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Abstract—Opportunistic scheduling of delay-tolerant traffic
has been shown to substantially improve spectrum efficiency. To
encourage users to adopt delay-tolerant scheduling for capacity-
improvement, it is critical to provide guarantees in terms
of completion time. In this paper, we study application-level
scheduling with deadline constraints, where the deadline is pre-
specified by users/applications and is associated with a deadline
violation probability. To address the exponentially-high complex-
ity due to temporally-varying channel conditions and deadline
constraints, we develop a novel asymptotic approach that exploits
the largeness of the network to our advantage. Specifically, we
identify a lower bound on the deadline violation probability,
and propose simple policies that achieve the lower bound in
the large-system regime. The results in this paper thus provide
a rigorous analytical framework to develop and analyze policies
for application-level scheduling under very general settings of
channel models and deadline requirements. Further, based on
the asymptotic approach, we propose the notion of Application-
Level Effective Capacity region, i.e., the throughput region that
can be supported subject to deadline constraints, which allows
us to quantify the potential gain of application-level scheduling.
Simulation results show that application-level scheduling can
improve the system capacity significantly while guaranteeing the
deadline constraints.

Index Terms—Wireless scheduling, deadline constraints,
asymptotically optimal policies.

I. INTRODUCTION

TODAY’S mobile Internet is facing a grand challenge to
meet the exponentially increasing demand for mobile

broadband services. However, not all traffic is created equal.
While some applications require instant access, many other
applications may be willing to tolerate delay from minutes
to hours [2, 3]. By opportunistically scheduling delay-tolerant
transmission when the network condition is more favorable,
we can significantly improve network utilization.

In this context, delay is a key performance metric that
is directly tied to the users’ overall experience. Unless the
network can set a clear expectation for the completion time,
users may fear that their traffic could be delayed for too long.
Therefore, providing predictable completion time is critical
for encouraging users to adopt delay-tolerant scheduling for
capacity improvement. In this paper, we consider a model
where each transmission task is associated with a pre-specified
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deadline, which is the maximum delay that the application can
tolerate and ranges from minutes to hours depending on the
application. The goal of the network is then to schedule as
many users as possible before their deadlines. We refer to this
problem as the application-level scheduling problem, and will
discuss its differences from classic opportunistic scheduling
[4–6] in detail in Section II.

When there is a single base-station (BS), the above problem
can be viewed as a single-server job scheduling problem with
deadlines. If there is no channel variation, it is well-known
that simple policies such as Earliest-Deadline-First (EDF) are
optimal in underloaded systems [7]. Unfortunately, when there
are channel variations, such a deadline-constrained scheduling
problem is known to be extremely challenging because of
the difficult trade-off between serving more urgent users and
serving users with better channel conditions. In the special
case with two-state channels, variants of EDF have been
proposed to deal with this trade-off [8, 9]. Specifically, in [8],
a Feasible-Earlier-Due-Date (FEDD) policy was shown to be
optimal for certain restricted arrival processes, such as periodic
processes. A more recent work [9] proposed an optimal
policy called Earliest Positive-Debt Deadline First (EPDF)
for scheduling live video streams. In contrast, for multi-
state channels, existing results usually require more restrictive
assumptions [10–12]. For example, [11] makes a non-causal
assumption that the scheduler knows the channel states in the
future, which is unrealistic in practice. [12] requires that the
arrivals and deadlines follow a periodic structure. For more
general systems with causal multi-state channels and without
a periodic structure, however, we are not aware of a tractable
methodology to find optimal scheduling policies subject to
deadline constraints.

Under general multi-state channels and arrival models,
although recently-developed optimization-based approaches to
wireless control have been very successful for maximizing
long-term throughput and stability [13–15], they are of limited
capability in maximizing capacity or network utility sub-
ject to deadline constraints. For instance, the Delay-driven
MaxWeight [15] policy was shown to be throughput optimal
for flow-level scheduling, but may perform poorly in the case
with deadline constraints, as will be demonstrated by sim-
ulations later. Similarly, even though the Lyapunov-function
based method developed in [16] approximately maximizes the
network utility with worst-case-delay guarantees, the attain-
able utility at a finite deadline constraint could still be far from
optimum. Finally, stochastic decision theory can be used to
solve the optimal decision subject to deadline constraints. For
example, [17, 18] and [19] proposed dynamic-programming
(DP) based policies for minimizing the energy in single-user
systems. However, as the number of users increases, such a
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stochastic decision problem is known to incur exponentially-
high complexity.

In this paper, we develop a novel approach to this open prob-
lem. Our key idea is that when the system is large, significant
simplicity arises, which enables us to develop simple policies
that are close-to-optimal. In other words, instead of suffering
from the curse-of-dimensionality in a large-sized system, we
exploit the largeness of the system to our advantage. Specially,
we consider the large-system regime where both the arrival
rate and the capacity increase proportionally to infinity. We
show that when the system size is large, the interactions
between users can be captured by the resource constraints
and the deadline violation probability of each user is mainly
determined by its own channel conditions. Based on such
insights, we can then decouple the system and design policies
that are not only provably optimal in the large-system regime,
but also perform very well for medium-sized systems.

For readers familiar with the large-system asymptotics [20],
the intuition that the competition between users becomes less
dominant in the large-system regime may seem somewhat
natural. However, as we will elaborate later, when there is
channel variation, it is non-trivial to design scheduling policies
that correctly exploit this intuition. Specifically, if one simply
generalizes policies from the case of no channel variations
(e.g., EDF), these policies may in fact perform poorly even
if the system size is large. In contrast, the results in this
paper provide a rigorous analytical framework to develop and
analyze the correct scheduling policies in such settings.

In summary, the main contributions of this paper are:
• We first present a lower bound on the deadline violation

probability for application-level scheduling with dead-
line constraints under a given network capacity (Sec-
tion III-A). Moreover, we show that this lower bound is
tight in the large-system regime as it can be achieved by
appropriately designed scheduling schemes. We note that
this result holds under very general channel models that
may have multiple transmission rates and even temporal
correlation patterns.

• We then develop new scheduling policies, called
Maximum-Total-On-users (MTO) and its work-
conserving enhancement (MTO-WCE) (Sections III-B
to III-C). They are not only asymptotically optimal
in the large-system regime, but also achieve superior
performance for medium-sized systems. We demonstrate
that it is non-trivial to design good policies, e.g., the
variants of traditional EDF and MaxWeight policies may
perform poorly even when the system size is large.

• We generalize these results from single-class systems
(Section III) to multi-class systems (Section IV), where
the performance requirements of different classes can d-
iffer significantly. Further, based on the above asymptotic
approach, we study the Application-Level Effective Ca-
pacity (ALEC), i.e., the maximum throughput that can be
supported by the system with given requirements on the
deadline violation probability (Section IV). We show that
our proposed policies asymptotically achieve the optimal
ALEC region. By evaluating the ALEC, we demonstrate
the significant potential for capacity improvement thanks
to application-level opportunistic control.

The remainder of this paper is organized as follows. We first

describe the application-level scheduling model in Section II.
Then, we focus on the case with unit file size and study the
scheduling problems for single-class systems in Section III
and for multi-class systems in Section IV. We generalize the
results to systems with random file size in Section V. We
evaluate the scheduling policies through numerical simulations
in Section VI and finally conclude our work in Section VII.

II. SYSTEM MODEL

We consider a wireless network with a single BS serving
a sequence of mobile users. The system operates in a time-
slotted fashion, i.e., t ∈ {0, 1, 2, . . .}. The time-slot length
considered throughout this paper is typically much larger than
that in the conventional opportunistic-scheduling schemes that
leverage small-time-scale fading [4, 5]. There, each time-slot
is on the order of milliseconds. In contrast, since the deadlines
in application-level scheduling usually range from minutes to
hours [21], we will use time-slot length of tens of seconds to
a few minutes.

A. Traffic Models

We focus on the downlink of the BS in this paper although
the uplink can be studied similarly. The BS serves K classes
of users. We assume that the arrival processes are stationary
and ergodic, and are independent across classes. Let Ak(t)
(k = 1, 2, . . . ,K) represent the number of class-k users that
arrive during time-slot t. For ease of exposition, we assume
that Ak(t) is a Poisson random variable with mean value
λk = E{Ak(t)}. However, we note that the results obtained
in this paper can also be extended to more general arrival
processes that satisfy certain conditions, e.g., traffic generated
by i.i.d. sources. Denote λ as the aggregated arrival rate, i.e,
λ =

∑K
k=1 λk, and let αk be the ratio of the load contributed

by class-k users, i.e, αk = λk/λ.
Let I = {1, 2, . . .} be the index set of all users that enter the

system. Each user i ∈ I requests to download a file of size Fi.
We assume that the file size Fi is known as soon as the task
is created. For ease of exposition, we first study scheduling
policies assuming unit-size files, i.e., Fi = 1, in Sections III
and IV. In Section V, we extend the results to the scenario
where users from the same class can request files with i.i.d.
random size, provided that the file sizes are independent of
arrival processes and channel processes.

Associated with each class-k user is a (relative) deadline
Dk, which is the maximum waiting time that a class-k user
can tolerate. For example, for a class-k user arriving in time-
slot t, its transmission task should be completed before t+Dk

(absolute deadline). However, due to the uncertainty of channel
conditions and the limitation of available resource, it may not
be possible to complete all tasks before expiration. Users that
violate their deadlines will give up the task and depart the
system. The deadline violation probability is a main concern
of this paper, as will be defined shortly.

B. Channel Model

We aim at designing scheduling policies that exploit channel
variations in the coarse time-scale due to shadowing and user
mobility. The measurements in [22] show that “the channel
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has a dominant slow-fading component on which the fast-
fading component is overlaid”, and the slow-fading component
remains roughly constant on the order of seconds to minutes
depending on the mobility. In our analysis, we mainly consider
the slow-fading component by averaging out the fast-fading
component within each time-slot, and thus assume that the
channel condition stays unchanged within one time-slot.

For each i ∈ I, let the channel state Si(t) represent the
transmission rate (in the unit of bits/slot per unit of radio
resource) available to user i in time-slot t. As suggested in
[23], we model Si(t) as a finite-state Markov chain, i.e.,
Si(t) ∈ {r1, r2, . . . , rJ}, where J is the number of possible
rates, and 0 ≤ r1 < r2 < . . . < rJ are the possible values of
transmission rates. We assume that each user can estimate the
current channel state Si(t), e.g., based on the measurement
of the pilot signal broadcast by the BS. Further, the user can
report its state Si(t) to the BS through the control channel if
necessary.

We assume that channel processes are independent across
users, and users from the same class have the same transition
probability matrix, which is given by

P (k) =
[
p

(k)
j1j2

]
J×J

, k = 1, 2, . . . ,K,

where p
(k)
j1j2

∈ [0, 1], 1 ≤ j1, j2 ≤ J , is the transition
probability from state j1 to state j2 for class-k users. We
assume that each user can learn these transition probabilities
based on historical measurements, as in [24, 25]. Further,
denote the stationary distribution for the Markov chain of
class-k as

π(k) = [π
(k)
1 , π

(k)
2 , . . . , π

(k)
J ], (1)

where π(k)
j (1 ≤ j ≤ J) is the stationary probability of state

j. We assume that the channel processes have reached the
steady state, i.e., with the stationary distribution π(k), when
transmission tasks are created.

C. Scheduling Model and Performance Objectives
At the beginning of each time-slot t, the BS makes schedul-

ing decisions based on the network status and transfers data
with available resource. We assume that users are allocated
with orthogonal resource (e.g., resource blocks in OFDMA
systems) and the total amount of radio resource consumed is
limited. Under this model, we assume no other interference
among users. Define the system capacity C as the amount of
available radio resource, which is the product of bandwidth
and slot-length. Assume that when a user i is selected to
transmit in time-slot t, its download task can be completed
within the given time-slot using Fi/Si(t) units of resource.
This assumption is reasonable since the time-slot length is
much larger than that in packet-level scheduling. For example,
if we take a time-slot of 30 seconds, as many as 3 Gbits (when
the bandwidth is 20 MHz and the spectrum efficiency is 5
bps/Hz [26]) can be transferred in a time-slot. Hence, for a
medium file size of a few MBytes, these files can be easily
completed in one time-slot provided that the channel condition
is good.

Let Qk(t) represent the amount of class-k data (in the unit
of bits) waiting for transmission at the beginning of time-
slot t. Note that in time-slot t, the users departing the system

include the users being scheduled and the users violating their
deadlines. Then, for each k ∈ {1, 2, . . . ,K}, the queue length
Qk(t) evolves as follows

Qk(t+ 1) = Qk(t)− Zk(t)− Vk(t) +Ak(t), (2)

where Zk(t) and Vk(t) represent the total amount of data of
completed users and expired users in time-slot t, respectively.
Let Γ be the set of all possible policies. For each policy γ ∈ Γ,
the deadline violation probability of class k is defined as

vk,γ(λ, C) = lim sup
T→∞

1

λkT

T−1∑
t=0

E[Vk(t)], (3)

where λ = [λ1, λ2, . . . , λK ] is the arrival rate vector.
In a single-class system, we omit the class index for

simplicity and denote the deadline violation probability by
vγ(λ,C). The objective of the BS is to minimize the deadline
violation probability subject to a given load level, i.e.,

min
γ∈Γ

vγ(λ,C).

In a multi-class system, the deadline violation probabilities
across different classes are coupled and the BS needs to trade-
off the performance of different classes. In this case, we
are interested in the optimal region of the deadline violation
probability, which is defined as follows.

Definition 1 (Optimal DVP region) Given λ and C, the op-
timal region for the Deadline Violation Probability (optimal
DVP region) is defined as the set of probability vectors that
can be achieved under certain scheduling policy, i.e.,

V(λ, C) =
{
v ∈ [0, 1]K : ∃γ ∈ Γ,

such that vk,γ(λ, C) ≤ vk for all classes k
}
. (4)

We are then interested in identifying the optimal DVP region
and designing policies that can achieve any point in this region.

Remark: We note that application-level scheduling studied
in this paper differs from typical packet-level and flow-level
scheduling problems in literature. Our model differs from
packet-level scheduling [4, 5] due to two reasons. First, the
user population is dynamic due to user arrivals and depar-
tures/expirations. Second, there is a difference in the time-scale
that we are interested in. Specifically, packet-level scheduling
focuses on the small-time-scale channel variations typically
due to multi-path fading. In contrast, our application-level
scheduling focuses on exploiting larger time-scale variations,
which are typically due to shadowing and/or users mobility.
We note that, by averaging out the fast-fading component in
each time-slot, the analysis in this paper does not account
for the packet-level scheduling gain. Thus, it is conservative
in nature. In reality, the BS can still apply a packet-level
scheduling algorithm within each time-slot. In that case, we
expect that the actual performance of the system (in terms
of the deadline violation probability) will only be better.
We leave it for future work to study how the analysis can
be extended to account for the fast-fading component. Our
model also differs from flow-level scheduling. In typical flow-
level scheduling studies [14, 15, 27–30], flow-level dynamics
and packet-level dynamics are mixed together, i.e., packet-
level scheduling decisions must take into account flow-level
statistics (e.g., delay or residual file size [15]). In contrast, our
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model can be viewed as a simplification that decouples flow-
level scheduling from packet-level scheduling. The benefit
of such simplification is that we can provide rigorous delay
guarantees (in comparison, existing flow-level studies focus
only on stability and throughput optimality [14, 15, 27]).

III. SCHEDULING IN SINGLE-CLASS SYSTEMS

In this section, we study the single-class case, i.e., K = 1,
and omit the class index for simplicity. Recall that the BS
aims to minimize the deadline violation probability for a given
system capacity C and arrival rate λ. We first identify a lower
bound on the deadline violation probability by studying an
individual decision problem. Then, we propose asymptotically
optimal policies, called MTO and MTO-WCE, which achieve
the lower bound in the large-system regime, i.e., when C and
λ proportionally grow to infinity.

A. A Lower Bound on the Deadline Violation Probability
To obtain a lower bound on the deadline violation proba-

bility, we first focus on the decision problem for an individual
user: the user decides whether or not to request transmission in
each time-slot based on its waiting time and channel condition.

Let w ∈ {0, 1, . . . , D − 1} be the waiting time of the user,
i.e., the number of time-slots that the user has waited in the
system. Then, a request decision policy for the user can be
represented by an individual decision matrix x = [xw,j ]D×J ,
where xw,j ∈ [0, 1] (w = 0, 1, . . . , D − 1; j = 1, 2, . . . , J)
is the probability that the user requests transmission when its
waiting time is w and its channel state is j. Let X be the set of
all possible decision matrices. Corresponding to each x ∈ X ,
we define the following two metrics:
• Silent probability p0(x): the probability that the user does

not request transmission within D slots.
• Expected consumed resource c(x): the expected amount

of resource consumed by the user if it ever requests
transmission in some time-slot.

The above two metrics (as functions of x) can be calculated
as follows. Let π′w,j(x) be the probability that a user has
waited for w slots and its channel condition is j. We can
first calculate π′w,j(x)’s iteratively. First, for w = 0, we have
π′0,j(x) = πj for j = 1, 2, . . . , J . For w > 0, we have the
following iterations:

π′w,j(x) =

J∑
j′=1

(1−xw−1,j′)π
′
w−1,j′(x)pj′j , j = 1, 2, . . . , J.

Then, we can calculate p0(x) and c(x) as:

p0(x) =

J∑
j=1

π′D,j(x), and, c(x) =

D−1∑
w=0

J∑
j=1

xw,jπ
′
w,j(x)

rj
.

Let p∗0 be the optimal value of the following resource-
constrained individual decision problem:

p∗0 = minx∈X p0(x)

subject to c(x) ≤ C

λ
.

(5)

The above problem (5) can be viewed as a constrained MDP
as follows. The state is Ŝ ∈ {Completed} ∪ {1, 2, . . . , J}.

The action is “Request” or “Wait”. The state Ŝ transits to
“Completed” if the user requests to transmit, or transits from
j to j′ with probability pjj′ if the user decides to wait. One
unit of cost incurs if Ŝ 6= “Completed” at time-slot D, and
1/rj units of resource is consumed if the user requests to
transmit under channel condition j. This constrained MDP
can be solved by a Lagrangian relaxation approach as in [31].
By introducing a Lagrangian multiplier, we can convert the
constrained MDP problem into a non-constrained MDP, and
then solve it by dynamic programming iteratively. In particular,
when the channel process is independent across time, the
optimal solution can be shown to follow a threshold structure,
i.e., for each given w, there exists a j0 such that xw,j = 0
for j < j0, xw,j = 1 for j > j0, and xw,j0 ∈ [0, 1]. In other
words, a user with waiting time w only requests transmission
when its data rate exceeds a certain threshold j0. If xw,j0 6= 0
or 1, it corresponds to some randomization at the state j0,
which may be necessary to guarantee the equality of resource
constraint in (5). This threshold j0 may depend on the waiting
time w. In the case where the channel is i.i.d. across time, the
user will use larger threshold j0 when w is small, and use a
smaller threshold j0 when w is large, i.e., when it is close to
expiration. We refer readers to [31] for the details of solving
this constrained MDP problem. We note that when we use the
Lagrangian relaxation approach to solve such an individual
decision problem, it involves iterations of solving a dynamic
programming problem with J + 1 states and horizon D. The
corresponding complexity is on the order of O(J2D) and is
much lower than the complexity of solving the network-scale
scheduling problem as an MDP.

Next, the following proposition states that p∗0 is a lower
bound of the deadline violation probability.

Proposition 1 Given system capacity C and arrival rate λ,
the deadline violation probability under any scheduling policy
γ satisfies vγ(λ,C) ≥ p∗0.

Remark: Note that in general, a multi-user system is
complicated to analyze due to the coupling across users. In
other words, when one user requests transmission, the system
may not have the capacity to accommodate it if there are
many other users requesting transmission at the same time.
However, a key insight from Proposition 1 is that, the deadline
violation probability is bounded by each user’s own channel
characteristics, while the coupling across users is captured only
through the average resource consumption c(x). Intuitively,
there are on average λ users that should be served in each
time-slot, and hence the expected resource consumption of
each user should not be larger than C/λ. Proposition 1 then
shows that the minimum violation probability subject to the
resource constraint but without considering the coupling effect
indeed gives a lower bound on the minimum deadline violation
probability of the entire network.

Sketch of Proof: The scheduling problem of the whole
system can be viewed as an MDP. Specifically, we refine the
queue evolution equation (2). In time-slot t, corresponding to
waiting time w and channel condition j, let Qw,j(t) be the
number of users waiting at the beginning of the time-slot,
Zw,j(t) be the number of served users, Aj(t) be the number
of users arriving at channel state j. Viewing Qw,j(t) as the
system state and Zw,j(t) as the action, we can verify that the
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system state in the next time-slot only depends on the state and
action in the current slot: for w = 0, Qw,j(t+1) = Aj(t); for
1 ≤ w ≤ D− 1, Qw+1,j(t+ 1) = Qw,j(t)−Zw,j(t); and the
cost is V (t) =

∑J
j=1QD,j(t). Then, the scheduling problem

becomes an MDP with a countable state-space. Solving this
network-scale MDP is extremely challenging as we discussed
before, but we know that there exists an optimal stationary
policy for this problem. Then, we bound its performance
by showing that any network-scale stationary policy can be
mapped to an individual decision policy subject to the resource
constraint in (5). Details are available in Appendix A.

B. Achieving the Lower Bound in the Large-System Regime
In this section, we study scheduling policies that are asymp-

totically optimal in the large-system regime where the system
capacity and arrival rate grow proportionally to infinity.

We consider the following semi-distributed framework. At
the mobile-side, each user makes its own decision on whether
or not to request transmission. As discussed in Section III-A,
an individual decision policy is represented by a decision
matrix x = [xw,j ]D×J . Let Qw,j(t) be the users that have
waiting time w and channel condition j in time-slot t. Then
each user i ∈ Qw,j(t) sends the transmission request with
probability xw,j . A user is referred to as an “ON” user when
it sends its transmission request, and an “OFF” user, otherwise
(Note that the notion of ON-OFF users is different from the
notion of ON-OFF channels in [8]: the channel in this paper
may still have multiple rate levels). Again, note that not all ON
users can be served if there are too many of them requesting
transmission at the same time. Hence, at the network-side,
the scheduler needs to make decision for serving the “ON”
users. Next, we show that the Maximum-Total-On-users (MTO)
policy presented in Algorithm 1 performs very well when the
system size is large and all users use appropriate x.

Algorithm 1 MTO policy
Input: x = [xw,j ]D×J , C;
for t = 0 to ∞ do

User i ∈ Qw,j(t) becomes ON with probability xw,j ;
BS sorts all ON users in ascending order of Fi/Si(t); then
serves the users sequentially until the sum of Fi/Si(t)
over all served users reaches C;

end for

We represent the MTO policy as MTO(x), since it depends
on the individual decision matrix x for each user. We note
that the MTO(x) policy exhibits a number of highly desirable
features for ease of implementation. First, each user deter-
mines its own individual decision matrix x, possibly based
on its future channel characteristics. The BS does not need
to know the channel characteristics of each individual user.
Second, to schedule which users should be served, the BS only
needs to know the current channel conditions of those users
who request transmission. The BS does not need to track the
state of all other users. Both features significantly reduce the
amount of signalling overhead between the users and the BS.

Let x∗ be the optimal solution to problem (5), we next show
that MTO(x∗) (i.e., using x∗ as the individual decision matrix)
is asymptotically optimal in the large-system regime.

Proposition 2 Fix c̄ = C/λ and let x∗ be the optimal solution
of problem (5). Then, MTO(x∗) is asymptotically optimal in
the large-system regime, i.e.,

lim
C→∞

vMTO(x∗)(C/c̄, C) = p∗0, (6)

and the convergence speed is at least 1/
√
C.

The proposition indicates that, as the system capacity and
the arrival rate grow proportionally to infinity, the deadline
violation probability under MTO(x∗) approaches the lower
bound. We note that this result is non-trivial because the
lower bound in Proposition 1 implicitly assumes that all users
requesting transmission can be served immediately. However,
due to randomness, not all ON users can be served even when
the average total consumed resource is no greater than C.
Fortunately, when the system size is large, this “fluctuation”
effect becomes less critical. The proof is divided into two parts.
First, we consider an even simpler policy, called FOO, that
also has the same asymptotic properties. Then, we show that
the MTO policy dominates the FOO policy with the same
individual decision matrix, and thus has better performance.

1) A Baseline Policy: FOO
We first consider a policy that only serves those users

requesting transmission for the first time after they arrive.
Such a user is referred to as a “First-ON” user, and the
corresponding policy presented in Algorithm 2 is referred to
as First-On-Only (FOO) policy.

Algorithm 2 FOO policy
Input: x = [xw,j ]D×J , C;
for t = 0 to ∞ do

User i ∈ Qw,j(t) becomes ON with probability xw,j ;
BS serves ON users randomly until the sum of Fi/Si(t)
over all served users reaches C;
ON users that are not served give up their transmission
tasks and leave the system;

end for

Similar to MTO(x), we represent the FOO policy as
FOO(x), since it also depends on the individual decision
matrix x for each user. We first consider a general individual
decision matrix x. Let ρ(x) = λc(x)/C be the offered load
level under x. For a fixed offered load ρ(x) ≤ 1, we can show
that in the large-system regime, almost all “First-ON” users
can be served and the deadline violation probability under
FOO(x) approaches the silent probability p0(x).

Lemma 1 Fix the decision matrix x such that the load level
satisfies ρ(x) ≤ 1. Under the FOO policy, the deadline
violation probability approaches the silent probability as C
grows to infinity, i.e.,

lim
C→∞

vFOO(x)(Cρ(x)/c(x), C) = p0(x), (7)

and the convergence speed is at least 1/
√
C.

Sketch of Proof: We prove the lemma by exploiting two
critical properties of FOO. First, since each user is considered
to be scheduled only when it is “First-ON”, the candidate set
for scheduling in each time-slot only depends on each user’s
own channel characteristics. Second, FOO fully utilizes the
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resource to serve “First-ON” users in each time-slot. Using
these two properties, we can show that as the system size
increases, the probability that a user is “First-ON” but can not
be served becomes negligible, with the convergence speed of
at least 1/

√
C. Details are available in Appendix B.

2) Dominance of MTO and Proof of Proposition 2
The FOO policy only allows each user to request transmis-

sion once before its deadline. However, the proposed MTO
policy removes this restriction and we can show that with the
same individual decision matrix x, the proposed MTO policy
dominates FOO in any time-slot. Specifically, the candidate
set of MTO is a superset of that of FOO in each time-slot,
and thus the number of served users under MTO is no less
than that under FOO in any time-slot. Therefore, Eq. (7) also
holds for MTO(x). As a special case, when the individual
decision matrix is x∗, we have ρ(x∗) ≤ 1, and the conclusion
of Proposition 2 then follows.

C. Work-Conserving Enhancement of MTO
Under MTO, resource may still be wasted if after serving

all ON users, there is still capacity remaining. In this case, if
we allow the BS to serve some of the OFF users, the MTO
policy should perform even better. For example, consider the
following policy called MTO with Work-Conserving Enhance-
ment (MTO-WCE). We consider another version of problem
(5) where the constraint is relaxed to c(x) ≤ (1 + ξ)C/λ,
where ξ > 0 is a control factor that can be used for trading-
off between the resource utilization and signaling overhead.
We let x(ξ) be the optimal solution to the relaxed individual
decision problem (5). The users who request transmission
based on x∗ are still called ON users, and the users who
request transmission based on x(ξ) are called “secondary-
ON” users. The MTO-WCE policy will serve the ON users
first. If there is remaining capacity, the BS then serves the
“secondary-ON” users. Clearly, MTO-WCE must achieve even
better performance than MTO because we always serve the ON
users first.

D. Comparison and Discussions
We briefly compare and discuss the above policies before

studying scheduling policies for more general cases. The
simulation setting is the same as that presented in Section VI,
which will also include more numerical results. Fig. 1 shows
the deadline violation probability versus the system scale C
in a single-class setting with fixed λ/C. As we can observe
from the figure, FOO, MTO, MTO-WCE approach the lower
bound when the system size is large. However, FOO leads to
a much larger violation probability in medium-sized system
due to the restriction that we discussed earlier. Further, MTO-
WCE outperforms MTO and reduces the violation probability
even further. Next, we compare the above policies with other
policies (i.e., Delay-MW, EDOF-WCE, and HRF, which will
be defined later), and discuss the implications of the observa-
tions.

1) Achieving asymptotic optimality is not trivial: Readers
may have the impression that, since even a policy as simple
as FOO achieves the same asymptotic optimality when the
system size is large, perhaps any reasonable policy will be
as good as MTO/MTO-WCE. This apparent triviality could

be quite misleading. For example, consider a variation of the
EDF policy that is often used for systems with fixed or two-
state channels [7, 8]. Specifically, in each time-slot, the BS
serves ON users according to the EDF discipline (we call it the
Earliest-Deadline-ON-user-First (EDOF) policy). As shown in
Fig. 1, even for EDOF with work-conserving-enhancement
(EDOF-WCE), the deadline violation probability is still larger
than that under FOO and may not approach the lower bound p∗0
even when the system is large. What happens is that the EDOF
policy does not dominate FOO in each sample path. In general,
when the waiting time w is larger, a user will tend to request
transmission even if its channel is poor (because it is already
approaching its deadline). Under EDOF, since an ON user
closer to the deadline gets a higher priority to be served, the
system will be more likely to serve a user when its channel is
poor. This deficiency reduces the overall system performance.
Another well-known policy, Delay-driven MaxWeight [15],
does not approach the lower bound either when the system size
is large, as shown in Fig. 1 (which is not surprising because
Delay-driven MaxWeight is only throughput optimal but does
not guarantee deadline performance). The above examples
therefore illustrate that, even when the system size is large,
we must carefully design efficient scheduling policies based
on rigorous theoretical principles, in particular, by choosing
policies that dominate FOO.

2) Serving only the ON users (or secondary-ON users) is
important: In the single-class case, one may envision other
policies that do not rely on individual decision matrices x∗ or
x(ξ). For example, consider the following Higher-Rate-First
(HRF) policy: all users are eligible for service and in each
time-slot, the BS gives priorities to the users that have higher
data rate 1. One can show that the HRF policy also dominates
FOO and hence is asymptotically optimal in the single-class
case. However, there are two reasons why MTO/MTO-WCE
are more preferable than HRF. First, as we will see later in
Section VI, it is difficult to extend the HRF policy to the multi-
class case because it is unable to balance the performance
across different classes. In contrast, the MTO/MTO-WCE
policies using the optimal individual decision matrices can be
shown to be optimal in the multi-class case as well. Second,
for HRF the BS needs to know the channel conditions of all
users. In contrast, MTO and MTO-WCE incur much lower
signalling overhead because only the ON (or secondary-ON)
users need to report the channel state to the BS. As shown in
Fig. 2, the ON-ratio under MTO-WCE is higher with a larger
ξ, because a larger ξ results in a looser resource constraint
c(x) ≤ (1 + ξ)C/λ and reduces the threshold for becoming
ON/secondary-ON, i.e., each user will be more aggressive
in becoming an ON/secondary-ON user. With an appropriate
relaxation factor, the ON-ratio is low, e.g., only about one-
third of users need to report to the BS when ξ = 0.15 and
the ratio becomes less at high arrival rate since the resource

1We acknowledge that the Less-Resource-First (LRF) defined in our earlier
work [1] may be not asymptotically optimal in the case with random file size,
although it is equivalent to HRF in the case with identical file size.
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Fig. 1. Convergence of deadline violation proba-
bility (D = 10, λ/C = 12(MHz · Slot)−1).

20 40 60 80 100 120 140 160
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Arrival rate λ

O
N

−
R

at
io

 

 

ξ = 0
ξ = 0.15
ξ = 0.30
ξ = 0.45

Fig. 2. ON-ratio under different arrival rates (C =
10 MHz, D = 10).

5 10 15 20

0.05

0.1

0.15

0.2

0.25

System scale C (MHz)

V
io

l. 
pr

ob
. p

vi
ol

 

 

λ/N = 4
λ/N = 2
λ/N = 1
i.i.d.
Lower bound

Fig. 3. Impact of correlations (D = 10, λ/C =
12(MHz · Slot)−1).

constraint becomes tighter2. Hence, there are both analytical
and practical advantages to use MTO/MTO-WCE.

3) Impact of Correlation Among Users: We have shown
the asymptotic optimality of MTO/MTO-WCE based on the
assumption that the channel processes for all tasks are inde-
pendent. In practice, a user may request multiple transmission
tasks either in the same or different time-slots. Hence, these
tasks experience the same channel conditions. Here, we inves-
tigate the impact of correlations and show that the proposed
approaches are still applicable for such a more general setting
in the large-system regime. Let N be the total number of users
in the system. For each new task, the user that requests the
task is uniformly chosen from 1 to N . Hence, the ratio λ/N
represents the average number of transmission tasks generated
by each user in one slot and the correlation of channel-state
processes becomes larger as λ/N increases. We assume that
each user does not combine tasks and thus makes decision for
each task separately. Fig. 3 shows the convergence of dead-
line violation probability for different values of λ/N . From
the figure, we can see that under MTO-WCE, the deadline
violation probability increases as the correlation of channel-
state processes becomes stronger, especially when the system
scale is small. However, the difference becomes negligible
as the system scale becomes larger. Hence, the proposed
approaches can be applied to approximately minimize the
deadline violation probability in the systems where the channel
processes may be correlated.

IV. SCHEDULING IN MULTI-CLASS SYSTEMS

In the previous section, we have shown that, when there is
a single class, simple MTO and MTO-WCE policies are not
only asymptotically optimal when the system size is large, but
also perform well in medium-sized systems. In this section, we
extend the results to multi-class systems.

In multi-class systems, the design of scheduling policies
must be even more careful because we need to balance
the performance across different classes. Since the resource
shared among different classes is limited, it is impossible to

2When the traffic load is low (λ ≤ 90), the ON-ratio remains roughly
constant as ξ or λ increases because in this range, the constraint in (5) is
not binding yet (i.e., resource is plentiful). For a fixed and strictly-positive
ξ > 0, there is a medium range of λ where the ON-ratio increases with
λ. This is because, in this range the relaxed constraint tends to make the
BS oversubscribed with secondary-ON users. As a result, more secondary-
ON users must be declined service and these users will then become ON or
secondary-ON again later with a higher probability (because they are closer
to the deadline). Thus, the overall ON-ratio in fact increases. We choose
ξ = 0.15 in our simulations later as it provides a low deadline violation
probability without causing too much additional signaling overhead.

simultaneously minimize the deadline violation probability of
all classes. Thus, we turn to study the optimal DVP region
(see Definition 1). We will identify an outer bound for the
optimal DVP region and show that MTO/MTO-WCE can
asymptotically attain any point strictly inside the outer bound
in the large-system regime. Further, we quantify the maximum
throughput that can be supported for given requirement on the
deadline violation probabilities, which will show the benefit
of application-level scheduling.

A. Optimal DVP Region
For given system capacity C and arrival rate vector λ, we

define the optimal DVP region V(λ, C) by Eq. (4). However,
obtaining the accurate region of V(λ, C) is difficult. Next, we
will establish a simple outer bound for V(λ, C), and show that
an appropriately-designed MTO policy will attain this bound
when the system size is large.

In order to obtain an outer bound for V(λ, C), we first
consider the scenario where each class is separately served
with a certain proportion of the resource. Such separation
allows us to use the results obtained in the single-class case.
Specifically, let ζ ∈ [0, 1]K satisfy

∑K
k=1 ζk = 1, and let ζkC

be the resource allocated to class k. By Proposition 1, we know
that the lower bound on the deadline violation probability
for each class is given by the optimal value p∗0,k(ζk) of the
following optimization problem:

p∗0,k(ζk) = minxk∈Xk
p0,k(xk)

subject to ck(xk) ≤ ζkC/λk.
(8)

As a result, separating the resource according to ζ should
allow us to achieve any vector of deadline violation probability
in {v ∈ [0, 1]K : p∗0,k(ζk) ≤ vk ≤ 1}. Taking the union of all
possible ζ, we then obtain the following region:

V̂(λ, C) =
⋃

ζ∈[0,1]K :
∑K

k=1 ζk=1

{v ∈ [0, 1]K : p∗0,k(ζk) ≤ vk ≤ 1}.

Next, we will show that V̂(λ, C) is an outer bound for
the optimal DVP region V(λ, C). Further, we will show that
the MTO policy with appropriately chosen individual decision
matrices is asymptotically optimal in attaining any vector of
deadline violation probabilities in this outer bound when the
system size is large. Specifically, suppose that we are given
a vector v = [v1, v2, . . . , vk] ∈ V̂(λ, C). Let x]k(vk) be the
optimal solution to the following individual decision problem:

minxk∈Xk
ck(xk)

subject to p0,k(xk) ≤ vk.
(9)
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Further, let x](v) = {x]1(v1),x]2(v2), . . . ,x]K(vK)}. We
represent the MTO policy with individual matrices x](v)
as MTO(x](v)). In other words, under MTO(x](v)), class-
k users request transmission using matrix x]k(vk), and those
users from each class requesting transmission are called ON
users. As in Section III, in each time-slot, the MTO policy
serves as many ON users as possible, regardless of which class
they are from.

The following proposition states that the optimal DVP
region is outer-bounded by V̂(λ, C) and the MTO policy is
asymptotically optimal in the sense that it can achieve any
violation probability vectors in V̂(λ, C), including the frontier,
in the large-system regime.

Proposition 3 For given system capacity C and arrival rate
vector λ, the optimal DVP region satisfies V(λ, C) ⊆
V̂(λ, C). In addition, for a fixed amount of average resource
c̄ = C/λ, arrival proportion vector α, and any v ∈ V̂(λ, C),
we have

lim
C→∞

vk,MTO(x](v))(Cα/c̄, C) ≤ vk, (10)

Sketch of Proof: The proof for the outer bound is similar to
the proof of Proposition 1. To show the asymptotic optimality
of MTO(x](v)), we first show that the conclusion holds for
FOO(x](v)) by the similar approach as in Lemma 1, and then
extend the results to MTO(x](v)). However, the extension
is trickier than the single-class case, because even though
MTO(x](v)) dominates FOO(x](v)) in terms of total number
of served ON users, it does not dominate FOO(x](v)) in terms
of number of served ON users for each class. We deal with
this issue by upper bounding the expected number of served
users from each class and then show that the deadline violation
probability of each class under MTO will approach a value no
greater than vk. The details are available in Appendix C.

Remark: As discussed earlier in the single-class case, a
highly desirable feature of the MTO policy is that each user
computes independently its decision matrix xk, and decides
whether it should be ON or OFF in each time-slot. Then,
the BS only needs to schedule as many ON users as possible.
Note that the BS needs not to know the channel characteristics
of each user, nor its targeted deadline violation probability.
Hence, the MTO policy is easy to implement in a distributed
manner. In addition, we also note that the individual decision
matrices xk’s play a crucial role in balancing the performance
requirements of different classes of users. Without such con-
trol, it would have been much more difficult for the BS to
decide who should be served. As we will see in the simulation
results in Section VI, this difficulty is precisely why policies
such as HRF, which performs well for single-class systems,
fail in multi-class systems. In HRF (or in other weight-
based policies such as Delay-driven MaxWeight), although
one can introduce and adjust weights to control the priority of
different classes, it is difficult to predict the achieved deadline
violation probabilities in advance, without actually running the
policy. Hence, they are ineffective in guaranteeing the delay
performance in the deadline-constrained scenarios that we are
interested in.

We also note that, similar to the single-class case, we
can use work-conserving enhancement to further improve the
performance. Specifically, we can solve the problem (5) with

relaxed resource constraint ck(x) ≤ (1 + ξ)ck(x](vk)), and
use the solution to decide the “secondary-ON” users as in
Section III-C.

B. Application-Level Effective Capacity Region

Instead of minimizing the deadline violation probability
subject to given offered load, a dual problem would be to
maximize the offered load subject to given deadline violation
probabilities. Let ηk be the maximum deadline violation prob-
ability for class-k users. Then, in the single-class system, the
objective of the BS is to maximize the throughput while guar-
anteeing that the deadline violation probability does not exceed
η. We refer to this maximum throughput as Application-
Level Effective Capacity (ALEC), to differentiate it from the
Effective Capacity concept proposed in [32]. In a multi-class
system, the ALECs are again coupled across different classes.
Therefore, with given requirement η = [η1, η2, . . . , ηK ], we
define the ALEC region as follows.

Definition 2 (ALEC region) Given system capacity C and
required value η of deadline violation probabilities, the ALEC
region is defined as follows,

Λ(η, C) =
{
λ ∈ [0,∞)K : ∃ policy γ ∈ Γ,

such that vk,γ(λ, C) ≤ ηk for all classes k
}

(11)

Similar to the analysis of the optimal DVP region, we
consider the outer bound for Λ(η, C). Define the following
region:

Λ̂(η, C) =
{
λ ∈ [0,∞]K ,

K∑
k=1

c]k(ηk)λk ≤ C
}
,

where c]k(ηk) is the optimal value of the constrained opti-
mization problem (9), with the deadline violation probability
vk replaced by ηk. Clearly, Λ̂(η, C) increases linearly in C.
Using the approach in Section IV-A, we can show that Λ̂(η, C)
is an outer bound for Λ(η, C) and is tight in the large-system
regime.

Proposition 4 Given the system capacity C and the required
values η of deadline violation probabilities, the ALEC region
satisfies Λ(η, C) ⊆ Λ̂(η, C). In addition, for any λ that is in
the interior of Λ̂(η, 1), we have

lim
C→∞

vk,MTO(x](η))(λC,C) ≤ ηk. (12)

As a special case of Proposition 4, we conclude that for the
single-class case (i.e., K = 1), the ALEC is upper bounded
by C/c](η) and it approaches this upper bound as C grows
to infinity under MTO/MTO-WCE. By evaluating this ALEC
in Section VI, we will demonstrate the benefit of application-
level scheduling.

V. SCHEDULING WITH RANDOM FILE SIZES

For simplicity, in the previous sections, we have studied
asymptotically optimal policies with the assumption of unit
file size. In this section, we discuss the extension of the results
to the case of random file size.
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A. Adjustments of System Models and Performance Metrics
We assume that the file sizes Fi’s of users from the same

class are i.i.d. and are independent of the arrival and channel
condition. Let µF,k and σ2

F,k be the expectation and variance of
the file size for class-k users, i.e., E[Fi] = µF,k and Var(Fi) =
σ2
F,k if user i is from class k.
Since the file size of each user is different, we define the

metrics based on the amount of data (rather than the amount
of users). Note that in Section II, we have already defined the
queue length Qk(t), the amount of data completion Zk(t) and
the amount of violations Vk(t) based on the amount of data
(although for unit-size files, their definitions are the same if
we defined them based on the number of users). Thus, here we
only need to replace the number of arrivals Ak(t) in Eq. (2)
by Bk(t), which is defined as the amount of data requested by
the new arrivals from class k. Let N(t) be the total number
of users entering the system up to time-slot t, i.e., N(t) =∑t
t′=0

∑K
k=1Ak(t′), and Ik ⊆ I be the index set of class-k

users. Then the total amount of class-k data arriving in time-
slot t can be represented by

Bk(t) =

N(t)∑
i=N(t−1)+1

1i∈IkFi,

where 1i∈Ik is the indicator function of the event {i ∈ Ik}.
Then, the expectation of Bk(t) is E[Bk(t)] = λkµF,k [33].

We also take the utility of file download to be proportional
to the amount of successfully transferred data. Hence, the
deadline violation probability should also be defined as the
ratio of the amount of expired data to the amount of total
data, i.e., Eq. (3) should be rewritten as

vk,γ(λ, C) = lim sup
T→∞

1

λkµF,kT

T−1∑
t=0

E[Vk(t)].

With the above definition of the violation probability, the
definitions of optimal DVP region and ALEC need no changes.

B. Adjustments of Design and Analysis
We only discuss the design and analysis for single-class

systems. The results can be easily generalized to multi-class
systems as in Section IV.

In the individual decision stage, because the silent probabil-
ity and expected consumed resource are obtained by averaging
over all possible file sizes, each user can apply an identical
policy for different-size files without loss of optimality. In
other words, each user only needs to obtain the optimal
individual decision policy assuming unit file size subject to
a per-bit resource constraint, i.e.,

p∗0 = minx∈X p0(x)

subject to c(x) ≤ C

λµF
.

With the optimal individual solution, we can show that the
lower bound property, i.e., Proposition 1, still holds for the
case of random file sizes. The proof is quite similar to that in
Appendix A with the per-user resource constraint replaced by
the per-bit resource constraint. Further, the policies used by the
BS should also be interpreted in terms of the amount of data.
For example, the proposed MTO policy can be interpreted as

Maximum-Total-bits-of-On-users rather than Maximum-Total-
On-users. Then, using the property of compound Poisson
random variable [33] presented in Lemma 2 in Appendix B
and taking the average file size into account, we can show that
the asymptical optimality, e.g., Proposition 2, still holds in the
case of random file size.

VI. SIMULATION RESULTS

A. Simulation Setup
We evaluate the performance of the proposed mechanism

with typical LTE parameters [11, 26], which are summarized
in Table I. Since we consider application-level scheduling, we
focus on a large time-scale and set the time-slot length to
be 30 seconds. The file size of each user follows truncated
lognormal distribution with mean 2 Mbytes, standard deviation
0.72 Mbytes, and maximum size 5 Mbytes [34]. The results
for unit file size seem to be even better and have similar trends,
and hence are omitted here. We generate the channel processes
based on the random waypoint (RWP) mobility model [35].
Specifically, we estimate the 1-step transition probabilities of
the channel process for the users traveling in the cell with
RWP model with a velocity of 3 Km/h. Then, the transition
probabilities are used to drive a Markov model that simulates
channel realizations.

TABLE I
SYSTEM PARAMETERS

Property Setting
Carrier frequency 2 GHz
System bandwidth 1.25, 2.5, 5, 7.5, 10, 15, 20 MHz
BS Tx power 46 dBm for 10 MHz
Coverage radius 500 m
Path loss 128.1 + 37.6 log10(d[km]) dB,
Penetration loss 20 dB
Shadowing Lognormal, standard deviation 8 dB
Noise power density -170 dBm/Hz
Link adaption Shannon’s equation, clipped at -10 dB and 20 dB

We evaluate the deadline violation probability and ALEC
under application-level scheduling with different disciplines.
We use the optimal individual decision matrices for FOO,
EDOF-WCE, and MTO/MTO-WCE. For the work-conserving
enhancement, i.e., MTO-WCE and EDOF-WCE, the control
factor is set to ξ = 0.15 (see the definition of ξ in Section III).
We also compare the proposed policies with the HRF (see
Section III-C) and Delay-driven MaxWeight (Delay-MW) [15]
policies. In the multi-class case, weight vector is introduced
in HRF and Delay-driven MaxWeight to trade-off between
different classes. Specifically, the HRF policy prioritizes users
according to ζkSi(t), and Delay-driven MaxWeight prioritizes
users according to ζkwiSi(t), where 0 ≤ ζk ≤ 1 reflects the
additional weight of class-k users and

∑K
k=1 ζk = 1.

B. Deadline Violation Probability
Recall that we have evaluated the deadline violation prob-

ability versus the system size C in Fig. 1, when the relative
load λ/C is fixed. Next, we evaluate the deadline violation
probability with fixed C in Figs. 4 and 5. In the single-class
case, Fig. 4(a) shows the deadline violation probability as a
function of the arrival rate, and Fig. 4(b) zooms in a portion
of it to show more details. The minimum silent probability
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Fig. 4. Deadline violation probability in single-class scenarios (C = 10 MHz), (a) global view for
different arrival rates (D = 10), (b) partial view for different arrival rates (D = 10), (c) different
deadlines (λ = 80), (d) different velocities (λ = 80, and D = 10).
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Fig. 5. Deadline violation probability region in 2-
class scenarios (C = 10 MHz, D = [5, 15], and
λ = [15, 20]), (a) global view, (b) partial view.

given by (5) serves as a lower bound of the system, as stated
in Proposition 1. We can observe that the deadline violation
probability of MTO-WCE is very close to the lower bound
and dominates all other policies in the whole range presented.
When the load is light (e.g., λ ≤ 70), all work-conserving
policies achieve similar performance because the contention
is low. However, as the load increases, the performance of
different scheduling policies starts to differ. The MTO, MTO-
WCE, and HRF policies perform very well, while Delay-
driven MaxWeight and EDOF-WCE can perform significantly
worse. For example, the deadline violation probability under
Delay-driven MaxWeight can be much larger than that under
MTO-WCE (by two times when λ = 120). For EDOF-
WCE, the deadline violation probability is close to MTO-
WCE when the load is very heavy (λ ≥ 125) because users
with different waiting time will become “ON” only under
the best channel condition. However, the deadline violation
probability of EDOF-WCE is rather high in the medium range
(85 < λ < 125). This is because in this range, a user with
larger waiting time will request transmission even if its channel
is poor (because it is already approaching its deadline). EDOF-
WCE prioritizes “ON” users close to the deadline and tends to
serve these close-to-expiration users whose channel conditions
are probably unfavorable.

Fig. 4(c) shows the deadline violation probability versus
the deadline for fixed values of C and λ. As the deadline
increases, users have more opportunities to request transmis-
sion and the deadline violation probability decreases under
most policies except EDOF-WCE and FOO. EDOF-WCE can
result in severe deadline violations for certain deadlines (e.g.,
6 ≤ D ≤ 13) because of the same reasons as in the analysis of
Fig. 4(a). Similar trends can be observed in Fig. 4(d), which

shows the deadline violation probability versus the velocity. As
the velocity increases, the channel conditions vary faster and
provide more opportunity to improve the system throughput.
Hence, the deadline violation probability can be reduced under
properly designed polices such as MTO/MTO-WCE.

Fig. 5 shows the deadline violation probabilities for the 2-
class scenario, where Fig. 5(a) presents a global view and
Fig. 5(b) zooms in to show a part of the region in more detail.
For HRF and Delay-driven MaxWeight, each pair of deadline
violation probabilities corresponds to a weight vector ζ. From
the figure, we can see that the proposed MTO-WCE policy
achieves close-to-optimal deadline violation probabilities. The
deadline violation probability under HRF and Delay-MW
is greater than that under MTO-WCE. Moreover, the exact
impact of weight vector is unpredictable and difficult to tune
in practice.

In summary, designing the optimal scheduling policies is
non-trivial and some heuristic policies, e.g., EDOF, may
perform rather poorly in certain range. The rigorous theoreti-
cal framework in this paper provides a principled approach
to design and analyze the scheduling policies. Under this
framework, the proposed MTO/MTO-WCE policies not only
achieve the optimal bound in the large-system regime, but also
perform well in medium-sized systems.

C. Application-Level Effective Capacity
In this section, we evaluate ALEC under different system

sizes and requirements. The ALEC is normalized by the band-
width and shown as spectrum efficiency (bps/Hz). Because
MTO-WCE consistently outperforms FOO, MTO, and EDOF-
WCE in earlier simulations, we will mainly use MTO-WCE
in the rest of the simulations.
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Fig. 6 shows the convergence of ALEC in a single-class
system as the system size increases. We can see that under
MTO-WCE, the supportable traffic load approaches the upper
bound stated in Proposition 4 (the dashed line). The gap from
the upper bound is negligible when C ≥ 10 MHz, which is
a typical value of the bandwidth in cellular networks. Hence,
we use C = 10 MHz for the rest of the simulation.
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Fig. 6. Convergence of ALEC for different deadlines (C = 10 MHz and
η = 0.05).

Fig. 7(a) shows the ALEC in a single-class system as a
function of deadline. It clearly demonstrates the benefit of ex-
ploiting the delay tolerance of the traffic. Namely, the capacity
can be significantly improved if the users can tolerate certain
delay. For example, if users require to finish the transmission
task within 1 slot (30 seconds), the spectrum efficiency is
about 1 bps/Hz. However, with application-level scheduling,
this efficiency can be increased to more than 6 bps/Hz if the
users can tolerate a delay of 10 slots (5 minutes). Comparing
with Delay-driven MaxWeight, we see that although MTO-
WCE performs similarly to Delay-driven MaxWeight when
the deadline is small, it clearly outperforms Delay-driven
MaxWeight for larger deadlines. Comparing with the upper
bound, we can see that the room for further improvement
over the proposed MTO-WCE policy is very small. Similar
trends can be seen in Fig. 7(b), which shows the ALEC as a
function of the velocity. The ALEC increases as the velocity
becomes large but the gain becomes smaller when the velocity
is larger than a certain threshold. Again, the proposed MTO-
WCE policy performs best and achieves ALEC that is quite
close to the upper bound.

Fig. 7(c) shows the ALEC region for a 2-class system. We
can see that MTO-WCE achieves an ALEC region that is quite
close to the outer bound. In contrast, for a given weight vector
ζ, the ALEC regions under Delay-driven MaxWeight and HRF
are smaller than that achieved by MTO-WCE. It is interesting
to observe that, if we take the union of the ALEC region
under HRF or Delay-driven MaxWeight over different choices
of ζ, the union becomes closer to the optimal. However, in
practice, it is difficult to predict the delay performance of
HRF or Delay-driven MaxWeight in advance. As a result,
it is difficult to tune the parameter ζ for these algorithms
under a given mixture of deadline-constrained traffic, without
actually running the algorithms. Therefore, we believe that the
theoretical results and our proposed MTO/MTO-WCE policies
are particularly useful for multi-class systems with different
deadline constraints.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we study application-level scheduling mech-
anisms for delay-tolerant traffic with deadline requirements.
The objective of the network is to minimize the deadline
violation probability for given arrival traffic. We present a
lower bound on the deadline violation probability, and develop
simple threshold-based policies, MTO and MTO-WCE, that
achieve the lower bound in the large-system regime, under
general channel models and multiple classes. These schemes
also perform well in medium-size systems. We note the
insights from the analysis are important in the design of
scheduling policies as some commonly studied policies may
not perform well in certain regimes. Further, based on the
asymptotic approach, we propose estimation approach for the
ALEC region. Numerical results show that under application-
level scheduling, if users can tolerate certain delay, the capac-
ity can be improved significantly. For example, the capacity
can be increased by about 6 times if the users can tolerate a
delay of 10 time-slots (e.g., 5 minutes).

Although the results in the paper focus on the single-cell
system with stationary arrivals and channels, we believe that
the key insights are applicable to more general settings. For
future work, we will study how to generalize the algorithms
and insights into the multi-cell cases with time-dependent
arrivals and/or channels.

APPENDIX A
PROOF OF PROPOSITION 1

As discussed in Section III-A, the scheduling problem of the
whole system can be viewed as an MDP with Qw,j(t) being
the system state. For such an MDP, there exists a stationary
policy that minimizes the deadline violation probability. Note
that corresponding to each stationary policy Π, there is a
stationary distribution matrix,

Φ = [φw,j ]D×J ,

where φw,j ∈ [0, 1] represents the probability that a user
is served when its waiting time is w and channel state is
j. Hence, the deadline violation probability is v(λ,C) =
1 −

∑D−1
w=0

∑J
j=1 φw,j . In addition, because of the resource

constraint, we must have λ
∑D−1
w=0

∑J
j=1

φw,j

rj
≤ C (φw,1 = 0

if r1 = 0).
On the other hand, by considering a scenario with infinite

available resource, each feasible Φ can be uniquely mapped
to an individual decision matrix x as follows.

Φ → x mapping: Consider a scenario where all users
use an identical individual decision matrix x. In addition,
the available resource is infinite and any user sending the
request can be served immediately. Let π′w,j be the ratio of
users that still stay in the system after waiting w slots and
is in channel state j. For w = 0, we know that this ratio
is equal to the stationary distribution of the channel process,
i.e., π′0,j = πj (j = 1, 2, . . . , J). Then, we can decide x0,j

by solving π′0,jx0,j = φ0,j (for π′0,j = 0, we let x0,j = 0,
which will not affect the value of other variables). For w > 0,
we can decide xw,j in an iterative manner. Specifically, after
obtaining xw−1,j , we can calculate π′w,j as

π′w,j =

J∑
j′=1

(1− xw−1,j′)π
′
w−1,j′pj′j ,



12

0 5 10 15 20
1

2

3

4

5

6

7

Deadline D (slots)

N
or

m
al

iz
ed

 A
LE

C
 (

bp
s/

H
z)

 

 

MTO−WCE
HRF
Delay−MW
Upper bound

(a)

0 1 2 3 4 5
1

2

3

4

5

6

7

Velocity (Km/h)

N
or

m
al

iz
ed

 A
LE

C
 (

bp
s/

H
z)

 

 

MTO−WCE
HRF
Delay−MW
Upper bound

(b)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Normalized ALEC of Class 1 (bps/Hz)

N
or

m
al

iz
ed

 A
LE

C
 o

f C
la

ss
 2

 (
bp

s/
H

z)

 

 
MTO−WCE
HRF (ζ = [.5, .5])
HRF (ζ = [.8, .2])
Delay−MW (ζ = [.8, .2])
Delay−MW (ζ = [.9, .1])
Optimal frontier

(c)

Fig. 7. Evaluation of ALEC, (a) ALEC for single-class system with different deadlines (C = 10 MHz and η = 0.05), (b) ALEC for single-class system
with different velocities (C = 10 MHz, D = 10, and η = 0.05), (c) ALEC region for 2-class system (C = 10 MHz, D = [5, 15], and η = [0.05, 0.05]).

and obtain xw,j by solving π′w,jxw,j = φw,j .
Then, under individual decision matrix x, the expected

consumed resource and the silent probability are equal to
their corresponding values under Π. Therefore, the expected
consumed resource must satisfy c(x) =

∑D−1
w=0

∑J
j=1

φw,j

rj
≤

C/λ and the deadline violation probability satisfies v(λ,C) =
p0(x) ≥ p∗0. Note that these expressions precisely correspond
to the constraint and objective of problem (5). Hence, we
conclude that v(λ,C) must be greater than p∗0.

APPENDIX B
PROOF OF LEMMA 1

The proof of Lemma 1 will use a property of compound
Poisson random variable (i.e., sum of Poisson number of i.i.d.
random variables [33]), which is described as follow. We use
the notation for asymptotic upper bounds as in [36]: for two
functions g1(λ) and g2(λ), we say g1(λ) = O(g2(λ)) if there
exists constants κ > 0 and λ0 > 0 so that for all λ > λ0, we
have g1(λ) ≤ κg2(λ). Moreover, we focus on the case where
r1 > 0 here while the case of r1 = 0 can be proved with
slight modifications.

Lemma 2 Let N be a Poisson random variable with mean
value λ, and X1, X2, . . . , XN be i.i.d. random variables that
are independent of N with E[Xi] = µX and Var(Xi) = σ2

X .
Let Y (λ) =

∑N
i=1Xi be the sum of the i.i.d. sequence and

[Y − λµX ]+ = max{Y − λµX , 0}. Then, we have

E
{

[Y (λ) − λµX ]+
}

= O(
√
λ). (14)

Proof: Using the results of Examples 3.11 and 3.19 in
[33], we know that the expectation and variance of Y (λ) are
E[Y (λ)] = λµX and Var{Y (λ)} = λ(σ2

X + µ2
X), respectively.

Hence, E{Y (λ) − λµX} = 0, Var{Y (λ) − λµX} = λ(σ2
X +

µ2
X), and E

{
[Y (λ) − λµX ]2

}
= λ(σ2

X + µ2
X). Therefore,{

E
{

[Y (λ) − λµX ]+
}}2

≤ E
{

[Y (λ) − λµX ]2
}

= λ(σ2
X + µ2

X).

The conclusion of the lemma then follows.
Now, consider FOO(x), i.e., the FOO policy with individual

decision matrix x. Note that number of arrivals A(t) are i.i.d.
over time. From the process of FOO (Algorithm 2), we also
note a critical property of FOO: since each user is considered
to be scheduled only when it is “First-ON”, the candidate set

for scheduling in each time-slot only depends on each user’s
own channel conditions, which is independent across users.
Hence, the system behaviors are identical in statistics and we
only need to focus on an arbitrary time-slot. We omit the slot
index for simplicity.

Let Yj (j = 1, 2, . . . , J) be the number of “First-ON” users
with channel state j for a given individual decision matrix x.
Further, let φw,j ∈ [0, 1] represent the probability that a user
is served in channel state j at w slots after their arrivals. Note
that the “First-ON” users evolve from the users arriving in
the past D slots. Using the property of Poisson variables, we
know that Yj is a Poisson random variable with mean value
π]jλ, where π]j =

∑D−1
w=0 φw,j is the probability that a user is

“First-ON” at channel state j within D slots. In addition, the
expected required resource for all “First-ON” users is λc(x) =
λ
∑J
j=1 π

]
j/rj , and the offered load level ρ(x) = λc(x)/C ≤

1. Note that the summation is calculated from j = 2 if r1 = 0
since a user cannot request transmission with zero data rate.

Next we show that since ρ(x) ≤ 1, the probability that a
“First-ON” user is unserved due to overflow tends to 0 as λ
and C grow proportionally to infinity, with the convergence
speed at least 1/

√
λ.

Let L(Y1, Y2, . . . , YJ) be the number of ON users that are
unserved due to overflow when the number of ON users at
channel state j is Yj . Note that the total amount of resource
exceeding the system capacity satisfies

[∑J
j=1 r

−1
j Yj−C

]+ ≤∑J
j=1 r

−1
j [Yj−π]jλ]+. Thus, the number of drop users satisfies

L(Y1, Y2, . . . , YJ) ≤
∑J
j=1 r

−1
j [Yj − π]jλ]+

r−1
J

≤ rJ
r1

J∑
j=1

[Yj − π]jλ]+. (15)

On the other hand, when overflow occurs, i.e.,
∑J
j=1 r

−1
j Yj >

C, then
∑J
j=1 Yj > Cr1. Thus, we can bound the probability

that a “First-ON” user is unserved as follows

punserved(C) = E
{L(Y1, Y2, . . . , YJ)∑J

j=1 Yj

}
≤ rJ

r2
1

E
{∑J

j=1[Yj − π]jλ]+

C

}
(16)
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Because Yj is a Poisson random variable with mean value
E[Yj ] = π]jλ, Yj can be viewed as the sum of λ i.i.d. Poisson
variables with mean value π]j . From Lemma 2, we have

E[Yj − π]jλ]+ = O(
√
λ) = O(

√
C).

Hence,

punserved(C) ≤ rJ
r2
1

E
{∑J

j=1[Yj − π]jλ]+

C

}
= O

( 1√
C

)
.

This implies that as C grows to infinity, punserved(C) con-
verges to 0, with convergence speed of at least 1/

√
C. The

conclusion of Lemma 1 then follows.

APPENDIX C
PROOF OF PROPOSITION 3

A. Outer bound on the optimal DVP region
The proof for the outer bound is similar to the proof of

Proposition 1. Consider any deadline violation probability
v that is achievable, i.e., v ∈ V(λ, C). Using the similar
approach as in Appendix A, we can map v to individ-
ual decision matrices xk(vk) (k = 1, 2, . . . ,K) and the
silent probability under xk(vk) is vk. Also, corresponding
to each xk(vk), there is an expected consumed resource
ck(xk(vk)). Because the achievability of v, we know that
the total expected consumed resource satisfies the resource
constraint, i.e.,

∑K
k=1 λkck(xk(vk)) ≤ C. Next, let ρ(v) =∑K

k=1 λkck(xk(vk))/C and ζk = λkck(xk(vk))
Cρ(v) . Then, we

have
∑K
k=1 ζk = 1, and the solution of Problem (8) satisfies

p∗0,k(ζk) ≤ vk ≤ 1 because ζkC/λ ≥ ck(xk(vk)). Therefore,
the vector v belongs to V̂(λ, C) and hence V(λ, C) ⊆
V̂(λ, C)

B. Asymptotic optimality of MTO
To show the asymptotic optimality of MTO(x](v)), we first

show that with individual decision matrices x](v), the offered
load level must satisfies ρ(x](v)) = 1

C

∑K
k=1 λkc

]
k(vk) ≤ 1,

where c]k(vk) is the optimal value of problem (9). Otherwise,
the vector v cannot be in V̂(λ, C). Thus, we can show that the
conclusion holds for FOO(x](v)) by the similar approach as in
Lemma 1. Then we need to extend the results to MTO(x](v)).
However, the extension is trickier than the single-class case,
because even though MTO(x](v)) dominates FOO(x](v)) in
terms of total number of served ON users, it does not dominate
FOO(x](v)) in terms of number of served ON users for each
class. We need to prove the conclusion by further examining
the upper bound of the number of served ON users for each
class. Specifically, we note that the expected number of served
users in each time-slot should not exceed an upper bound given
by the expected number of ON users. Using this upper bound,
we can then show that the deadline violation probability of
each class under MTO will approach a value no greater than
vk.

Specifically, let Z̄k be the expected number of class-k users
receiving service before expiration, i.e.,

Z̄k = lim
T→∞

1

T

T−1∑
t=0

E[Zk(t)].

Note that for any ζ ∈ [0, 1]K satisfying
∑K
k=1 ζk = 1, we

know that ρ
(
x∗(ζ)

)
≤ 1. Using the similar argument in the

proof of Lemma 1, we know that

lim
C→∞

Z̄k,FOO

λ
= αk[1− p∗0,k(ζk)],

lim
C→∞

Z̄FOO

λ
=

K∑
k=1

αk[1− p∗0,k(ζk)],

where Z̄FOO =
∑K
k=1 Z̄k,FOO is the expected total number

of users being served under FOO.
Now we take the performance of FOO as a benchmark for

analyzing MTO. Because the candidate user set of FOO is a
subset of that for MTO in each time-slot, the total number of
users being served under MTO is no less than FOO. Hence,

lim
C→∞

Z̄MTO

λ
≥ lim
C→∞

Z̄FOO

λ
=

K∑
k=1

αk[1− p∗0,k(ζk)],

where Z̄MTO =
∑K
k=1 Z̄k,MTO is the expected total number

of users being served under MTO. Hence, we have

lim
C→∞

Z̄MTO

λ
= lim
C→∞

∑K
k=1 Z̄k,MTO

λ
.

On the other hand, the expected number of served users from
each class is bounded by the ON probability, i.e.,

lim
C→∞

Z̄k,MTO

λ
≤ αk[1− p∗0,k(ζk)].

Combining with the bound of the expected total served users,
we have

lim
C→∞

Z̄k,MTO

λ
= αk[1− p∗0,k(ζk)].

Equation (10) then follows.
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