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Abstract—Peer-to-Peer (P2P) streaming technologies can take
advantage of the upload capacity of clients, and hence can
scale to large content distribution networks with lower cost. A
fundamental question for P2P streaming systems is the maximum
streaming rate that all users can sustain. Prior works have studied
the optimal streaming rate for a complete network, where every
peer is assumed to be able to communicate with all other peers.
This is however an impractical assumption in real systems. In this
paper, we are interested in the achievable streaming rate when
each peer can only connect to a small number of neighbors.
We show that even with a random peer-selection algorithm and
uniform rate allocation, as long as each peer maintainsΩ(logN)
downstream neighbors, whereN is the total number of peers in
the system, the system can asymptotically achieve a streaming
rate that is close to the optimal streaming rate of a complete
network. These results reveal a number of important insights
into the dynamics of the system, base on which we then design
simple improved algorithms that can reduce the constant factor
in front of the Ω(logN) term, yet can achieve the same level of
performance guarantee. Simulation results are provided toverify
our analysis.

I. I NTRODUCTION

With the proliferation of high-speed broadband services,
the demand for rich multimedia content over the Internet,
in particular high-quality video delivery over the Internet,
has kept increasing. Streaming video directly from the server
requires a large amount of upload bandwidth at the server,
which can be very costly. The service quality can also be
poor when the clients are far away from the server. In
addition, it may be difficult for the server bandwidth to keep
up when the demand is exceedingly high. There have been
different approaches to off-load traffic from the server, using
either CDN (content distribution network) or P2P (peer-to-
peer) technologies. Deploying a large CDN can introduce a
high fixed cost. In contrast, P2P technologies are particularly
attractive because they take advantage of the upload bandwidth
of the clients, which does not incur additional cost to the video
service provider. Several well-known commercial P2P live
streaming systems have been successfully deployed, include
CoolStreaming [2], PPLIVE [3], TVAnts [4], UUSEE [5],
PPStream [6]. A typical P2P streaming system can now offer
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thousands of TV channels or movies for viewing, and may
serve hundreds of thousands of users simultaneously [5].

In contrast to the practical success of these P2P streaming
systems, the theoretical understanding of the performanceof
P2P streaming seems to be lagging behind, which may impede
further improvement of P2P live streaming. A basic question
can be asked is what is the maximum streaming rate that all
users can sustain for all possible policies? This question has
been studied under the assumption of a complete network,
where each peer can connect to all other peers simultaneously.
Under this assumption, the maximum streaming capacity has
been found in [7], and both centralized and distributed rate
allocation algorithms to achieve this maximum streaming ca-
pacity have been developed [7]–[10]. However, the assumption
of a complete network is impractical for any large-scale P2P
streaming systems. In a real P2P streaming system, typically
each peer is only given a small list of other peers (which we
refer to as neighbors) chosen from the entire population, and
each peer can only connect to this subset of neighboring peers
(neighbors may not be close in terms of physical distance). The
number of neighboring peers is often much smaller than the
total population, in order to limit the control overhead.

When each peer only has a small number of neighbors,
the P2P network can be modeled as an incomplete graph with
node-degree constraints. In this case, the streaming capacity of
P2P systems becomes more complicated to characterize. Liu et
al. [11] investigate the case when the number of downstream
peers in a single sub-stream tree is bounded. However, the
number of neighbors that each peer could have over all sub-
streams can still be very large (in the worse case it can
be connected to all the other peers simultaneously). Some
approximated and centralized solutions to solve the optimal
streaming capacity problem on a given incomplete network has
been proposed in [12]. However, for large-scale P2P streaming
systems, such a centralized approach will be difficult to scale.
Liu et al. [13] proposed a Cluster-Tree algorithm to construct a
topology subject to a bounded node-degree constraint, which
could achieve a streaming rate that is close to the optimal
streaming capacity of a complete network. This result gives
us hope that, even with node-degree constraints, a P2P network
may achieve almost the same streaming rate as that of a
complete network. However, the Cluster-Tree algorithm is not
a completely de-centralized algorithm because it requiresthe
tracker (a central entity) to apply the Bubble algorithm at the
cluster level. The Bubble algorithm is a centralized algorithm.
Some other works such as SplitStream [14] and Chinasaw
[15] have also studied the problem of how to improve the
streaming capacity when there is a node-degree constraint.
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However, these works did not provide theoretical results on
the achievable streaming rate. To the best of our knowledge,
there is no fully distributed algorithm in the literature that can
achieve close-to-optimal P2P streaming capacity in incomplete
networks.

In this paper, we are interested in the following ques-
tion: without centralized control, how many neighbors does
a peer in a large P2P network need to maintain in order
to achieve a streaming capacity that is close to the optimal
streaming capacity of an otherwise complete network? Further,
can we develop fully-distributed algorithms for peer-selection
and rate-allocation to achieve the close-to-optimal streaming
capacity? This paper provides some interesting and positive
answers to these questions. We first show that, if each peer
has Ω(logN) neighbors, whereN is the total number of
peers in the system, close-to-optimal streaming rate can be
achieved with probability approaching 1 asN goes to infinity.
Further, in order to achieve this goal, each peer only needs
to chooseΩ(logN) downstream neighbors uniformly and
randomly from the entire population, and simply allocates
its upload capacity evenly among all downstream peers. Only
the server needs a slightly different peer-selection policy (see
Section II-B for details).

The results that we obtain have a similar flavor as scaling-
law results in wireless ad hoc networks [16]. Although such
results only hold when the size of the networkN is large, they
do provide important insights into the dynamics of the system.
For example, our analysis indicates that, with a random peer
selection strategy, for each user the most likely bottle neck
for its streaming capacity is at the “last hop”, i.e. the sum
of the upload capacity allocated to this user by its immediate
upstream neighbors. This insight suggests that we could focus
on balancing the capacity at thelast hop when designing new
distributed resource allocation algorithms for P2P streaming.
Based on this insight, we then design an alternative algorithm
that can substantially reduce the number of neighbors required
to achieve the same probability of attaining the near-optimal
streaming rate. This improved algorithm is still very simple
and can be implemented in a distributed fashion. Hence,
we believe that the insights from these results can be very
helpful for designing more efficient control algorithms for
P2P streaming. Finally, although due to space constraints we
focus in this paper on single-channel P2P systems (i.e., only
one video is served), we believe that the results and insights
obtained here can also be generalized to multi-channel P2P
systems [17]. Readers can refer to [1] for examples.

II. SYSTEM MODEL AND MAIN RESULT

In this section, we will show that even without central-
ized control,Ω(logN) neighbors are sufficient for large P2P
streaming networks. Specifically, we will show that just by
letting each peer select itsΩ(logN) neighbors randomly and
do uniform rate allocation among these neighbors, the close-to-
optimal streaming rate could be achieved with high probability
when the network sizeN is large.

A. System Model

We consider a peer-to-peer live streaming network withN
peers and one sources. In the rest of the paper, we will use
the terms “source” and “server” interchangeably. Similarly, we
will use the terms “peer”, “node” and “user” interchangeably.
Denote the set of all peers and the source asV (thus, |V | =
N+1). We assume that the source has an infinitely long video
stream to be streamed to all peers and it has a fixed upload
capacityus. Let Ui denote the upload capacity of peeri. For
ease of exposition, we use a simple ON-OFF model to model
the heterogeneity and random variation of the upload capacity:
each peer has an upload capacity ofUi = u with probabilityp
and an upload capacity ofUi = 0 with probability1−p, i.i.d.
across peers. Thus, an ON peer represents a user with large
upload capacity, while an OFF peer represents a user with low
upload capacity.We assume thatus ≥ u. Like other works [7],
[12], [13], [18], we assume that the download capacity and
the core network capacity are sufficiently large, and hence
the only capacity constraints are on the upload capacity. Each
peeri ∈ V \{s} has a fixed setEi of M downstream neighbors.
Similarly, the source has a setEs of M downstream peers. We
can then model the P2P network as a directed and capacitated
random graph [19]. Ifj ∈ Ei, assign a directed edge(i, j)
from i to j. Let the set of all edges beE. Note that there may
be multiple peers that have a common downstream neighbor.
Define Cij and Csj be the streaming rate from peeri and
sources, respectively, to peerj.

Remark:The above model seems to assume that each peer’s
upload capacity is fixed in time. Nonetheless, we note that
the results in the paper can also be applied to the case
when the upload capacity is time-varying. Specifically, assume
that the upload capacity follows a time-varying but stationary
stochastic process. Then, the above model can be viewed as a
snapshot of such a system at any given time instant. Hence, the
results reported in the rest of the paper will also hold for each
snapshot in time for such a system with a stationary marginal
distribution. (Note that a similar “snapshot” assumption has
also been used in other prior work, e.g. [7], [12], [13], [18].)
In addition, we note that the ON-OFF model can be viewed
as the most extreme case of heterogeneous upload capacity.
In fact, among all possible distributions of the peers’ upload
capacity that are between[0, Umax] and that have the same
meanµ, the ON-OFF model has the largest variance. Hence,
the uncertainty/variability of the ON-OFF model will be the
largest, and the performance of the system will also likely be
the worst. Based on this relationship, we can also generalize
the main conclusions of this paper to other distributions for the
upload capacity (see also the numerical results in Section IV).
However, due to space constraints, we have to omit the details.
Interested readers can refer to our online technical report[20].

The values ofEi, Es, Cij and Csj depend on the peer-
selection and rate-allocation algorithm. Given such an algo-
rithm, we can define the “streaming capacity” of the system as
the maximum rate that the source can distribute the streaming
content to all peers. For example, for a complete network,
we haveEi = V \{i, s} and Es = V \{s}. Under such an
idealized setting, [7] shows that the optimal streaming capacity
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Fig. 1. Illustration of the neighbor selection and a cut

is min
{

us,
us+

∑

i∈V Ui

N

}

, and it can be achieved by setting

Cij = Ui/(N − 1) and Csj = Us/N for all i, j. Note
that themin(·) function is a concave function. Therefore, the
expectation of the above optimal streaming capacity satisfies

E

[

min

{

us,
us +

∑

i∈V Ui

N

}]

≤min

{

us,
us +

∑

i∈V E[Ui]

N

}

, Cf . (1)

For ease of exposition, we refer toCf as “the optimal
streaming capacity” throughout the rest of this paper. For our
ON-OFF model of upload capacity, this optimal streaming
capacity is equal toCf = min

{

us,
us

N + up
}

. However, as
we discussed in the introduction, the assumption of a complete
network is impractical. In this paper, we are interested in the
streaming capacity of an incomplete network, which can be
calculated by the minimum cuts. Specifically note that for a
given usert, a cut that separatess andt is defined by dividing
the peers inV into a setVn of size(n+ 1) that contains the
server, and the complementary setV c

n of size (N − n) that
contains the peert, i.e.,

s ∈ Vn, |Vn| = n+ 1, t ∈ V c
n and |V c

n | = N − n.

The capacity of the cutCn is defined as Cn =
∑

i∈Vn

∑

j∈V c
n
Cij . See Fig. 1 for illustration.

Let Cmin(s → t) denote the minimum-cut capacity, which
is the minimum capacity of all cuts that separate the source
s and the destinationt. It is well-known that this min-cut
capacity is equal to the maximum rate froms to t. Let
Cmin−min(s → T ) denote the min-min-cut which is the
minimum cut of all individual min-cut capacities from the
source to each destinationt within a setT , i.e.,

Cmin−min(s → T ) = min
t∈T

Cmin(s → t).

The streaming capacity of the network is then equal to
Cmin−min(s → V \{s}) [21]. Note that given the graph and
the capacity of each edge, this streaming capacity can be
achieved with simple transmission schemes, e.g., with network
coding [22], [23] or with a latest-useful-chunk policy [8].
However, it may required global knowledge and centralized
control in order to optimally construct the network graph
and allocate the upload capacity. A natural question is then
the following: without centralized control, can the streaming
capacity over an incomplete network approach the optimal
streaming capacityCf of a complete network? In the next
subsection we will provide a simple and distributed peer-

selection and rate-allocation algorithm that can achieve this
with high probability when the network size is large.

B. Algorithms

We will now give explicit description of our simple control
algorithm. First, we use a random peer-selection algorithm.
Specifically, each peer randomly selectsM downstream neigh-
bors uniformly from all other peers. On the other hand,
the server selectsM downstream neighbors uniformly and
randomly among the ON peers. We note that uniformly-
random peer-selection is very easy to implement in practice,
even with dynamic peer arrivals and departures. Specifically,
note that the number of upstream neighbors of a peer will be
a binomial random variableX (sum ofN Bernoulli random
variables with meanMN ). Note that the mean ofX is M .
Thus, when a new peer joins the system, it simply contacts
X peers chosen uniformly randomly among the existing peers.
Then, each contacted peer will choose one of its current down-
stream neighbor uniformly randomly, break this downstream
connection, and take the new peer as the downstream neighbor.
Further, the new peer selectsM downstream neighbors uni-
formly randomly among the existing peers. On the other hand,
when a peer leaves the system, all of its upstream neighbors
simply re-selects a new downstream neighbor randomly. With
this mechanism, it is easy to verify that, at any point in time,
the set ofM downstream neighbors of each peer is uniformly
distributed among the current set of active peer.

Second, we use a uniform rate-allocation algorithm, i.e.,
each peeri simply divides its upload capacity equally among
all of its downstream neighbors inEi. Therefore, each peer
in the setEi receives a streaming rateUi/M from peer i.
Similarly, each downstream peer of the server receivesUs/M
from the server. Under the above scheme, the link capacity
Cij is given by

Cij =







Ui/M, if j ∈ Ei, i 6= s
Us/M, if j ∈ Es, i = s
0, otherwise.

Note that sinceEi and Es are chosen randomly,Cij ’s are
also random variables. We define another import parameter
for the total capacity that each peeri directly receives from
its upstream neighbors, which is given byCR

i =
∑

j∈V Cji.
We will see that this value is the main factor that determines
the streaming capacity from the source to each node.

Remark: Since an OFF peer represents a user with low
upload capacity, the above scheme implies that, regardlessof
each user’s upload capacity, it will choose the same number
M of downstream neighbors uniformly and divide its capacity
evenly among these downstream neighbors. In [20], we use
this model and show that, even with a general distribution
of upload capacity,Ω(logN) neighbors are still sufficient to
attain a close-to-optimal streaming capacity. For details, please
refer to [20].

Somewhat surprisingly, we will show that, as long as
M = Ω(logN), the algorithm achieves close-to-optimal
streaming capacity, with probability approaching 1 asN → ∞
(Theorem 1).
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Remark:Note that the server only chooses ON peers as
its downstream neighbors. This is essential for achieving the
close-to-optimal streaming capacity. To see this, note that the
optimal streaming capacityCf of a complete network is also
constrained by the server capacity (see Equation (1)). If the
server had used a substantial fraction of its upload capacity to
serve OFF peers, intuitively the rest of the peers would then
suffer a lower streaming rate. With the same intuition, one
would think that the peers directly connected to the server also
need to be careful in choosing their downstream neighbors.
However, this turns out to be unnecessary. For our main
result (Theorem 1) to hold, no other peers (except the server)
are required to differentiate their downstream neighbors.As
readers will see, this is because those cuts withVn only
containing the downstream neighbors ofs play a small role
in the overall probability of attaining the close-to-optimal
streaming capacity.

We also note that the above algorithm uses the “push”
model, where upstream peers choose downstream neighbors.
An alternate model is the “pull” model, where downstream
peers choose upstream neighbors. Note that both models create
a mesh-topology, and there is considerable symmetry between
the two models. We use the push model in this paper because it
is easier to analysis, although we believe that the main results
of the paper can be generalized to the pull model, which we
leave as future work.

C. Main Result

Theorem 1. For any ǫ ∈ (0, 1) and d > 1, there existα
and N0 such that for anyM = α log(N) and N > N0 the
probability for the min-min-cut under the algorithm in Section
II-B to be smaller than(1− ǫ)Cf is bounded by

P (Cmin−min(s → V ) ≤ (1− ǫ)Cf ) ≤ O

(

1

N2d−1

)

.

Recall that the min-min-cut is equal to the streaming rate
to all peers. Hence, Theorem 1 shows that as long as the
number of downstream neighborsM is Ω(logN), for any
ǫ ∈ (0, 1) the streaming rate of our algorithm will be
larger than(1− ǫ) times the optimal streaming capacity with
probability approaching 1 as the network sizeN increases.

D. Proof of Theorem 1

We first find the min-cut for any fixed peert. We will use
a similar approach as the one in [19]. We will show that the
probability for the capacity of a cut to be smaller than(1 −
ǫ) times its mean is very small, asN becomes large. Then,
we will take the union bound over all cuts and show that
overall probability is also very small. However, the techniques
in [19] do not directly apply to our model due to the following
two reasons. First, due to the ON-OFF model, there are fewer
“ON” peers and hence the probability for each cut to fall below
its expected value is larger than the case when all peers’ upload
capacity is the same. However, there are still the same number
of cuts we need to account for, which may cause the union
bound in [19] to diverge. Second, the link capacityCij in [19]
is assumed to be independent acrossj, which is not the case in

our model. To address the first difficulty, we will first consider
the subgraph that only contains the ON users, and hence the
number of cuts is also reduced correspondingly. To address
the second difficulty, we will show that the joint distribution
of Cij can be approximated by i.i.d. random variables, which
significantly simplifies the analysis.

We first introduce the following general relationship be-
tween the min-cut from the servers to the peert in a random
graphG and the min-cut from the servers to the peert in the
any subgraphHt of G that containss and t.

Proposition 2. Let G be a random graph defined on some
probability spaceΩ that has a fixed sources and a fixed
destinationt. LetHt be another random graph defined on the
same probability space such thatHt(ω) ⊆ G(ω) for all ω ∈ Ω
and Ht containss and t. Then for any given positive value
C, the following holds,

P (Cmin,G(s → t) ≤ C) ≤ P (Cmin,Ht
(s → t) ≤ C) . (2)

whereCmin,G(s → t) is the min-cut inG from s to t, and
Cmin,Ht

(s → t) is the min-cut inHt from s to t.

Proof. Let A = {ω : Cmin,G(ω)(s → t) ≤ C} andB = {ω :
Cmin,Ht(ω)(s → t) ≤ C}. For anyω ∈ A, the min-cut froms
to t in the graphG(ω) is less thanC. SinceHt is a subgraph
of G(ω), the min-cut froms to t in Ht(ω) is smaller than
the min-cut inG, i.e., Cmin,Ht(ω)(s → t) ≤ Cmin,G(ω)(s →
t) ≤ C. Hence,ω ∈ B. We then haveA ⊆ B and (2) holds
consequently.

Proposition 2 is intuitive because every cut inG(ω) has
a larger capacity than the corresponding cut in the subgraph
Ht(ω). For a given destinationt, letHt(W,F ) be the subgraph
of G(V,E) such thatW contains the peert, the server and all
of the nodes whose channel condition is ON, andF ⊂ E are
those edges between nodes inW . The capacity of the edges in
F is the same as the capacity of the edges inE. Proposition
2 allows us to focus on the subnetworkHt instead of the
entire networkG. Assume that there areY ON peers in the
network excluding peert, and thus|W | = Y +2. Clearly,Y is
a random variable with binomial distribution with parameter
N − 1 and p. For ease of exposition, we assume thatY is
fixed during the following discussion for one given cut, and
we will consider the randomness ofY later when we take the
union bound over all cuts. We define a cut onHt by dividing
the peers inW into a setWm of sizem+1 that contains the
server, and the complementary setW c

m of sizeY −m+1 that
contains peert. The capacity of the cutDm is then given by

Dm =
∑

k∈W c
m

Csi +
∑

i∈Wm

∑

k∈W c
m

Cik. (3)

Note that for each peeri ∈ Wm (and i 6= s), we have
∑

k∈W c
m
Cik = Liu/M , whereLi is the number of down-

stream neighbors of peeri that are in the setW c
m. Note that

the value ofLi must satisfymax{0,M−(N−Y +m−2)} ≤
Li ≤ min{M,Y − m + 1}. Since downstream neighbors of
peeri are uniformly chosen from other peers, we have
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P





∑

k∈W c
m

Cik = l · u

M



 =

(

Y−m+1
l

)(

N−Y+m−2
M−l

)

(

N−1
M

) .

This is the probability thatl out of M downstream neighbors
of peeri are inW c

m (of sizeY −m+ 1) andM − l of them
are in the setV \Wm. The distribution ofLi is known as a
hyper-geometric distribution with expectation(Y −m+1)M

N−1 [24,
p167]. We can get a similar expression for the sources, i.e.,

P





∑

i∈W c
m

Csi = l · us

M



 =











(Y −m
l )( m

M−l)
(Y
M)

if t is OFF,

(Y −m+1

l )( m
M−l)

(Y +1

M )
if t is ON.

E





∑

i∈W c
m

Csi



 =

{

us(Y −m)
Y if t is OFF,

us(Y +1−m)
Y+1 if t is ON.

.

Hence, we obtain the expectation ofDm as

E [Dm] = E





∑

k∈W c
m

Csi



+
∑

i∈Wm

E





∑

k∈W c
m

Cik





=

{

us(Y−m)
Y + u

N−1m(Y −m+ 1) if t is OFF,
us(Y+1−m)

Y+1 + u
N−1m(Y −m+ 1) if t is ON.

(4)

Next, we are interested in the probability thatDm ≥ (1 −
ǫ)E[Dm] for all m for a given constantǫ ∈ (0, 1). In other
words, this is the probability that the min-cut value is no less
than(1− ǫ) times its average. For allm, it is not hard to see

E[Dm] ≥min{E[D0],E[DY ]} = min

{

us,
us

Y
+

Y

N − 1
u

}

.

If we haveY ≥ (1 − ǫ)p(N − 1), we will get

E[Dm] ≥ (1 − ǫ)min
{

us,
us

N
+ pu

}

.

Recall thatCf = min{us,
us

N + pu} is the optimal streaming
capacity assuming a complete network [7]. Hence,Dm ≥ (1−
ǫ)E[Dm] then implies thatDm ≥ (1− ǫ)2Cf . In other words,
the probability thatDm ≥ (1 − ǫ)E[Dm] for all m becomes
a lower bound for the probability that the min-cut is no less
than (1 − ǫ)2Cf . In the following, we will deriveP(Dm ≥
(1 − ǫ)E[Dm]). We will use the moment generating function
for Dm. Before we go further, we need to address the second
difficulty we mentioned above, i.e., theCij ’s are correlated
acrossj. To remove the coupling, we need to introduce the
notion of negatively related for Bernoulli random variables
[25], [26].

Definition 3. The Bernoulli random variablesIi, i = 1, ..., n,
are said to be negatively related if for eachi ≤ n there exists
random variablesJij , such that the distribution of the random
vector[Ji1, Ji2, ..., Jin] is equal to the conditional distribution
of the random vector[I1, I2, ..., In] given thatIi = 1, and
Jij ≤ Ij for j 6= i.

For negatively related random variables, the following the-
orem holds (Theorem 4 in [26]).

Theorem 4. SupposeIi’s are negatively related Bernoulli
random variables with identical distribution,i = 1, 2, ..., n.
Let Ĩi, i = 1, 2, ..., n, be i.i.d. random variables, wherẽIi has

the same distribution asIi for all i. Then for any realt,

E

[

et
∑n

i=1
Ii
]

≤ E

[

et
∑n

i=1
Ĩi
]

.

Theorem 4 thus allows us to bound the moment generating
function of negatively related random variables by that of
independent random variables. Its intuition can be explained
as follows. Roughly speaking, for negatively related Bernoulli
random variables, conditioned on the event that one of them
is 1, the others are more likely to be small. Correspondingly,
conditioned on the event that one of them is 0, the others are
more likely to be large. Therefore, whent > 0, the moment
generating function is mainly determined by the probability of
the sum of all indicator random variables achieving the larger
value. The sum of negatively related random variables is less
likely to achieve a larger value and hence the value of the
moment generation function is smaller. Fort < 0, the moment
generating function is mainly determined by the probability of
the sum of all indicator random variables achieving the smaller
value. The sum of negatively related random variables is also
less likely to achieve a smaller value and hence the value of
the moment generation function is smaller.

One can show that hyper-geometric random variables can
be viewed as the sum of negatively related Bernoulli random
variables (See Example 1 in [26]). Specifically, we first con-
structIi by choosingM neighbors out ofN−1 peers. For each
peeri on the right, letIi = 1 if peer i is chosen as a neighbor,
and letIi = 0 otherwise (Note thatIi is not defined for peers
on the left). We can then constructJij as follows. First, set
Jij = Ij for all j. Then if Jii = 0, in order to makeJii = 1,
we choose one neighbork randomly (either from the left or
the right), and exchange that neighbor with peeri. If k was
on the left, we then letJii = 1. If k was on the right, we then
let Jii = 1 andJik = 0. Clearly,Ji has the same distribution
asI given thatIi = 1. However, by our construction,Jij ≤ Ij
for all j 6= i. Hence,Ii, i = 1, ...,M , are negatively related.
We can now use Theorem 4 to bound the moment generation
function of

∑

k∈Wd
m
Cik by the moment generating functions

of the sum of i.i.d. random variables. Towards this end, we
have the following Proposition.

Proposition 5. For any given cutVk and V c
k of a network

G(V,E), let W̃1 andW̃2 be subsets ofVk andV c
k , respectively.

Assume that|W̃1| = q ≤ k + 1 and |W̃2| = r ≤ N − k. Let
the upload capacity of each peeri ∈ W̃1 beu. For each peer
in W̃1, it choosesM downstream neighbors uniformly and
randomly from a given subset̃V of V that is a superset of
W̃2. Let Ñ = |Ṽ |. Then the moment generating function of
∑

i∈W̃1

∑

j∈W̃2
Cij satisfies

E

[

e−θ
∑

i∈W̃1

∑

j∈W̃2
Cij

]

≤ exp

[

Mq
r

Ñ

(

e−θ u
M − 1

)

]

. (5)

Note that the right hand side of (5) can be viewed as the
moment generating function of

∑

i∈W̃1

∑

j∈W̃2
Cij assuming

that Cij ’s are independent. Prop. 5 then follows from The-
orem 4 and the negatively-related property discussed above.
The detailed proof of Proposition 5 is available in [20].
Proposition 5 combined with the Chernoff bound will be
frequently used to estimate the probability for a cut to “fail”,
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i.e., the capacity of a cut being less than(1 − ǫ) times
its expected capacity. the sum of the capacity from several
identical peers on the left side to the right side. Recall that the
capacityDm of the cutWm is given by (3). Then, by taking
W̃1 andW̃2 in Proposition 5 to beWm andW c

m, respectively,
we can show the following result for the cutWm in Ht under
the assumption of ON-OFF upload capacities.

Lemma 6. Let ǫ ∈ (0, 1). Given that the total number of ON
peers in the entire networkY is equal toy, the probability that
the capacityDm of the cutWm in Ht is less than(1−ǫ)E[Dm]
can be bounded by the following,

P(Dm ≤ (1− ǫ)E[Dm]|Y = y)

≤ exp

[

−
(

Mm
y −m+ 1

N − 1
+M

y −m

y

)

u

us

ǫ2

2

]

.

The proof of Lemma 6 can be found in Appendix A.
Lemma 6 gives us an upper bound on the probability that
the capacityDm of a cut Wm is less than1 − ǫ times its
mean conditioned on the event that the total number of ON
peersY is equal toy. Note thatMm y−m+1

N is the average
number of edges from peers inWm to peers inW c

m, while
M y−m

y is a lower bound on the average number of edges
from the server to peers inW c

m. Hence, the upper bound in
Lemma 6 decreases exponentially if the average number of
edges increases. Furthermore, since the average number of
edges is proportional toM , the upper bound also decreases
exponentially ifM increases. We will use Lemma 6 for each
m = 1, 2, ..., Y . The following lemma then bounds the effect
of all cuts separatings and t. Note that for each value of
m, there are

(

Y
m

)

possible cutsWm. Due to symmetry, the
capacity of all

(

Y
m

)

cuts has the same distribution.

Lemma 7. DefineB̃m to be the event{Dm ≤ (1− ǫ)Cf for
any cutWm among the

(

Y
m

)

cuts}. Suppose that there exists
η ∈ (0, 1) such that for anyy ≥ ηpN and any integerm
between 0 andy, the following holds forβ = exp(−M u

us

ǫ′2

2 )
and γ = ηp,

P(Dm ≤ (1 − ǫ)Cf |Y = y) ≤ βm y−m+1

N−1
+ y−m

y .

Then, the probability of the union of all̃Bm’s is bounded by

P

(

Y
⋃

m=0

B̃m

)

≤ O(e−(1−η)2p2N ) + βγ

[

(

1 + pβ
γ
2

)N−1
]

.

In addition, we can separate the union bound into two parts:

P

(

Y−1
⋃

m=0

B̃m

)

≤ O(exp(−(1− η)2p2N))

+ βγ

[

(

1 + pβ
γ
2

)N−1

− 1

]

, (6)

P

(

B̃Y

)

≤ O(exp(−(1− η)2p2N)) + βγ . (7)

Lemma 7 is obtained by taking the union bound over all
cuts. The detailed proof of Lemma 7 is in [20]. Combing
Lemma 6 and Lemma 7, we can now prove Theorem 1.

Proof of Theorem 1.According to Proposition 2 and Lemma
7, for any peert, the minimum cut from the sources to t can

be bounded by

P (Cmin(s → t) ≤ (1− ǫ)Cf )

≤P (Cmin,Ht
(s → t) ≤ (1 − ǫ)Cf ) = P

(

Y
⋃

m=0

B̃m

)

. (8)

Recall that ifY ≥
√
1− ǫpN , Dm ≥

√
1− ǫE[Dm] implies

Dm ≥ (1 − ǫ)Cf . By Lemma 6, lettingǫ′ = 1−
√
1− ǫ and

β = exp(−M u
us

ǫ′2

2 ), we have ifY ≥ (1− ǫ′)pN ,

P(Dm ≥ (1− ǫ)Cf ) ≤ P(Dm ≥ (1− ǫ′)E[Dm])

≤ exp

[

−
(

Mm
y −m+ 1

N − 1
+M

y −m

y

)

u

us

ǫ′2

2

]

=βm y−m+1

N−1
+ y−m

y .

Now let η = 1− ǫ′ and apply Lemma 7 to (8). We get

P (Cmin(s → t) ≤ (1 − ǫ)Cf ) ≤ P

(

Y
⋃

m=0

B̃m

)

≤2βγ
(

1 + pβ
γ
2

)N−1

+O(exp(−ǫ′2p2N)).

Note that by assumption,M = α log(N). For anyǫ > 0
and ǫ′ = 1 −

√
1− ǫ, choose a sufficiently largeα such that

α ≥ 4dus

γuǫ′2 . We then have, for largeN ,

βγ = exp(−Mγ
u

us

ǫ′2

2
) = exp(−2d log(N)) = 1/N2d.

Hence, the minimum cut satisfies,

P (Cmin(s → t) ≤ (1− ǫ′)Cf )

≤ 1

N2d
2

(

1 + pO(
1

Nd
)

)N−1

= O

(

1

N2d

)

.

Thus, the min-min cut satisfies

P (Cmin−min ≤ (1 − ǫ)Cf )

≤
N
∑

t=1

P (Cmin(s → t) ≤ (1− ǫ)Cf )

≤O

(

1

N2d

)

·N = O

(

1

N2d−1

)

.

We remark on several implications of Theorem 1. First,
Theorem 1 not only shows that pure random selection is
sufficient to achieve close-to-optimal streaming capacityas
long as each peer hasΩ(logN) downstream neighbors, it also
reveals important insights on the significance of differenttypes
of cuts. To see this, note that if we chooseα as in the proof
such thatβγ = O(1/N2d), we have (from (6))

P

(

Y−1
⋃

m=0

B̃m

)

≤ 2βγ

[

(

1 + pβ
γ
2

)N−1

− 1

]

=O(1/N2d)O(e1/N
d−1 − 1) = o(1/N2d).

On the other hand, we haveP
(

B̃Y

)

= O(1/N2d). Hence,
the probability that the last cut (theWY and W c

Y cut) fails
is much larger than the probability that any other cut fails.
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Thus, for each peert, the min-cut from the source tot is
mainly determined byCR

t (recall thatCR
t is the total capacity

received by peert directly from its upstream neighbors, which
is also the capacity of the last cut).

The above insight suggests that, if we want to design
improved distributed control algorithms for P2P streaming
systems, we may want to focus on improving the capacity
CR

t at the last hop. Note that one of the main reasons forCR
t

to fall below its mean value is the imbalance ofCR
t across

t. More specifically, some peerst may have a larger number
of upstream peers, and hence have a larger-than-average value
of CR

t , while other peers may have a smaller-than-average
value ofCR

t . Such imbalance will lead to an increase in the
probability that some peers have low streaming rates. Based
on this intuition, we can design a slightly more sophisticated
scheme to balance the value ofCR

t of different peers, which
will be discussed explicitly in section III.

Theorem 1 also reveals important relationships between the
number of neighbors required and key system parameters. For
example, if we require a better performance (smallerǫ or
larger d) or have fewer ON peers (smallerp), the number
of downstream neighbors needed by each peer will increase.
Specifically, according to the proof, we needα ≥ 4dus

γuǫ′2 . If we
require a higher streaming rate or a faster convergence rate,
i.e., ǫ is smaller (consequentlyǫ′ is smaller) ord is larger, we
will need a largerα. If the probability that a peer is ON is
reduced, i.e.,p is reduced, we will also need a largerα.

III. A N IMPROVED HYBRID ALGORITHM

In the previous section, we proposed a simple scheme with
random neighbor selection and uniform rate allocation that
can sustain a close-to-optimal streaming rate for all users.
Our scheme only requiresO(logN) neighbors for each peer.
However, our simulation results (see Section IV) indicate that
the number of neighbors that each peer needs may still be
quite large. This is because the actual number of neighbors
required also depends on the constant factorα before the
logN term. As in the remarks following Theorem 1, for
uniform rate-allocation schemes, we needα ≥ 4dus

γuǫ′2 , which
increases inversely proportional to the square ofǫ′. The goal
of this section is to study whether we can design a slightly
more sophisticated scheme for neighbor selection and/or rate
allocation that can significantly reduce the constant factor α.
Specifically, our strategy is to retain the random peer-selection
algorithm but focus on improving the rate allocation algorithm.
One may argue that random peer-selection may still be sub-
optimal. However, as we explain in Section II-B, random peer-
selection has the advantage that it is very easy to implement
and robust to peer dynamics. In contrast, other peer-selection
algorithms (e.g., based on forming tree [13]) will likely be
more costly in the presence of peer dynamics. Since our goal
in this paper is both to attain a close-to-optimal streaming
capacity and to use simple, robust and distributed control,we
believe that the choice of using random peer-selection strikes a
reasonable trade-off. In fact, as we will show below, even by
improving the rate-allocation alone, significant performance
improvement can be attained.

As we observed in earlier sections, with high probability,
the bottle neck for uniform rate allocation lies in the last hop,
i.e., the total upload capacity allocated to some peers from
their immediate upstream neighbors is smaller than average.
Hence, a natural idea is to design a more sophisticated rate-
allocation scheme such that the capacity of the last hop is
more balanced, and therefore, we may be able to reduce the
number of neighbors that each user needs in order to achieve
a close-to-optimal streaming rate. More specifically, we may
find Cij ≥ 0, i, j ∈ V , such that with as few neighbors as
possible, the following holds

∑

j∈Ei

Cij ≤ Ui for all i,

∑

i∈Uj

Cij ≥ Rj for all j,
(9)

where Uj denotes the set of all the upstream neighbors
of peer j. Such a rate-allocation scheme is in general not
difficult to complete: It can be found by solving a linear
optimization problem. Wu and Li [27] has proposed a fully
distributed rate-allocation algorithm to solve a similar linear
program. However, a potential limitation of this approach
is the following: such a rate-allocation scheme may only
guarantee the capacity for the last hop. There may be another
cut with smaller capacity, which still constrains the overall
streaming rate of the system. To the best of our knowledge,
we are not aware of an existing result that can rigorously
prove or disprove that guaranteeing the last-cut capacity is
sufficient for guaranteeing the end-to-end streaming rate with
high probability in a random topology. On the other hand, if
we were to formulate the rate-allocation problem as another
linear program for the minimum cut, the complexity would be
much higher than (9). Hence, it remains a challenging question
to develop low-complexity rate-allocation algorithms that can
provably outperform the uniform rate-allocation scheme.

Recall that in the previous section, using uniform rate
allocation among the downstream neighbors, we show that all
the other cuts have a much higher probability (than the last-hop
cut) for achieving a rate larger than the required streamingrate.
A natural question is then whether we can design a scheme that
combines the advantages of both the more sophisticated rate
allocation in (9) for improving the last-cut, and the uniform
rate allocation for maintaining the high values at other cuts.
This question leads us to the following hybrid algorithm that
is simple to implement and provably reduces the number of
neighbors required.

We consider the following class of hybrid algorithmsπθ

for rate allocation: each peer reserves a fractionθ ∈ (0, 1) of
its upload capacity for the more sophisticated rate allocation
similar to (9) and uses the remaining(1 − θ) fraction of its
upload capacity for uniform rate allocation. Specifically,let
CS

ij be the allocated capacity toj from i’s θ fraction of upload
capacity using the more sophisticated rate-allocation scheme,
and letCU

ij be the uniformly allocated capacity to peerj from
peer i’ remaining (1 − θ) fraction of upload capacity. Note
that each peer still randomly selectsM downstream neighbors.
HenceCU

ij = (1−θ)Ui

M if j ∈ Ei. Then, the total allocated

capacity fromi to j is Cij = CU
ij + CS

ij = (1−θ)Ui

M + CS
ij .
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We now formulate a linear feasibility problem to controlCS
ij .

As we did before, we wish our algorithm could achieve a
close-to-optimal streaming capacity. Hence we set the target
streaming rate of each userj to beRj = (1 − ǫ)Cf . Recall
thatCf is the optimal streaming capacity. Therefore, the goal
of the more sophisticated rate allocation algorithm is to find
CS

ij ’s such that
∑

j∈Ei

CS
ij ≤ θUi, for all i,

∑

i∈Uj

(

CU
ij + CS

ij

)

≥ (1− ǫ)Cf , for all j.
(10)

Note that as long as a feasible solution to (10) exists, a
sufficient condition to (10) can be produced by the following
modified optimization problem:

max r

subject to
∑

j∈Ei

CS
ij ≤ θUi, for all i,

∑

i∈Uj

(

CU
ij + CS

ij

)

≥ r, for all j.
(11)

Like the case with uniform rate-allocation, in (11) we do not
even need to know the optimal streaming rateCf before hand.
Hence, the control of the peers (such as peer-selection and
rate-allocation) is decoupled from the problem of choosing
the streaming rate.1 The distributed algorithm proposed in
[27] is still suitable for solving this problem. Therefore,this
hybrid algorithm still preserves the feature of being fully
distributed and simple to implement. Next, we will show that
it can achieve a close-to-optimal streaming capacity with a
significantly lower number of neighbors.

A. Performance Analysis

Next we will show that this hybrid algorithm can achieve a
streaming capacity of(1− ǫ)Cf with a much smaller number
of downstream neighbors of each peer. The following theorem
states the performance of this hybrid algorithm more clearly.

Theorem 8. For any ǫ ∈ (0, 1), θ < 1/2 and d > 1, there
exist

α ≥ max







(2d)us

pumax
{

ǫ2

2 ,
(2θ−1)2

8θ2

} ,
2 + p+ǫ

θ + d

[p− (p+ǫ)δ
θ ](1− ǫ)







,

and N0 such that for anyN > N0 and M = α log(N), the
probability that for the capacity of the min-min-cut under the
algorithmπθ is smaller than(1− ǫ)Cf is bounded by

P (Cmin−min(s → V ) ≤ (1− ǫ)Cf ) ≤ O

(

1

Nd

)

.

This result shows that the hybrid algorithm indeed reduces
the lower bound on the number of required neighbors of each
peer. Note that for smallǫ, the factorα does not depend onǫ
at all. In contrast, the factorα for the uniform rate-allocation
scheme must increase proportional to1/ǫ2. As a numerical

1We note that this decoupling property may also be exploited to help the
server to find the optimal streaming rate. For example, the server can use
a simple probing mechanism to estimate the largest possiblestreaming rate
based on the peers’ feedback.

example, suppose that we want to sustain at least90% of
the optimal streaming capacity, which means thatǫ = 0.1.
The uniform rate-allocation scheme requiresα ≥ 400dus

up . In
contrast, if we use the hybrid algorithmπθ and chooseθ = 0.3,
then we only needα ≥ 10dus

up . The number of neighbors of
each peers is reduced by40 times.

We separate the proof of Theorem 8 into two parts. First,
since the allocation ofCS

ij is based on (10), we need to show

that, given the uniform rate allocation ofCU
ij = (1−θ)Ui

M , there
exists a feasible solution to (10) with high probability. Hence,
all last cuts should be able to exceed the required streaming
rate with high probability. Second, we need to show that, based
on the uniform rate allocationCS

ij alone, the values of all other
cuts should also exceed the required streaming rate with high
probability. Theorem 8 would then follows.

For the first step, we will use the following results, which
state an equivalent characterization to (9) and (10). Specifi-
cally, there exists a rate-allocation such that the sum of the
upload capacity allocated to each user from its immediate
upstream neighbors is larger than its required streaming rate
Rj if and only if, for any group of peers in the network, the
total upload capacity from their upstream neighbors is larger
than the sum of the streaming rates of this group of users.

Lemma 9. There existCij ≥ 0, i, j ∈ V , such that(9) holds
if and only if for any subsetS ⊆ V , the following holds

∑

i∈U(S)

Ui ≥
∑

j∈S

Rj , (12)

whereU(S) = ∪j∈SUj .

Corollary 10. There existCS
ij ≥ 0, i, j ∈ V such that(10)

holds if and only if for any subsetS ⊆ V , the following holds

∑

i∈U(S)

θUi ≥
∑

j∈S



(1− ǫ)Cf −
∑

i∈Uj

CU
ij



 , (13)

whereCU
ij = (1−θ)Ui

M .

The proof of Lemma 9 follows a similar line of the argument
as the Hall’s Theorem [28]. The complete proof using the min-
cut max-flow theorem is provided in [20]. Note that for the
hybrid schemes, the reserved upload capacity of each user for
the more sophisticated rate-allocation isθUi. In addition, each
user receives a capacity of

∑

i∈Uj
CU

ij from the uniform rate
allocation. Thus, since the required streaming rate for each
userj is (1− ǫ)Cf , the target downloading rate for the more
sophisticated rate-allocation should be(1−ǫ)Cf−

∑

i∈Uj
CU

ij .
Therefore, Corollary 10 follows from Lemma 9 immediately,
by letting the upload capacity of each user in Lemma 9 be
θUi, and lettingRj in Lemma 9 be(1 − ǫ)Cf −∑i∈Uj

CU
ij .

Corollary 10 states that if (13) holds, then we can find a proper
hybrid rate-allocation scheme such that the capacity of thelast
hop of each user is enough for its streaming rate. Next we will
show that (13) holds with high probability.

Lemma 11. Fix θ ∈ (0, 1). For any ǫ ∈ (0, 1) and d > 1,
there existN0 andα0 such that ifN ≥ N0 and

α ≥ 2 + (p+ ǫ)/θ + d

[p− (p+ ǫ)δ/θ](1− ǫ)
, (14)
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the following holds for the hybrid algorithmπθ

P



θ
∑

i∈U(S)

Ui ≤
∑

j∈S

[

(1− ǫ)Cf −
∑

i∈V

C
U
ij

]

for someS ⊂ V





≤ O

(

1

Nd

)

.

Lemma 11 and Corollary 10 together imply that the prob-
ability with which (10) has no solution, converges to 0 as
the network sizeN grows. Therefore, with high probability,
we can find a rate-allocation such that (10) holds, i.e., the
capacities of all last-hop cuts are greater than(1− ǫ)Cf with
high probability. For others cuts, our random graph approach
in Section II still applies (it is here that we needθ < 0.5).
Theorem 8 then follows. Readers can refer to [20] for the
detailed proof.

IV. SIMULATION

In this section, we provide simulation results to verify the
analytical results in previous sections. We simulate a P2P
network withN = 5000 peers and one server. Although the
analytical results in this paper focus on the ON-OFF model
for peers’ upload capacity, here we provide simulation results
both for the ON-OFF model and a uniform distribution model.
In the ON-OFF model, each user has an ON probability of
p. When a user is ON, it contributes an upload capacity
u = 10. On the other hand, in the uniform distribution model,
the upload capacity of each peer is uniformly distributed
between[0, 10]. Further, each peer chooses the same number of
downstream neighbors and divides its upload capacity evenly
among these neighbors, regardless of its upload capacity. In
both cases, the server has a capacity ofus = 20. The optimal
streaming capacity is thusCf = 9.004 for the ON-OFF model
with p = 0.9, andCf = 5.004 both for the ON-OFF model
with p = 0.5 and for the uniform distribution model. We vary
the number of downstream neighbors of each user from80
(≈ 9.4 logN ) to 960 (≈ 113 logN ), which correspond to
1.6% and 19.2% of the total number of peersN . For each
choice of the number of downstream neighbors, we generate
random networks for 200 times. For each iteration, all users
select their downstream neighbors randomly as described in
section II-B, and we use the algorithm in [29] (a modified
push-relabel algorithm) to find the min-min cut from the
source to all the users and compare it with(1 − ǫ)Cf . We
count the number of times that the min-min cut of the network
is larger than(1 − ǫ)Cf and plot the probability for that to
happen as the number of downstream neighbors of each peer
varies. The result is shown in Fig. 2, where we simulate four
different combinations ofp (for the ON-OFF model) andǫ.
First, let us focus on the two curves marked with a triangle.
They correspond toǫ = 0.2, i.e., the targeted streaming rate
is 80% of Cf . We can observe that, using random peer-
selection, whenp = 0.5 for the ON-OFF model and when
the number of downstream neighbors of each peer is more
than960 ≈ 113 logN (19.2% of N ), the success probability
that the system could sustain a streaming rate higher than
80% of the optimal streaming capacity is greater than0.9.
If p = 0.9 for the ON-OFF model, the number of downstream
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p = 0.9, ǫ = 0.3

Uniform, ǫ = 0.2

Fig. 2. The success probability versus the number of downstream neighbors
M under uniform rate-allocation

neighbors needed by each peer to achieve the same success
probability of 0.9 reduces to640 ≈ 75 logN (12.8% of N ).
Further, we can observe that with the same ON probabilityp,
when we increaseǫ from ǫ = 0.2 to ǫ = 0.3, the required
number of downstream neighbors to achieve the same success
probability of 0.9 decreases to400 ≈ 47 logN (for p = 0.5)
and 320 ≈ 38 logN (for p = 0.9). These observations
verify our remarks following Theorem 1 thatM needs to be
larger if ǫ is smaller orp is smaller. We also observe that,
when the upload capacity of each peer follows the uniform
distribution and when the number of downstream neighbors
of each peer is more than480 ≈ 56 logN (9.6% of N ),
the success probability of sustaining more than 80% of the
optimal streaming capacity is almost1. This suggests that our
analytical result is still valid for other models of peer upload
capacity.

We note that in the above simulation results, the number
of neighbors required to achieve a high success probability
is still quite large. Using a similar set of configurations, we
next simulate the hybrid algorithm proposed in Section III,
which is designed to further improve the performance. We
first choose the parameterθ to be0.4 (i.e., each user performs
the more sophisticated rate-allocation with40% of its upload
capacity as described in Section III and allocates the remaining
upload capacity uniformly among its downstream neighbors).
The result is shown in Fig. 3. We notice that the number of
neighbors required is reduced by an order of magnitude. For
example, focus on the curve forp = 0.9 andǫ = 0.2. In Fig. 3,
when the number of downstream neighbors of each peer is
more than 15 (0.3% of N ), the probability that the system
can sustain a streaming rate higher than80% of the optimal
streaming capacity is already almost 1. In contrast, recallthat
for the corresponding curve in Fig. 2 withp = 0.9 and ǫ =
0.2, if we use uniform rate allocation, each peer needs more
than640 ≈ 75 logN (12.8% of N ) downstream neighbors to
achieve the same performance. Hence, the hybrid algorithm
reduces the required number of downstream neighbors of each
peer by more than 40 times, while still retaining the simplicity
and robustness of the random peer-selection scheme.

In order to further understand how the value ofθ affects the
performance of the hybrid algorithm, we conduct the following
simulations. We vary the value ofθ from 0.1 to 1.0. For each
θ, we run the simulation in the same way as we generated
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Fig. 3. The success probability versus the number of downstream neighbors
M under hybrid rate-allocation (θ = 0.4)

Fig. 3. Note that although our analytical result in Theorem 8
requires thatθ < 0.5, here we experiment with an even larger
range ofθ. In Fig. 4, we plot the success probability versus the
number of downstream numbers for different values ofθ. The
two sub-figures correspond to two configurations of(p, ǫ). We
observe that the performance of the hybrid algorithm is fairly
insensitive to the value ofθ in the range[0.2, 1]. To more
clearly observe the trend, in Fig. 5 we plot, for each value
of θ, the smallest number of downstream neighborsM that is
required for the system to reach a success probability of0.9.
Each of the four curves corresponds to a different combination
of p and ǫ. We recall that the pointθ = 0 corresponds to
uniform rate allocation. We can observe from Fig. 5 that,
when θ is small (e.g.,θ = 0.1), the required number of
downstream neighbors is significantly larger for all curves. As
we explained towards the end of Section II-D, this behavior is
due to the difficulty for uniform rate-allocation to guarantee
the capacities of the last-hop cuts. On the other hand, the point
θ = 1 corresponds to the “pure” sophisticated rate-allocation.
For all curves, we observe that there is a large range ofθ where
the required number of downstream neighbors is less than that
required whenθ = 1. As we conjecture in Section III, this
may have something to do with the difficulty for the “pure”
sophisticated rate-allocation to guarantee the capacities of cuts
other than the last-hop cuts. Although in our simulations this
performance degradation forθ = 1 does not appear to be
very large, we are not aware of a theoretical result that can
rigorously prove or disprove the performance of the “pure”
sophisticated algorithm. From Fig. 5, we observe that a value
of θ between0.3 to 0.5 appears to be a reasonable choice: it
provides both theoretical performance guarantees (recallthat
Theorem 8 requiresθ < 0.5), and good empirical performance.

We next simulate the performance of both the uniform rate-
allocation algorithm and the hybrid rate-allocation algorithm
when the total number of usersN changes. We vary the
total number of users in the systems fromN = 100 to
N = 6400. The results are shown in Fig. 6 and Fig. 7. For
the results of the uniform rate-allocation algorithm in Fig. 6,
we choose the parametersp = 0.9 and ǫ = 0.2. Each curve
corresponds to a different choice ofM from M = 30 logN
to M = 80 logN . An interesting observation is that when
M is small (e.g.,M = 30 logN ), the performance in fact
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Fig. 5. The required number of downstream neighborsM versus the fraction
of capacity for sophisticated rate allocation

degrades asN increases. The reason is that whenN is small,
M may be even larger thanN , in which case we useM = N
and the network becomes fully connected. However, asN
increases, the sparse connectivity and the negative effectof
low M will eventually kick in. On the other hand, whenM
is sufficiently large(M = 80 logN), the success probabilities
under all different values ofN are always 1. For the results of
the hybrid rate-allocation algorithm in Fig. 7, we choose the
parametersp = 0.5 and ǫ = 0.2. Each curve corresponds to
a different choice ofM from M = 2 logN to M = 5 logN .
We observe that the performance of the hybrid rate-allocation
algorithm is less sensitive to the total number of usersN .
Under the same value ofM , the success probability remains
on the same level asN varies. On the other hand, we can still
see that whenM is sufficiently large, the success probability
becomes 1 for all different values ofN .
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V. CONCLUSION

In this paper, we study the streaming capacity of sparsely-
connected P2P networks. We show that even with a random
peer-selection algorithm and uniform rate allocation, as long
as each peer maintainsΩ(logN) downstream neighbors, the
system can achieve close-to-optimal streaming capacity with
high probability when the network size is large. These results
provide important new insights on the streaming capacity
of large P2P network with a sparse topology. One such
insight is that the capacity of the last cut (i.e., the capacity
from direct upstream neighbors) is often the bottleneck. We
then use this insight to improve the peer-selection and rate-
allocation algorithm to further optimize the achievable stream-
ing capacity. Specifically, we design a hybrid algorithm that
uses a slightly more sophisticate rate-allocation algorithm to
improve the capacity and to reduce the constant factor in the
Ω(logN) result. This new algorithm still retains the simplicity
and robustness of the random peer-selection scheme, but it
significantly reduces the number of neighbors required to
achieve a certain performance guarantee.

Throughout this paper, we have assumed a uniformly-
random peer-selection scheme. It is highly likely that more
sophisticated peer-selection schemes (albeit with a higher
complexity) may lead to even better performance, e.g., an
even smaller factorα. For instance, one may assign a larger
number of downstream neighbors to a peer with a larger upload
capacity. However, we caution that the resulting performance
improvement is not automatic. As we have seen in Section III
for the hybrid algorithm, the effect oflocal improvement on
the global performance can be difficult to quantify. Thus, the
insights obtained from our analysis may be used to guide
the design of more sophisticated algorithms. Further, this
paper has focused on P2P live-streaming systems. For future
work, we will investigate whether similar insights can alsobe
extended to P2P video-on-demand services, which have also
become increasingly popular.
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APPENDIX A
PROOF OFLEMMA 6

Proof. By Chernoff bounds, we have forθ > 0

P(Dm ≤ (1− ǫ)E[Dm]|Y = y, t is ON)

≤ E
[

e−θDm |Y = y
]

e−(1−ǫ)θE[Dm|Y=y]
= eφ(θ)+φs(θ), (15)

where

φ(θ) = logE
[

e−θ
∑m

j=1

∑y+1

i=m+1
Cji

]

+ θ(1 − ǫ)m(y −m+ 1)u/(N − 1)

φs(θ) = logE
[

e−θ
∑y+1

i=m+1
Csi

]

+ θ(1 − ǫ)(y −m+ 1)us/(y + 1)

Now we apply Proposition 5. Recall that we define a cut on
Ht by dividing peers into setsWm andW c

m. We could also
view Wm and W c

m as subsets of some cutVk and V c
k of

network G. We need to exclude the server fromWm since
it has a different upload capacity. For each peer inWm\s,
it will choose M downstream neighbors randomly from the
entire network. Hence,̃V = V . According to proposition 5,
we haveq = |Wm\s| = m, r = |W c

m| = y − m + 1 and
|Ṽ | = N . Therefore, using (5), we have,

φ(θ) ≤ log

{

exp

[

Mm
y + 1−m

N − 1

(

e−θ u
M − 1

)

]}

+ θ(1− ǫ)(y + 1−m)
u

N − 1

=
1

N − 1

[

Mm
(

e−θ u
M − 1

)

+ θ(1− ǫ)u
]

(y + 1−m).

Note that the server only choose neighbors from they+1 ON
peers,|Ṽ | = y + 1. Using similar techniques, for the server,
we can boundφs(θ) by

φs(θ) ≤
1

y + 1

[

M
(

e−θ us
M − 1

)

+ θ(1 − ǫ)us

]

(y + 1−m).

Define φ̃(θ) , M
(

e−θ u
M − 1

)

+ θ(1 − ǫ)u, and φ̃s(θ) ,

M
(

e−θ us
M − 1

)

+θ(1−ǫ)us. Theφ(·) andφs(·) can be written
as

φ(θ) ≤ 1

N − 1
φ̃(θ)m(y + 1−m);

φs(θ) ≤
1

y + 1
φ̃s(θ)(y + 1−m).

Let φ̃min and φ̃s,min be the minimum ofφ̃(θ) and φ̃s(θ)
respectively, overθ > 0. It is easy to seẽφmin = φ̃s,min < 0.
Also sinceφ̃ and φ̃s is convex onθ > 0, these minimum is
attainable. Letθmin andθs,min be the minimizer respectively.
We must have

φ̃s(θs,min) = φ̃s,min = φ̃min ≤ φ̃(θs,min). (16)

One can show thatθs,min = −M
us

log(1 − ǫ). Note that for
0 < a < 1 and0 ≤ x ≤ 1, we have(1 − x)a ≤ 1− ax since
(1−x)a is concave and its derivative at 0 is−a. Moreover, for
0 ≤ x ≤ 1, one can see that(1−x) log(1−x) ≥ x2/2−x by
checking d

dx (1−x) log(1−x)−(x2/2−x) = − log(1−x)−x ≥
0 and (1 − x) log(1 − x) = x2/2 − x when x = 0. Then,

substitutingθs,min into (16) and using the above relationship,

φ̃s(θs,min) ≤ φ̃(θs,min)

=M
[

(1− ǫ)
u
us − 1

]

−M
u

us
(1 − ǫ) log(1− ǫ)

≤M

[

1− u

us
ǫ − 1− u

us

(

ǫ2

2
− ǫ

)]

= −M
u

us

ǫ2

2
.

Consequently,

mφ(θs,min) + φs(θs,min)

≤φ̃(θs,min)m(y + 1−m)/(N − 1)

+ φ̃s(θs,min)(y + 1−m)/(y + 1)

≤−
(

m
y + 1−m

N − 1
+

y + 1−m

y + 1

)

M
u

us

ǫ2

2
.

Since (15) holds for anyθ > 0, letting θ = θs,min yields

P(Dm ≤ (1− ǫ)E[Dm]|Y = y, t is ON)

≤ exp(mφ(θs,min) + φs(θs,min))

≤ exp

[

−
(

Mm
y + 1−m

N − 1
+M

y + 1−m

y + 1

)

u

us

ǫ2

2

]

.

Similarly, one can show that ift is OFF, we have

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is OFF)

≤ exp

[

−
(

Mm
y + 1−m

N − 1
+M

y −m

y

)

u

us

ǫ2

2

]

.

Since y+1−m
y+1 ≥ y−m

y , we have

P(Dm ≤ (1− ǫ)E[Dm]|Y = y, t is ON)

≤P(Dm ≤ (1− ǫ)E[Dm]|Y = y, t is OFF)

Hence,

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y)

≤P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is OFF)

≤ exp

[

−
(

Mm
y + 1−m

N − 1
+M

y −m

y

)

u

us

ǫ2

2

]

.

APPENDIX B
PROOF OFLEMMA 11

Proof. Let Y be the number of ON users in the system, which
is a random variable with binomial distribution Bin(N, p). For
any subsetS of V , defineTS as the number of ON peers
that are the upstream neighbors of at least one peer inS, i.e.
TS = |{i ∈ U(S)|i is ON}|. Let S = |S| be the number of
peers inS. Then,

∑

i∈U(S) Ui = uTS , and the following two
events are equivalent (defined asΓS):

ΓS ,







θ
∑

i∈U(S)

Ui ≤
∑

j∈S

[

(1− ǫ)Cf −
∑

i∈V

C
U
ij

]







=

{

θuTS +
∑

i∈V

∑

j∈S

C
U
ij ≤ S(1− ǫ)Cf

}

. (17)

In the last event of (17), the first term of the left hand side
is the capacity from the more sophisticated allocation and the
second term is the capacity from uniform allocation. We divide
the proof into two parts according to the value ofS.
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1) We first consider the case whenS is small, i.e.,S ≤ δN ,
whereδ ∈ (0, θ/2) is a small constant that does not depend on
N . We will show that, whens is very small, the capacity of
the more sophisticated allocationθuTS alone will be sufficient
with high probability, i.e., it may be larger thanS(1− ǫ)Cf .
Recall thatCf = min

{

up+ us

N , us

}

≤ u
(

p+ us

uN

)

. Let
p′ = p + us

uN . Then, for any ǫ > 0, there existsN0

such that wheneverN > N0, p′ < p + ǫ. We thus have
θuTS < S(1− ǫ)Cf impliesTS < (1 − ǫ)Sp′/θ. Therefore,

P (ΓS) ≤ P (θuTS ≤ S(1− ǫ)Cf )

≤P (TS < (1 − ǫ)Sp′/θ) . (18)

Next, we are going to show that the probability thatTS <
(1− ǫ)Sp′/θ for someS ⊂ V is very small. To prove this, we
first make the following claim: if there exists a set of peersS
such thatTS < (1− ǫ)Sp′/θ, then there exists another set of
peersS ′ such that

TS′ ∈ IS′(ǫ, p′) ,

[

(1− ǫ)(S′ − 1)p′

θ
,
(1 − ǫ)S′p′

θ

]

, (19)

whereS′ = |S ′|. To see this, first note that ifS = 1 and
TS < (1− ǫ)Sup′/θ, (19) automatically holds by lettingS ′ =
S. Suppose thatTS < (1− ǫ)Sp′θ for someS > 1 but TS <
(1 − ǫ)(S − 1)p′/θ. We then remove one peer fromS and
obtainS ′. ClearlyS′ = |S ′| = S − 1. We will have

TS′ ≤ TS < (1 − ǫ)(S − 1)p′/θ = (1 − ǫ)S′p′θ.

Hence,S ′ still satisfiesTS′ < (1−ǫ)S′p′

θ . If (19) is still not
true for S ′, we can remove another node fromS ′ and repeat
these steps until we find a set that satisfies (19). Note that
by removing nodes one by one fromS, in the worst case we
will end up with a setS ′ that contains one peer. However,
as mentioned above, ifS′ = |S ′| = 1, (19) is automatically
satisfied. As a result, we can always find a setS ′ that satisfies
(19) by removing the nodes fromS one by one. Therefore,
the claim holds. Consequently,

P

(

TS <
(1− ǫ)Sp′

θ
for someS

)

≤P (TS ∈ IS(ǫ, p′) for someS) . (20)

Now we are going to characterize the probability on the right
hand side of (20). Defineri(S) to be the probability that
a given useri select at least one of the peers inS as its
downstream neighbor. For any peeri ∈ S, ri(S) is equal to1
minus the probability that peeri choose all itsM downstream
neighbors from the peers that are not inS. More specifically,
for i ∈ S we have

ri(S) = P (i ∈ U(S)) = 1−
(

N − S

M

)/(

N − 1

M

)

. (21)

Similarly, for i ∈ V \ S, we have

ri(S) = P (i ∈ U(S)) = 1−
(

N − S − 1

M

)/(

N − 1

M

)

.

Note that for any peeri, the value ofri(S) is identical for all
the setsS that have the same size|S|. In the rest of the proof,
we will useri(S) to denote the probability that useri selects
at least one of the peers inS as its downstream neighbor for all
the setsS that satisfies|S| = S, i.e., ri(S) = ri(S), ∀S ⊂ V

such that|S| = S. Note that,

1−
(

N − S

M

)/(

N − 1

M

)

≤ 1−
(

N − S − 1

M

)/(

N − 1

M

)

.

Thus, for anyi ∈ V , (21) become a lower bound ofri(S).

ri(S) ≥ 1−
(

N − S

M

)/(

N − 1

M

)

. (22)

The second term on the right hand side of (22) satisfies
(

N−S
M

)

(

N−1
M

) =

(N−S)!
M !(N−S−M)

N !
M !(N−M)!

≤
(

1− M

N

)S

≤ e−
SM
N .

Combining (22) and the above inequality, we get a uniform
lower bound ofri(S) for all i, which is denoted byr(S),
ri(S) ≥ 1− e−

SM
N , r(S). Now we have, fory ≥ (1− ǫ)Np

P (TS ∈ IS(ǫ, p′)|Y = y)

≤
⌊(1−ǫ)Sp′/θ⌋

∑

t=⌈(1−ǫ)(S−1)p′/θ⌉

(

y

t

)

r(S)t(1 − r(S))y−t

≤1

θ

(

y

⌊(1− ǫ)Sp′/θ⌋

)

r(S)⌊(1−ǫ) Sp′

θ
⌋(1− r(S))y−⌊(1−ǫ) Sp′

θ
⌋

≤1

θ
N

Sp′

θ e
− S

N
M(1−ǫ)

(

Np−Sp′

θ

)

.

Then, fory ≥ (1 − ǫ)Np, we have

P

(

TS ∈ IS(ǫ, p
′) for someS ≤ δN

∣

∣

∣

∣

Y = y

)

≤

δN
∑

S=1

(

N

S

)

P
(

TS ∈ IS(ǫ, p
′)
∣

∣Y = y
)

≤

δN
∑

S=1

1

θ
N

S
N

Sp′

θ e
− S

N
M(1−ǫ)

(

Np−Sp′

θ

)

≤

δN
∑

S=1

1

θ
N

S

(

1+
p′

θ

)

N
−αS(1−ǫ)

(

p−
p′δ
θ

)

(sinceM = α logN ).

It follows that

P
(

TS ∈ IS(ǫ, p
′) for someS ≤ δN

)

≤P(Y < (1− ǫ)Np) +
N
∑

⌈y=(1−ǫ)Np⌉

P(Y = y)

×P

(

TS ∈ IS(ǫ, p
′) for someS ≤ δN

∣

∣

∣

∣

Y = y

)

≤O(exp(−ǫ
2
p
2
N)) +

δN
∑

S=1

1

θ
N

S(1+p′/θ)
N

−αS(1−ǫ)(p−p′δ/θ)
.

(23)

Note that whenN is large,α satisfies,

α >
2 + (p+ ǫ)/θ + d

[p− (p+ ǫ)δ/θ](1− ǫ)
≥ 2 + p′/θ + d

[p− p′δ/θ](1− ǫ)
.

We have,

δN
∑

S=1

1

θ
Ns(1+p′/θ)N−αS(1−ǫ)(p−p′δ/θ)p

≤1

θ
N1+1+p′/θN−(2+p′/θ+d) =

1

θNd
= O

(

1

Nd

)

. (24)
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Finally, combining (18), (20), (23) and (24), we have

P





⋃

S⊂V,|S|≤δN

ΓS





≤P

(

TS <
(1− ǫ)sp′

θ
for someS ≤ δN

)

≤P
(

TS ∈ IS(ǫ, p
′) for someS ≤ δN

)

≤ O

(

1

Nd

)

.

2) When s is large, i.e.,S > δN , the capacity from
sophisticate allocation alone may not be adequate. We then
need to count both parts of the capacity in (17). Consider the
quantityθuTS +

∑

i∈V

∑

j∈S CU
ij in (17). It can be viewed as

the maximum capacity that can be assigned toS from both the
more sophisticate and uniform rate allocation. Now consider
a purely uniform rate allocation. The total capacity allocated
to S must be a lower bound of the above value. Next, we will
show that the above lower bound will be larger than(1−ǫ)SCf

with high probability. More precisely, letIij be the indicator
function of the event that there is a link between nodei and
nodej, and nodei is an ON peer or the server. Then we have

∑

i∈V

∑

j∈S

CU
ij =

us

M

∑

j∈S

Isj +
(1− θ)u

M

∑

i∈V \s

∑

j∈S

Iij .

Note that for fixedi ∈ V ,
∑

j∈S Iij ≤ M . Further, if i is
OFF or i /∈ U(S), then

∑

j∈S Iij = 0. Recall thatTS is the
number of ON users inU(S). We have

∑

i∈V \s

∑

j∈S

Iij =
∑

i∈U(S),i is ON

∑

j∈S

Iij ≤ TSM,

and henceTS ≥ 1
M

∑

i∈V \s

∑

j∈S Iij . Then, the total avail-
able capacity fromU(S) to S will be

θuTS +
∑

i∈V

∑

j∈S

CU
ij

≥us

M

∑

j∈S

Isj + θu
1

M

∑

i∈V \s

∑

j∈S

Iij +
(1− θ)u

M

∑

i∈V

∑

j∈S

Iij

=
us

M

∑

j∈S

Isj +
u

M

∑

i∈V \s

∑

j∈S

Iij .

The above value is equal to the capacity fromU(S) to S if
we use purely uniform rate allocation scheme. Note that

E





us

M

∑

j∈S

Isj +
u

M

∑

i∈V \s

∑

j∈S

Iij





=N
M

N
· us

M
+NS

M

N
· u

M
p ≥ Cf .

Applying Chernoff bound and Lemma 5, and using similar
argument as we did when proving Lemma 6, we can show
that

P(ΓS) =P

(

θuTS +
∑

i∈V

∑

j∈S

C
U
ij ≤ (1− ǫ)SCf

)

≤P





us

M

∑

j∈S

Isj +
u

M

∑

i∈V \s

∑

j∈S

Iij ≤ (1− ǫ)SCf





≤e
− ǫ2

2
u
us

MSp

Consequently,

P





⋃

S⊂V,|S|>δN

ΓS





≤
N
∑

S=δN+1

(

N

s

)

e−
ǫ2

2
u
us

MSp ≤
N
∑

S=δN+1

(

Ne

S

)S

e−
ǫ2

2
u
us

MSp

≤
N
∑

S=δN+1

eS(1−log δ)e−
ǫ2

2
u
us

MSp ≤ 2e(1−log δ− ǫ2

2
u
us

Mp)δN .

Hence, as long as1 − log δ − ǫ2

2
u
us
Mp < 0, the above

expression will converge to 0 exponentially fast. In fact, if
M = α logN andα satisfies (14), then for sufficiently large
N , the inequality1− log δ− ǫ2

2 Mp < 0 always holds. Hence,
if (14) holds, we have,

P





⋃

S⊂V,|S|>δN

ΓS



 ≤ O(1/Nd).

Finally, by combining the result of part (1) and part (2)
together, we can thus prove the lemma.
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