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Abstract—Although cellular networks can be provisioned ac-
cording to the peak demand, they usually experience large
fluctuations in both channel conditions and traffic load level.
Scheduling with both channel- and load-awareness allows us to
exploit the delay-tolerance of data traffic to alleviate network
congestion, and thus reduce the peak. However, solving the opti-
mal scheduling problem leads to a large-scale Markov Decision
Process (MDP) with extremely high complexity. In this paper,
we propose a scalable and distributed approach to this problem,
called Coordinated Scheduling (CoSchd). CoSchd decomposes the
large-scale MDP problem into many individual MDP problems,
each of which can be solved independently by each user under
a limited amount of coordination signals from the BS. We show
that CoSchd is close to optimal when the number of users
becomes large. Further, we propose an approximation of CoSchd
that iteratively updates the scheduling policy based on online
measurements. Simulation results demonstrate that exploiting
channel- and load-awareness with CoSchd can effectively alleviate
cellular network congestion.

Index Terms—Wireless scheduling, deadline constraint, dual
decomposition, large-system asymptotics.

I. INTRODUCTION

AGRAND challenge facing today’s mobile service
providers is to meet the exponentially increasing demand

for mobile broadband services. This problem is particularly
severe at the so-called “peak”, where the network is heavily
loaded at specific times and locations. Currently, wireless
providers invest heavily in new spectrum and infrastructure
to accommodate the peak demand, but such efforts are costly
and inefficient: since the network traffic at non-peak times
is orders-of-magnitude lower than that at peaks, provisioning
network capacity for peak demand will lead to poor utilization
of network resources.

An alternative approach is to exploit the delay tolerance of
mobile applications to improve the network utilization. Prior
work has identified a class of applications that can tolerate
some delay, ranging from a few minutes to hours [2–5]. For
example, the analysis in [4] shows that more than 55% of
multimedia contents in cellular networks are uploaded more
than one day after their creation time. More recently, the
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survey conducted in the TUBE project indicates that users
are willing to defer their data transmissions if appropriate
incentives are provided, e.g., a discounted price [2]. Motivated
by these findings, in this paper we study the scheduling
of delay-tolerant traffic to minimize network congestion and
improve resource utilization in wireless networks.

There are two directions where delay-tolerance can po-
tentially be exploited to alleviate network congestion: load-
awareness and channel-awareness. On one hand, approaches
such as TUBE [2] and CoAST [6] move delay-tolerant traffic
to the time and location where the network is less loaded,
i.e., being load-aware, and thus alleviate network congestion.
However, these approaches do not consider users’ time-varying
wireless channels – hence we classify them as “load-only” ap-
proaches. On the other hand, noting the temporal variation of
channel conditions in wireless networks, a number of channel-
aware scheduling schemes have been proposed at the mobile
device to improve spectrum efficiency [3, 5, 7]. While this line
of work takes advantage of the opportunistic nature of wireless
networks, it has been limited to optimizing on a single mobile
device. As a result, these schemes are oblivious to traffic-load
levels and thus we refer to them as “channel-only” approaches.
The recent work in [8] proposes mobile-side mechanisms to
estimate and react to both channel condition and network
load. However, it mainly focuses on reducing the energy
consumption of the mobile. To the best of our knowledge,
the above two directions have not been investigated jointly for
the purpose of reducing network congestion.

In this paper, we study jointly channel- and load-aware
scheduling policies for delay-tolerant traffic to reduce network
congestion. We consider the scenario of a cellular network
serving a sequence of data transfer requests. Each data transfer
request has a pre-specified deadline, which is directly tied
to the users’ overall experience. The network’s objective is
to schedule these data transfers intelligently to minimize the
network congestion cost, subject to their deadline constraints.
We define the network congestion cost as the sum of convex
functions of the load at each BS/WiFi-hotspot and at each
time. With the convexity, the cost function naturally penalizes
high peak demand and thus a cost-minimizing solution will
tend to smooth out the traffic load across time and location.

The above scheduling problem is a sequential decision
problem and can theoretically be cast as a Markov Decision
Process (MDP). However, solving such an MDP problem faces
challenges of both computational complexity and information
collection. First, as the system size increases, the complexity
of the MDP problem increases exponentially due to the curse
of dimensionality. Compared to the channel-only approach that
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only considers one mobile device [3, 5], here the size of the
problem is very large, as a typical network may have hundreds
of thousands of requests and a large number of BSs and WiFi
hotspots. Compared to the load-only approach [2], here the
channel uncertainty leads to significant difficulty in determin-
ing the amount of load that can be moved under a given policy.
Second, if we were to solve the MDP in a centralized manner,
the scheduler needs to know all requests and channel evolution
statistics for each individual user. Collecting this information
may require the BS to track the behaviors of all users, which
raises concerns on both signaling overhead and privacy. Thus,
decomposition technique and distributed scheduling policies
are highly desirable to effectively solve such a large-scale
MDP.

In this paper, we propose distributed schemes for solving
this type of large-scale MDP problems. We refer to our dis-
tributed solution as Coordinated Scheduling (CoSchd). Under
CoSchd, the network does not need to know the statistics of
all requests, but instead updates a set of congestion signals
based on the aggregated network load. At the same time,
each user executes an individual decision policy based on the
congestion signals and its own channel statistics. The key to
this decomposition is to approximate the original problem by
exchanging the order of the expectation and the cost function.
Specifically, we replace the minimization of the expectation of
the cost function with a minimization of the cost of the expect-
ed load (see Section IV for details). This approximation allows
us to apply duality to decompose the network control, which
addresses both the complexity issue and the signaling/privacy
issues discussed earlier. Under certain conditions, we show
that as the number of users in the system tends to infinity,
the proposed CoSchd policy approaches the optimal solution
of the original problem. We further propose an approximate
version of CoSchd, referred to as CoSchd with Online Update
(CoSchd-OU), that iteratively updates the scheduling policy
based on online measurements. Finally, we evaluate the per-
formance gains of exploiting channel- and/or load-awareness
through simulations. Our simulation results demonstrate the
asymptotic optimality of the proposed CoSchd and the benefits
of scheduling with channel- and load-awareness. In particular,
CoSchd can significantly reduce the network congestion for
multi-cell systems with load variations.

In summary, the main contributions of this paper are:

• We study jointly channel- and load-aware scheduling
policies for alleviating cellular network congestions. Pre-
vious work has only studied channel-aware and load-
aware scheduling schemes separately, which are much
easier to analyze. To the best of our knowledge, this is
the first unified framework that considers both channel-
and load-fluctuations to alleviate network congestion and
improve resource efficiency.

• We decompose the large scale scheduling problem by
dual decomposition and propose a Coordinated Schedul-
ing (CoSchd) policy. CoSchd provides a framework
for reducing the computation complexity and signaling
overheads in channel- and load-aware scheduling. Under
CoSchd, each user solves an individual MDP problem
based on its own channel statistics and the congestion
signals broadcast by the BS. The BS updates the con-

gestion signals based on the aggregated traffic. We show
that CoSchd achieves a near-optimal congestion cost in
the many-source regime.

• We propose an approximation of CoSchd, referred to as
CoSchd with Online Update (CoSchd-OU), where the
congestion signals are updated based on the real-time
aggregated traffic. Thus, CoSchd-OU may be even easier
to implement.

The remainder of this paper is organized as follows. We first
discuss related work in Section II. We define the problem in
Section III and present our distributed solution and its near-
optimality in Section IV. We present the evaluation results in
Section V.

II. RELATED WORK

Opportunistic scheduling has been extensively studied in
wireless networks [9–14]. In particular, scheduling with
Quality-of-Service guarantees, e.g., deadline constraints, has
attracted plenty of attention recently. The Earliest-Deadline-
First (EDF) and Least-Laxity-First (LLF) policies have been
shown to be optimal for underloaded systems in traditional
machine-job scheduling problem without channel-variations
[15]. Variants of these policies, e.g., FEDD [16] and L2HPR
[17], have been proposed for deadline-constrained scheduling
under wireless channels. Lyapunov-optimization-based poli-
cies are studied in [18] and [19] for maximizing the net-
work utility with deadline constraints. Our previous work
[20] proposes application-level scheduling policies that are
asymptotically optimal in minimizing the deadline-violation-
probability in the large-system regime. However, all these
studies assume stationary arrival processes without considering
the time-dependency of network traffic.

In addition to network-scale scheduling, channel-aware
scheduling in the mobile side has also been studied to reduce
the energy consumption and improve mobile battery perfor-
mance. [21, 22] and [23] propose dynamic-programming (DP)
based policies for minimizing the energy consumption in a
mobile device. Both Wiffler [7] and Bartendr [5] consider
the setting of vehicular systems to offload 3G data traffic to
either WiFi networks or to time-instants when signal strength
is stronger. In [3], Lyapunov-optimization-based algorithm is
developed for the access link selection problem to reduce
energy consumption of data transfers. These channel-only
solutions leverage WiFi availability and signal variability, but
do not consider network load fluctuation. The recent work
in [8] proposes a LoadSense technique and a Peek-n-Sneak
protocol, to estimate and react to both channel condition and
network load. However, it mainly focuses on reducing the
energy consumption of the mobile.

Load-aware control, e.g., time-dependent pricing, has been
proposed to leverage delay tolerance to alleviate cellular
network congestion. In particular, TUBE is a theoretical and
experimental study that leverages time-dependent pricing to
alleviate network congestion [2]. Its pilot trial conducted at
Princeton with 50 AT&T data users demonstrates the feasibil-
ity of using time-dependent pricing to alleviate network con-
gestion. A more recent work [6] proposes a CoAST approach
to reduce the peak by exploiting the small-scale variations
in cellular traffic. TUBE and CoAST leverage network load
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fluctuations while our work considers not only network load
fluctuations, but also user channel variations.

The channel- and load-aware scheduling problem can be
viewed as an MDP. One possible way to solve this large scale
MDP problem is the mean field approach [24], which approxi-
mates a large MDP by a continuous deterministic optimization
problem and obtains the optimal policy by solving ordinary
differential equations. However, it is not straightforward that
this mean-field approach will lead to a decentralized solution
as we will propose in this paper. Another possible way is
to view this MDP as a factored decentralized MDP (factored
Dec-MDP) [25], where a large scale MDP can be divided into
independent sub-MDPs. Decomposition techniques have been
extensively studied to reduce the complexity of such large
scale MDPs [26–28], usually assuming special structure for
the global reward function, e.g., a linear-sum of local rewards
[28]. However, the congestion cost in our paper is a general
convex function of the load contributed by all users, and the
scheduler needs to coordinate all users with simple strategies.

III. SYSTEM MODEL

We start by considering a single-BS system, where the
proposed approach can also be generalized to include multiple
BSs and WiFi-hotspots, as discussed in Section IV-E. The
problem stated here applies to both the uplink and downlink
in cellular networks.

Assume that time is slotted and indexed by t ∈
{0, 1, . . . , N−1}, where N is the number of time-slots in each
day. A typical time-slot length ranges from tens of seconds to
a few minutes. Because of the large time scale, we assume
that a data transfer request will be completed in one time-slot
when the request is accepted, as in [2].
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Fig. 1. Normalized cellular load from an anonymous mobile network operator
in an urban area, obtained from http://anrg.usc.edu/www/Downloads/.

Data Traffic. In a typical day, a sequence of data transfer
requests enter the network with user-specified deadlines. We
use the words “user” and “request” interchangeably. The re-
quests depart upon completion or deadline expiration. Mobile
users show similar aggregated behavior over time (e.g, week-
days), as shown in various measurement studies of cellular
traffic [29, 30]. For example, in Fig. 1, real-life load traces
of cellular BSs show clear patterns over weekdays and over
weekends/holidays.

Consider the scheduling problem in one day, where t ∈
{0, 1, . . . , N − 1}. Let I = {1, 2, . . . ,m} be the index set of
all users that may request transfers from the BS. For each user
i ∈ I, denote the arrival time and the file size of its request

by Ai and Bi, respectively. Assume that Ai’s and Bi’s are
independent across users. Ai follows a distribution that reflects
the typical traffic pattern of the day [2, 30]. We assume that
the file size Bi is bounded by Bmax, i.e., Bi ≤ Bmax, and is
given as soon as the request arrives.

Each request i is associated with a user- or application-
specific deadline Di, i.e., the maximum delay that a user can
tolerate. The deadline ranges from minutes to hours for delay-
tolerant traffic [2, 4]. Such a deadline requirement depends
on specific applications and can be set in various ways. For
example, it could be a default setting in an application, e.g.,
syncing emails every half an hour; or, it can be learned from
user preference. We assume that all transmission tasks should
be completed at the end of the day, i.e., Ai + Di ≤ N − 1,
for simplicity. To guarantee the quality of user experience,
we need to constrain the deadline violation probability when
scheduling delay-tolerant traffic, as discussed later. Note that
in this model we also allow real-time traffic that needs to be
transmitted immediately, in which case the deadline is set to
be zero.

Channel Dynamics. Each user experiences time-varying
channel conditions. We aim at designing scheduling policies
that exploit channel variations in the coarse time-scale due
to shadowing and user mobility, i.e., slow-fading. The mea-
surements in [31] show that “the channel has a dominant
slow-fading component on which the fast-fading component
is overlaid”, and the slow-fading component remains roughly
constant on the order of seconds to minutes depending on the
mobility. Thus, we model the channel conditions of user i as a
stochastic process Ri(t), where Ri(t) ≥ 0 denotes the instan-
taneous rate per unit spectrum resource (e.g., a time-frequency
block in LTE) at which the BS can communicate with user i
in time-slot t. As suggested in [32], we assume that Ri(t)
is a homogeneous Markov chain over a finite set of possible
transmission rates, i.e., Ri(t) ∈ {r1, r2, . . . , rJ}, where J is
the number of possible rates, and 0 = r1 < r2 < . . . < rJ .
We assume that the channel conditions are independent across
users and the transition probability matrix for user i is given
by

P i = [p
(i)
j1j2

]J×J , i ∈ I, (1)

where p(i)
j1j2
∈ [0, 1], 1 ≤ j1, j2 ≤ J , is the transition proba-

bility from state j1 to state j2 for user i. We assume that all
channel processes achieve the steady state, i.e., following the
stationary distribution π(i), where π(i) = [π

(i)
1 , π

(i)
2 , . . . , π

(i)
J ]

is the stationary distribution for the Markov chain of user i.
When user i in channel condition Ri(t) (Ri(t) > 0) is

scheduled to transmit a file of size Bi, it consumes Bi/Ri(t)
units of spectrum resource. We assume that each user can
estimate its current channel condition via measurements of
received signal strength and interference levels. Further, the
user can learn the transition probability of its channel dynam-
ics based on historical measurements, as in [7, 33].

Scheduling Policy and Base-Station Load. Let Γ denote a
general scheduling policy that decides which users to transmit
at a given time-slot. We consider the set of all causal policies.
Corresponding to each Γ, we let Lt(Γ) be the aggregate
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amount of spectrum resource consumed by the users trans-
mitting in time-slot t under policy Γ. We express Lt(Γ) as

Lt(Γ) =
∑
i∈I

Yi,t(Γ), t = 0, 1, . . . , N − 1, (2)

where Yi,t(Γ) is the amount of resource consumed by user
i in time-slot t. More precisely, recall that Ri(t) is the
instantaneous rate per unit spectrum resource of user i in time-
slot t. We then have that for 0 ≤ t ≤ N − 1,

Yi,t(Γ) =

{
Bi/Ri(t), if user i transmits in slot t,
0, otherwise.

(3)

Objective. From the network’s point of view, the objective
is to minimize the total congestion cost in the horizon of N
time-slots subject to the deadline violation constraints. Let f(·)
be a convex congestion-cost function and vi(Γ) be the deadline
violation probability of user i. The scheduling problem is then

(P0)
minimize

Γ
F =

N−1∑
t=0

E
[
f
(
Lt(Γ)

)]
,

subject to vi(Γ) ≤ ηi, ∀i ∈ I,
(4)

where ηi is the maximum deadline violation probability toler-
ated by user i. In problem P0, the convexity of f(·) penalizes
peaks and thus favors load that is smoothed over time, which
is desirable for network operators. In most of our numerical
results, we use the following function f(l) =

(
l/C̄

)ν
, where

C̄ is a positive constant and ν > 1 is a factor for controlling
the penalty.

Table I summarizes the key variables used in this paper.

TABLE I
LIST OF VARIABLES

Variable Explanation
t Time-slot index
i User index
N Number of time-slots per day
I Set of users

(Ai, Bi, Di) Arrival time, file size, and deadline of user i
Ri(t) Instantaneous rate per unit spectrum resource
p
(i)
j1j2

Transition probability from channel state j1 to j2
Yi,t Resource consumed by user i in time-slot t
Lt Total resource required in time-slot t under policy
lt Expectation of Lt
vi Deadline violation probability of user i under policy
ηi Deadline violation probability constraint of user i
f(·) Cost function
F ∗ Optimal value of the original problem P0

F] Optimal value of the approximate problem P1

Note that, in principle, P0 can be viewed as an MDP by
taking the waiting time and channel condition of all users as
system state. However, solving such an MDP problem in a cen-
tralized manner is forbiddingly complex. First, the size of the
problem is very large, as a typical network may have hundreds
of thousands of users, over a time horizon of a day. In addition,
deadline constraint is notoriously difficult to solve in general
because of the resource coupling across time and among users.
Second, the problem formulation assumes knowledge of all
requests and their detailed channel information. In practice,
it is not feasible to gather such detailed information in a

central entity because of both signaling overhead and privacy
concerns.

Next, we will focus on the regime where the number
of users is large, and develop a distributed approach for
(approximately) solving problem P0. Our main intuition is the
following. In our system, each user can be seen as interacting
with the set of all other users. When the number of users is
large, the impact of any given user’s decision on the overall
system should be minimal. Thus, it would be as if each user
is interacting with a common entity that includes all users
in the system. If we can summarize the effect of all users
by some kind of “congestion signal,” we may then be able to
approximate the original system by another system where each
user independently reacts to such a common congestion signal.
The challenges are how to design such a common congestion
signal and how to establish the (asymptotic) optimality of
the decomposition, which will be the focus of the following
sections.

IV. ASYMPTOTICALLY OPTIMAL DECOMPOSITION

This section studies asymptotically optimal policies for
solving the large scale MDP P0. Note that the objective in (4)
is to minimize the expectation of total cost. We first propose a
lower bound of P0 by introducing a new problem P1 that
minimizes the total cost of expectation. We then propose
a distributed policy, referred to as Coordinated Scheduling
(CoSchd), and show its asymptotic optimality in the many-
source regime.

A. Lower Bound
In the original problem P0, the cost is a function of the

instantaneous load level Lt(Γ) and the objective is to minimize
the expected total cost. Because the cost function f(·) is
convex, the optimal value of P0 can be lower bounded by
exchanging the order of the expectation and the cost function.
Specifically, consider the following problem that minimizes
the total cost of the expected load level:

(P1)
minimize

Γ
F̃ =

N−1∑
t=0

f
(
lt(Γ)

)
,

subject to vi(Γ) ≤ ηi,∀i ∈ I,
where lt(Γ) = E[Lt(Γ)] is the expectation of the load level.
Let F ∗ be the optimal value of the original problem P0 and
let F] be the optimal value of P1. Because the constraints
of P0 and P1 are identical and the only difference lies in
the objective function, we can easily show the following
proposition by the convexity of f(·) and Jensen’s inequality
[34].

Proposition 1 The optimal value of problem P1 provides a
lower bound on the value of the original problem P0, i.e.,
F] ≤ F ∗.

As we will see later, thanks to the linearity of expectation
operation, the cost of expected load is much easier to deal
with than the expectation of cost. Hence, problem P1 and its
lower-bound property are critical in the design and analysis
of asymptotically optimal policies. Next, we will study the
optimal solution for P1, and show its asymptotic optimality
for the original problem P0 in the many-source regime.
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B. Dual Decomposition

This subsection proposes a decomposition approach for
solving problem P1 based on dual decomposition. Recall
that the channel rates satisfy 0 = r1 < r2 < . . . < rJ
and users could only request to transmit under a positive
rate. To use dual decomposition, we first introduce auxiliary
variables ht ∈ [0, hmax], (t = 0, 1, . . . , N − 1), where
hmax = Bmax/r2 is the maximum load level in one slot. Let
h = [h0, h1, . . . , hN−1]. We can rewrite problem P1 as

(P ′1) minimize
Γ,h

F̃ =

N−1∑
t=0

f(mht)

subject to lt(Γ)/m ≤ ht, 0 ≤ t ≤ N − 1, (5)
vi(Γ) ≤ ηi,∀i ∈ I, (6)
0 ≤ ht ≤ hmax, 0 ≤ t ≤ N − 1. (7)

Let β = [β0, β1, . . . , βN−1] be the Lagrange multiplier vector
corresponding to the constraints in Eq. (5). It will be clear that
β serves as the congestion signal provided by the BS over
time. Given β, we formulate and decompose the Lagrangian
as follows:

L(Γ,h,β) =

N−1∑
t=0

f(mht)−
N−1∑
t=0

βt
[
ht − lt(Γ)/m

]
=

N−1∑
t=0

[f(mht)− βtht] +
1

m

∑
i∈I

N−1∑
t=0

βtyi,t(Γ),

(8)

where yi,t(Γ) = E[Yi,t(Γ)] is the expected amount of resource
consumed by user i in slot t. Let the objective function of the
dual problem be g(β), i.e.,

g(β) = inf
Γ,h
L(Γ,h,β). (9)

Since the Lagrangian has been decomposed, we can use
an individual policy Γi to minimize the expected consumed
resource of user i. Thus, for a given β, the dual objective
function can be obtained by solving the following subprob-
lems:

(SP0)
minimize

N−1∑
t=0

[f(mht)− βtht],

subject to 0 ≤ ht ≤ hmax, 0 ≤ t ≤ N − 1.

(SPi)
minimize

Γi

N−1∑
t=0

βtyi,t(Γi)

subject to vi(Γi) ≤ ηi, i ∈ I.

The master dual-problem is

(D1)
maximize

β
g(β)

subject to β ≥ 0.

Since f(·) is convex, subproblem SP0 can be easily solved
by convex optimization algorithms [34]. For subproblem SPi,
we can view it as a constrained sequential decision problem
and obtain the optimal policy Γi using backward induction
[35]. Therefore, the dual problem can be solved efficiently by
using (sub-)gradient approach, as will be discussed later.

For a general optimization problem, dual decomposition
only guarantees weak duality, i.e., the dual solution only
provides a lower bound to the original problem. However,
we show below that the duality gap between P1 and D1 is
zero, and hence there exists an optimal value of β such that
the algorithms SP0 and SPi combined provide an optimal
solution to P1.

Proposition 2 Given that the cost function f(·) is convex, the
dual problem D1 have zero duality gap, and thus the dual
decomposition approach provides an optimal value to P1.

Proof: Strong duality holds for convex optimization prob-
lem. To prove the proposition, we convert P1 to a convex
problem with exponentially large number of control variables.
Thus, the dual problem D1 have zero duality gap and generates
the same solution as P1. See Appendix A for details.

The proof in Appendix A uses a transformation of policy
representations, which will also be useful for design schedul-
ing policies. Hence, we briefly introduce the transformation
here. Let Ωi be the set of possible realizations of channel
process Ri(t) for user i. For each realization denoted by
r = [r(0), r(1), . . . , r(N − 1)] ∈ Ωi, let r(0 : t) =
[r(0), r(1), . . . , r(t)] be the first t+ 1 elements of r. We only
focus on causal policies, and thus the decision is made based
on the history of the channel conditions. Let xai,w,r(0:ai+w) ∈
[0, 1] denote the transmission probability of user i when its
arrival time is ai, waiting time is w slots and the channel
condition history is r(0 : ai+w). Then, a policy Γi for solving
subproblem SPi can be represented by a decision matrix
xi = {xai(r) : 0 ≤ ai ≤ N − 1, r ∈ Ωi}, where each sub-
matrix xai(r) = [xai,w,r(0:ai+w)] represents the policy for
each pair of arrival time ai and channel realization r. For each
decision matrix xi, we define the following transformation,
denoted by ϕi = T (xi), as follows: for each realization
r ∈ Ωi,

ϕai,w,r(0:ai+w)

=


xai,w,r(0:ai+w), if w = 0,

xai,w,r(0:ai+w)

∏w−1
w′=0[1− xai,w,r(0:ai+w′)],

if w = 1, 2, . . . , Di − 1.

(10)

Note that ϕai,w,r(0:ai+w) can be interpreted as the probability
that user i under a particular channel realization r transmits
at time ai + w. The transformation T is invertible, where
the inverse transformation ϕi = T −1(xi) can be defined as
follows: for a realization r ∈ Ωi,

xai,w,r(0:ai+w) =
ϕai,w,r(0:ai+w), if w = 0,

ϕai,w,r(0:ai+w)∏w−1

w′=0
(1−xai,w′,r(0:ai+w

′))
,

if 0 < w ≤ Di − 1 &
∏w−1
w′=0(1− xai,w′,r(0:ai+w′)) > 0,

0, if 0 < w ≤ Di − 1 &
∏w−1
w′=0(1− xai,w′,r(0:ai+w′)) = 0.

(11)

C. CoSchd: Coordinated Scheduling
Based on the dual decomposition discussed in the previous

subsection, we propose the following distributed algorithm,
referred to as Coordinated Scheduling (CoSchd), to solve the
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approximate problem P1. Under CoSchd, each user individu-
ally decides its transmission schedule based on the congestion
signal from the BS and its own channel characteristics, and
the BS updates the congestion signals based on the expected
aggregated load, as shown in Algorithm 1.

Algorithm 1 Coordinated Scheduling (CoSchd).
Input: Distributions of Ai, Bi, Di;

Transition probability matrix P i.
Output: Transmission probability x̄i.
Init: Set d = 1 and β(1)

t = 1 for all t = 0, 1, . . . , N − 1.
for d← 1, 2, . . . , dmax

1) Mobile-side: each user i ∈ I solves SPi and obtains

x
(d)
i ← arg min

N−1∑
t=0

β
(d)
t yi,t(xi),

ϕ
(d)
i ← T (x

(d)
i );

Each user estimates its expected load yi,t in each slot and
reports to the BS;
2) Network-side: the BS collects the load of each user and

calculates the aggregated load l(d)
t :

The BS solves SP0 and updates β(d)
t using the sub-gradient

method:

β
(d+1)
t =

[
β

(d)
t + α(d)

( l(d)
t

m
− h(d)

t

)]+

, 0 ≤ t ≤ N − 1, (12)

endfor
Averaging: Calculate the average transition probability

ϕ̄i ←
1

dmax

dmax∑
d=1

ϕ
(d)
i ; (13)

x̄i ← T −1(ϕ̄i). (14)

From Algorithm 1, we can see that the network-side op-
eration under CoSchd is simple: the BS solves subproblem
SP0 to obtain the optimal value of h(d), and then updates
congestion signals based on load level l(d) and h(d). Next, we
focus on the operation on the mobile side.

1) Mobile-side Operation

On the mobile-side, each user operates independently as fol-
lows: it generates policies based on its channel characteristics
and the congestion signals, and then executes the policy based
on the instantaneous channel condition.

For a given congestion signal vector β, the subproblem
SPi turns out to be a constrained MDP problem [35]. Then
each user only needs to make decisions based on the waiting
time and the current channel state. Specifically, each user
introduces a cost for deadline violation and minimizes SPi
plus the deadline violation cost by backward induction. We
note that the complexity of the backward induction method
for solving the individual MDP is O(J2D) [36], which can
be implemented in most smartphones as in [37, 38].

We now discuss the specifics of the deterministic deadline-
constraint case as follows and refer the readers to [35] for the
probabilistic deadline constraint case.

For user i arriving at ai, let xai,w,j ∈ [0, 1] (w =
0, 1, . . . , Di−1; j = 1, 2, . . . , J) be the probability that user i
requests transmission when its waiting time is w and channel
state is j. (Thus, the probability xai,w,r(0:ai+w) = xai,w,j
if r(ai + w) = rj .) In the deterministic deadline-constraint
case, i.e., ηi = 0, all data must be transmitted before ex-
piration. Therefore, for user i arriving at ai, it requires that
xai,ai+Di−1,j = 1. To guarantee a finite transmission cost, we
assume that for each user,

E{Bi/Ri(ai +Di − 1)|Ei,Di−1} < +∞, i ∈ I, (15)

where Ei,Di−1 represents the event that user i does not transmit
before ai+Di−1. Using the principle of optimality and taking
the multipliers β into account, we can obtain the optimal
decision

xai,w,j =

{
1, if βai+w

Ri(ai+w) ≤ E[V ∗ai,w+1|rj ]
0, otherwise,

(16)

where E[V ∗ai,w+1|rj ] is the expected future cost conditioned
on Ri(ai + w) = rj , which can be calculated by backward
induction:

E[V ∗ai,w+1|rj ]

=


E
[ βai+Di−1

Ri(ai+Di−1)

∣∣rj], for w = Di − 2,

E
[

min
( βai+w+1

Ri(ai+w+1) , V
∗
ai,w+2

)∣∣rj],
for 0 ≤ w ≤ Di − 3.

After obtaining xi, each user can estimate the amount of
required resource as follows:

yi,t =

N−1∑
a=0

P(Ai = a)yi,a,t

=

N−1∑
a=0

P(Ai = a)E[Bi]

J∑
j=2

π′i,a,t,j/rj , (17)

where π′i,a,t,j is the probability that the user i with arrival time
a transmits at slot t under channel condition rj , i.e.,

π′i,a,t,j =

{
π

(i)
j , if t = a,∑J
j′=1(1− xa,t−a,j′)π′i,a,t−1,j′pj′j , otherwise.

Finally, the averaging operation given by (13) and (14) is
designed to deal with the possible oscillation issues of the
subgradient method, as in [39].

2) Asymptotic Optimality of CoSchd

In this section, we show that the proposed CoSchd policy
is near-optimal for problem P0 when the number of users is
large.

First, we show that CoSchd provides a near-optimal solution
to problem P1, which is an approximation of P0. Specifically,
we use a constant step-size in (12) and let α(d) = α.
Let F̃CoSchd(α) be the cost value of P1 under CoSchd with
α(d) = α. Then, we present the following lemma stating that
CoSchd(α) provides a near-optimal solution of P1.
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Lemma 1 For CoSchd with a constant step-size α(d) = α,
the cost of problem P1 is bounded as follows:

F̃CoSchd(α) ≤ F] +
αG2

2
, (18)

where F] is the optimal value of P1, and G = 2
√
Nhmax is

an upper bound on the norm of the subgradient in the dual
problem.

Proof: We verify that: a) the constraints (5) are linear
in ϕi, and hence P ′1 is convex; b) P1 satisfies the Slater’s
condition; c) the value of |lt/m−ht| is bounded by 2hmax, and
hence the norm of the subgradient is bounded as ||l/m−h|| ≤
2
√
Nhmax. Then the conclusion of this lemma can be inferred

from Proposition 2 in [39].
Next, we study the performance of CoSchd for the origi-

nal problem P0. Note that CoSchd provides a near-optimal
solution to P1, but P1 is not equivalent to the original
problem P0. Fortunately, because all users independently solve
individual MDPs under CoSchd, the instantaneous load level
approaches its expectation as the number of users increases.
Using this property, we can show that the proposed approach
is asymptotically optimal for P0 in the many-source regime.

Consider the many-source regime. To study the asymptotic
properties of the proposed approach, we consider the following
m-scaled system.

Assumption 1 All users in I can be divided into K classes.
For each class k,
• the number of users mk (k = 1, 2, . . . ,K) is proportional

to the total number of users m, i.e., mk = mλk, where
0 < λk < 1 is the ratio of class-k users and

∑K
k=1 λk =

1;
• users in class-k have the same deadline requirements, and

the same statistics of arrival time and channel dynamics
that do not change with m.

Further, we make the following assumption on the cost func-
tion:

Assumption 2 The cost function f(·) in the m-scaled system
is continuous, and is a function of the normalized load, i.e.,
f(l) = f̃(l̃), where l̃ = l/m.

For the above m-scaled system, we let F (m)
CoSchd(α) be the

cost value of the original problem P0 under CoSchd with
α(d) = α, and let F (m)

] be the optimal value of problem
P1. Note that by optimizing on the normalized load-level
l̃t, the constant G in Lemma 1 for the m-scaled system is
independent of m. The following proposition then shows the
performance of CoSchd in the many-source regime.

Proposition 3 Under Assumptions 1 and 2, F (m)
CoSchd(α) con-

verges to a value near F (m)
] as m increases, i.e.,

lim
m→∞

F
(m)
CoSchd(α) ≤ lim

m→∞
F

(m)
] +

αG2

2
, (19)

where G = 2
√
Nhmax is an upper bound on the norm of the

subgradient in the dual problem, as in Lemma 1.

Proof: Let F̃ (m)
CoSchd(α) be the cost value of P1 under

CoSchd(α) in the m-scaled system. Because F̃
(m)
CoSchd(α) ≤

F
(m)
] + αG2

2 according to Lemma 1, we only need to show
that limm→∞ F

(m)
CoSchd(α) = limm→∞ F̃

(m)
CoSchd(α). Note that

F
(m)
CoSchd(α) is the sum of the expected costs in each slot, i.e.,

F
(m)
CoSchd(α) =

∑N−1
t=0 E

[
f(Lt)

]
. Therefore, it suffices to show

that under CoSchd(α), limm→∞ E[f(Lt)] = f
(
E[Lt]

)
. This

can be verified using the fact that, under CoSchd(α), each user
operates independently for given congestion signal β, and the
load level Lt is close to its expectation according to large
deviation theories. See Appendix B for details.

According to Proposition 1, F (m)
] provides a lower bound

on the optimal value of P0. The above proposition states that
F

(m)
CoSchd(α) will be in a neighborhood of F (m)

] as m increases,
and thus the decomposition approach is near-optimal for P0

in the many-source regime.

D. Approximate Implementation of CoSchd

In the previous section, we implement the CoSchd approach
to obtain the approximately optimal solution before really run-
ning the network. In this section, we propose an approximation
version of CoSchd with Online-Update (CoSchd-OU).

As shown in Algorithm 2, in every day, each user solves
the individual decision problem SPi based on its historic
channel and arrival statistics. To reduce the complexity of
policy averaging, i.e., Eqs. (13) and (14) in Algorithm 1, here
each user directly applies a Exponential-Moving-Averaging
policy according to Eq. (20). Then, each user makes decisions
based on its channel state and the BS updates the congestion
signals based on the actual traffic-load measurements.

Note that under CoSchd-OU, each user requires its channel
and arrival statistics to solve SPi. Once these statistics are
known, SPi can be solved either online or offline. To avoid
delay and energy consumption induced by the MDP compu-
tation for SPi, it is typical for each user to pre-compute the
decision policy based on its own channel statistics and the
congestion signals broadcast by the BS. Then, the individual
policies are carried out online and the congestion signals are
also updated in an online manner.

Algorithm 2 CoSchd-OU.
Init:
set d = 0 and β(0)

t = 1 for all t = 0, 1, . . . , N − 1.
Iteration: (day d)
1) At time t = 0, β(d)

t (t = 0, 1, . . . , N − 1) is announced
to all users;

Each user i ∈ I solves SPi and calculates the average
decision matrix as follows

x̄
(d)
i = ϑx̄

(d−1)
i + (1− ϑ)x

(d)
i , ϑ ∈ [0, 1]. (20)

2) For t = 0→ N − 1,
Each user makes decision based on its channel states;
The BS serves requested users and observes the load level
L

(d)
t ;
The BS solves SP0 and updates β(d)

t using Eq. (12) with
l
(d)
t = L

(d)
t ;

3) Set d← d+ 1 and go to step 1).
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In practice, the arrival pattern may vary gradually over
time. Our evaluations show that certain variations of the
arrival pattern are acceptable in practice 1. Specifically, when
the arrival pattern varies across different days but still have
similarities, the proposed CoSchd-OU policy can provide
congestion signals that capture such similarities. Then the peak
load can be reduced under these congestion signals.

Another potential issue of CoSchd-OU is that the conver-
gence time may be large because one iteration takes one day.
To further reduce convergence time, the BS can use initial
congestion signals pre-computed from Algorithm 1. Specifi-
cally, each user solves the individual decision problem based
on its historic observations and reports the expected load levels
to the BS; the BS updates the congestion signals according
to the expected load level. The process is repeated until
appropriate congestion signals are obtained. Then, CoSchd-
OU can be implemented with these initial congestion signals.
The averaging step for the primal variables, i.e., Eqs. (13) and
(14), in Algorithm 1 can be omitted because we only need the
initial congestion signals to start CoSchd-OU. We also note
that if the BS can obtain estimates of the statistics for traffic
and channel conditions, it can run the CoSchd algorithm in a
centralized manner to obtain the initial congestion signals.

E. Multi-cell Networks

For ease of exposition, we have so far focused on the single-
cell scenario. Next, we explain how the proposed algorithm
can be extended to include multiple BSs and WiFi hotspots.

We note that a cellular BS and a WiFi AP have no
conceptual difference in terms of the problem formulation,
except that their corresponding congestion cost functions could
differ because of the difference in capacity and cost. To extend
the results from one BS to multiple BSs, one can expand the
objective (i.e., the total congestion cost) to include all BSs’
congestion cost at all time slots. Specifically, when there are
C BSs, the objective in the multi-cell system becomes

minimize
Γ

F =

C−1∑
c=0

N−1∑
t=0

E
[
fc
(
Lc,t(Γ)

)]
, (21)

where fc(·) is the cost function of BS c and Lc,t(Γ) is the
load-level in BS c in time-slot t under policy Γ. Similar to
Section IV-A, we can approximate the original problem in (21)
by exchanging the order of expectation and cost function, i.e.,

minimize
Γ

F̃ =

C−1∑
c=0

N−1∑
t=0

fc
[
E
(
Lc,t(Γ)

)]
, (22)

Then, in the duality-based solution, each BS broadcasts it-
s own congestion signal for each time slot. Instead of a
congestion signal vector, we introduce a congestion signal
matrix [βct]C×N , where βct represents the congestion signal
broadcast by BS c in time-slot t. Similar to Section IV-B,
we can use [βct]C×N to decompose the primal problem, and
rearrange it into the mobile-side and BS-side problems as in
SPi and SP0 (except that there are multiple equations similar
to SP0, one for each BS).

1The results are omitted here due to space limitations.

On the mobile side, each user maintains a profile of(
ci(t), Ri(t)

)
, which are the index of the BS that user i

connects to in time-slot t and the channel condition with
respect to that BS. Upon receiving the congestion signals from
all BSs that it may connect to, the user can then compute
the decision table regarding when and which BS it may use
to complete the data transfer, while meeting the deadline
constraints. The load at each BS is thus determined by mobile
users’ opportunistic decisions. Finally, at the end of the day,
after all mobiles perform their data transfer, each BS updates
its congestion signal as in Eq. (12).

Using similar techniques as in the setting of the single-cell
networks, we can show that CoSchd also achieves near-optimal
performance in multi-cell networks. The difference is that the
dimensionality of the subgradient in the dual problem becomes
NC. Thus, the constant G in Lemma 1 and Proposition 3
becomes G = 2

√
NChmax.

Using CoSchd can balance the traffic load among multiple
BSs. In general, different BSs often have different offered
load to begin with, as shown in Fig. 1. With a load-aware
scheduling policy, the network would prefer a portion of
the data transfers to be moved from heavily-loaded BSs to
lightly-loaded BSs. In our CoSchd solution, at a given time
a heavily-loaded BS will tend to have a larger value for
its congestion signal than a lightly-loaded BS. Therefore,
in the mobile-side decision, the threshold to transmit for
the heavily-loaded BS will be correspondingly higher, which
serves the goal of moving an appropriate amount of traffic
to other lightly-loaded BSs. In contrast, under channel-only
approaches, mobile devices are only aware of the channel
condition at each BS, but not its congestion signal. Thus, it is
possible that a mobile device delays its traffic until it connects
to a BS with a stronger signal, but only finds that the BS has
heavy load. In this case, a channel-only solution may not best
alleviate network congestion, while CoSchd performs better,
as shown in Section V.

F. From CoSchd to Load-only/Channel-only approaches
We mainly focus on the joint approach in the previous

sections. Under the proposed framework, we can also inves-
tigate the load-only and channel-only approaches, which are
discussed as follows and will be evaluated in Section V.

1) Load-only approach: A load-only approach balances the
load without considering the channel variations. To compare
with the best performance of this type of policies, we consider
an optimal offline load-only policy that can be viewed as a
modification of TUBE [2]. We assume that the knowledge of
the traffic (e.g., distributions of arrival time and deadline) is
available by the BS, and the data can be transmitted in any
time-slot before the deadline. Then, the corresponding load-
balancing problem can be formulated as a convex optimization
problem and solved by standard algorithms [34]. We note
that the TUBE work focuses on single-cell systems and only
temporal load-variations are studied in [2]. If one was to
also consider spacial load-variations, the scheduling problem
would be similar to our multi-cell scenarios. However, in that
case at least the user-connectivity profile across multiple cells
must be taken into account. In other words, the load cannot
be considered independently from the connectivity/channel
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profiles. Due to this reason, similar to [2], we will not study
the load-only approach in the multi-cell setting in Section V.

2) Channel-only approach: When the congestion signals
are identical across all time-slots and all BSs, CoSchd degen-
erates to a channel-only approach. We consider the optimal
channel-only policy, where each user applies an individual
decision policy to minimize the expectation of the consumed
resource based on its own channel condition profile under the
deadline constraint. The Bartendr policy proposed in [5] can
be viewed as one of the channel-only policies, while a fixed
threshold is used for any waiting time. The performance of
Bartendr is slightly worse than that of the optimal channel-
only policy and will not be evaluated in Section V for more
concise presentation.

V. EVALUATION

In this section, we evaluate the performance of load-only,
channel-only, and CoSchd approaches through simulations.
Since the CoSchd policy and its approximation CoSchd-OU
have similar performance and CoSchd-OU is more scalable as
discussed in Section IV, we only consider CoSchd-OU here
and refer it to as CoSchd for simplicity. As a baseline, we
also consider ImTrans, where all users immediately transfer
the data when the requests arrive.

A. Simulation Setup

We use a slot length of 10 minutes and each day is divided
into 144 time-slots. For the cost function, we mainly use
f(l) =

(
l/C̄

)ν
that is mentioned in Section III, and set

ν = 8 which is large enough for smoothing out the load
level according to our experiments. Another type of cost
function, i.e., f(l) =

(
[l − C̄]+/C̄

)2
, will also be considered

for comparison purpose. We consider single-cell and multi-
cell scenarios, except that the load-only policy will only be
evaluated in the single-cell scenario similar to [2]. For multi-
cell scenarios, we mainly focus on 2-cell scenarios where
we show the impact of system settings on the performance.
Further, we also provide simulations for a 7-cell scenario
where a center BS is surrounded by 6 neighbor BSs with lower
traffic, and reports a higher gain for the proposed CoSchd
policy.

1) Traffic Arrival Pattern: We assume that users enter the
system according to the profile illustrated in Fig. 1. Specifi-
cally, for the single-cell network, the distribution of the arrival
time for each user is set based on the weekday traffic profile of
the center BS from Fig. 1. For the multi-cell network, we use
the weekday traffic profile of the center BS and the neighbor
BS 1 (again from Fig. 1) for the 2-cell scenarios. The profile
of the neighbor BS 1 is further used for all the neighbor BSs in
the 7-cell scenario. To capture the delay-tolerance of traffic,
we apply the waiting function proposed in [2], and use the
patience indices for the different traffic classes estimated from
the U.S. survey in [2]. Specifically, for the delay-tolerant traffic
(“Time-Dependent Pricing” traffic in [2]), the probability that
user i wants to wait Di slots is proportional to 1

(Di+1)ρ ,
where the patience index ρ is 2.0 for video traffic and 0.6 for
others. For simplicity, we set the maximum deadline violation
probability at 0 for all simulations. This is achievable when

the data rate is positive with probability 1, as will be discussed
later.
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Fig. 2. Distribution of spectrum efficiency.

2) Channel and Mobility Profile: We collected a set of
Received Signal Strength Indication (RSSI) values from a
group of anonymous mobile users to best emulate the spectrum
efficiency in cellular networks. RSSI indicates the strength
of all received signals, including both desirable signals and
interference. We assume that the interference strength is
a constant and thus the RSSI value represents the SINR,
which determines the spectrum efficiency. We follow the LTE-
Advanced standards [40], and map the measured RSSI to the
proper modes of Modulation and Coding Scheme (MCS). We
use the 5-bit CQI and the distribution of the corresponding
spectrum efficiency is shown in Fig. 2. Under this mapping,
the data rate is always positive and it is possible to achieve
zero deadline violation probability with finite resource. We
then model the channel process as a Markov chain, whose
transition probabilities are estimated by the empirical transi-
tion probabilities obtained from the above measurements. We
assume that all users have the same channel statistics.

In 2-cell scenarios, we assume a two-state Markov mobility
model, where the probability that a user stays in the c-th cell
in the next slot is qcc, and the stationary probability that a user
stays in the c-th cell is qc. We fix the stationary probability
at [q1, q2] = [2/3, 1/3] for different transition probabilities,
so that the traffic arrival pattern is consistent with that in
Fig. 1. For the 7-cell scenario, we assume that users only move
between the center BS and one of its neighbor BSs. We fix
the stationary probability at [q1, qc] = [1/4, 3/4] (2 ≤ c ≤ 7),
so that the total traffic at the center BS is two times of that of
its neighbors.

B. Convergence of CoSchd
We first demonstrate the asymptotic behavior of the system

and the convergence of CoSchd, as shown in Fig. 3. The results
in this subsection are obtained by running simulations in the
single-cell scenario.

Fig. 3(a) shows the difference between the values of the
original problem P0 and its approximate version P1. Note that
the cost of expected load f [E(Lt)] is close to the lower bound
(Lemma 1) and the expected cost under CoSchd E[f(Lt)]
provides an upper bound on the original problem P0. As we
can see from the figure, the gap between the upper- and lower-
bounds becomes smaller as the network scale increases. The
two values are close to each other in medium-sized systems,
as shown in Fig. 3(a). Hence, minimizing the cost of expected
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Fig. 3. Convergence of CoSchd. (a) The difference between the cost of
expected load and the expectation of cost. (b) The evolution of duality gap.

load approximately solves the original problem P0. Recall that
we consider large time-scale scheduling and use a time-slot
length of 10 minutes. The measurements in [41, 42] show that
in this case, there are usually hundreds of users requesting
transmission within each time-slot of 10 minutes. For the rest
of the simulation, we set the average number of users in
each slot at 400 for single-cell scenarios and 800 for 2-cell
scenarios, respectively.

Fig. 3(b) shows the evolution of the duality gap between
problem P1 and its dual problem. The duality gap decreases
as the number of iterations increases, and the duality gap
is small after several iterations. Comparing the evolutions
under different memory factor ϑ (with the same fixed step-
size α = 1), we can see that with a smaller ϑ, the duality gap
decreases faster, but fluctuates more. We set ϑ = 0.9 for the
rest of simulations which seems to strike a balance between
the convergence speed and fluctuation.

C. Network Load

In this section, we study the network load level under
CoSchd for both single-cell and multi-cell scenarios. Because
the network load level fluctuates from day to day, we present
the one-day load level averaged over the same time-slot of ten
days.

1) Single-Cell Scenarios: Fig. 4 shows the network load
in single-cell systems. The four subfigures represent different
settings. Figs. 4(a) to 4(c) are for the systems with 50% of
load being delay-tolerant under different cost functions, while
Fig. 4(d) is for the system with 75% of load being delay-
tolerant. From Figs. 4(a) to 4(c), we can see that by moving
the delay-tolerant traffic into “valleys”, the peak load obtained
by the load-only policy is about 80% of that under ImTrans.
On the other hand, using the channel-only policy, the peak
is reduced to about 75% of ImTrans. A similar observation
can be made from Fig. 4(d), while the peak load reduction is
more significant since there is more delay-tolerant traffic. This
finding suggests that channel-awareness can be more effective
than load-awareness in wireless systems.

Compared to the load-only and channel-only policies,
CoSchd leads to even lower peak consumption by considering
both load-awareness and channel-awareness. The additional
gain compared to the channel-only policy is about 6% to 12%
depending on the cost function. Comparing the load level of
CoSchd in Figs. 4(a) to 4(c), we observe that different types
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Fig. 4. Network load level in single-cell systems. (a) 50% delay-tolerant
traffic, f(l) = (l/C̄)ν , C̄ = 300, ν = 8. (b) 50% delay-tolerant
traffic, f(l) =

(
[l − C̄]+/C̄

)2
, C̄ = 250. (c) 50% delay-tolerant traffic,

f(l) =
(
[l − C̄]+/C̄

)2
, C̄ = 300. (d) 75% delay-tolerant traffic, f(l) =(

[l − C̄]+/C̄
)2
, C̄ = 225

of cost function result in different shapes of network load.
The load at 9pm in Fig. 4(a) is much smaller than that in
Fig. 4(c). This is because with the cost function f(l) = (l/C̄)ν

for Fig. 4(a), the scheduler avoids letting users with bad
channel conditions transmitting even at periods with medium
load levels (e.g. 9pm). In contrast, with the cost function
f(l) =

(
[l − C̄]+/C̄

)2
for Fig. 4(c), more users are allowed

to transmit even when the channel conditions are not so good
because congestion cost only incurs when the network load
exceeds the threshold C̄. As a result, the load at periods of
medium load levels (e.g., 9am) in Fig. 4(c) can be higher and
the peak load is lower. Comparing Fig. 4(b) and Fig. 4(c),
we can see that a properly-chosen threshold C̄ can result
in flat network load and reduced peak load. In practice, the
choice of cost function is up to the operators, who can set the
cost function based on their capability such as the amount of
resource.
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Fig. 5. Load level in multi-cell systems with 50% delay-tolerant traffic (solid-
line for BS1 and dash-line for BS2). (a) f(l) = (l/C̄)ν , C̄ = 300, ν = 8.
(b) f(l) =

(
[l − C̄]+/C̄

)2
, C̄ = 300
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Fig. 6. Peak load level in multi-cell systems (unless expressly stated
otherwise we use the following settings: 50% elastic traffic, (q00, q11) =

(0.8, 0.6), λ(1)max : λ
(2)
max = 2 : 1. (a) Different elastic percentages.

(b) Different transition probabilities. (c) Different load level ratios. (d)
Different number of cells.

2) Multi-cell Scenarios: Fig. 5 illustrates the network load
level in multi-cell systems with 50% of load being delay
tolerant, and with transition probability (q11, q22) = (0.8, 0.6).
Figs. 5(a) and 5(b) represent the load level under different cost
functions. By moving the delay-tolerant traffic to the neighbor
BS (i.e., BS 2), the peak of network load (corresponding to
the load in BS 1 at about 6pm) is reduced by about 18% under
CoSchd compared to the channel-only policy (Fig. 5(b)). This
gain is larger than that in the single-cell settings in Fig. 4.
This is because, under the channel-only policy, users defer
their transmissions when waiting for good channels. Therefore,
a “peak-shedding” effect also occurs under the channel-only
approach. Since the temporal fluctuation of traffic is not large
in the single-cell system, the room for CoSchd to further
move traffic is relatively small. However, when the traffic
varies among multiple cells, load-awareness provides higher
additional gain.

Next, we evaluate the impact of the different settings on
the peak load, i.e., the maximal amount of resource required
to serve all the ON users in a BS within a slot, in Fig. 6.
Without channel- or load-awareness, the load level is high
and imbalance under ImTrans. We normalize the peak loads
by the peak-load level of ImTrans. Fig. 6(a) presents the
peak-load levels under different percentage of delay-tolerant
traffic. From the figure, we can see that as the percentage of
delay-tolerant traffic increases, the channel-only and CoSchd
policies reduce the peak load more significantly because more
data can be deferred to the time/location where the network
condition is more favorable. Moreover, as the network load
from the real-time traffic becomes less, the benefit of joint
channel- and load-awareness becomes more significant and
CoSchd achieves even larger performance gain compared to

the channel-only policy. For example, the peak load of CoSchd
is 14.8% and 31.4% lower than that under the channel-
only policy when the percentage of delay-tolerant traffic is
50% and 75%, respectively. Similar trends can be seen from
Fig. 6(b), which presents the normalized peak-load level under
different transition probability between cells, and Fig. 6(c),
which presents the normalized peak-load level under different
traffic load levels. From these results, we can see that when
the ratio of delay-tolerant traffic is larger, the mobility of users
is more frequent, or the traffic load varies more significantly
across cells, CoSchd has more opportunities to schedule the
traffic from the “peaks” to the “valleys”, and results in more
balanced load across cells and across time.

Fig. 6(d) shows the peak load levels in the 2-cell and 7-
cell scenarios. In the 7-cell scenario, we consider a center
BS surrounded by 6 neighbor BSs, where the traffic load in
each neighbor BS is half of that in the center BS. From the
figure, we can see that the peak load level of the channel-only
policy in the 7-cell scenario is similar to that in the 2-cell
scenario. In contrast, due to the load-awareness, CoSchd can
exploit the additional opportunities to transfer the elastic traffic
and achieve much lower peak-load level. Specifically, the peak
load level under CoSchd in the 7-cell scenario is only 54.6%
of that under ImTrans. Since 50% of traffic is real-time traffic,
we can infer that most delay-tolerant traffic has been shifted
to the neighbor cells by CoSchd thanks to its load-awareness.

VI. CONCLUSIONS

In this paper, we study jointly load- and channel-aware poli-
cies for scheduling delay-tolerant traffic for reducing cellular
congestion. We present a decomposition technique for solving
the large-scale MDP induced from the optimal scheduling
problem. Despite the high complexity of the large-scale MDP,
we develop a distributed framework, called CoSchd, and
show its asymptotic-optimality in the many-source regime. An
approximate version of CoSchd is also proposed to reduce the
complexity.

The results in this paper are of both practical and theo-
retical values. Practically, our proposed policy can be im-
plemented in a distributed manner in real systems. Further,
our comparative evaluations provide cellular operators with
operation guidelines to decide the most appropriate approach-
es. Specifically, our numerical results suggest that channel-
awareness is rather important in wireless networks. For single-
cell systems, channel-only may be preferred due to its simplic-
ity and relatively good performance. For multi-cell systems
with load variations, CoSchd can attain significant additional
gains. Theoretically, the joint approach provides an optimal
benchmark for comparing with other solutions. Moreover, the
decomposition technique and the proposed CoSchd algorithm
can potentially be applied to other large-scale MDP, where
multiple agents are weakly coupled through sharing common
resources.

APPENDIX A
PROOF OF PROPOSITION 2

To prove the optimality of the proposed dual decomposition
approach, we show that problem P1 can be reformulated to a
convex optimization problem P2, albeit with an exponentially
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large number of decision variables. Thus, strong duality holds
between P2 and its dual, named D2.

First, we show that any policy Γ can be represented by a
stochastic policy Ψ as follows. Note that each causal policy
Γ makes decision based on the history of the arrival sequence
and channel processes. To represent the history, for each user
i ∈ I, we introduce Ãi(t) to represent its present status in
time-slot t. Namely, if the arrival time Ai of user i is equal
to ai (we let ai = N represent the event that user i does not
appear), then Ãi(t) = −1 if ai > t, and Ãi(t) = ai if ai ≤ t.
Recall that Ri(t) (i = 0, 1, . . . , N − 1) is the channel process
of user i ∈ I, and m = |I| is the number of users. Hence, the
history of the system up to time-slot t is given by

St = [Ãt R̃t],

where Ãt = [Ã1(t), Ã2(t), . . . , Ãm(t)]T and

R̃t =


R1(0) R1(1) . . . R1(t)
R2(0) R2(1) . . . R2(t)

...
...

. . .
...

Rm(0) Rm(1) . . . Rm(t)

 .
Let Ω be the set of possible realizations of arrival sequence
and channel processes, i.e., the possible realization of SN−1.
Then, each policy Γ can be represented by a stochastic policy
Ψ, which is a Ω 7→ [0, 1]m×N mapping: for each s ∈ Ω,

Ψ(s) =


ψ1(s0) ψ1(s1) . . . ψ1(sN−1)
ψ2(s0) ψ2(s1) . . . ψ2(sN−1)

...
...

. . .
...

ψm(s0) ψm(s1) . . . ψm(sN−1)

 ,
where st is the history of arrival sequence and channel pro-
cesses up to time-slot t for the realization s, and ψi(st) ∈ [0, 1]
is the transmission probability of user i in time-slot t.

Second, we study the expected resource consumed by user i
under Ψ(s). For each s ∈ Ω where user i arrives in time-slot
ai, we can calculate the probability that user i transmits in
slot ai + w as follows

ϕi(st) =


ψi(sai), t = ai

ψi(sai+w)
∏w−1
w′=0[1− ψi(sai+w′)],

t = ai + w, 0 < w ≤ Di − 1

0, otherwise.

For given s, the expected consumed resource of user i in
time-slot t is

c′i,t(s,Ψ) =
biϕi(st)

Ri(t)
.

In addition, note that all users should transmit before expira-
tion. Hence,

Di−1∑
w=0

ϕi(sai+w) = 1, s ∈ Ω, i ∈ I. (23)

Moreover, using the relationship between ϕi(·) and ψi(·), a
ϕi(·) satisfying (23) can be mapped to a policy Ψ 2.

2If
∑w
w′=0 ϕi(s0:ai+w′ ) = 1 for some w < Di − 1, then for w′ > w,

ψi(si,w) can be artificially set to be 0, which will not affect the behavior of
Ψ.

Consequently, problem P1 is equivalent to

(P2) minimize
Ψ,h′

F =

N−1∑
t=0

f
(
mh′t

)
,

subject to
Di−1∑
w=0

ϕi(sai+w) = 1, s ∈ Ω, i ∈ I,

l′t(Ψ)/m ≤ h′t, t = 0, 1, . . . , N − 1,

where

l′t(Ψ) =
∑
s∈Ω

∑
i∈I

π(s)c′i,t(s,Ψ). (24)

We can verify that P2 is a convex optimization problem
because f(·) is a convex function and all the constraints are
linear. However, we note that it is impractical to solve P2

directly because of its large number of variables. Recall that
there are m × N decision variable for each possible state.
Assume the channel state of each user can be quantized to
J values, then there are Jm×N possible states, and thus
m×N×Jm×N decision variables, which is clearly intractable.
We note that the formulation can be considered as a linear
representation of a centralized Markov Decision Policy, which
clearly suffers the curve of dimensionality.

Again, we resort to the dual decomposition approach to
study P2. Similar to the approach in Section IV, we can
introduce a dual variable for each time slot, and then rearrange
the variables that belong to each user. Then, we have a similar
format as in SP0 and SPi. The dual decomposition approach
can also be applied to solve problem P2 and the strong duality
holds.

APPENDIX B
PROOF OF PROPOSITION 3

Let F̃ (m)
CoSchd(α) be the cost value of P1 under CoSchd(α).

Because F̃
(m)
CoSchd(α) ≤ F

(m)
] + αG2

2 according to Lem-

ma 1, we only need to show that limm→∞ F
(m)
CoSchd(α) =

limm→∞ F̃
(m)
CoSchd(α). To achieve this, we first consider the

single-class system, i.e., K = 1. Since F
(m)
CoSchd(α) is the

sum of the expected costs in each slot, i.e., F (m)
CoSchd(α) =∑N−1

t=0 E
[
f(Lt)

]
, we can prove Proposition 3 if we can show

that under CoSchd(α),

lim
m→∞

E[f(Lt)] = f
(
E[Lt]

)
, (25)

which implies that the “expectation of the cost” approaches
the “cost of the expectation” as m increases. As will be seen
shortly, this can be verified by the fact that, under CoSchd(α),
each user operates independently when the congestion signal
β is fixed.

Specifically, fix a time-slot t. Let Yi (i = 1, 2, . . . ,m) be the
amount of resource required by the i-th user in slot t. Since
all users in the same class have identical traffic and channel
statistics, Yi’s (i = 1, 2, . . . ,m) are i.i.d. random variables.
Let E[Yi] = µY . The load level is Lt =

∑m
i=1 Yi and the

normalized load level is L̃t = 1
m

∑m
i=1 Yi with E[L̃t] = µY .

Since the file size Bi is bounded, the amount of resource Yi
is bounded and we let ymax = maxYi = maxBi

r2
.
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Using the Chernoff bound, we have that for a given δ > 0,

P
{
L̃t ≤ µY − δ

}
≤ e−mIY (δ) (26)

P
{
L̃t ≥ µY + δ

}
≤ e−mIY (δ), (27)

where IY (δ) is a positive number independent of m.
Next, we bound E[f(Lt)] using the above results and the

properties of the cost function. E[f(Lt)] can be calculated as
follows

E[f(Lt)] = E[f̃(L̃t)]

=

∫ ∞
0

f̃(l)φL̃t(l)dl

=

[ ∫ µY −δ

0

+

∫ µY +δ

µY −δ
+

∫ ∞
µY +δ

]
f̃(l)φL̃t(l)dl,

where φL̃t(·) is the probability density function of L̃t. Note
that f̃(l) is increasing in l. Thus, from (26) and (27), we have

E[f(Lt)] ≥ (1− 2e−mIY (δ))f̃(µY − δ), (28)

and

E[f(Lt)] ≤ f̃(µY + δ) + 2e−mIY (δ)f̃(ymax). (29)

For any ε > 0, by the continuity of f̃(l) , we can choose a
δ > 0 such that f̃(µY − δ) ≥ f̃(µY )− ε/2 and f̃(µY + δ) ≤
f̃(µY ) + ε/2. Combining with (28) and (29), we know that
there exists an m1 such that for all m ≥ m1, we have

|E[f(Lt)]− f(E[Lt])| = |E[f(Lt)]− f̃(µY )| ≤ ε,

and thus (25) holds by taking ε→ 0.
For multi-class systems, similar properties can be obtained.

Let Ik (k = 1, 2, . . . ,K) be the index set of class-k users. For
all i ∈ Ik, Yi are i.i.d. random variables because within one
class, all users have identical traffic and channel characteris-
tics. For i ∈ Ik, let µ(k)

Y = E[Yi], and I
(k)
Y (δ) be the value

satisfying Eqs. (26) and (27) for class-k users. Then, the load
level is Lt =

∑K
k=1

∑
i∈Ik Yi and the normalized load level

is given by

L̃t =
Lt
m

=

K∑
k=1

λkL̃
(k)
t ,

where L̃
(k)
t = 1

mk

∑
i∈Ik Yi, and E[L̃t] =

∑K
k=1 λkµ

(k)
Y .

Because the event L̃t ≤ E[L̃t] − δ implies that there exists
at least one k satisfying that L̃(k)

t ≤ µ(k)
Y − δ, we have

P
{
L̃t ≤ E[L̃t]− δ

}
≤

K∑
k=1

P
{
L̃

(k)
t ≤ µ(k)

Y − δ
}
≤ Ke−mI

∗
Y (δ) (30)

where I∗Y (δ) = mink∈{1,2,...,K} λkI
(k)
Y (δ).

Similarly, when considering the other side of deviation, we
have

P
{
L̃t ≥ E[L̃t] + δ

}
≤ Ke−mI

∗
Y (δ). (31)

Therefore, using the same approach in the single-class case,
E[f(Lt)] can be made as close to f̃(E[L̃t]) as desired.

The conclusion then follows by adding the expected costs
from time-slot 0 to N − 1.
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