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Abstract—The performance of large-scaled peer-to-peer (P2P)
video-on-demand (VoD) streaming systems can be very challeng-
ing to analyze. In practical P2P VoD systems, each peer only
interacts with a small number of other peers/neighbors. Further,
its upload capacity may vary randomly, and both its downloading
position and content availability change dynamically. In this
paper, we rigorously study the achievable streaming capacity
of large-scale P2P VoD systems with sparse connectivity among
peers, and investigate simple and decentralized P2P control
strategies that can provably achieve close-to-optimal streaming
capacity. We first focus on a single streaming channel. We show
that a close-to-optimal streaming rate can be asymptotically
achieved for all peers with high probability as the number
of peers N increases, by assigning each peer a random set
of Θ(logN) neighbors and using a uniform rate-allocation
algorithm. Further, the tracker does not need to obtain detailed
knowledge of which chunks each peer caches, and hence incurs
low overhead. We then study multiple streaming channels where
peers watching one channel may help in another channel with in-
sufficient upload bandwidth. We propose a simple random cache-
placement strategy, and show that a close-to-optimal streaming
capacity region for all channels can be attained with high
probability, again with only Θ(logN) per-peer neighbors. These
results provide important insights into the dynamics of large-scale
P2P VoD systems, which will be useful for guiding the design of
improved P2P control protocols.

I. INTRODUCTION

Peer-to-Peer (P2P) Video-On-Demand (VoD) streaming sys-
tems have already become a major player on today’s Internet.
Their success (e.g., PPLive, TVAnts, UUSee, and Zattoo)
has made high-quality on-demand streaming of rich contents
available to millions of users at low server costs [2]. In contrast
to their commercial success, however, in-depth theoretical
understanding of these systems appears to be lacking. The
performance of large-scale P2P VoD systems can be extremely
complex to study. As time progresses, the part of the video
that a peer is interested in viewing, the cached content that it
can use to serve others, and its upload capacity can all change
substantially. Further, these systems are highly decentralized
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in nature, and each peer often only has a very limited view
of the overall system through its sparsely-connected neigh-
bors. Due to these reasons, it remains a challenging problem
to understand the fundamental performance limits of highly
dynamic and decentralized P2P VoD systems.

In this paper, we study a problem of fundamental interest
to P2P VoD systems, i.e., what is the optimal streaming rate
that all peers can reliably receive, and how to achieve this
optimal rate with simple, robust and decentralized control.
Note that a trivial upper-bound on the streaming rate can be
obtained by dividing the total upload capacity of all peers by
the total number of peers. In P2P live-streaming systems, it
has been shown in our prior work that streaming rates close
to this optimal value can be achieved through simple and
decentralized control [3]. However, in P2P VoD systems, it is
unclear whether such an optimal rate can still be attained. In
contrast to live-streaming [3]–[11], each peer in a VoD system
is interested in playing a different portion of the video. Further,
its viewing position may jump back and forth [12], [13]. As
a result, the content availability at each peer can be highly
discontinuous and dynamic. One way to alleviate this difficulty
is to assume that some peers (referred to as “caches”) have
cached the entire video beforehand, and other downloading
peers request the content only from the caches. In [14]–[16],
the authors have studied the optimal cache-placement problem
based on this assumption. An implicit assumption along this
line of work is that there exists a central entity that can
perfectly balance the downloading requests among caches.
Otherwise, such a global balancing problem by itself can be
very challenging in a decentralized setting when the upload
capacity of the peers varies.

An alternate (and perhaps practically more relevant) ap-
proach is to directly model how peers downloading the same
video can use their upload capacity to help each other, which
is unfortunately more difficult. Such models were proposed in,
e.g., [13], [17], [18]. However, it appears difficult to establish
whether they can achieve close-to-optimal streaming rates.
More recently, [19]–[22] proposes an algorithm that allocates
the overall upload capacity in the system sequentially from
the “oldest” peer to the “youngest” peer. For each peer, its
requested capacity is first allocated from older peers. If there
is no sufficient upload capacity, capacity is then requested
from the server. Similarly, [23] proposes a global optimization
problem for rate-allocation given the age of the peers. While
these algorithms have been found to exhibit good performance,
the resulting rate-allocation may need to be completely re-
calculated when the peers’ upload capacity changes. Further,
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these analyses have not accounted for the possibility that the
peers’ playback positions may jump back and forth, in which
case even an older peer may not have the content to serve
younger peers.

In summary, existing analytical studies of the streaming
capacity of P2P VoD systems either require extensive cen-
tralized control, are sensitive to upload-capacity variations or
do not account for the random-seek behavior of the peers.
In contrast, in this paper we provide the first rigorous study
of the streaming capacity of large-scale P2P VoD systems
with simple decentralized control that are robust to upload-
capacity variations, and random-seek behaviors. We focus on
the setting of “hot” videos, i.e., there are a large number of
peers interested in viewing each video. We first study a single-
channel system, i.e., all users are interested in viewing the
same video. Assuming that the contribution of bandwidth and
cache capacities from the dedicated server(s) is minimal, we
show that by using a (properly-designed) random neighbor-
selection algorithm and a uniform rate-allocation algorithm,
with probability approaching 1 as the total number of peers
N increases, all peers can achieve a close-to-optimal streaming
rate of (1 − ε)µ, where µ is the average upload capacity
per peer and ε is a small positive constant. In our algorithm,
each peer is only assigned Θ(logN) upstream neighbors, with
which they exchange content-availability information. These
neighbors are chosen uniformly randomly from a suitable
choice set determined at the tracker (note that this is the only
part of the algorithm that requires centralized knowledge). To
determine the choice set, the tracker only needs to know the
current downloading position of each peer, but does not need
to know the detailed content/chunk availability at each peer.
Further, regardless of the variation of its upload-capacity, each
peer evenly distributes its upload capacity among downstream
neighbors for whom it has the available chunk(s). As readers
will see in Section II, our analytical studies provide key
insights as to why these simple design principles can result
in near-optimal performance, which was conjectured in some
prior simulation-based studies [24]. Further, these insights
reveal the critical and non-trivial roles that different design
choices, e.g., the size of the choice set and the extent of content
availability, play in the overall system.

We then turn to a multi-channel P2P VoD system where
different groups of peers are interested in viewing differ-
ent videos. Based on the single-channel control algorithm
discussed earlier, we propose a cache-placement algorithm
that can achieve (with high probability) a close-to-optimal
streaming rate region for all channels (see Section III for the
precise definition). Our cache placement policy shares some
similarity to the “proportional-to-deficit-bandwidth” strategy
in [19], which was conjectured to be close-to-optimal. How-
ever, our policy does not require a sequential rate-allocation
algorithm as in [19].

Our results have a similar flavor to the results in our earlier
work [3] for P2P live-streaming systems. However, as we
discussed earlier and will elaborate further in Section II, P2P
VoD systems are significantly different from live-streaming
systems. Thus, new control algorithms and analytic techniques
are required. To the best of our knowledge, this work provides

the first analytic result that demonstrates how to achieve close-
to-optimal streaming capacity in large-scale P2P VoD systems
using simple, robust, and decentralized control.

II. A SINGLE-CHANNEL P2P VOD SYSTEM

In this section, we focus on a system with a single channel,
i.e., all users are interested in viewing the same video. We
first describe the system model. We will then propose simple,
robust and decentralized peer selection and rate allocation
algorithms that result in at most Θ(logN) upstream neighbors
per peer. We then prove that all peers can achieve the close-
to-optimal streaming rate with high probability, when N is
large.

A. System Model

We consider a P2P VoD system where users/peers1 would
like to watch a common video. Let T (0) denote the length of
the video. There is a server S and totally N peers. Let N
denote the set of all peers in the system, i.e., |N | = N . We
assume that the number of peers N is fixed. In other words, if
a peer leaves the system, a new peer is assumed to immediately
join the system at a possibly random initial position. This
assumption simplifies the analysis, while we believe that the
insights under this assumption will also hold for a more
dynamic model where peers randomly join and leave the
system. In a VoD system, the viewing/downloading progress
of different peers in the same channel is typically different.
Peers who have already downloaded certain parts of the video
can then serve the cached content to later peers. We define
the downloading position of a peer as the immediately next
position in the video that the peer will download. We assume
that, the downloading position of each peer is i.i.d. according
to a distribution with density function γ(t). In other words,
for a small δt, γ(t)δt is the probability that the downloading
position of a peer is between t and t + δt. Clearly, the exact
form of the distribution γ(t) will depend on many factors,
such as a new peer’s initial viewing position, the length of time
before it leaves the channel, and how often and in what manner
it fast-forwards/backwards. However, the exact dependency
on these factors will likely be quite complicated. Instead, in
this paper we do not assume a probabilistic model for these
factors. Rather, we only assume that, given these random
factors, the overall system is stationary and ergodic, and thus
the distribution γ(t) exists. In practice, this distribution can
often be estimated by the tracker in each channel [12]. Further,
we do not assume a particular form of γ(t) in this paper.
As readers will see, our results will only depend on a small
number of parameters of the distribution γ(t). Some of these
parameters are defined below.

Note that the downloading position of a peer is typically
larger than its viewing position, with some buffering in be-
tween to absorb any fluctuations in the downloading speed.
Some peers who have finished watching a channel may stay
for some period of time and serve other peers in the channel.

1We use the terms “user” and “peer” interchangeably throughout the rest
of the paper.
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Fig. 1. Neighboring sets of peer t in channel j

We thus allow γ(t) to have a Dirac delta function at point
T (0). Equivalently, let Q̄ denote the probability that a peer’s
downloading position is T (0). For ease of exposition, we
assume that, with probability 1, the downloading position of
each peer before T (0) is different from that of other peers.
From now on, we will index a peer watching a channel by its
downloading position t. Let N− denote the set of all peers
with downloading position t < T (0).

To model how peers serve other peers, each peer t has a
set of downstream neighbors Dt that this peer t may upload
content to. Correspondingly, each peer t ∈ N− also has a
set of upstream neighbors Ut = {s ∈ N|t ∈ Ds} that this
peer t can potentially download the content from. However,
since peer may perform random seeks, it may not have all
the content “before” its downloading position. Hence, not all
neighbors in the upstream neighbor set Ut of peer t have the
requested content of peer t. We denote U t ⊂ Ut as the set of
upstream neighbors of peer t who have the data that peer t
is requesting and is willing to serve peer t. Correspondingly,
let Dt = {s|t ∈ Us} ⊂ Dt denote the set of downstream
neighbors that peer t can actually serve. We call Dt and U t
the effective downstream neighbors and the effective upstream
neighbors, respectively. Let Ut = |Ut|, Dt = |Dt|, Dt = |Dt|
and U t = |U t|.2 (See Fig 1 for illustration).

Let Vt denote the upload capacity of peer t. We assume
that Vt is a bounded random variable between [0, Vmax] with
mean value µ, which is i.i.d. across all peers. Like other studies
[3]–[5], [9], [10], we assume that the download capacity and
the core network capacity are sufficiently large, and hence the
upload capacity is the only resource bottleneck. The system
performance is determined by the relationship between the
targeted streaming rate and the downloading rates. Let R
denote the targeted streaming rate of the video. Let Cs→t
denote the streaming rate from peer s to peer t. Clearly,
Cs→t = 0 for any s /∈ U t (or equivalently for all t /∈ Ds). We
have the following upload capacity constraint on each peer s:∑

t∈N
Cs→t =

∑
t∈Ds

Cs→t ≤ Vs.

Let Ct denote the achievable downloading rate for peer t,
which is then given by:

Ct =
∑
s∈N

Cs→t =
∑
s∈Ut

Cs→t.

2As a convention, we will use script variable to denote a set (e.g., Ut), and
use a normal variable to denote its size (e.g., Ut).

To guarantee smooth playback, the downloading rate of each
viewing peer must be no smaller than the targeted rate R of
the video. Note that the peers whose downloading position is
T (0) do not need to download new data, and hence we are
only interested in the downloading rate of those peers in N−.
We thus define the streaming capacity of the system as the
largest value of R such that Ct ≥ R for all peers t ∈ N−.

We note that there is a simple upper bound on the streaming
capacity. We assume that Q̄ is away from 0 even with large
N , and the contribution of the server capacity is negligible. In
this case, it is easy to see that the largest possible streaming
rate that all peers can attain is Nµ

N(1−Q̄)
= µ

1−Q̄ on average.
However, this upper bound completely ignores the details of
the VoD system, especially whether a peer has the content
and the upload capacity to help the other peer. Hence, it is
unclear whether this upper bound is attainable in a large and
decentralized VoD system. In practice, Q̄ is usually not very
large. Hence, in the rest of this section, we will omit the
contribution of Q̄ in the streaming capacity, and we will say
that the channel achieves a close-to-optimal streaming capacity
(1− ε)µ with a small ε > 0 if all peers attain a streaming rate
no smaller than (1− ε)µ. Our goal in this section is to design
simple, robust and decentralized algorithms that can achieve
this close-optimal streaming capacity with high probability.

B. A Simple and Distributed Peer Selection and Rate Alloca-
tion Algorithm

In our prior work for P2P live-streaming systems [3], we
proposed a simple peer selection strategy where each peer
uniformly randomly selects Θ(logN) downstream neighbors,
and divides its upload capacity evenly among its downstream
neighbors. This simple algorithm has been shown to achieve
a close-to-optimal streaming rate for live-streaming P2P sys-
tems. Although this result serves as a useful starting point, as
reader will see below, the same design would have led to very
poor performance in VoD systems. Thus, we need to design a
new set of control algorithms tailored to VoD systems.

(i) Peer Selection: We first explain why a uniformly-
random peer-selection algorithm will not work well for VoD
systems. Note that unlike live-streaming systems, in a VoD
system different peers are viewing different parts of the video,
and their cached content is also different. If an older peer
(whose downloading position is in the later part of the video)
chooses a younger peer (whose downloading position is in
the earlier part of the video) as an upstream neighbor, there
is a high chance that the younger peer does not have the
content to help the older peer. Hence, the connection between
them is of no use. This problem will be the most severe for
the oldest peers that are close to the end of the video. With
uniformly-random peer selection, the peers who are interested
in downloading this part of the video will find that most of
their selected upstream neighbors are younger and do not have
the desired content. Hence, the streaming rate to these oldest
peers will be very poor. Hence, we need to design a new peer
selection strategy for VoD P2P systems.

A key idea of our new strategy is to restrict the random
neighbor selection of each peer t to be done within a choice
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set Ūt, which contains peers with downloading positions larger
than t. More specifically, we use the “random sequential
choice-set selection strategy” as follows. Let Q be a constant
such that 0 < Q < Q̄. In this strategy, the choice set Ūt of peer
t ∈ N− consists of the next NQ peers whose downloading
positions are immediately larger than t’s. If there are less than
NQ peers after t and immediately before T (0), Ūt will be
the set of all peers with downloading positions larger than t.
In practice, the tracker can order all the peers according to
their downloading positions and assign choice sets according
to the above strategy. Recall our assumption that no two
peers before T (0) are at the same downloading position. In
practice, if this assumption does not hold, the tracker can
always break ties arbitrarily. Then, the tracker server picks
M = α logN (where α is a positive constant to be determined
later) peers uniformly randomly from peer t’s choice set Ūt,
which constitute peer t’s set of upstream neighbors Ut. We
have Ut ⊂ Ūt. Correspondingly, define the client set of peer
t as D̄t = {s ∈ N−|t ∈ Ūs}. The set Dt of downstream
neighbors of t must come from this client set and is given by
Dt = {s ∈ N−|t ∈ Us}. Let Ūt = |Ūt| and D̄t = |D̄t|.

Remark: It appears that the tracker must maintain the current
downloading position of all peers, which may incur high
overhead. However, as we will explain later, by enforcing
that all peers advance their downloading position at the same
speed, this overhead can be significantly reduced.

(ii) Content Availability: Even with the above peer-
selection strategy, the streaming rate for some peer can still be
very poor. This is because peers may fast-forward/backward
in a VoD system. This discontinuous random-seek behavior
means that a peer t may not always have all the content
before t. Thus, even if a peer only picks an older peer as an
upstream neighbor, the connection and the capacity may still
be wasted. Unfortunately, the random-seek behavior of peers
is quite complicated to model. To the best of our knowledge,
no existing analytical works on P2P VoD systems are able to
take into account the impact of this random-seek behavior.

Our strategy is to develop a condition for content availability
that is sufficient for achieving close-to-optimal streaming rates,
yet easy to satisfy even with random-seeks. This is perhaps the
most difficult part of our design. To see why such a condition
is non-trivial to formulate, consider the following scenario.
Suppose that the NQ peers in the choice set Ūs of peer s
are uniformly distributed in the range (t0, s + ∆), as shown
in Fig. 2, where t0 > s. Further, suppose that each peer t ∈
(t0, s+ ∆) only has the content in (t0, t). The above scenario
can occur when many peers random-seek to t0 from before s
(e.g., the opening of a movie ends at t0, and thus most viewers
wish to jump directly to t0). In this case, although peer s may
still have M upstream neighbors uniformly chosen from Ūs,
none of them can help peer s (because they do not have the
content needed by s). Clearly, the key difficulty here is that,
due to its particular position, peer s is unable to obtain any
useful content from its upstream neighbors.

To address this difficulty, we introduce the following con-
dition. Fix a positive constant qmin ∈ (0, 1). We require that,
for any peer s and any one of its upstream neighbor t, the
probability that peer t has the content for (and is willing to
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All peers in Ūs do not have the content needed by peer s

Fig. 2. Content Availability Example

help) peer s is equal to qt > qmin, independently of the position
of peer t. Note that if we were to satisfy this condition for the
example in Fig. 2, we would need to make sure that, even
when a peer random-seeks to t0, the peer also downloads
the additional content at position s with a probability no
smaller than qmin. A more detailed algorithm to achieve this
condition is given in Appendix A. Clearly, when such a content
availability condition is satisfied, the difficulty in our example
in Fig. 2 will not occur. As we will see later, this condition
will be sufficient for achieving a close-to-optimal streaming
rate.

We make a few remarks regarding the above condition.
First, in order to meet this condition, only those peers who
random-seek need to download a small amount of additional
content (see Appendix A). According to real measurement
studies in [12], each peer only jumps 1.6-3.4 times on average
in each video. Thus, the overhead due to this additional
download operation is low. For example, if the peers’ viewing
positions are uniformly distributed between [0, T (0)), then
the additional bandwidth will be no more than a fraction of
4Qqmin

1−Q of the total required bandwidth of all users, which
is not significant. Second, note that if one does not enforce
the above content availability condition, an alternative option
is to let the server stream data directly to such a peer s
that does not receive a sufficient streaming rate from its own
upstream neighbors. However, under this alternative option,
peer s would have to ask the help from the server even though
it did not perform any random seek. If the server capacity
is not immediately available, the service to peer s would be
disrupted. In contrast, under our content availability condition,
only peers that random-seek need the help from the server.
When a peer initiates a random seek, it expects a service
disruption before the video can start at the new position. Thus,
our content availability condition does not create additional
disruption perceived by the user. Finally, depending on the
value of qmin, our content availability condition may even
consume less additional server capacity than the alternate
option. We will evaluate the required server capacity for the
two options in Section IV.

(iii) Rate Allocation: To serve downstream neighbors, each
peer applies a uniform rate-allocation algorithm that takes
into account content-availability. Specifically, let D̂t ⊂ D̄t
denote the set of peers in peer t’s client set D̄t, whom peer
t has the requested data and is willing to serve. We call D̂t
the effective client set of peer t. Let D̂t = |D̂t|. Thus, the
effective downstream neighbor set Dt of peer t will be the
intersection of the effective client set and the downstream
neighbor set of peer t, i.e., Dt = D̂t ∩ Dt. Then, each peer
divides its upload capacity equally among all of its effective
downstream neighbors. Thus, the streaming rate from peer s
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TABLE I
RELATIONSHIP BETWEEN D̄t , D̂t , Dt AND Dt . THE RELATIONSHIP

BETWEEN Ūt , Ût , Ut AND Ut ARE SIMILAR.

D̄t client set of peer t (containing roughly NQ peers)
a subset of D̄t that peer t has the requested contentD̂t and is willing to serve
a subset of D̄t with size M that are actual down-Dt stream neighbors of peer t

Dt intersection of D̂t and Dt, which are the peers that
peer t serves

to peer t, Cs→t, is equal to Vs/Ds if t ∈ Ds, and Cs→t = 0,
otherwise. Correspondingly, we can define the effective choice
set Ût of peer t as the set of peers in the choice set Ūt who
has the required content of peer t. We have U t = Ût ∩ Ut.
See Table I for a summary of the relationship between these
notations. Note that for rate-allocation, peers only need to
know the content availability information at their neighbors.
There is no need for the tracker to maintain content availability
information, which leads to low control overhead.

(iv) Uniform Progress: There remains one serious high-
overhead problem. In a P2P VoD system, it is possible that
some peer downloads content at a higher speed than others.
If that is the case, the tracker needs to constantly update and
re-order their downloading positions. Further, some upstream
neighbors of peer t may either fall behind or advance too far
ahead. As a result, the neighbors of each peer may need to be
re-selected constantly. There will then be significant overhead
at the tracker.

We introduce the following condition to significantly reduce
the overhead. Suppose that the targeted streaming rate is
(1 − ε)µ at the video’s normal playback speed. We enforce
that the downloading position of each peer will also advance
ahead of its playback position at the normal playback speed
of the video. In other words, even if the available download
rate that a peer receives from its upstream neighbors is larger
than (1 − ε)µ, it will still download content at the speed of
(1− ε)µ. On the other hand, if the download rate that a peer
receives from its upsteam neighbors is less than (1 − ε)µ,
the server will fill in the gap. This condition ensures that the
downloading positions of all peers advance at the same speed.
In practice, the above design choice can be easily satisfied
by the following protocol design: a peer will prefetch content
for the video only up to a maximum lead-time ahead of its
current playback position. Thus, once the maximum lead time
is reached, the downloading position will advance at the same
speed as the playback position advances, which is equal to the
normal playback speed (i.e., streaming rate) of the video.

There are three benefits of this design. First, since the
streaming rate of a video is known before-hand, the tracker
can easily predict the advancement of each peer’s downloading
position. Unless a peer fast-forwards/backwards, there is no
need for the tracker to update and re-order peers’ downloading
position. The measurement studies in [12] show that each
user only seeks 1.6 − 3.4 times in each video on average,
which means that for our algorithm, each peer only needs
to report to the server no more than 4 times on average for

each video. As a comparison, the algorithms in [17]–[19], [23]
require each user to report its content availability bitmap to
the server periodically. Assume that each peer reports once
every 5 minutes. Then, these algorithms will require each peer
to report 20 times for a 1-hour video. Clearly, the signaling
overhead of our proposed design is significantly lower. Second,
the upstream neighbors and downstream neighbors of each
peer do not need to change constantly either, unless a neighbor
leaves the system or fast-fowards/backwards, in which case
only this neighbor needs to be replaced via a low-complexity
query to the tracker. Third, the above design choice not
only leads to minimal control overhead, but also significantly
simplifies our analysis because it is sufficient to focus on the
streaming rates at a snapshot of time. On the other hand, some
readers may be concerned that this design may unnecessarily
constrain the downloading speed of those peers who could
have downloaded faster. However, faster peers will likely take
capacity from other slower peers, which will be unfair for the
slower peers. Since our goal is to achieve the highest possible
streaming rate for all peers, it is in fact more beneficial to
maintain fairness. As we will show in our main result, our
design is sufficient for attaining the close-to-optimal streaming
capacity.

In summary, the above algorithm has the following highly-
desirable features:

(i) Simplicity - Both random upstream-neighbor selection
and uniform rate allocation are easy to implement in practice.

(ii) Robustness - If an upstream neighbor of peer t leaves
the system, the tracker can simply assign another neighbor to
t from its choice set.

(iii) Low control overhead - To carry out neighbor assign-
ment, the tracker only needs to maintain the downloading po-
sitions of the peers. It does not need to know detailed content
availability at peers. Further, the tracker can easily predict
the advancement of peers’ downloading position. Hence, the
signaling overhead from peers to the tracker is greatly reduced.

C. Performance Analysis

We have proposed a simple and decentralized algorithm that
is easy to implement, is robust to changes in the peers’ upload
capacity, and incurs low control overhead at the tracker. Next,
we show that the above algorithm will attain close-to-optimal
streaming rate. Recall from the content availability condition
that qt ≥ qmin for all peers t, and Ct is the downloading rate
of peer t.

Theorem 1. For any ε ∈ (0, 1) and d > 1, choose α ≥
8d

pqminε2
with p = µ

Vmax
. Suppose that each peer chooses M =

α logN upstream neighbors. Then for sufficiently large N , the
following holds

P
(
Ct ≤ (1− ε)µ, for some t ∈ N−

)
≤ O

(
1

Nd

)
. (1)

Theorem 1 shows that Θ(logN) upstream neighbors are
sufficient for achieving close-to-optimal streaming rate of
(1−ε)µ for all peers with high probability. Further, it provides
additional insights on the required number of neighbors as a
function of the system parameters. First, if we wish to achieve
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a closer-to-optimal streaming rate (i.e., smaller ε) or a faster
convergence of the probability (i.e., larger d), we need more
neighbors per peer. Second, α is inversely proportional to
p = µ

Vmax
. Hence, if there are higher levels of variation in

the distribution of upload capacities (i.e., the peak rate Vmax

is large and/or a significant fraction of peers have small upload
capacities), the required number of neighbors per peer must
also be larger to tackle the extra level of randomness.

Another important consequence of Theorem 1 is that α is
inversely proportional to qmin. First, it is no longer necessary
to ensure that an upstream neighbor of peer t always has the
content that peer t requests (i.e., qt = 1 for all t). According
to Theorem 1, in order to ensure near-optimal streaming rates,
it would be sufficient if each peer has at least qmin fraction
of the content that its downstream peers will likely request.
This relaxation significantly simplifies the system design when
there are random-seeks. For example, the content availability
strategy described earlier would be sufficient. On the other
hand, in order to improve system performance, we should
design P2P protocols with large values of qmin, since it reduces
the required number of neighbors.

For ease of exposition, we next provide a sketch of the proof
of Theorem 1. The details will be provided in Appendix B.
We first fix any peer t and show that the probability for its
downloading rate Ct to be smaller than (1 − ε)µ is 1

N2d

(recall that d > 1). Theorem 1 then follows by taking
the union bound. Note that peer t has exactly M upstream
neighbors that may help it. Index these M upstream neighbors
as i = 1, ...,M . Let Ii be the indicator function of the
event that the i-th upstream neighbor of peer t is an effective
upstream neighbor, and let I = [I1, I2, ...IM ]T . Then Ct can
be represented by Ct =

∑M
i=1

ViIi
Di

. We note that compared
to our prior work [3] for live streaming, a main difficulty
here stems from the number of effective downstream peers Di

for each upstream neighbor i. In [3], each upstream neighbor
serves exactly M downstream peers. In contrast, here Di is
random and varies with an unknown parameter qi. Further,
there exists non-trivial correlation across i because the client
sets of different upstream neighbors of peer t overlap. To
address this difficulty, we use the following main supporting
lemma.

Lemma 2. Fix qmin > 0. (a) Let Ĩ = [Ĩ1, Ĩ2, ..., ĨM ]T be a
set of M independent Bernoulli random variables such that
P(Ĩi = 1) = qi ≥ qmin. (b) Let D̃+

i , i = 1, 2, ...,M , be M
positive (and possibly correlated) random variables such that
E[D̃+

i |̃I, Ĩi = 1] ≤ ρqiM for some constant ρ > 0. (c) Let
D̃i, i = 1, 2, ...,M be M positive (and possibly correlated)
random variables such that for any r1, r2, ..., rM ≥ 0,

E

[
exp

(
−

M∑
i=1

ri

D̃i

)∣∣∣∣∣ Ĩ
]
≤

M∏
i=1

E

[
exp

(
− ri

D̃+
i

)∣∣∣∣∣ Ĩ
]
. (2)

(d) Let Ṽi, i = 1, 2, ...,M , be M i.i.d. random variables
independent from D̃+

i ’s and Ĩi’s such that E[Ṽi] = µ and
0 < Ṽi < Vmax for all i. For any d > 1 and for any ε > 0, let
α ≥ 2dVmax

ε2µqmin
. Then, there exists N0 such that when N > N0

and M = α logN , the following holds

P

(
M∑
i=1

ṼiĨi

D̃i

≤ (1− ε)µ
ρ

)
≤ O

(
1

N2d

)
. (3)

The proof is in [25]. We will soon relate Ĩi, D̃i and Ṽi
to Ii, Di and Vi. To interpret the result of Lemma 2, note
that if D̃i = D̃+

i and D̃+
i ’s are independent from each

other conditioned on Ĩ, then the condition in (2) trivially
holds. Using Jensen’s inequality, it is then easy to see that
E[C̃t] ≥ µ/ρ, where C̃t =

∑M
i=1

ṼiĨi
D̃i

. Lemma 2 implies that,
as long as M = α logN , the probability that C̃t ≤ (1− ε)µ/ρ
will diminish to zero. The conditions in the lemma, however,
allows the result to hold even if D̃i’s are correlated, and hence
is very useful.

We will use Lemma 2 to show Theorem 1. For ease
of exposition, we consider instead an alternative choice-set
selection strategy called “random sequential-range”, which is
slightly different from the “random sequential” choice set
selection strategy that we originally used. In such a “random
sequential-range” choice set selection strategy, each user t
choose a choice set Ūt that contains all the other peers whose
downloading position are in the range (t, φ′(t)], where φ′(t)
satisfies that

∫ φ′(t)
t

γ(τ)dτ = Q, if
∫ T (0)−

t
γ(τ)dτ ≥ Q, and

φ′(t) = T (0), otherwise. Correspondingly, the client set D̄t of
each peer t contains all the peers in the range [ψ′(t), t), where
ψ′(t) satisfies that

∫ t
ψ′(t)

γ(τ)(d)τ = Q, if
∫ t

0
γ(τ)dτ ≥ Q,

and ψ′(t) = 0, otherwise. Clearly, for any t < T (0)−ψ′(T (0)),
E[Ūt] = NQ. When N is large, Ūt should concentrate on
NQ. Hence, we would expect that the performance of the two
choice-set selection strategy are close to each other. A more
general statement can be made as in the following lemma.

Lemma 3. Let X be the collection of all continuous intervals
Γ ⊂ [0, T (0)). Fix L ≥ 1. Given any ε ∈ (0, 1), define the
following event

A =

{∣∣∣∣∣
∑L
l=1 nl
N

−
∫
∪L

l=1Γl

γ(τ)dτ

∣∣∣∣∣ ≤ ε
∫
∪L

l=1Γl

γ(τ)dτ + ε,

for all disjoint Γ1, ...,ΓL ∈ X
}
,

where nl is the number of peers in Γl. Then, for any d > 1,
there exists N0 such that for any N > N0, P(A) ≥ 1 −
O
(

1
N2d

)
.

The proof of Lemma 3 is provided in [25]. Note that if A
happens, then the number of peers in every ∪Ll=1Γl will be
close to its mean value. Lemma 3 states that such an event A
happens with high probability. In the following, we will focus
on the situation when event A holds. Let PA(·) and EA(·)
denote the probability and the expectation conditioned on A.

We are now ready to prove Theorem 1. Fix a peer t and
its set of M upstream neighbors i = 1, ...,M . First, we note
that Ii’s are independent because the content availability of
each upstream neighbor i is independent. Further, let qi be
the parameter introduced in the content availability condition
in Section II-B. Then P(Ii = 1) = PA(Ii = 1) = qi ≥
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qmin. Thus, condition (a) of Lemma 2 is met with Ĩi = Ii.
Next, we will analyze the correlation between Di’s. Consider
an upstream neighbor i. Let ti be its current downloading
position. If peer i recently random-sought to a position before
ti, let ti0 < ti be the position that it first jumped to. Further,
let Γi be the range of content from [ψ′(ti0), ti0 ] that peer i
randomly downloaded when it first jumped to ti0 , according
to the content availability strategy in Section II-B. Recall that
the effective client set D̂i is a subset of D̄i that peer i has the
requested content. D̂i consists of two parts: (a) all the n1 peers
in Γi ∩ [ψ′(ti), ti0), and (b) for the n2 peers in [ti0 , ti), each
of them is in D̂i with probability qi independent of others.
Given A in Lemma 3, we must have, for any ε ∈ (0, 1),

n1 ≤ N
(∫

Γi∩[ψ′(ti),ti0 ]
γ(τ)dτ + ε

)
(1 + ε) , n+

1 ,

n2 ≤ N
(∫

[ti0 ,ti]
γ(τ)dτ + ε

)
(1 + ε) , n+

2 .

Now, consider an alternative system by adding (n+
1 − n1) +

(n+
2 −n2) dummy peers. Construct a new set D̂+

i that contains
all peers in D̂i. In addition, the first group of (n+

1 − n1)
dummy peers are always added to D̂+

i . For the second group
of (n+

2 − n2) dummy peers, each of them is in D̂+
i with

probability qi, independently of others. The advantage of
making use of D̂+

i is that D̂+
i only depends on Ii, ti0 and

Γi. Further, Γi and ti0 are independent across i. Hence, D̂+
i ’s

are independent across i conditioned on A. Further, D̂i ≤ D̂+
i

by our construction. Next, consider Di ⊂ D̂i, i.e., the set of
effective downstream neighbors of i. For each peer in D̂i, it
randomly choose M upstream neighbors, one of which may
be i. Further, for each dummy peers in D̂+

i , we also let it
choose peer i as an upstream neighbor with probability M

NQ .
Let D+

i be the number of effective downstream neighbors of i
in this alternative system. Note that D+

i may still be correlated
across i (even though D̂+

i ’s are independent). This is because
the sets D̂+

i may overlap. Then, if an overlapped peer s has
picked i as an upstream neighbor, it will be less likely to pick
another upstream neighbor i′ ∈ {1, 2, ..,M}. Fortunately, we
can show a negative dependency between D+

i ’s. Specifically,
if D+

i is large, then it is likely that less peers will pick i′,
and hence D+

i′ will likely be small. This negative dependency
is made precise in the following lemma (see Appendix B for
proof).

Lemma 4. For any r1, r2, ..., rM ≥ 0, D+
i ’s satisfy

EA

[
exp

(
−

M∑
i=1

ri

D+
i

)∣∣∣∣∣ I
]
≤

M∏
i=1

EA

[
exp

(
− ri

D+
i

)∣∣∣∣ I] .
Note that Di ≤ D+

i by our construction. Hence, condition
(c) of Lemma 2 holds with D̃i = Di and D̃+

i = D+
i . To

verify condition (b), We can show the following lemma based
on the content availability condition. The proof is in [25].

Lemma 5. Suppose γmin ≤ γ(t) ≤ γmax for all t ∈ [0, T (0))
for some 0 < γmin ≤ γmax. For any ε ∈ (0, 1), there exists
K0, such that for K > K0, we have

EA
[
D+
i

∣∣ I, Ii = 1
]
≤ (1 + ε) qiM.

Thus, condition (b) of Lemma 2 holds. Finally, note that
Vi’s are i.i.d. and independent of all other random variables.
Hence, Theorem 1 follows from Lemma 2 for the “random
sequential-range” choice set selection strategy. One can then
show that Theorem 1 also holds for our original policy (see
[25] for details).

III. A MULTI-CHANNEL P2P VOD SYSTEM

In the last section, we have focused on a single-channel P2P
system. In this section, we study a multi-channel P2P system.
Peers in each channel are interested in viewing a common
video, which is however different across channels. Based on
our single-channel algorithm, we will propose a simple and
robust cache placement policy that could achieve a close-to-
optimal streaming capacity for all channels.

A. System Model

We consider a P2P VoD system containing J channels. Let
J = {1, 2, ..., J} denote the set of all channels, and T

(0)
j

denote the video length of channel j. Let Nj denote the set
of peers that are watching channel j, and Nj = |Nj |. Let N
denote the set of all peers in the system, i.e., N =

⋃
j∈J Nj

and N = |N |. We assume that Nj = pj · N , where pj is
the fraction of peers viewing channel j, which represents the
popularity of channel j. Later on we will consider a system
with large N , in which case we assume that pj’s are fixed and
do not change with N , i.e., we focus on hot videos. Within
each channel, we use the same model as Section II-A, except
that a subscript or superscript j is added to each notation to
denote the channel. For example, Q̄j , V

j
t and Djt represents

the probability that a channel j peer’s downloading position is
at T (0)

j , the upload capacity of a peer in channel j and the set
of downstream neighbors of peer t in channel j, respectively.
We assume that E[V jt ] = µ for all j, i.e., the upload capacity
in each channel has the same distribution.

Using the results from Section II, we know that each channel
j can sustain a maximum streaming rate around (1 − ε)µ.
However, in a multi-channel system, it is typical that different
channels have different streaming rate requirements. Let Rj
denote the targeted streaming rate for the video of channel
j. Let R = [R1, R2, ..., RJ ]T . Naturally, the streaming rate in
some channel j may satisfy Rj ≤ (1−ε)µ, which implies that
the upload capacity of peers viewing the channel is sufficient
to support the targeted streaming rate. Such channels are
referred to as sufficient channels. On the other hand, some
other channel may have Rj ≥ (1−ε)µ. We call such channels
insufficient channels. We denote the set of insufficient channels
as I = {j ∈ J |Rj > (1 − ε)µ}, and the set of sufficient
channels as S = {j ∈ J |Rj ≤ (1− ε)µ}. Seemingly, peers in
an insufficient channel will not have enough upload capacity
to stream the desired video.

A natural idea to improve the overall system performance
is to use the extra capacity from sufficient channels to help
the peers in insufficient channels. This kind of helping will
obviously support a larger set of vectors R of streaming rate
requirements. We define the streaming capacity region Λ of the
multi-channel system as the set of streaming rate vectors, such
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that for each R ∈ Λ, under some centralized peer-selection and
rate-allocation strategy, every peer in the system can receive
a sufficient downloading rate Rj to view its desired channel.
Assuming that the contribution of server capacity is minimal,
the largest possible streaming capacity region is given by
Λ′m =

{
R
∣∣∣∑J

j=1(1− Q̄j)NjRj ≤
∑
i∈N E[Vi]

}
. In other

words, since the upload capacity of peers is the only in the
system, the best we can do is to support those rate vectors
R such that the summation of all demand is no greater than
the summation of the overall upload capacity. Again, Q̄j’s are
usually not very large in practice, and hence we will omit the
contribution of Q̄j in the rest of this section. Let

Λm =

R

∣∣∣∣∣∣
J∑
j=1

NjRj ≤
∑
i∈N

E[Vi]

 .

We say that a multi-channel control algorithm achieves a close-
to-optimal capacity region, if for any R ∈ (1 − ε)Λm with
some ε > 0, all peers in each channel j can sustain the
streaming rate Rj .

In order for peers from a sufficient channel k to help peers in
an insufficient channel j, the peers in channel k must already
have the content for channel j, in addition to the content
for channel k that they are interested in viewing. For this
purpose, we assume that, in addition to the video from its
own channel, each peer also caches, and hence can serve
these cached videos to peers in those channels. (Note that
although we assume that the entire video from other channels
are cached in this case, a similar line of analysis can be
carried out if the videos from other channels are divided into
a small number of parts, and each peer only cached one parts
of the videos.) Further, we assume that the cached content
has already been pre-loaded, and we ignore the bandwidth
resources to place these cached contents. We will then study
the optimal placement probabilities for each video and how to
best use the cached content. We note that a similar assumption
of pre-loading cached content has been made in other prior
works [14], [15], [19] that study the optimal cache placement
probability. In practice, this kind of proactive deployment can
be implemented in several ways. One possibility is to let the
peers download the cached videos from the server during non-
busy hours. Such a method is especially useful when the peers
are always online, e.g., when using set-top boxes. Another
possibility is to perform active push or passive replacement
using a randomized algorithm [19]. The key assumption here
and in [14], [15], [19] is that the cache content will change
at a much slower time-scale than the content that each peer is
interested in viewing. Hence, the cache replenishment process
can be performed much more slowly, and thus the amount of
bandwidth consumed for cache placement will be significantly
smaller than the amount of bandwidth consumed for streaming.

There are, however, a common robustness issue for this line
of work. The optimal cache-placement probabilities are often
a function of system-wide parameters, such as the popularity
of each video. When analyzing the system performance, it
is often assumed that these parameters are known before-
hand [14], [15], [19]. In practice, however, it can be difficult

to accurately estimate these parameters before-hand. Further,
as we discussed above, the cached content may need to be
updated over a slow time-scale. Hence, the system parameters
at the time of viewing may have already changed from those
at the time of cache-placement. In summary, it is impractical
to assume that the system parameters for optimal cache-
placement probabilities are always known precisely before-
hand. In the sequel, our goal is to develop a multi-channel
control algorithm that can achieve close-to-optimal streaming
capacity but is robust to imprecise estimates of key system
parameters.

B. Algorithm and Performance

We start with our cache-placement algorithm, which has
some similarity to the “proportional-to-deficient-bandwidth”
policy in [19]. (However, note that its optimality is not
rigorously shown in [19].)

(i) Cache Placement: As we discussed earlier, each peer
will cache one other videos in addition to its currently-
watching video. The tracker maintains which peers cache
which videos. Given R ∈ (1 − ε)Λm, the tracker determines
the required number of additional helpers for each channel j,
hrj , according to hrj =

pjNRj

µ
√

1−ε −
√

1− εpjN . Here, hrj can
be interpreted as the deficit of upload bandwidth in channel
j. Note that using hrj , the tracker can classify sufficient and
insufficient channels: for a sufficient channel j, hrj is negative
or zero; for an insufficient channel j, hrj gives a positive
value. Every peer in each sufficient channel k caches a video
randomly chosen from those of insufficient channels with
the following distribution: the probability ηkj that a peer in
channel k caches the video of channel j satisfies

ηkj = ηj ,
hrj∑
l∈I h

r
l

, for all k ∈ S, j ∈ I. (4)

Note that this probability only depends on Rj (video rate),
µ (average upload capacity), pj (video popularity), but is
independent of N . Due to such a randomized cache placement
policy, a random number of peers in each sufficient channel k
cache a copy of channel j’s video. Let us denote this number
by H̃kj . The total number of peers in sufficient channels that
cache the video for channel j is then H̃j =

∑
k∈S H̃kj . In our

algorithm, the tracker randomly chooses Hkj peers among the
H̃kj peers in channel k (which cache video j) to help channel
j ∈ I, where Hkj is given by

Hkj =

⌈ |hrkhrj |∑
l∈S |hrl |

⌉
. (5)

We call these Hkj peers “helpers” for channel j, and we use
Hj to denote the set of all helpers assigned to help channel
j. Note that if Hkj > H̃kj , our algorithm would fail because
there is not a sufficient number of peers who cache the video.
However, we show in [25] that this failure probability goes to
0 as N → ∞. Hence, the actual number of helpers for each
channel j is Hj , |Hj | =

∑
k∈J Hkj .

Remark: Although we have assumed that each peer only
caches one video, the above algorithm could be easily ex-
tended to the case where each peer caches multiple videos. In
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particular, if a peer in a sufficient channel k can cache multiple
videos, then for each cache space, it chooses a video from
those of insufficient channels with the same distribution in (4).
Clearly, this design only increases the number of cached copies
for videos of insufficient channels, and thus the likelihood that
the tracker cannot find a sufficient number Hkj of “helpers”
for any insufficient channel j will only decrease. Hence, our
performance guarantee (shown later in Theorem 6) will still
hold even when each peer can cache multiple videos.

Robustness to Imprecise Estimates of System Param-
eters: Along with the above cache-placement policy, our
overall scheme for multi-channel P2P VoD systems achieves
the following highly-desirable property of being resilient to
imprecise estimates of system parameters. Note that, in the
algorithm, the probabilities ηkj depend on several system-
wide parameters, i.e., the mean upload capacity µ, the video
popularity pj , and the targeted streaming rate Rj of each
channel j. In practice, these parameters, in particular the video
popularity, may change over time. Hence, it would be difficult
for the tracker to precisely estimate the value. Further, as we
discussed earlier, the cache placement operations themselves
also take time, and have to be based on predicted system
parameters. These predicted system parameters can thus be
quite different from the actual system parameters when peers
request videos later. In such a scenario, while the number of
required helpers, Hj , can be instantaneously computed from
the current system configuration (e.g., the actual number of
peers in each channel), the cache placement decisions H̃j must
be pre-computed from possibly a different set of predicted
system parameters. Nonetheless, for each insufficient channel
j ∈ I, our algorithm usually needs a much smaller number
of helpers Hj than the expected number of caches E[H̃j ].
Therefore, even if ηkj is computed from inaccurate system
parameters, as long as H̃j ≥ Hj , we will still be able to find
the required number of helpers, and the performance of our
algorithm will not be negatively affected. Thus, our algorithm
is robust to imprecise estimates of these parameters, as is
shown in the following example.

Example: Consider a P2P VoD system with 3 different
channels: channel 1 has p1 = 0.6 and the streaming rate
is R1 = 6; channel 2 has p2 = 0.1 and the streaming
rate is R2 = 12; channel 3 has p3 = 0.3 peers and
the streaming rate is R3 = 11. Assume that the average
upload capacity of all the peers is µ = 10. One can show
that R = [6, 12, 11]T ∈ 0.81Λm. It is not hard to see
that channel 1 is a sufficient channel and channels 2 and
3 are insufficient channels. If we perform cache placement
according to the proportions in (4), the expected number of
peers in channel 1 to cache the video for channels 2 and 3
will be E[H̃12] = 1300

7 and E[H̃13] = 2900
7 , respectively.

However, the numbers of actual helpers that we need to assign
to the insufficient channels are only H12 = 44 and H13 = 97,
which are much smaller than E[H̃12] and E[H̃13]. Therefore,
it is not necessary to cache the videos exactly according to
the proportions in (4). In particular, assume that the tracker
estimates the system parameters incorrectly as p∗1 = 0.3,
R∗1 = 1, p∗2 = 0.3, R∗2 = 14, p∗3 = 0.4, and R∗3 = 9,
which are very different from the true parameters cited earlier.

Based on these incorrect parameters, the expected number of
peers chosen by our proposed algorithm to cache the video
for channels 2 and 3 will then be E[H̃∗12] = 35400

71 ≈ 499

and E[H̃∗13] = 7200
71 ≈ 101. Since E[H̃∗12] > H12 and

E[H̃∗13] > H13, the tracker will still be able to find enough
helpers for channels 2 and 3 with high probability. Thus, the
same performance guarantee of our algorithm (stated below in
Theorem 6) can still be achieved.

We believe that this robustness property is a distinct ad-
vantage of this class of “proportional-to-deficit-bandwidth”
strategies [19]. To the best of our knowledge, this work is
the first to account for imprecise system parameters. The
key intuition here is that since peers in the same channel
already help each other, the number of additional helpers
required is decided by the amount of deficit upload bandwidth
in the channel, which is significantly smaller than the total
amount of upload capacity needed. In contrast, in the model
of [14], all peers must request services only from helpers
that have cached the content before hand. In that case, the
optimal cache-placement proportion must be accurate in order
to serve the maximum number of requests. As a result, the
performance is then very sensitive to imprecise estimates of
system parameters.

(ii) Peer Selection and Rate Allocation: Each peer t in
an insufficient channel j uniformly randomly selects MN

upstream neighbors from its choice set Ū jt and uniformly
randomly picks MH upstream neighbors from its helper set
Hj , where MN +MH = M . Each peer in a sufficient channel
only needs to select MN = M upstream neighbors from its
choice set (i.e., MH = 0 for peers in sufficient channels).
Note that if a peer in a sufficient channel k is selected into
the helper set Hj of an insufficient channel j, its upload
capacity will be completely reserved for serving peers in
channel j, and will not be used to serve peers in its own
viewing channel. Each upstream peer still applies the uniform
rate-allocation strategy. All other parts of the peer selection
and rate allocation algorithms remain the same as in the single-
channel case. We can show that with our simple multi-channel
control algorithms, the targeted streaming rate of each channel
can be attained with high probability. Specifically, let Ckt be
the achieve streaming of peer t in channel k ∈ J . We have
the following main result for multi-channel systems. Detailed
analysis and proofs are provided in [25]

Theorem 6. Given any ε ∈ (0, 1), d > 1 and R ∈ (1− ε)Λm.
Let ε′ = 1 −

√
1− ε. There exists N0 such that if N ≥ N0,

M = α logN and α ≥ 16d
min{ρmin,p,2σminp}qminε′2

,then we can
find MH and MN such that

P
(
Ckt ≤ Rk, for some k ∈ J and t ∈ N−k

)
≤ O

(
1

Nd

)
.

IV. SIMULATION RESULTS

In this section, we provide simulation results of both single-
channel and multi-channel systems to verify our analytical
results.

Although our analytical results have not assumed a specific
user-behavior model, in our simulations we will experiment
with a particular user-behavior model, with which we will
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verify that a steady-state distribution γ(t) will indeed arise.
Specifically, we use the following user-behavior model. The
video length is set to be T (0) = 3600 (seconds). Each user
searches for upstream neighbors among the 500 peers ahead.
We assume that a new peer always starts from the beginning
of the video. Each peer could jump to a different location
randomly after some time. More specifically, upon arrival
or each jumping, each peer views the video for a random
amount of time chosen from an exponential distribution with
mean 1800 seconds. After this viewing period, the peer will
jump to a new position between its current position and the
end of the video uniformly randomly. After each jumping,
each user downloads an additional qmin = 0.3 fraction of
the data in its client set, according to our content availabil-
ity condition. This process (of viewing and jumping) then
continues until the peer reaches the end of the video, after
which the peer may stay for an additional amount of time
uniformly distributed in [0, 600]s. Finally, the inter-arrival time
between new peers follows an exponential distribution with
mean 1/3. By simulating the peers’ behavior over time, we can
observe the emergence of a steady-state distribution γ(t) of the
peers’ viewing positions. For instance, in Fig. 3(a) each of the
three curves corresponds to peers whose viewing positions are
in the intervals [0.05T (0), 0.15T (0)], [0.45T (0), 0.55T (0)] and
[0.85T (0), 0.95T (0)], respectively. The y-axis is the fraction
of peers in each of the three intervals, while the x-axis is the
simulation time in seconds. We can observe that these fractions
indeed converge to a steady state, which suggests that a steady-
state distribution γ(t) has emerged. The density function of the
resulting steady-state distribution γ(t) is plotted in Fig. 3(b). In
addition, we also measure the required additional server band-
with due to our content availability condition in Section II-B,
and compare it with the total bandwidth consumed by all the
users in the system for streaming. We see that the additional
bandwidth is only about 4% of the total bandwidth.

We then simulate single-channel system and study the prob-
ability that peers achieve close-to-optimal streaming capacity
as the number of each peer’s upstream neighbor number in-
creases. We will compare the performance as we vary different
system parameters, such as the distribution of peers’ upload
capacity (represented by p = µ

Vmax
) and the content availability

at peers (represented by q = qmin). The upload capacity of
each peer is assumed to be ON-OFF, i.e., P(Vi = Vmax) = p
and P(Vi = 0) = 1 − p for each peer i. We assume that
Vmax = 10. The average upload capacity of peers is µ =
pVmax. We vary the number of upstream neighbors per peer
from M = 10 logN = 99 to M = 90 logN = 891, which
correspond to 0.5% to 4.45% of the total number of peers
N . Then, for each choice of the system parameters (p, q, ε)
and the number of upstream neighbors per peer, we generate
a single-channel P2P VoD streaming system according to our
single-channel P2P control algorithms for 1000 times. In each
run of the simulation, we record the smallest downloading rate
among all peers and compare it with (1− ε)µ. We count the
number of times that this smallest downloading rate is larger
than (1 − ε)µ and plot the probability for that to happen.
The result is shown in Fig. 3. We can observe from the
simulation results that, when p = 0.9, q = 0.9, ε = 0.3,
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Fig. 3. Peers’ viewing position approaches a steady state distribution

and when each peer selects no fewer than 10 logN = 100
(which corresponds to 0.5% of N ) upstream neighbors, a
downloading rate higher than 1 − ε = 70% of the average
peer upload-capacity can be achieved in the entire network
with probability close to 1. (We note that while qmin = 0.9
appears to be large, it only means that each peer has 90% of
the content for the range of its client set, which is of a small
size NQ = 0.05N .) When p is reduced to 0.5 or q is reduced
to 0.5, more upstream neighbors are needed to achieve the
same performance. Further, under the same values of p and
q, when we reduce ε to 0.2, more upstream neighbors are
needed to achieve the same performance. These observations
verify our insights following Theorem 1.

Note that our proposed algorithm has used very simple
control mechanisms, such as uniformly-random neighbor-
selection and uniform rate-allocation. In the following, we
also simulate an adaptive algorithm to study whether more
sophisticated design can further improve the system perfor-
mance. Specifically, under the adaptive algorithm, each user
will no longer choose its upstream neighbors from its choice
set uniformly randomly. Instead, it will only choose from
those peers in its choice set who still have less than qM
effective downstream neighbors. As shown in Fig. 4, under
the adaptive algorithm, the same probability of meeting the
targeted streaming rates could be achieved with one-third less
upstream neighbors (compared to the curve with the same
value of p, q, ε). This indicates that there is potential to further
improve the proposed algorithm by adding more adaptive
control, which we will study in our future work.

Since our analytical results focus on large-N asymptotics,
our work mainly focuses on “hot videos” that have many peers.
In practice, however, one would also like to understand how
large N needs to be for the proposed algorithm to be useful.
In Fig. 5, we study the performance of our algorithm when
the total number of peers changes from 500 to 5000. The
number of neighbors for each peer is chosen as M = 20 logN .
We can see that when p = 0.5, q = 0.9 or p = 0.9, q =
0.5, our proposed algorithm starts to achieve close-to-optimal
streaming rates with high probability once the number of users
reaches around 1000, which is reasonable for “relatively hot”
videos. In contrast, the performance of our algorithm degrades
when p = 0.5, q = 0.5. The reason is that when p = 0.5
and q = 0.5, the choice of α = 20 is too small and it does
not satisfy our condition in Theorem 1, i.e., α ≥ 8d

pqminε2
.

Therefore, there is no performance guarantee in this case.
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Next, we simulate a multi-channel P2P VoD system with 4
channels. We use the same settings as in the single-channel
simulations on the distribution of peer upload capacities
and the distribution of peers’ downloading positions. We set
Vmax = 10 and p = 0.5. The content availability is given
by q = qmin = 0.9. We set N1 = 4000, N2 = 6000,
N3 = 3000, N4 = 7000. We choose a target streaming rate
vector R = [6, 3, 7, 1]T , which is in 0.7Λm (i.e., ε = 0.3).
Channels 1 and 3 are insufficient channels, and channels 2
and 4 are sufficient channels. In Fig. 6, we plot the probability
that the downloading rate of a peer in channel j is greater than
its target streaming rates Rj , for each of the four channels as
the number of upstream neighbors per peer varies. Further,
the curve with “∆” plots the probability that all peers in
all channels simultaneously sustain downloading rates greater
than their corresponding target streaming rates. As we can
see from Fig. 6, all channels attain with high probability their
required streaming rates even with a small number of upstream
neighbors. In Fig. 7, we fix M = α logN with α = 50 and
plot the success probability as the total number of peers N
changes. We see that the probability indeed converges to 1
when the total number of peers is larger than 20,000.

In Fig. 8, we simulate the effect of cache placement de-
cisions based on imprecise system parameters. Specifically,
the cache placement probabilities for the above system setting
should be η21 = η41 = η1 = 0.4878 and η23 = η43 = η3 =
0.5122 . (Recall from (4) that ηkj is the probability that a
peer in sufficient channel k caches the video for insufficient
channel j.) To capture the effect of imprecise estimates of
system parameters, we instead simulate with a very different
set of placement probabilities [η′21, η

′
23] = [0.0697, 0.0732]

for sufficient channel 2, and [η′41, η
′
43] = [0.3484, 0.3659]

for channel 4. These placement probabilities are chosen by
the expression η′kj = (1 − Rk

µ(1−ε) ) · ηj . One can verify that

η′kjNk =
|hr

kh
r
j |√

1−ε
∑

l∈I h
r
l

is barely larger than Hkj in (5).
Further, note that η′kj/ηkj < 1, which implies that a smaller
number of peers in channel k have the cached content to help
channel j. As shown in Fig. 8, the system performance under
skewed cache placement probabilities is similar to that under
the original cache placement probabilities. This verifies the
robustness of our strategies with respect to imprecise estimates
of system parameters.

Finally, we study the cost and benefit of our content avail-
ability condition. The cost is defined as the additional amount
of content that random-seeking peers need to download from
the server in order to satisfy the content availability condition
at a particular value of qmin, divided by the total amount
of content consumed by all streaming users. On the other
hand, to calculate the benefit, we note that if a user could not
get a sufficient streaming rate from its upstream neighbors,
it will have to ask the server to fill in the gap. At a given
value of qmin, we then count the total amount of such content
CG(qmin) downloaded from the server by all users to fill
in the gap, i.e.,

∑
t∈N− max(R − Ct, 0). The benefit of the

content availability condition for each value of qmin is then
calculated as CG(0)−CG(qmin), again normalized by the total
amount of content consumed by all streaming users. Thus,
this benefit value reflects the reduction in server capacity by
non-random-seeking users, compared to the case without the
content availability condition (i.e., qmin = 0). We simulate
a network with 10000 peers, streaming a one-hour video.
We create a similar setting as the one that we described in
Section II: there is an interval (e.g., the opening of the video)
for about 1/10 of the video length that some fraction of
the users wish to skip. After skipping, these peers download
additional content to satisfy our content availability condition.
We plot in Fig. 9 the cost and benefit, at different values of
qmin and with different skipping probabilities. We first observe
that, when qmin is small (less than 0.4), the benefit outweighs
the cost. In other words, our content availability condition
reduces the total download capacity from the server when
qmin is relatively small.3 However, as qmin increases, the cost
eventually becomes larger than the benefit. Further, we observe
that, when the skipping probability increases, both the benefit
and cost increases. The cost increases because we have more
random-seeking peers that need to download the additional
content. The benefit increases because CG(0) increases, i.e.,
when the skipping probability increases, without the content
availability condition the peers that did not jump would have
even less chance to find an effective upstream neighbor.
Interestingly, the ratio between the cost and the benefit remains
roughly the same for different skipping probabilities, and the
cross-over value of qmin for the cost to be approximately equal

3We note that the above comparison is somewhat conservative because
our definition of the benefit accounts for the streaming rate from upstream
neighbors, while our definition of the cost does not. If the random-seeking
peers can also utilize any remaining capacity from the upstreaming neighbors
to satisfy the content availability condition, the cost will be further reduced,
and thus the value of qmin such that the benefit outweighs the cost will be
even larger.
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to the benefit also does not vary significantly.

V. CONCLUSION

In this paper we provide a rigorous analytical study on
the performance of large-scale P2P VoD systems with sparse
connectivity and simple, robust, and decentralized control. For
both single-channel and multi-channel systems, we provide
easy-to-implement P2P control algorithms and show that the
system can achieve close-to-optimal streaming capacity with
probability approaching 1, as the total number of peers N
increases. Under our control algorithms, each peer is only

qmin
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Fig. 9. The cost vs. benefit of the content availability condition

assigned Θ(logN) upstream neighbors, with which it ex-
changes content availability information. Most parts of the
control algorithms are decentralized. These algorithms incur
low control overhead and are easy-to-implement in practice.
Our analytical studies provide easy-to-verify conditions for
such close-to-optimal streaming to hold, which shed important
insights to guide the design of improved P2P streaming
protocols. There are a number of interesting directions for
further work. First, it would be interesting to study whether the
required number of per-peer neighbors can be further reduced,
possibly by using more sophisticated peer-selection and rate-
allocation algorithms than those studied in this paper. The
challenge would be how to improve the system performance
while retaining the simplicity and decentralized properties.
Second, in our multi-channel setting, the number of videos is
assumed to be fixed as N increases. A different setting when
the number of videos also approaches infinity is of significant
practical interest. It remains a challenging question whether or
not similar simple algorithms could achieve good performance
under such a many-video case.

REFERENCES

[1] C. Zhao, J. Zhao, X. Lin, and C. Wu, “Capacity of P2P On-Demand
Streaming with Sparse Connectivity and Simple Decentralized Control,”
in Proc. of IEEE INFOCOM, 2013.

[2] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-scale Operational On-
Demand Streaming with Random Network Coding,” in Proc. of IEEE
INFOCOM, Mar 2010.

[3] C. Zhao, X. Lin, and C. Wu, “The Streaming Capacity of Sparsely-
Connected P2P Systems with Distributed Control,” in Proc. of IEEE
INFOCOM, Apr. 2011, pp. 1449 –1457.

[4] R. Kumar, Y. Liu, and K. Ross, “Stochastic Fluid Theory for P2P
Streaming Systems,” in Proc. of IEEE INFOCOM, May 2007, pp. 919
–927.
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APPENDIX A
IMPLEMENTATION OF CONTENT AVAILABILITY CONDITION

The content availability condition we introduced in Section
II-B can be implemented as follows. Choose q′min such that
(1 − e−q′min)/2 = qmin. Suppose that a peer (denoted by t)
randomly seeks to position t = t0 first. It will first download
a fraction of the content from the range that may be requested
by the peers in its client set. More specifically, let ψ(t0) be the
downloading position of the youngest peers in this peer’s client
set D̄t0 . This peer then selects K intervals within [ψ(t0), t0],
each of which has a length of q′t(t0 − ψ(t0))/K, where q′t ≥
q′min > 0 satisfies 1−

(
1− q′t

K

)K
= qt. These K intervals are

selected independently and uniformly randomly. At this point,
it is easy to see that the above content-availability condition
holds: for any peer s in [ψ(t0), t0], the probability that peer
t = t0 has the required content for peer s is equal to the
probability that peer s is in at least one of the K intervals,

which is calculated as 1 −
(

1− q′t
K

)K
= qt. For sufficiently

large K, we will have qt ≥ (1 − e−q′min)/2 = qmin. Next, as
peer t continues to watch the video, it downloads the content
from t0 to its current downloading position t > t0. In order
to meet the content availability condition for all peers in the
client set D̄t, as long as D̄t contains at least one peer s whose
downloading position is smaller than t0, then for all other

peers in D̄t ∩ (t0, t), peer t is only willing to serve it with
probability qt, independently of other peers. This restriction
will continue until all peers s ∈ D̄t advance past t0. Then,
peer t can serve all of its downstream neighbors (equivalently,
qt = 1).

APPENDIX B
DETAIL PROOF OF THEOREM 1

With Lemma 2, 3, 4 and 5, it is trivial to show (3) holds
for our alternative policy: “random sequential-range” choice
set selection strategy. To go back to our original “random
sequential” choice set selection strategy and prove Theorem
1, we need the following lemma:

Lemma 7. Given any ε > 0 and d > 1, let

W = {|ψ(t)− ψ′(t)| < ε, for all t ∈ N} .
Then, P(W) ≥ 1−O

(
1

N2d

)
.

Proof. For any peer t such that ψ′(t) = 0, i.e.,
∫ t

0
γ(τ)dτ ≤

NQ, the event |ψ(t) − ψ′(t)| ≥ ε implies that ψ(t) ≥ ε.
Thus, the number of peers in [ε, t) must be greater than NQ.
However,∫ t

ε

γ(τ)dτ =

∫ t

0

γ(τ)dτ −
∫ ε

0

γ(τ)dτ ≤ NQ− εγmin.

Note that the number of peers in [ε, t) is a binomial ran-
dom variable with sample size N and success probability∫ t
ε
γ(τ)dτ . It is not difficulty to see that (refer to [25] for

details)

P (|ψ(t)− ψ′(t)| ≥ ε)
≤P (the number of peers in [ε, t) is greater than NQ)

≤ exp

(
− (NQ− εγmin −NQ)2

NQ− εγmin

)
≤O

(
1

N2d+1

)
. (6)

Further, for any peer t such that ψ′(t) > 0, |ψ(t)−ψ′(t)| ≥ ε
implies that ψ(t) ≤ ψ′(t) − ε or ψ(t) ≥ ψ′(t) + ε. Consider
the case when ψ(t) ≤ ψ′(t)−ε. Such an event implies that the
number of peers in [ψ′(t) − ε, t) is less than NQ. However,
the number of peers in [ψ′(t) − ε, t) is a binomial random
variable with sample size N and success probability∫ t

ψ′(t)−ε
γ(τ)dτ ≥

∫ t

ψ′(t)

γ(τ)d + εγmin = NQ+ εγmin.

It is not difficulty to see that (refer to [25] for details)

P (ψ(t) ≤ ψ′(t)− ε)
≤P (the number of peers in [ψ′(t)− ε, t) is less than NQ)

≤ exp

(
− (NQ+ εγmin −NQ)2

NQ+ εγmin

)
≤O

(
1

N2d+1

)
. (7)

Similarly, one can show that

P (ψ(t) ≥ ψ′(t) + ε) ≤ O
(

1

N2d+1

)
. (8)
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Finally, combining (6), (7) and (8), and taking the union
bound, we have

P(W) =P

(⋂
t∈N
|ψ(t)− ψ′(t)| < ε

)

=1−P

(⋃
t∈N
|ψ(t)− ψ′(t)| ≥ ε

)

≥1−NP (|ψ(t)− ψ′(t)| ≥ ε) ≥ 1−O
(

1

N2d

)
.

Next, fix any peer t. Recall that for any peer i ∈ Ut, D̂i
consists of two parts: (a) all the n1 peers in Γi ∩ [ψ(ti), ti0),
and (b) for the n2 peers in [ti0 , ti), each of them is in D̂i with
probability qi independent of others. For any ε > 0, given A
in Lemma 3 and W in Lemma 7, we have

n1 ≤N
(∫

Γi∩[ψ(ti),ti0 ]

γ(τ)dτ + ε

)
(1 + ε)

≤N
(∫

Γi∩[ψ′(ti)−ε,ti0 ]

γ(τ)dτ + ε

)
(1 + ε)

≤N
(∫

Γi∩[ψ′(ti),ti0 ]

γ(τ)dτ + εγmax

)
(1 + ε)

and

n2 ≤ N
(∫

[ti0 ,ti]

γ(τ)dτ + ε

)
(1 + ε).

Since ε > 0 can be arbitrarily, replacing ε by ε
γmax

we have

n1 ≤ N
(∫

Γi∩[ψ′(ti),ti0 ]
γ(τ)dτ + ε

)
(1 + ε) = n+

1 ,

n2 ≤ N
(∫

[ti0 ,ti]
γ(τ)dτ + ε

)
(1 + ε) = n+

2 .

Now, we can construct an alternative system in the same
way as we did in Section II-C. We will have Di ≤ D+

i ,
i = 1, 2, ...,M , where D+

i ’s satisfy Lemma 4 and Lemma 5,
with the conditioning event A replaced by A∩W . Let PAW(·)
and EAW(·) denote the probability and the expectation con-
ditioned on A∩W . We thus have, for any r1, r2, ..., rM ≥ 0,

EAW

[
exp

(
−

M∑
i=1

ri
Di

)∣∣∣∣∣ I
]

≤EAW
[

exp

(
−

M∑
i=1

ri

D+
i

)∣∣∣∣∣ I
]

≤
M∏
i=1

EAW

[
exp

(
− ri

D+
i

)∣∣∣∣ I] .
Now applying Lemma 2 and taking ρ = (1 + ε), we have

PAW

(
M∑
i=1

ViIi
Di

≤ (1− ε)µ
1 + ε

)
≤ O

(
1

N2d

)
.

Note that Ct =
∑M
i=1 Cit =

∑M
i=1

ViIi
Di

and ε is arbitrary.

Hence, for any ε > 0, PAW (Ct ≤ (1− ε)µ) ≤ O
(

1
N2d

)
.

Consequently,

P (Ct ≤ (1− ε)µ)

≤PAW (Ct ≤ (1− ε)µ) + P(A) + P(W) ≤ O
(

1

N2d

)
.

The result of Theorem 1 thus follows by taking the union
bound over all peers.
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