consisting of all links
traversed by at least one path P f (lf

zf
), f ∈ A, and all

vertices adjacent to these links, which can be represented by
∪
f∈A

P f (lf
zf

). Further, we use ELT (A, zA) to denote the set of

all logical links of the subnetwork N (A, zA).
1) Fluid Sample Paths: Fix T . For any B and any real-

ization ω of the arrival process, define the following scaled
quantities in the time interval [0, T] as

af,B(ω, t) =
1

B

Bt−1∑
τ=0

Af (ω, τ),

xf,Bi (ω, t) =
1

B
Xf
i (ω,Bt), (7)

xf,B(ω, t) =
1

B
Xf (ω,Bt),

ef,Bi (ω, t) =
1

B

Bt−1∑
τ=0

Efi (ω, τ),

for t = m
B ,m = 0, 1, ..., BT , and by linear interpolation4,

otherwise. For ease of exposition, we denote ZB(ω, t) =

4Here, by linear interpolation, we mean that between t1 = m/B
and t2 = (m + 1)/B, we set af,B(ω, t) = af,B(ω, t1) +
af,B(ω,t2)−af,B(ω,t1)

t2−t1
(t− t1) for all t ∈ (t1, t2). The linear interpolation

for other quantities is defined analogously.

5

[af,B(ω, t), xf,Bi (ω, t), xf,B(ω, t), ef,Bi (ω, t), f = 1, 2, ..., F,
i = 1, 2, ..., nf].

Due to the assumption of bounded arrivals and departures,
ZB(ω, t) is Lipschitz continuous with respect to t ∈ [0, T]. For
the fixed T , we take any sequence [ZB1(ω1, t), Z

B2(ω2, t), ...]
of such scaled processes as Bi → ∞. There must exist
a subsequence [ZBk1 (ωk1 , t), Z

Bk2 (ωk2 , t), ...] that converges
uniformly to a limit Z(t) = [af (t), xfi (t), xf (t), efi (t)] over
the compact interval [0, T]. Any such limit Z(t) is called a
fluid sample path (FSP) [14][17]. Note that in general, there
may exist more than one FSPs out of the same (possibly non-
convergent) sequence of scaled processes ZBi(ωi, t).

Remark 1. We note that the notion of convergence in the
definition of FSP is not related to the probability measure,
and hence is different from other probabilistic notion of
convergence, e.g., fluid limit [18]. Specifically, the sequence
of realizations [ω1, ω2, ...] can be chosen arbitrarily, and they
may not correspond to those with high probability. In contrast,
fluid limits are limiting processes of almost-surely (i.e., with
probability 1) convergent sequences. Intuitively, the fluid limit
captures the mean behavior of the system, e.g., the fluid limit
of the arrival process af (t) will be λf t. In contrast, in an FSP,
the arrival process af (t) will typically deviate from the mean
arrival process λf t. Indeed, as is typical in large-deviations
theory, we are interested in “rare” events that are away from
the mean value [14]. The relationship between an FSP and
the original probability space is through the notion of large-
deviations rate-function discussed below.

In order to study the decay-rate of the steady-state prob-
ability (3), we can instead study the decay rate of the

probability P
[{
ω : max

f=1,...,F
{xf,B(ω, T)} ≥ 1

}]
as B →∞

[14]. Since the arrival process is i.i.d., the scaled arrival
process aB(ω, t) satisfies a large deviation principle with some
rate function ITa (·) (Chapter 1.2 in [19]). This means that,
for any set Γ of arrival sample paths, the probability that
aB(ω, t) = [af,B(ω, t), f = 1, ..., F] falls into Γ satisfies
lim
B→∞

1
BP(ω|aB(ω, t) ∈ Γ) = − inf

a′∈Γ
ITa (a′). In the typical

large-deviations literature, if we can additionally verify that
the mapping from aB(ω, t) to xf,B(ω, t) is continuous under a
given scheduling algorithm, we can then apply the contraction
principle [19] and obtain the exact decay-rate of the overflow
probability by finding the “most likely path to overflow”.
Note that when this approach works, one can potentially
characterize the decay-rate for arbitrary overflow events and
arbitrary scheduling algorithms. However, there are significant
difficulties in applying this approach in our work with multiple
multi-hop flows. First, it is usually a non-trivial task to verify
the continuity of the mapping from aB(ω, t) to xf,B(ω, t).
Second, finding such a “most likely path to overflow” in-
volves solving a high-complexity multi-dimensional calculus-
of-variations problem, which is also challenging. Further, note
that we are interested in the optimal algorithm with the
largest decay-rate. Even if we can find the decay-rate for
each scheduling algorithm, it is unclear how to search for
the algorithm with the largest decay-rate. In this paper, we
use a different approach, first proposed in [14], to circumvent

the above difficulties. The result of [14] proposes a drift
minimizing criterion, which can be used to directly find an
algorithm that can attain the largest possible decay-rate. We
will go into details in Section III-C.

Since the convergence to an FSP is uniform, the FSP Z(t)
is also Lipschitz-continuous, and therefore, its derivative exists
almost everywhere (a.e.) over [0, T]. Define the Lyapunov
function V (x(t)) , maxf x

f (t). It is easy to check that
V (x(t)) is also Lipschitz-continuous, and thus is differentiable
a.e. with respect to t. Denote by T the set of all time instances
where the FSP or the Lyapunov function V (x(t)) is not
differentiable with respect to t. Then T is of measure 0. In the
rest of this paper, we will restrict our analysis to those t /∈ T ,
and we call such a time instant a regular time.

At any regular time t, we define αf (t) = d
dta

f (t) and
µfi (t) = d

dte
f
i (t). (We note that αf (t) may not be equal to λf

because the arrival rate of an FSP may deviate from the mean
arrival rate λf .) Then, we can derive the following equations
for an FSP from equation (1) and (2) (refer to [7] for details):

d

dt
xfi (t) =

{
µfi+1(t)− µfi (t), if i = 1, 2, ..., nf − 1,

αf (t)− µfi (t), if i = nf .
(8)

d

dt
xf (t) = αf (t)− µf1 (t). (9)

Eqn. (8) and (9) can be interpreted as the limits of (1) and
(2) as B →∞.

As for V (x(t)), define M(t) = {f |xf (t) =
maxf ′{xf

′
(t)}} as the set of flows that have the largest end-

to-end backlog in the FSP at time t. Then,

d

dt
V (x(t)) = max

f∈M(t)
{αf (t)− µf1 (t)}. (10)

In addition, we have the following lemma that imposes
additional constraints for µfi (t).

Lemma 1. (Proposition 1 in [7]) Under any algorithm, any
FSP (af (t), xfi (t), xf (t), efi (t)) must satisfy the following flow
constraint for each flow f :

µfi (t) ≤
{
µfi+1(t), if i = 1, 2, ..., nf − 1 and xfi (t) = 0,

αf (t), if i = nf and xfi (t) = 0.
(11)

Further, suppose that lf1i1 , l
f2
i2
, ..., l

fy
iy

are links that interfere
with each other. Then, any FSP must also satisfy the following
link constraints:

y∑
k=1

µfkik (t)

R
l
fk
ik

≤ 1 (12)

µfi (t) ≥ 0, for all i, f. (13)

Lemma 1 states that regardless of the scheduling algorithm,
the service rates µfi (t) must satisfy the constraints (11)-
(13). Specifically, the first part of (11) states that, when the
backlog xfi (t) is 0, we need the upstream link lfi+1 to serve
at least as many packets as the downstream link lfi . A similar
interpretation holds for the second part of (11). In (12), µ

f
i (t)

R
l
f
i

can be viewed as the fraction of time that link lfi is activated.
The sum of the fraction of time must be no greater than 1 for

6

mutually interfering links.

C. Optimality of the LWF Algorithm
We will use the techniques of [14] to prove that the LWF

algorithm achieves the largest asymptotic decay-rate of the
maximum end-to-end backlog overflow probability. We would
like to prove the following result.

Theorem 2. The LWF algorithm achieves the optimal decay-
rate for the maximum end-to-end backlog overflow probability,
i.e., for any scheduling algorithm π, we have

lim sup
B→∞

1

B
log

(
PLWF

[
max

f=1,2,...,F

{
Xf (+∞)

}
≥ B

])
≤ lim inf

B→∞

1

B
log

(
Pπ
[

max
f=1,2,...,F

{
Xf (+∞)

}
≥ B

])
,(14)

where PLWF and Pπ denote the stationary distributions under
algorithms LWF and π, respectively.

To prove Theorem 2, we use the result of Theorem 8
from [14]. Consider a scheduling algorithm π0. Suppose that
the Lyapunov function V (x(t)) = maxf{xf (t)} satisfies
Assumptions 1-6 of [14] under π0. In the rest of this paper,
we will simply say that such an algorithm π0 satisfies As-
sumptions 1-6. Below, we restate Theorem 8 from [14] for
reference.

Theorem 3. Suppose that an algorithm π0 satisfies Assump-
tions 1,2,3,4,5 and 6. Then, the algorithm π0 attains the
optimal decay-rate in the sense of (14).

Thus, to prove Theorem 2, we only need to justify Assump-
tions 1-6 of [14] for the LWF algorithm. In our technical report
[20], we list Assumptions 1-3, 5 and 6 (except Assumption 4),
and verify that these assumptions hold for the LWF algorithm.
Hence, here we only focus on Assumption 4.

Before stating Assumption 4, we first introduce the concept
of the “possible drift” of the Lyapunov function V (x(t)) =
maxf x

f (t) under a given scheduling vector µ̂. Note that given
an FSP Z(t) = (af (t), xfi (t), xf (t), efi (t)) and a specific
regular time t, the drift of V (x(t)) at time t following the FSP
is simply given by d

dtV (x(t)) in (10), where the corresponding
decision of the scheduling algorithm produces µ(t) = d

dte(t).
However, if we were to choose another scheduling decision
vector µ̂ 6= d

dte(t), the possible drift of V (x(t)) would
be different. Specifically, starting from x(t), consider what
happens when a feasible scheduling decision vector5 µ̂ = [µ̂fi]
is applied over the time-interval [t, t + δ], assuming that the
same scaling as in (7) is taken. Note that whenever xfi (t) = 0,
the number of packets served by a downstream link lfi cannot
exceed the number of packets served by its upstream link lfi+1.
Thus, let µ̃ = [µ̃fi] be determined from both x(t) and µ̂ as
follows

µ̃fi =

min{µ̂fi , µ̃

f
i+1}, if i < nf and xfi (t) = 0,

min{µ̂fi , αf (t)}, if i = nf and xfi (t) = 0,

µ̂fi , otherwise.
(15)

5A scheduling decision vector µ̂ = [µ̂fi] is said to be feasible if there
exists a sequence of schedules such that, when the scaling in (7) is taken, the
limiting service rate of link lfi at time t is equal to µ̂fi .

Then, it is easy to check that the trajectory of xfi (t) would
follow xfi (t + δ; µ̂) = xfi (t) + (µ̃fi+1 − µ̃

f
i)δ for sufficiently

small δ, where we have used xfi (t+ δ; µ̂) to denote the queue
evolution in the immediate future of t under the scheduling
decision vector µ̂. Then, the possible drift at time-slot t under
the scheduling decision vector µ̂ would be given by

lim
δ→0+

V (x(t+ δ; µ̂))− V (x(t))

δ
= max
f∈M(t)

{αf (t)− µ̃f1}.
(16)

Thus, we refer to the right hand side of (16) as the possible
drift under the scheduling vector µ̂. Note that, if the scheduling
decision vector µ̂fi is chosen to be exactly d

dte
f
i (t) = µfi (t),

then the possible drift would be identical to the real drift (see
(10)) along the original FSP. Now, we are ready to present
Assumption 4.

Assumption 4. (Drift Minimization Assumption) For any FSP
Z(t) = (af (t), xfi (t), xf (t), efi (t)) under the algorithm π0,
the following holds for all regular times t.

d

dt
V (x(t)) = min

µ̂
max
f∈M(t)

{αf (t)− µ̃f1} (17)

subject to µ̂ is a feasible scheduling decision vector,

µ̂ and µ̃ satisfy (15).

Note that the right hand side of (17) can be viewed as the
minimum possible drift over all feasible µ̂. Thus, Assumption
4 states that the decisions under the algorithm π0 minimize
the drift of the Lyapunov function V (x(t)) at every time t for
every FSP.

Theorem 4. The LWF algorithm satisfies the drift minimiza-
tion assumption.

Since we have verified that the LWF algorithm satisfies
Assumptions 1,2,3,5 and 6 (see our technical report [20]),
Theorem 2 follows directly from Theorem 3 and Theorem
4. We next focus on proving Theorem 4. Our strategy is as
follows. We first derive a lower bound to the optimization
problem on the right-hand-side of (17). We then show that the
drift of the LWF algorithm achieves this lower bound.

1) Lower Bound: We now derive an lower bound for the
optimal value of the optimization problem in (17). First, from
our construction (15), it is easy to verify that any µ̃ that
satisfies the constraints in (17) must also satisfy the following
properties (see details in [20]):

y∑
k=1

µ̃fkik
R
l
fk
ik

≤ 1, (18)

for all lf1i1 , ..., l
fy
iy

that interfere with each other; and

µ̃fi ≥ 0, for all i, f ; (19)

µ̃fi ≤
{

µ̃fi+1, if i < nf and xfi (t) = d
dtx

f
i (t) = 0,

αf (t), if i = nf and xfi (t) = d
dtx

f
i (t) = 0,

(20)
where d

dtx
f
i (t) is computed based on (8) using the scheduling

vector µ(t) (rather than µ̃).
For the given FSP Z(t) = (af (t), xfi (t), xf (t), efi (t)) in

7

Assumption 4, we define another set M0(t) ⊆ M(t) as
follows. Recall that µfi (t) = d

dte
f
i (t) is the service rate of the

LWF algorithm given the system input af (t) and the system
state xfi (t) and xf (t). Denote by M0(t) the set of flows in
M(t) that have the maximum growth rate, i.e.,

M0(t) =

{
f ∈M(t) :

d

dt
xf (t) = max

f ′∈M(t)

{
d

dt
xf
′
(t)

}}
,

where d
dtx

f (t) = αf (t)− µf1 (t). Now, define

D∗(t) = min
µ̃

max
f∈M0(t)

{αf (t)− µ̃f1} (21)

subject to µ̃fi satisfies (18)(19) and (20).

Clearly, D∗(t) is a lower bound to the minimum drift on the
right-hand-side of (17) since in D∗(t) we take the maximum
over a smaller set of f ’s and the constraints for µ̃ in (21) is
a necessary condition for the constraints in (17). (See details
in our technical report [20].)

2) Achievable Drift of the LWF Algorithm: Based on the
definition ofM0(t), we can easily compute the drift DLWF(t)
under the LWF algorithm as follows:

DLWF(t) =
d

dt
V (x(t)) = αf (t)− µf1 (t), for any f ∈M0(t).

In order to show Theorem 4, it suffices to show that

DLWF(t) ≤ D∗(t). (22)

The inequality holds trivially when xf (t) = d
dtx

f (t) = 0
for all f ∈M0(t), in which case all queues are close to empty
at time t and in the immediate future of time t. It is then easy
to verify that DLWF(t) = 0 and D∗(t) ≥ 0 (see details in
[20]). Thus, we next focus on the case where xf (t) > 0 or
d
dtx

f (t) = αf (t)−µf1 (t) > 0 for all f ∈M0(t) (recall that all
flows f ∈M0(t) have the same values of xf (t) and d

dtx
f (t)).

We need to introduce additional concepts and lemmas.
3) Mathematical Preliminaries for Theorem 4: Given an

FSP Z(t) = (af (t), xfi (t), xf (t), efi (t)) under the LWF algo-
rithm, where xf (t) > 0 or d

dtx
f (t) = αf (t) − µf1 (t) > 0 for

all f ∈ M0(t), we first introduce the concept of a barrier
bf (t) for f ∈M0(t), which is defined as follows:

bf (t) = argmin
i
{i|xfi (t) > 0 or

d

dt
xfi (t) > 0}. (23)

Since we already assume that either xf (t) > 0 or d
dtx

f (t) >
0 holds for each flow f ∈ M0(t), it is easy to check that
the set {i|xfi (t) > 0 or d

dtx
f
i (t) > 0} is always non-empty,

and thus the barrier bf (t) is always well defined. Intuitively,
the “barrier” of a flow f is the closest logical link to the
destination that has very large queue length in the immediate
future (recall from (7) that the queue length is approximately
B
(
xf
bf

(t) + δ ddtx
f
bf

(t)
)

at time B(t+ δ), and B is large). For
the barrier links, we have the following lemma.

Lemma 5. Given an FSP Z(t) = (af (t), xfi (t), xf (t), efi (t))
under the LWF algorithm, where xf (t) > 0 or d

dtx
f (t) =

αf (t) − µf1 (t) > 0 for all f ∈ M0(t), let the set of barriers
be bf (t), f ∈M0(t). For any ε > 0, there exist δ̃(ε) > 0 and
J > 0, such that, for all 0 < δ < δ̃(ε), the following holds

1) xf (t + δ) > xf̃ (t + δ) + Jδ for any f ∈ M0(t), f̃ /∈
M0(t);

2) for any f ∈M0(t), we have

xfi (t+ δ) > Jδ, if i = bf (t),

xfi (t+ δ) <
εJ

4L
δ, if i = 1, 2, ..., bf (t)− 1,

where L is the total number of physical links.

Proof: Please refer to our technical report [20].
Lemma 5 reveals the trend of the queue evolution in the

immediate future after time t along the FSP. The first part of
Lemma 5 states that all the flows in M0(t) will have larger
end-to-end backlog than that of the flows not in M0(t), and
the second part states that the total backlog between the barrier
link and the destination is negligibly small compared to the
backlog of the barrier link.

Based on Lemma 5, we can then study the
scheduling decisions of the LWF algorithm.
Specifically, we consider the FSP together with
the original discrete-time system. Let ZB(ωB , t) =
(af,B(ωB , t), x

f,B
i (ωB , t), x

f,B(ωB , t), e
f,B
i (ωB , t)) be

the sequence of scaled processes that converge uniformly to
Z(t) = (af (t), xfi (t), xf (t), efi (t)). Using Lemma 5, we then
have the following lemma.

Lemma 6. Consider the FSP Z(t) in Lemma 5. Given any
ε ∈ (0, 1) and the corresponding δ̃(ε) (given by Lemma 5),
for any fixed δ ∈ (0, δ̃(ε)2), there exist B̃(δ) > 0, such that for
all B > B̃(δ) and all time slots t0 ∈ (B(t + δ), B(t + 2δ)),
the following holds

1) The weight of any logical link lf̃
ĩ
/∈ ELT (M0(t), bM0(t))

is strictly smaller than the weight of any logical link
lf
bf
, f ∈M0(t), i.e.,

qf̃
ĩ
(ωB , t0) < qf

bf
(ωB , t0).

2) Consider one specific link lf
bf
, f ∈M0(t). Let I ′(lf

bf
) be

the set of all logical links in ELT (M0, bM0
) that interfere

with link lf
bf

. Then, at least one link in I ′(lf
bf

)
⋃
{lf
bf
}

should be scheduled at time instance t0.
Moreover, suppose that any two links in I ′(lf

bf
) interfere

with each other. Then, if any link lf̂
î
∈ I ′(lf

bf
)
⋃
{lf
bf
} is

scheduled, the usage efficient of link lf̂
î

must satisfy

ηf̂
î
(ωB , t0) > 1− ε.

Proof: Please refer to our technical report [20].
The rigorous proof of Lemma 6 has to deal with the original

discrete-time system. However, it is easier to explain the
intuition in the sense of FSP. In the immediate future of time t,
those barrier links always have none zero backlog. Therefore,
in the original discrete-time system, their backlog must be
larger than their capacity, and thus their usage efficiency must
be 1. Hence, the weight of each barrier link is approximately
equal to the maximum end-to-end backlog. For those logical
links not in ELT (M0, bM0

), it is easy to check that their
weights are strictly smaller than the maximum end-to-end

8

backlog. To see this, note that either the corresponding flow
is not in M0; or if it is in M0, at least the backlog of the
barrier link must be subtracted from the weight of the link.
Therefore, they must have smaller weights than those barrier
links, as is stated in part (1). The results in part (2) are direct
corollaries of part (1). For the first part of (2), if none of the
links in I ′(lf

bf
) is scheduled, link lf

bf
will have larger weight

than the rest of its interfering links not in ELT (M0, bM0
).

Then link lf
bf

should be scheduled. As for the second part
of (2), applying the same argument, we know that for link
lf̂
î
∈ I ′(lf

bf
) to be activated, it must have weight larger than

that of lf
bf

. Note that if we ignore the usage efficiency term,

the weights of link lf̂
î

and link lf
bf

are comparable because
they are both approximately equal to the maximum end-to-
end backlog in FSP, and further, link lf

bf
has usage efficiency

equal to 1. Hence, lf̂
î

must also have usage efficiency close to
1, otherwise it cannot be scheduled.

Remark 2. We note that the condition that “any two links in
I ′(lf

bf
) interfere with each other” in part (2) is critical. If this

condition does not hold, then it is possible to schedule two
links lf̂

î
and lf̂2

î2
in I ′(lf

bf
). According to the LWF algorithm,

the first link lf̂
î

needs to have a weight larger than that of

lf
bf

in order to be scheduled. After the link lf̂
î

is scheduled,
The LWF algorithm removes all logical link interfering with
lf̂
î

(including lf
bf

). As a result, the second link lf̂2
î2

does not

need to have a weight larger than that of lf
bf

, and thus its usage
efficiency could be smaller than 1−ε. In the following lemma,
we show that for a special barrier link, the above condition
always holds.

Lemma 7. Let lf
∗

i∗ be the farthest logical link from the
destination in the subnetwork N (M0(t), bM0

(t)) (note that
this definition implies that i∗ = bf

∗
(t)). Then, under the K-

hop interference model, any two links in I ′(lf
∗

i∗) interfere with
each other.

The detailed proof can be found in Appendix A. We use
Fig. 1 to illustrate Lemma 7. Both Fig. 1(a) and Fig. 1(b)
show the same subnetwork N (M0(t), bM0

(t)). In Fig. 1(a),
lf
∗

i∗ is the furthest link away from the destination. Assuming a
2-hop interference model, we mark by solid lines all links that
interfere with link lf

∗

i∗ in Fig. 1(a). We can easily check that
all (solid) links interfering with lf

∗

i∗ also interfere with each
other. We emphasize the importance of the condition that lf

∗

i∗

is the furthest link from the destination. For example, in Fig.
1(b) we pick another link lfi that is not furthest away from the
destination and also mark all of its interfering links by solid
lines. Even though links lf

∗

i∗ and lf1 both interfere with lfi , they
do not interfere with each other.

4) Proof of Theorem 4: We are now ready to prove
Theorem 4. Recall the earlier discussion that we only need
to show (22) for the non-trivial case where xf (t) > 0 or
d
dtx

f (t) = αf (t) − µf1 (t) > 0 for all f ∈ M0(t). Suppose
that (22) does not hold. Then, there must exist µ̃fi satisfying

*

*

f

i
l

(a) All links in I′(lf
∗

i∗) inter-
fere with each other.

*

l
f

il

fl
1

*

*

f

i
l

(b) Both lf
∗

i∗ and lf1 are in
I′(lfi), but they do not inter-
fere with each other.

Fig. 1. Two examples for Lemma 7 under 2-hop interference model.

(18)(19) and (20), such that

αf (t)− µ̃f1 < DLWF(t) = αf (t)− µf1 (t), for all f ∈M0(t).

Therefore, µf1 (t) < µ̃f1 for all f ∈ M0(t). Thus, we can find
ε > 0 such that

(1− ε)−1µf1 (t) < µ̃f1 , for all f ∈M0(t). (24)

Let lf
∗

i∗ be the farthest logical link from the destination in
the subnetwork N (M0(t), bM0

(t)), and let all of its inter-
fering links in ELT (M0, bM0

(t)) be lf1i1 , l
f2
i2
, ..., l

fy
iy

. According
to Lemma 7, we know that all the links lf

∗

i∗ , l
f1
i1
, lf2i2 , ..., l

fy
iy

interfere with each other. We also note that µ̃fi satisfies the
constraint (18). Thus, we must have

µ̃f
∗

i∗

R
lf
∗

i∗

+

y∑
k=1

µ̃fkik
R
l
fk
ik

≤ 1.

Further, µ̃fi satisfies both (20) and (24). Thus, we have

µ̃fi ≥ µ̃
f
i−1 ≥ ... ≥ µ̃

f
1 > (1− ε)−1µf1 (t),

and

1 ≥ µ̃f
∗

i∗

R
lf
∗

i∗

+

y∑
k=1

µ̃fkik
R
l
fk
ik

>
1

1− ε

µf∗1 (t)

R
lf
∗

i∗

+

y∑
k=1

µfk1 (t)

R
l
fk
ik

 ,

and
µf
∗

1 (t)

R
lf
∗

i∗

+

y∑
k=1

µfk1 (t)

R
l
fk
ik

< 1− ε. (25)

On the other hand, for the above ε, according to Lemma 6
part (2), there exist δ̃(ε) and B̃(δ) such that, for 0 < δ < δ̃(ε)

2

and B > B̃(δ) > 0, in the time period (B(t + δ), B(t +

2δ)), at least one of the links lf
∗

i∗ , l
f1
i1
, lf2i2 , ..., l

fy
iy

should be
scheduled. Further, according to Lemma 7, these links interfere
with each other. Then, exactly one of these links must be
scheduled by the LWF algorithm at each time instant. We use
γlfi

(τ) to represent the scheduling decision of the logical link

lfi at time-slot τ . Specifically, γlfi (τ) = 1 if the logical link lfi
is scheduled at time τ , and γlfi

(τ) = 0 otherwise. Then, we
must have

bB(t+2δ)c∑
τ=dB(t+δ)e

γ
lf
∗

i∗
(τ) +

y∑
k=1

bB(t+2δ)c∑
τ=dB(t+δ)e

γ
l
fk
ik

(τ) = g(B, δ),

9

where dwe is the smallest integer that is no smaller than
w, bwc is the largest integer that is no larger than w, and
g(B, δ) = bB(t+2δ)c−dB(t+δ)e+1. Further, according to
Lemma 6, whenever one of these links is scheduled, its usage
efficiency must be larger than 1− ε. We then have,

g(B, δ) ≥
B(t+2δ)∑
τ=B(t+δ)

Ef
∗

i∗ (τ)

R
lf
∗

i∗

+

y∑
k=1

B(t+2δ)∑
τ=B(t+δ)

Efkik (τ)

R
l
fk
ik

> (1− ε)g(B, δ).

Dividing both sides by Bδ and using the scaling in (7), we
obtain,

g(B, δ)

Bδ
≥ 1

δ

(
o(B)

B
+
ef
∗,B
i∗ (t+ 2δ)− ef

∗,B
i∗ (t+ δ)

R
lf
∗

i∗

+

y∑
k=1

efk,Bik
(t+ 2δ)− efk,Bik

(t+ δ)

R
l
fk
ik

)
> (1− ε)g(B, δ)

Bδ
.

We first fix δ, and let B →∞. We obtain

1 ≥ 1

δ

(
ef
∗

i∗ (t+ 2δ)− ef
∗

i∗ (t+ δ)

R
lf
∗

i∗

+

y∑
k=1

efkik (t+ 2δ)− efkik (t+ δ)

R
l
fk
ik

)
> 1− ε.

Since this is true for all δ, we then let δ → 0, and obtain

µf
∗

i∗ (t)

R
lf
∗

i∗

+

y∑
k=1

µfkik (t)

R
l
fk
ik

≥ 1− ε. (26)

Finally, recall from the definition (23) of bf (t) that,
d
dtx

f
i (t) = µfi+1(t) − µfi (t) = 0 for all f ∈ M0(t) and

i = 1, ..., bf (t)− 1. We then have µf
∗

1 (t) = µf
∗

i∗ (t), µfk1 (t) =

µfkik (t), k = 1, 2, ..., y. Then, Eqn. (26) becomes

µf
∗

1 (t)

R
lf
∗

i∗

+

y∑
k=1

µfk1 (t)

R
l
fk
ik

≥ 1− ε,

which contradicts Eqn. (25). Therefore, the inequality (22) and
the result of Theorem 4 must hold.

Remark 3. From the above proof, one may get the impression
that as long as an algorithm made the “right” decisions in
the neighborhood of the link lf

∗

i∗ , it would have achieved the
same performance guarantee as the LWF algorithm. However,
the challenge is to make the “right” decisions even before
the algorithm knows which flow-link pair (f∗, i∗) is the most
critical. Thus, it is non-trivial to find the LWF algorithm and
to show that it satisfies the desired properties summarized in
Lemmas 5-7.

IV. MAXIMUM END-TO-END BACKLOG MINIMIZATION IN
GENERAL NETWORKS

Given the success of the LWF algorithm and the drift-
minimizing criterion in converge-case networks, we next seek
to find such an optimal algorithm under more general network
topology settings. Unfortunately, the LWF algorithm is not

large-deviations optimal for a tree topology that is not a
converge-cast. In fact, it is not even throughput optimal (see
Section IV-A). We then study all other possible algorithms in
Section IV-B. We prove an even stronger result that given the
Lyapunov function V (x(t)) = maxf{xf (t)}, there exists no
drift-minimizing algorithm for the simple linear network in
Fig. 2(a).

A. Throughput Sub-Optimality of the LWF Algorithm

We consider the network in Fig. 2(a). We have a linear
network with four nodes and three links. Two flows are active
in this network. The routes of the two flows are (1, 0) and
(1, 2), respectively. Assume that the capacity of each link is 1,
i.e., at each time slot, one link can transmit at most one packet.
As for the interference model, we use the 1-hop interference
model (i.e., K = 1) here.

(a) Network topology.

0 200 400 600 800 1000
0

100

200

300

400

Time slot

M
ax

im
um

 E
nd

−
to

−
E

nd
 B

ac
kl

og

(b) Max end-to-end backlog.

Fig. 2. A 2-flow example. Flow 1 traverses link 1 and link 0; Flow 2 traverses
link 1 and link 2.

We simulate the LWF algorithm when both flows have i.i.d.
arrivals. For each flow, there is a newly-arrival packet with
probability 0.6 at each time slot. Hence, the arrival rates are
0.6 for both flows. Note that this system is stabilizable (i.e.,
the queues do not increase unboundedly) if we schedule link 1
twice every 3 time slots and schedule link 0 and link 2 together
once every 3 time slots. However, the system is unstable under
the LWF algorithm. In Fig. 2(b), we simulate the system for
1000 time slots based on the LWF algorithm. We can see that
the maximum end-to-end backlog increases unboundedly.

This example thus indicates that the LWF algorithm is
not even throughput-optimal for a tree network that is not
a converge-cast. As a result, it cannot be large-deviations
optimal in this setting either.

B. Drift Minimization in General Networks

Given that the LWF algorithm is not optimal for a tree
topology that is not converge-cast, our next hope is that there
may still be other algorithms that are optimal for these more
general settings. Recall that we establish the optimality of
LWF by showing that LWF satisfies the drift minimization
property. Clearly, LWF cannot minimize the drift for the
network setting in Fig. 2(a) (otherwise it would have been
throughput optimal). Then, a natural question is whether there
exist other algorithms that can minimize the drift for the
network in Fig. 2(a). Unfortunately, we will prove next that
no algorithm can minimize the drift in that network for the
Lyapunov function V (x(t)) = maxf{xf (t)}. Hence, in order
to design optimal scheduling algorithms, we must find new
criteria (other than drift minimizing).

10

Theorem 8. For the network in Fig. 2(a), no algorithm can
minimize the drift at every regular time for every FSP.

In order to prove Theorem 8, we need the following lemma.

Lemma 9. Given any FSP Z(t) = (af (t), xfi (t), xf (t), efi (t))
for the network shown in Fig. 2(a), let (a1(t), a2(t)) denote
the arrival process in FSP and let αf (t) = d

dta
f (t), f = 1, 2.

Assume that xfi (0) = 0, for all f = 1, 2, i = 1, 2 and that the
algorithm π can minimize the drift at every regular time of
the FSP. Then, if |α1(t)−α2(t)| ≤ 1

2 almost everywhere(a.e.)
in [0, T], we must have x1

2(t) = x2
2(t) and x1

1(t) = x2
1(t) = 0

in [0, T]6.

Proof: Please refer to our technical report [20].
The condition |α1(t) − α2(t)| ≤ 1

2 states that the rates of
the two flows do not differ too much. If such an assumption
is satisfied for an FSP, then there exists a feasible scheduling
decision vector µ, such that α1(t) − µ1

1(t) = α2(t) − µ2
1(t).

Under this assumption, a drift-minimizing algorithm will be
able to balance the end-to-end backlog for the two flows.

Now we are ready to prove theorem 8. The high-
level idea of our proof is as follows. Recall that,
given a sequence of scaled process ZB(ωB , t) =
(af,B(ωB , t), x

f,B
i (ωB , t), x

f,B(ωB , t), e
f,B
i (ωB , t)), there

may be multiple subsequences that converge to different
FSPs. Note that once an algorithm is given, for each B the
corresponding scaled process will be completely determined,
independent of which subsequence is taken to yield the FSP.
Thus, for the algorithm to be drift-minimizing, its decision
in each scaled process ZB(ωB , t) must be simultaneously
drift-minimizing in the limit for all FSPs, regardless of
which subsequence is taken. Thus, our strategy is to create
a scenario such that, if the algorithm is drift-minimizing for
one set of subsequences and the associated FSPs, then it
cannot be drift-minimizing for another FSP taking along a
further subsequence. Specifically, our steps to construct this
contradictory scenario are as follows:

Step 1: We construct a sequence of FSPs indexed by j, each
of which has a certain property on the arrival process (we will
refer to these FSPs as Type-1 FSPs later on). For the j-th
FSP, we construct a sequence of processes ωjk, k = 1, 2, ...
that converges to it with the scaling parameter Bj,k = jk.

Step 2: Then, assuming that an algorithm π is drift-
minimizing for all the Type-1 FSPs, we show that the resulting
queue length must be increasing in time. Thus, for the j-th
FSP, we will be able to pick a process ωj,kj such that the
unscaled queue length at time Bj,kjT = jkjT is larger than
1
25Bj,kjT .

Step 3: Next, we take a subsequence of the chosen processes
ωj,kj in Step 2 and form a new FSP using the scaling
Bj = Bj,kj = jkj (which we will refer to as a Type-
2 FSP). Again, once an algorithm π is given, for each ω,
the corresponding process will be completely determined,
independently of which subsequence is taken to produce the
various FSPs. Thus, from the construction above, the queue-

6Note that throughout the paper we have used the superscript to denote the
index of the flow. For example, the superscripts in x11(t), x

2
1(t), a

1(t), a2(t)
denote flow 1 and flow 2, respectively.

length in the new Type-2 FSP should also be large than 1
25T

at time T .
Step 4: However, we will show that, in order for the

algorithm π to be drift-minimizing for the new Type-2 FSP,
its queue-length should diminish to zero. This results into a
contradiction. We will therefore conclude that no algorithm
can be drift-minimizing for all FSPs.

1

2

1
O

1
O

O

2
O

2
O

Fig. 3. The capacity region of the network in Fig. 2(a). O1, O2 are outside
the capacity region; O′1, O

′
2 are at the boundary of the capacity region; O =

O1+O2
2

is inside the capacity region.

We next explain the desired high-level properties of the two
types of FSPs. Consider the capacity region of the network in
Fig. 2(a). Let the arrival rate of flow i (i = 1, 2) be λi. Under
the one-hop interference model, the capacity region can be
characterized by (see Fig. 3)

2λ1 + λ2 ≤ 1, λ1 + 2λ2 ≤ 1.

For a Type-1 FSP, the instantaneous arrival rate (α1(t), α2(t))
is either at point O1 = (1

2 ,
1
8) or at point O2 = (1

8 ,
1
2). Then,

we show that in order for the algorithm π to minimize the
drift at every regular time, its service rate vector must be
either at point O′1 = (11

24 ,
1
12) or at point O′2 = (1

12 ,
11
24).

Thus, the queues for both flows will increase in time. On the
other hand, for the Type-2 FSP, the instantaneous arrival rate
(α1(t), α2(t)) is at the mid-point O = O1+O2

2 = (5
16 ,

5
16).

Since O is inside the capacity region, we will show that, in
order for the algorithm π to minimize the drift, the queue
length of both flows should decrease to zero. Thus, we will
obtain the afore-mentioned contradiction.

Proof of Theorem 8: We now present the full proof. Before
we follow the Steps 1-4 outlined earlier, we describe the set
of realizations of the arrival process that we will use in our
construction. Like in Section IV-A, we assume that a new
packet arrives to a flow with a given probability p, i.i.d. across
time and flows.

We define two matrices M1 and M2.

M1 =

[
1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0

]
,

M2 =

[
1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0

]
.

We construct a sequence of realizations ωj,k, indexed by j =
1, 2, ... and k = 1, 2, ... Specifically, for the realization ωj,k,

11

its discrete-time arrival sequence is given by

A(ωj,k) = [

1st group︷ ︸︸ ︷
M1M1 · · ·M1︸ ︷︷ ︸

k-repetition

M2M2 · · ·M2︸ ︷︷ ︸
k-repetition

M1M1 · · ·M1︸ ︷︷ ︸
k-repetition

M2M2 · · ·M2︸ ︷︷ ︸
k-repetition

· · ·
j-th group︷ ︸︸ ︷

M1M1 · · ·M1︸ ︷︷ ︸
k-repetition

M2M2 · · ·M2︸ ︷︷ ︸
k-repetition

].

We can see that A(ωj,k) has two rows and jkT (here T = 16)
columns. The two rows of A(ωj,k) correspond to the two flows
in Fig. 2(a), and each column corresponds to one time slot.
Readers can easily see that the average arrival rates in each k-
repetition interval are either at O1 = (1

2 ,
1
8) or O2 = (1

8 ,
1
2) in

Fig. 3, but the long-term average rate is at O = (5
16 ,

5
16). We

note that, although the arrival sequence seems to exhibit high
correlation over time, such a choice is still consistent with our
original assumption that the arrival process A(t) is i.i.d. in
time. This is because for FSP we are interested in rare events.
Thus, it is legitimate to consider samples ωj,k that are “rare”
when we are constructing an FSP (see also the definition of
FSP in Section III-B1).

Step 1: Fix T = 16, we first construct a sequence of Type-
1 FSPs over [0, T] indexed by j. For each j, we choose the
sequence of arrival processes A(ωj,1), A(ωj,2), ... We scale the
arrival process A(ωj,k) by Bj,k = jk using Eqn. (7), i.e.,

aBj,k(ωj,k, t) =
1

Bj,k

Bj,kt−1∑
τ=0

A(ωj,k, τ), t ∈ [0, T].

Note that in each ωj,k, each k-repetition of matrix M1 (or
M2) takes 8k time-slots. Thus, for a fixed j, as k increases,
each 8k-slot interval in ωj,k is scaled back by the scaling factor
Bj,k = jk. As a result, the limiting FSP will be a piece-wise
linear function of time, where each piece is of the length T

2j =
8
j . More precisely, the arrival process (a1,(j)(t), a2,(j)(t)), t ∈
[0, T] of the j-th limiting FSP is given by:

a1,(j)(t) =

{
1
2 t−

3
16
Ti
j , if Ti

j ≤ t <
T (2i+1)

2j ,
1
8 t+ 3

16
Ti
j + 3

16
T
j , if T (2i+1)

2j ≤ t < T (i+1)
j ,
(27)

a2,(j)(t) =

{
1
8 t+ 3

16
Ti
j , if Ti

j ≤ t <
T (2i+1)

2j ,
1
2 t−

3
16
Ti
j −

3
16
T
j , if T (2i+1)

2j ≤ t < T (i+1)
j ,

where i = 0, 1, ..., j − 1. Note that the arrival rates in each
interval of length 8

j are given by:

α1,(j)(t) =
d

dt
a1,(j)(t) =

{
1
2 , if Ti

j ≤ t <
T (2i+1)

2j ,
1
8 , if T (2i+1)

2j ≤ t < T (i+1)
j ,

α2,(j)(t) =
d

dt
a2,(j)(t) =

{
1
8 , if Ti

j ≤ t <
T (2i+1)

2j ,
1
2 , if T (2i+1)

2j ≤ t < T (i+1)
j ,

where i = 0, 1, ..., j − 1, which correspond to either O1 =
(1

2 ,
1
8) or O2 = (1

8 ,
1
2) in Fig. 3.

Step 2: We assume that an algorithm π is drift-minimizing
for all the Type-1 FSPs. We now compute the queue evolution
x
f,(j)
i (t) and xf,(j)(t) under the arrival process a(j)(t) and the

algorithm π. Note that (α1,(j)(t), α2,(j)(t)) always satisfies

the conditions in Lemma 9. Therefore, x1
2(t) = x2

2(t) and
x1

1(t) = x2
1(t) = 0 in [0, T] under the algorithm π. In this

case, the optimization problem in (17) for the minimum drift
becomes

min
µ̂≥0

max{α(j)
1 (t)− µ̃1

1, α
(j)
2 (t)− µ̃2

1} (28)

sub to µ̂2
1 + µ̂2

2 + µ̂1
2 ≤ 1,

µ̂1
1 + µ̂2

1 + µ̂2
2 ≤ 1,

µ̃1
1 = min{µ̂1

1, µ̃
1
2}, µ̃1

2 = µ̂1
2,

µ̃2
1 = min{µ̂2

1, µ̃
2
2}, µ̃2

2 = µ̂2
2.

If the algorithm π minimizes the drift for the j-th Type-1
FSP, we must have that (µ

1,(j)
1 (t), µ

2,(j)
1 (t)) equals the optimal

solution of (µ̃1
1, µ̃

2
1) in (28). Therefore, by solving (28) we

obtain

µ
1,(j)
1 (t) =

{
11
24 , if Ti

j ≤ t <
T (2i+1)

2j ,
1
12 , if T (2i+1)

2j ≤ t < T (i+1)
j ,

i = 0, ..., j−1,

µ
2,(j)
1 (t) =

{
1
12 , if Ti

j ≤ t <
T (2i+1)

2j ,
11
24 , if T (2i+1)

2j ≤ t < T (i+1)
j ,

i = 0, ..., j−1.

We note that (µ
1,(j)
1 (t), µ

2,(j)
1 (t)) corresponds to either O′1 or

O′2 in Fig. 3.
Based on the values of αf,(j)(t) and µ

f,(j)
1 (t), it is easy

to check that xf,(j)(T) = 1
24T, f = 1, 2. Note that for any

fixed j, the sequence of scaled quantities ZBj,k(ωj,k, t) has
a subsequence that converges uniformly to the above FSP on
[0, T]. Hence, there must exist kj > j, such that

xf,Bj,kj (ωj,kj , T) >
1

25
T, f = 1, 2. (29)

Thus, before the scaling, the queue length at time Bj,kjT will
be greater than 1

25Bj,kjT , i.e., Xf (ωkj , Bj,kjT) > 1
25Bj,kjT .

Step 3: Next, we take the realizations ωj,kj obtained
above, and use the scaling Bj = Bj,kj = jkj . There will
be a subsequence that converges uniformly to another FSP
Z(∗)(t) = [af,(∗)(t), x

f,(∗)
i (t), xf,(∗)(t), e

f,(∗)
i (t)]. Recall that,

once the algorithm π is given, for each ω, the corresponding
process will be completely determined. Hence, using (29), we
can conclude that, in this new FSP, we must also have

xf,(∗)(T) = lim
j→∞

xf,Bj,kj (ωj,kj , T) ≥ 1

25
T . (30)

The arrival process af,(∗)(t) of this new FSP, however, has
a different form. Specifically, as j increases, the length of each
kj-repetition of M1 (or M2) increases as 8kj , but the scaling
factor Bj = jkj increases even faster (due to the additional
factor of j). Intuitively, each linear piece in (27) now becomes
shorter and shorter. Therefore, the limiting arrival process will
become a line given by the following

af,(∗)(t) =
5

16
t, f = 1, 2.

The corresponding arrival rate vector is precisely O = (5
16 ,

5
16)

in Fig. 3, which is inside the capacity region. We use the above
new FSP as the Type-2 FSP outlined earlier.

Step 4: However, we will show that, in order for the

12

algorithm π to be drift-minimizing for the above Type-2 FSP,
its queue-length should diminish to zero. Assume that the
algorithm π also minimizes the drift for this Type-2 FSP.
According to Lemma 9, in order to compute the scheduling
decision vector in this case, we need to solve the following
optimization problem:

min
µ̂≥0

max{α1,(∗)(t)− µ̃1
1, α

2,(∗)(t)− µ̃2
1} (31)

sub to µ̂2
1 + µ̂2

2 + µ̂1
2 ≤ 1,

µ̂1
1 + µ̂2

1 + µ̂2
2 ≤ 1,

µ̃1
1 = min{µ̂1

1, µ̃
1
2}, µ̃1

2 = min{α1,(∗)(t), µ̂1
2},

µ̃2
1 = min{µ̂2

1, µ̃
2
2}, µ̃2

2 = min{α2,(∗)(t), µ̂2
2}.

Solving (31) gives µ̃f1 = 5
16 , f = 1, 2. Since the algorithm π

is drift-minimizing, its decision must also be

µ
f,(∗)
1 (t) = αf,(∗)(t) =

5

16
.

As a result, xf,(∗)(T) = 0 for f = 1, 2, which contradicts
(30). The result of Theorem 8 then follows.

V. SIMULATION

In this section, we present our simulation results for the
topology shown in Fig. 4(a) under the 2-hop interference
model. This topology contains 12 nodes. The number near
each link represents its capacity. There are 7 flows in the
network. The number of packets arriving at each flow per time
slot is chosen to be Poisson distributed. The number near each
flow indicates the arrival rate. We can verify that the offered-
load vector has already exceeded 0.9 of the capacity region.

(a) Network topology.

0 10 20 30 40 50 60 70
10

−4

10
−3

10
−2

10
−1

10
0

Threshold B

O
ve

rf
lo

w
 p

ro
ba

bi
lit

y

Back−pressure
P−TREE
LWF (perfect queue)
LWF (imperfect queue)
LWF−improved

(b) Queue overflow probability.

Fig. 4. Comparison between LWF, back-pressure, and P-TREE algorithms.

We are interested in the overflow probability of the max-

imum end-to-end backlog, i.e., P
[

max
f=1,2,...,7

{
Xf (t)

}
≥ B

]
.

We simulate the system under different scheduling algorithms:
LWF, back-pressure [2], and P-TREE [7].

We give a brief overview about these algorithms. In the
back-pressure algorithm [2], the weight of each logical link
is given by the difference between the backlog at this link
and its subsequent link. For example, the weight of link lfi
at time instance t is Xf

i (t) − Xf
i−1(t). (Here, we use the

convention that Xf
0 (t) = 0). Then, we schedule the set of non-

interfering logical links that maximizes the total weight. As
for the P-TREE algorithm [7], it is a large-deviations optimal
algorithm for minimizing the total backlog of all flows, which
gives priority to those links nearer to the destination and links
that have larger capacity.

We will compute the above algorithms with the proposed
LWF algorithm, along with the following two modified ver-
sions. First, note that in our analysis of the LWF algorithm,
we have assumed perfect queue-length information in every
time slot. However, in practice, the delivery of queue-length
information may suffer from delay and loss. Therefore, we
simulate the performance of the LWF algorithm both with
and without perfect queue-length information. In the latter
case, the weight of each logical link l at time t is based on
the queue-length information rl(t) slots ahead, where [rl(t)]
is a set of i.i.d. random variables uniformly distributed in
[0,20]. Second, we note that the proposed LWF algorithm may
waste some capacity. Specifically, if a logical link with usage
efficiency smaller than 1 is scheduled, then some capacity of
the corresponding physical link is wasted. We could have made
use of this part of capacity to serve other logical links (from
different flows) to further improve the performance. Thus,
we also simulate an improved version of the LWF algorithm
(with perfect queue-length) as follows. In the improved LWF
algorithm, for each physical link that is scheduled to serve
a logical link with usage efficiency less than 1, we use
the remaining capacity to serve additional logical links that
correspond to the same physical link, according to the weight
of each link (logical links with larger weights are served first).

In Fig. 4(b), we compare the above algorithms, and plot

the overflow probability P

[
max

f=1,2,...,7

{
Xf (t)

}
≥ B

]
versus

the threshold B with the y-axis in the log scale. We observe
that our LWF algorithm performs best not only in terms of
decay rate, but also in terms of actual overflow probability. The
performances of the P-TREE algorithm7 and the back-pressure
algorithm are both significantly worse. This is because, in our
network setting, while flow 1 and flow 2 have similar rates,
they are at different depth: flow 1 is at depth 1, and flow 2 is at
depth 4. In the P-TREE algorithm, priority is given to flow 1
as it is closer to the destination. Similarly, in the back-pressure
algorithm, the link l11 is more likely to have larger weight, since
flow 1 only has one hop. Hence, flow 1 again has a higher

7Although in Fig. 4(b), the tail decay rates of LWF and other algorithms do
not differ greatly, it is not difficult to construct examples where their difference
is larger. The simplest example would be a system with a single link and two
flows. In that case, the P-TREE algorithm reduces to first-come-first-serve,
which can perform poorly for minimizing the larger backlog among the two
flows. For details, please refer to our technical report [20].

13

priority. For both P-TREE and back-pressure, giving priority to
flow 1 takes away the packet transmission opportunity of flow
2. Therefore, their performances are poor in terms of the maxi-
mum end-to-end backlog. An interesting observation is that the
LWF algorithm with imperfect queue-length information has
similar performance as the LWF algorithm with perfect queue-
length information. We conjecture that the underlying reason
for this insensitivity is that, since both the departure rate and
the arrival rate are bounded, the weight of each link at some
time t will not differ too much from its weight at time t−rl(t).
Thus, whenever the weights are large, Lemma 5 and Lemma
6 would still approximately hold for the LWF algorithm with
imperfect queue-length information. This suggest that the tail
overflow probability will not differ much, especially when the
backlog threshold B is large. The numerical results in Fig. 4
(b) suggest that even for medium values of backlog thresholds,
the overflow probability will also be quite similar. Finally, we
note that the improved LWF algorithm indeed achieves better
performance, although its asymptotic decay-rate remains the
same.

VI. CONCLUSION

We study the scheduling problem for multi-hop wireless
network under the K-hop interference model. We first focus
on the case of converge-cast on a tree topology. Using a
large-deviation framework, we design a new LWF algorithm
and show that it is large-deviations optimal for minimizing
the maximum end-to-end backlog across flows. We prove the
large-deviation optimality of the LWF algorithm by showing
that it minimizes the drift at every time in every FSP. Then, we
study large-deviations optimal algorithms in a more general
setting. We provide a negative result that drift minimizing
algorithms do not exist for some topologies. Finally, the
simulation results indicate that the proposed LWF algorithm
significantly outperforms other algorithms in the literature not
only in terms of the asymptotic decay rate, but also in terms
of the actual overflow probability.

The negative result in Section IV-B reveals the limitation of
the “drift-minimizing” criterion in [14]. There are a number
of interesting questions for future work. First, given that drift-
minimizing algorithms do not exist for some topologies, can
we still find the algorithm(s) with the optimal decay-rate? Can
we develop new criteria that are more general than the drift-
minimizing criterion? Second, perhaps achieving the optimal
decay rate is too difficult, and we may be content with finding
algorithms with good decay-rates. Then, what will be a useful
structure for such algorithms? In particular, even though drift-
minimizing algorithms are not possible, can we find those with
“good” drifts so that they can still lead to good decay-rate? A
deeper understanding to these questions will help us develop
low-delay algorithms for more general settings.

We note an interesting connection between the results pre-
sented in this paper and the local-pooling condition reported
in the literature [21]. Indeed, our proposed LWF algorith-
m shares some similarity to the GMS (Greedy Maximal
Scheduling) algorithm [22] and the LQF (Longest Queue First)
algorithm [21] in the literatures. The latter has been shown

to be throughput-optimal for single-hop networks satisfying
the local-pooling condition. Further, our construction of the
counter example also seems to suggest a connection to a
local-pooling condition as well. Thus, it would be highly
appealing if these results can be generalized from tree net-
works to any network that satisfies a local-pooling type of
condition. However, we caution that existing results on the
local pooling condition mainly focus on single-hop networks.
In the literature, there has been limited success in extending the
local polling condition to multi-hop networks. For example,
[23] only studies a linear network with a single destination.
In another work [24], while the authors present a definition
of “multi-hop local pooling condition,” only a very limited
set of topologies can be verified to satisfy the condition.
Further, these results only account for throughput optimality,
not queueing performance. In contrast, our optimality result
for the LWF algorithm holds for the overflow probability
under a more general multi-hop setting (i.e., tree networks
with converge-cast). In our future work, we will carefully
study whether we can define a suitable notion of multi-hop
local pooling that can be easily verified for network topologies
beyond trees, and show that the LWF type of algorithms can
also be large-deviations optimal.

REFERENCES

[1] S. Zhao and X. Lin, “On the design of scheduling algorithms for end-
to-end backlog minimization in multi-hop wireless networks,” in IEEE
INFOCOM, Orlando, FL, March 2012.

[2] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximum Throughput in
Multi-hop Radio Networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[3] L. Bui, R. Srikant, and A. L. Stolyar, “Novel Architectures and Algo-
rithms for Delay Reduction in Back-Pressure Scheduling and Routing,”
in Infocom Mini-Conference, April 2009.

[4] “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2011-2016,” Cisco, Feb. 2012. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns7
05/ns827/white_paper_c11-520862.html.

[5] L. Ying, R. Srikant, A. Eryilmaz, and G. E. Dullerud, “A Large Devia-
tions Analysis of Scheduling in Wireless Networks,” IEEE Transactions
on Information Theory, vol. 52, no. 11, pp. 5088–5098, Nov. 2006.

[6] V. J. Venkataramanan and X. Lin, “On Wireless Scheduling Algorithms
for Minimizing the Queue-Overflow Probability,” IEEE/ACM Trans. on
Networking, vol. 18, no. 3, June 2010.

[7] ——, “Low-Complexity Scheduling Algorithm for Sum-Queue Min-
imization in Wireless Convergecast,” in IEEE INFOCOM, Shanghai,
China, April 2011.

[8] V. J. Venkataramanan, X. Lin, L. Ying, and S. Shakkottai, “On Schedul-
ing for Minimizing End-to-end Buffer Usage Over Multihop Wireless
Networks,” in IEEE INFOCOM, San Diego, CA, March 2010.

[9] L. Tassiulas and A. Ephremides, “Dynamic Scheduling for Minimum
Delay in Tandem and Parallel Constrained Queueing Models,” Annals
of Operation Research, vol. 48, pp. 333–355, December 1994.

[10] S. Hariharan and N. B. Shroff, “On Optimal Dynamic Scheduling for
Sum-Queue Minimization in Trees,” in WIOPT, Princeton, NJ, May
2011.

[11] M. J. Neely, “Delay Analysis for Max Weight Opportunistic Scheduling
in Wireless Systems,” IEEE Transactions on Automatic Control, vol. 54,
no. 9, pp. 2137–2150, September 2009.

[12] ——, “Delay Analysis for Maximal Scheduling with Flow Control in
Wireless Networks with Bursty Traffic,” IEEE/ACM Transactions on
Networking, vol. 17, no. 4, pp. 1146–1159, August 2009.

[13] B. Hajek and R. G. Ogier, “Optimal dynamic routing in communication
networks with continuous traffic,” Networks, vol. 14, no. 3, pp. 457–487,
1984.

14

[14] V. J. Venkataramanan and X. Lin, “On the Queue-Overflow Probability
of Wireless Systems: A New Approach Combining Large Deviation with
Lyapnov Functions,” IEEE Transactions on Information Theory, vol. 59,
no. 10, pp. 6367–6392, 2013.

[15] G. Sharma, N. B. Shroff, and R. R. Mazumdar, “On the Complexity of
Scheduling in Wireless Networks,” in ACM MOBICOM, New York, NY,
September 2006.

[16] C. Zhao and X. Lin, “On the overflow probability of distributed
scheduling algorithms,” Computer Networks, vol. 55, no. 1, January
2011.

[17] A. L. Stolyar, “Control of end-to-end delay tails in a multiclass network:
Lwdf discipline optimality,” Annals of Applied Probability, pp. 1151–
1206, 2003.

[18] J. G. Dai, “On positive harris recurrence of multiclass queueing net-
works: a unified approach via fluid limit models,” The Annals of Applied
Probability, pp. 49–77, 1995.

[19] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions, 2nd ed. New York: Springer-Verlag, 1998.

[20] S. Zhao and X. Lin, “Design of Scheduling Algorithms for
End-to-End Backlog Minimization in Wireless Multi-hop Net-
works under K-hop Interference Models,” Technical Report, http-
s://engineering.purdue.edu/%7elinx/papers.html, 2013.

[21] A. Dimakis and J. Walrand, “Sufficient conditions for stability of
longest-queue-first scheduling: Second-order properties using fluid lim-
its,” Advances in Applied probability, pp. 505–521, 2006.

[22] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multihop wireless
networks,” IEEE/ACM Transactions on Networking, vol. 17, no. 4, pp.
1132–1145, 2009.

[23] X. Kang, J. J. Jaramillo, and L. Ying, “Stability of longest-queue-first
scheduling in linear wireless networks with multihop traffic and one-hop
interference,” in IEEE CDC, Florence, Italy, December 2013.

[24] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop local pooling
for distributed throughput maximization in wireless networks,” in IEEE
INFOCOM, Phoenix, AZ, April 2008.

APPENDIX

A. Proof of Lemma 7

Proof: Given the logical link lf
∗

i∗ , let all of its interfering
links in ELT (M0, bM0(t)) be lf1i1 , l

f2
i2
, ..., l

fy
iy

. In order to prove
Lemma 7, we consider any two links lfmim and lfnin , where m,n
are two distinct indices ranging from 1 to y. Consider the
two paths from lf

∗

i∗ to lfmim and lfnin , respectively. Let V be the
farthest node from link lf

∗

i∗ that appears in both paths (see Fig.
5). Let a be the number of links between link lf

∗

i∗ and node
V ; let b be the number of links between node V and link lfmim ;
and let c be the number of links between node V and link lfnin .
Since lfmim and lfnin interfere with lf

∗

i∗ under K-hop interference
model, the number of links (which is one less than the number
of hops) between lfmim (or lfnin) and lf

∗

i∗ must be smaller than
K, i.e.,

a+ b < K, a+ c < K.

Then, we consider the two paths from the root to lfmim and
lfnin . It is easy to check that at least one path traverses node
V . Without loss of generality, we assume that the path from
the root to link lfmim traverses node V . Then, we must have
b ≤ a. Otherwise, lfmim is farther from the root than lf

∗

i∗ , which
contradicts the assumption that lf

∗

i∗ is the farthest link from
the root. Then, the total number of hops between lfmim and lfnin
is b + c ≤ a + c < K. Therefore, lfmim and lfnin interfere with
each other.

Repeating the argument for each pair of links in lf1i1 , l
f2
i2
,

..., l
fy
iy

, we know that all these links interfere with each other.

*

*

f

i
l

m

m

f

il

n

n

f

il

Fig. 5. An example showing that links lfmim and lfnin also interfere with each

other. Here, K = 5. Both lfmim and lfnin interfere with lf
∗

i∗ since a + b < 5

and a+ c < 5, and lfmim interferes with lfnin since b+ c < 5.

Shizhen Zhao received his B.S. from Shanghai Jiao
Tong University, China in 2010, and is pursuing
a Ph.D. degree at the School of ECE, Purdue U-
niversity, West Lafayette, IN, USA. His research
interests are in the analysis, control and optimization
in wireless networks and smart grid.

Xiaojun Lin received his B.S. from Zhongshan
University, Guangzhou, China, in 1994, and his M.S.
and Ph.D. degrees from Purdue University, West
Lafayette, IN, in 2000 and 2005, respectively. He
is currently an Associate Professor of Electrical and
Computer Engineering at Purdue University.

Dr. Lin’s research interests are in the analysis,
control and optimization of wireless and wireline
communication networks. He received the IEEE
INFOCOM 2008 best paper and 2005 best paper of
the year award from Journal of Communications and

Networks. His paper was also one of two runner-up papers for the best-paper
award at IEEE INFOCOM 2005. He received the NSF CAREER award in
2007. He was the Workshop co-chair for IEEE GLOBECOM 2007, the Panel
co-chair for WICON 2008, the TPC co-chair for ACM MobiHoc 2009, and the
Mini-Conference co-chair for IEEE INFOCOM 2012. He is currently serving
as an Area Editor for (Elsevier) Computer Networks Journal, and has served
as a Guest Editor for (Elsevier) Ad Hoc Networks journal.

