
1

Low-Complexity Scheduling Policies for Achieving Throughput and
Asymptotic Delay Optimality in Multi-Channel Wireless Networks

Bo Ji, Gagan R. Gupta, Xiaojun Lin, and Ness B. Shroff

Abstract—In this paper, we study the scheduling problem
for downlink transmission in a multi-channel (e.g., OFDM-
based) wireless network. We focus on a single cell, with the
aim of developing a unifying framework for designing low-
complexity scheduling policies that can provide optimal per-
formance in terms of both throughput and delay. We develop
new easy-to-verify sufficient conditions for rate-function delay
optimality (in the many-channel many-user asymptotic regime)
and throughput optimality (in general non-asymptotic setting),
respectively. The sufficient conditions allow us to prove rate-
function delay optimality for a class of Oldest Packets First
(OPF) policies and throughput optimality for a large class of
Maximum Weight in the Fluid limit (MWF) policies, respectiv ely.
By exploiting the special features of our carefully chosen sufficient
conditions and intelligently combining policies from the classes
of OPF and MWF policies, we design hybrid policies that are
both rate-function delay-optimal and throughput-optimal with a
complexity of O(n2.5 log n), where n is the number of channels
or users. Our sufficient condition is also used to show that
a previously proposed policy called Delay Weighted Matching
(DWM) is rate-function delay-optimal. However, DWM incurs a
high complexity of O(n5). Thus, our approach yields significantly
lower complexity than the only previously designed delay and
throughput optimal scheduling policy. We also conduct numerical
experiments to validate our theoretical results.

I. I NTRODUCTION

Designing high-performance scheduling algorithms has
been a vital and challenging problem in wireless networks.
Among the many dimensions of network performance, the
most critical ones are perhaps throughput, delay, and com-
plexity. However, it is in general extremely difficult, if not
impossible, to develop scheduling policies that attain the
optimal performance in terms of both throughput and delay,
without the cost of high complexity [1].

In this paper, we focus on the setting of a single-hop multi-
user multi-channel system. A practically important example
of such a multi-channel system is the downlink of a single
cell in 4G OFDM-based celluar networks (e.g., LTE and
WiMax). Such a system typically has a large bandwidth
that can be divided into multiple orthogonal sub-bands (or
channels), which need to be allocated to a large number of
users by a scheduling algorithm. The main question that we
will attempt to answer in this paper is the following:How do
we design efficient scheduling algorithms that simultaneously
provide high throughput, small delay, and low complexity?

We consider a multi-channel system that hasn channels and
a proportionally large number of users. This setting is referred
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to as the many-channel many-user asymptotic regime whenn
goes infinity. The connectivity between each user and each
channel is assumed to be time-varying, due to channel fading.
We assume that the base station (BS) maintains separate First-
in First-out (FIFO) queues that buffer the packets destinedto
each user. Thedelaymetric that we will focus on in this paper
is the asymptotic decay-rate(also called therate-functionin
the large-deviations theory) of the probability that the largest
packet waiting time in the system exceeds a fixed threshold,
as both the number of channels and the number of users go
to infinity. (Refer to Eq. (2) for the precise definition.)

Next, we overview some key related works. In [2], the
authors considered a single-server model with time-varying
channels, and showed that the longest-connected-queue (LCQ)
algorithm minimizes the average delay for the special case
of symmetric (i.i.d. Bernoulli) arrival and channel. Later, the
results were generalized for a multi-server model in [3]. The
authors of [4] further generalized the multi-server model by
considering more general permutation-invariant arrivals(that
are not restricted to Bernoulli only) and multi-rate channel
model. Hence, the problem of minimizing a general cost
function of queue-lengths (includes minimizing the expected
delay) studied in [4] becomes harder. There, for special cases
of ON-OFF channel model with two users or allowing for frac-
tional server allocation, an optimal scheduling algorithmwas
derived. Using the insights obtained from the analytical results
in [4] for ON-OFF channel model, in [5] the same authors
developed heuristic policies and showed through simulations
that their proposed heuristic policies perform well under a
general channel model. Note that in contrast to this paper,
the above studies directly minimize queue-length or delay
in a non-asymptoticregime, which is an extremely difficult
problem in general.

As we do in this paper, another body of related works [6]–
[9] focus on the many-channel many-user asymptotic regime,
where the analysis may become more tractable. Even though
the analysis for an asymptotic setting is very different from
the non-asymptotic analysis in [4], it is remarkable that some
of the insights are consistent. For example, from a delay opti-
mality perspective, the above two bodies of studies both point
to the tradeoff between maximizing instantaneous throughput
and balancing the queues. Thus, we believe that, collectively,
these studies under different settings provide useful insights
for designing efficient scheduling solutions in practice.

In [6]–[9], a number of queue-length-based scheduling poli-
cies for achieving optimal or positive queue-length-basedrate-
unction1 were developed. In particular, an optimal scheduling

1The queue-length-based rate-function is defined as the asymptotic decay-
rate of the probability that the largest queue length in the system exceeds a
fixed threshold.
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policy that maximizes the queue-length-based rate-function
has been derived with complexityO(n3) [9]. However, these
works have two key limitations. First, the schedulers’ perfor-
mance are proven under the assumption that the arrival process
is i.i.d. not only across users, but also in time, which does not
model the temporal correlation present in most real network
traffic. More importantly, it is well known that good queue-
length performance does not necessarily translate to good
delay performance [10]–[12]. A recently developed scheduling
policy called Delay Weighted Matching (DWM) [10], [11],
which makes scheduling decisions by maximizing the sum of
the delays of the scheduled packets in each time-slot, focuses
directly on the delay performance as we do in this paper. It has
been shown that DWM is rate-function delay-optimal in some
cases. However, DWM has the following two key drawbacks:
1) it is unclear whether DWM is rate-function delay-optimalin
general; and 2) DWM yields a very high complexity ofO(n5)
and is thus not amenable for practical implementations.

Hence, the state-of-the-art does not satisfactorily answer our
main question of how to design scheduling policies with a low
complexity, while guaranteeingprovable optimalityfor both
throughput and delay. In this paper, we address this challenge,
and provide the following key intellectual contributions.

First, we characterizeeasy-to-verifysufficient conditions for
rate-function delay optimality in the many-channel many-user
asymptotic regime and for throughput optimality in general
non-asymptotic settings. The sufficient conditions allow us
to prove rate-function delay optimality for a class ofOldest
Packets First (OPF)policies and throughput optimality for
a large class ofMaximum Weight in the Fluid limit (MWF)
policies. Moreover, the sufficient conditions can be used to
show that a slightly modified version of the DWM policy is
both rate-function delay-optimal and throughput-optimal.

Second, we develop anO(n2.5 logn)-complexity schedul-
ing policy called DWM-n. The DWM-n policy shares the
high-level similarity with the DWM policy [10], [11], but
makes scheduling decisions in each time-slot by maximizing
the sum of the delays of the scheduled packets over only then
oldest packets in the system, rather than over all the packets as
in the DWM policy. We show that DWM-n is an OPF policy
and is thus rate-function delay-optimal. However, DWM-n is
not throughput-optimal in general, and may perform poorly
whenn is not large.

Third, by exploiting the special features of our carefully-
chosen sufficient conditions and intelligently combining poli-
cies from the classes of OPF and MWF policies, we develop
a class of two-stage hybrid policies that are both throughput-
optimal and rate-function delay-optimal. In particular, we
can adopt the DWM-n policy in stage 1 and the Delay-
based MaxWeight Scheduling (D-MWS) policy in stage 2,
respectively, so as todesign an optimal hybrid policy with
a low complexity ofO(n2.5 logn).

Finally, we conduct numerical experiments to validate our
theoretical results in different scenarios.

II. SYSTEM MODEL

We consider a multi-channel system withn orthogonal
channels andn users, which can be modeled as a multi-
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Fig. 1. System model. The connectivity between each pair of queueQi and
serverSj is “ON” (denoted by a solid line) with probabilityq, and “OFF”
(denoted by a dashed line) otherwise.

queue multi-server system with stochastic connectivity, as
shown in Fig. 1.For ease of presentation, the number of
users is assumed to be equal to the number of channels. Our
analysis for rate-function delay optimality follows similarly
if the number of users scales linearly with the number of
channels.Throughout the rest of the paper, we will use the
terms “user” and “queue” interchangeably, and use the terms
“channel” and “server” interchangeably. We assume that time
is slotted. In a time-slot, a server can be allocated to only one
queue, but a queue can get service from multiple servers. The
connectivity between queues and servers is time-varying, i.e.,
it can change between “ON” and “OFF” from time to time.
We assume that perfect channel state information (i.e., whether
each channel is ON or OFF for each user in each time-slot)
is known at the BS. This is a reasonable assumption in the
downlink scenario of a single cell in a multi-channel cellular
system with dedicated feedback channels.

The notations used in this paper are as follows. We let
Qi denote the FIFO queue (at the BS) associated with the
i-th user, and letSj denote thej-th server. We assume
infinite buffer for all the queues. LetAi(t) denote the
number of packet arrivals to queueQi in time-slot t, let
A(t) =

∑n

i=1 Ai(t) denote the cumulative arrivals to the
entire system in time-slott, and letA(t1, t2) =

∑t2
τ=t1

A(τ)
denote the cumulative arrivals to the system from timet1 to
t2. We let λi be the mean arrival rate of queueQi, and let
λ , [λ1, λ2, . . . , λn] denote the arrival rate vector. We assume
that packet arrivals occur at the beginning of each time-slot,
and packet departures occur at the end of each time-slot. We
let Qi(t) denote the length of queueQi at the beginning of
time-slot t immediately after packet arrivals. Also, letZi,l(t)
denote the delay (i.e., waiting time) of thel-th packet of queue
Qi at the beginning of time-slott, which is measured since the
time when the packet arrived to queueQi until the beginning
of time-slott. Note that at the end of each time-slot, the packets
still present in the system will have their delays increasedby
one due to the elapsed time. We then letWi(t) = Zi,1(t)
denote the head-of-line (HOL) packet delay of queueQi at
the beginning of time-slott. Further, we useCi,j(t) to denote
the capacity of the link between queueQi and serverSj in
time-slot t, i.e., the maximum number of packets that can be
served by serverSj from queueQi in time-slott. Finally, we
let 1{·} denote the indicator function, and letZ+ denote the
set of positive integers.

We now state the assumptions on the arrival processes.
The throughput analysis is carried out under very general
conditions (Assumption 1) similar to that of [13].
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Assumption 1:For each useri ∈ {1, 2, . . . , n}, the arrival
processAi(t) is an irreducible and positive recurrent Markov
chain with countable state space, and satisfies the Strong Law
of Large Numbers: That is, with probability one,

lim
t→∞

∑t−1
τ=0Ai(τ)

t
= λi. (1)

We also assume that the arrival processes are mutually in-
dependent across users (which can be relaxed for showing
throughput optimality, as discussed in [13].)

Assumptions 2 and 3 (stated below) will be used for rate-
function delay analysis.

Assumption 2:There exists a finiteL such thatAi(t) ≤ L
for any i andt, i.e., arrivals are bounded. Further, we assume
P(A(s, s+ t− 1) = Lnt) > 0 for any s, t andn.

Assumption 3:The arrival processes arei.i.d. across users,
andλi = p for any useri. Given anyǫ > 0 andδ > 0, there
existsTB(ǫ, δ) > 0, NB(ǫ, δ) > 0, and a positive function
IB(ǫ, δ) independent ofn and t such that

P

(

∑t

τ=1 1{|A(τ)−pn|>ǫn}

t
> δ

)

< exp(−ntIB(ǫ, δ)),

for all t ≥ TB(ǫ, δ) andn ≥ NB(ǫ, δ).
Assumptions 2 and 3 are relatively mild. The first part

of Assumption 2 and Assumption 3 have also been used in
the previous work [10], [11] for rate-function delay analysis.
In Assumption 2, the first part requires that the arrivals in
each time-slot have bounded support; and the second part
guarantees that there is a positive probability that all users
have the maximum number of arrivals in any time-interval
with any length. Assumption 3 allows the arrivals for each
user to be correlated over time (e.g., arrivals driven by a two-
state Markov chain), which is more general than the arrival
processes (i.i.d. in time) considered in [6]–[9].

We then describe our channel model as follows.
Assumption 4:In any time-slott, Ci,j(t) is modeled as a

Bernoulli random variable with a parameterq ∈ (0, 1), i.e.,

Ci,j(t) =

{

1, with probability q,
0, with probability1− q.

All the random variablesCi,j(t) are assumed to be mutually
independent across all the variablesi, j and t.

We assume unit channel capacity as above. Under this
assumption, we will also letCi,j(t) denote the connectivity
between queueQi and serverSj in time-slot t, without
causing confusions. As in the previous works [6]–[11], in this
paper we assumei.i.d. channels for the analytical results only.
Moreover, we will show through simulations that our proposed
low-complexity solution also performs well in more general
scenarios, e.g., when the channel condition follows a two-state
Markov chain that allows correlation over time. Further, we
will briefly discuss how to generalize our solution to more
general scenarios towards the end of this paper.

Next, we define theoptimal throughput region(or stability
region) of the system for any fixed integern > 0. As in
[13], a stochastic queueing network is said to bestable if it
can be described as a discrete-time countable Markov chain
and the Markov chain is stable in the following sense: The

set of positive recurrent states is nonempty, and it contains
a finite subset such that with probability one, this subset is
reached within finite time from any initial state. When all
the states communicate, stability is equivalent to the Markov
chain being positive recurrent. Thethroughput regionof a
scheduling policy is defined as the set of arrival rate vectors for
which the network remains stable under this policy. Further,
the optimal throughput regionis defined as the union of the
throughput regions of all possible scheduling policies. We
let Λ∗ denote the optimal throughput region. A scheduling
policy is throughput-optimal, if it can stabilize any arrival
rate vectorλ strictly insideΛ∗. For more discussions on the
characterization ofΛ∗ please refer to our online technical
report [14].

For delay analysis, we consider the many-channel many-
user asymptotic regime. LetW (t) denote the largest HOL
delay over all the queues (i.e., the largest or worst packet
waiting time in the system) at the beginning of time-slott,
i.e., W (t) , max1≤i≤n Wi(t). Assuming that the system is
stationary and ergodic, we define therate-functionfor integer
thresholdb ≥ 0 as

I(b) , lim
n→∞

−1

n
logP(W (0) > b). (2)

We can then estimateP(W (0) > b) ≈ exp(−nI(b)) when
n is large, and the estimation accuracy tends to be higher as
n increases. Clearly, for largen a larger value of the rate-
function leads to better delay performance, i.e., a smaller
probability that the largest HOL delay exceeds a certain
threshold. A scheduling policy israte-function delay-optimalif
for any fixed integer thresholdb ≥ 0, it achieves the maximum
rate-function over all possible scheduling policies.

Note that the rate-function optimality is studied in the
asymptotic regime, i.e., whenn goes to infinity. Although
the convergence of the rate-function is typically fast, the
throughput performance may be poor for small to moderate
values ofn. As a matter of fact, a rate-function delay-optimal
policy may not even be throughput-optimal for a fixedn (e.g.,
the DWM-n policy that we will propose in Section IV). To
that end, we are interested in designing scheduling policies that
maximize both the throughput (for any fixedn) and the rate-
function (in the many-channel many-user asymptotic regime).

III. A N UPPERBOUND ON THE RATE-FUNCTION

In this section, we derive an upper bound on the rate-
function that can be achieved by any scheduling algorithm.
Then, later in Section IV, we will provide a sufficient condition
for achieving this upper bound and thus achieving the optimal
rate-function.

As in [10], [11], for any integert > 0 and any real number
x ≥ 0, we define the quantity

IA(t, x) , sup
θ>0

[θ(t+ x)− λAi(−t+1,0)(θ)],

whereλAi(−t+1,0)(θ) = logE[eθAi(−t+1,0)] is the cumulant-
generating function ofAi(−t + 1, 0) and Ai(−t + 1, 0) =
∑0

τ=−t+1 Ai(τ). From Cramer’s Theorem, this quantity,
IA(t, x), is equal to the asymptotic decay-rate of the prob-
ability that in any interval oft time-slots, the total number of
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packet arrivals to the system is no smaller thann(t + x), as
n tends to infinity, i.e.,

lim
n→∞

−1

n
logP(A(−t+ 1, 0) ≥ n(t+ x)) = IA(t, x). (3)

Define the following for the case ofL > 1. For any integer
x ≥ 0, we definetx as

tx ,
x

L− 1
.

Then, we defineΨb , {c ∈ {0, 1, . . . , b} | tb−c ∈ Z

+}. It
will later become clear why the values ofc in the setΨb are
important and need to be considered separately. LetIX ,

log 1
1−q

. Then, for any integerb ≥ 0, we define the quantity

I0(b) , min{(b+ 1)IX ,

min
0≤c≤b

{ inf
t>tb−c

IA(t, b− c) + cIX},

min
c∈Ψb

{IA(tb−c, b− c) + (c+ 1)IX}}.

(4)

Further, for any given integerL ≥ 1, we define

I∗0 (b) ,

{

(b+ 1)IX , if L = 1,
I0(b), if L > 1.

In the following theorem, we show that for any given integer
thresholdb ≥ 0, I∗0 (b) is an upper bound of the rate-function
that can be achieved by any scheduling policy.

Theorem 1:Given the system model described in Sec-
tion II, for any scheduling algorithm, we have

lim sup
n→∞

−1

n
logP(W (0) > b) ≤ I∗0 (b),

for any given integer thresholdb ≥ 0.
We prove Theorem 1 by considering three types of events

that lead to the delay-violation event{W (0) > b} and comput-
ing their probabilities. We provide the proof in Appendix A.

Note that in [10], the authors derived another upper bound
min{(b+1)IX ,min0≤c≤b{I

+
A (b−c)+cIX}}, whereI+A (x) ,

inft>0 I
+
A (t, x) and I+A (t, x) , limy→x+ IA(t, y). We would

like to remark that their upper bound was derived by consider-
ing two types of events that lead to the delay-violation event,
which yet accounts for only a proper subset of the events that
we consider in Appendix A. Hence, their upper bound could
be larger thanI∗0 (b) in some cases.

IV. SUFFICIENT CONDITIONS

In [10], [11], the authors proposed the DWM policy and
studied its rate-function delay optimality2 (without the second
part of Assumption 2) in some cases. Specifically, in [10], [11],
the authors proved that DWM attains a rate-function that is no
smaller thanmin{(b + 1)IX ,min0≤c≤b{IA(b − c) + cIX}},
whereIA(x) , inft>0 IA(t, x). This is proved by showing that
the FBS policy (with a properly chosen operating parameter
h) can attain this rate-function and DWM dominates FBS
for all values ofh in a sample-path sense. As pointed out

2Although the delay metric considered in [10], [11] is slightly different
from ours, both metrics are closely related. Moreover, the rate-function delay
analysis for DWM in [10], [11] is also applicable for our defined rate-function
as in (2).

in [10, Section V.D], there may be a gap between the rate-
function attained by DWM and the upper bound derived in
[10], depending on the value ofb and the arrival process.
More specifically, it can be shown that for givenb ≥ 0, if
IA(b − c) = I+A (b − c) for all values ofc ∈ {0, . . . , b} for
the given arrival process, then both FBS and DWM are rate-
function delay-optimal.

However, it is unclear whether the DWM policy is rate-
function delay-optimal in general. Moreover, its high com-
plexity O(n5) renders it impractical. Hence,the grand chal-
lenge is to find low-complexity scheduling policies that are
both throughput-optimal and rate-function delay-optimal. To
that end, in this section, we first characterize easy-to-verify
sufficient conditions for rate-function delay optimality in the
many-channel many-user asymptotic regime and for through-
put optimality in non-asymptotic settings. We then develop
two classes of policies, called the Oldest Packets First (OPF)
policies and the Maximum Weight in the Fluid limit (MWF)
polices, that satisfy the sufficient condition for rate-function
delay optimality and throughput optimality, respectively.

As discussed in the introduction, our ultimate goal is to
develop low-complexity hybrid policies that are both rate-
function delay-optimal and throughput-optimal.However, it
is unclear that, just because one policy is rate-function delay-
optimal and another one is throughput-optimal, their combi-
nations will necessarily yield the right hybrid policy thatis
optimal in terms of both throughput and delay. As we will
discuss further at the beginning of Section V, our carefully
chosen sufficient conditions possess some special featuresthat
allow us to construct low-complexity hybrid policies that are
both rate-function delay-optimal and throughput-optimal.

A. Rate-function Delay Optimality

We start by presenting the main result of this section in the
following theorem, which provides a sufficient condition for
scheduling policies to be rate-function delay-optimal.

Theorem 2:Under Assumptions 2 and 3, a scheduling
policy P is rate-function delay-optimal if in any time-slot,
policy P can serve thek oldest packets in that time-slot for
the largest possible value ofk ∈ {1, 2, . . . , n}.

To prove Theorem 2, we will exploit a dominance property
(Lemma 3) of the policies that satisfy the above sufficient
condition. Due to space constraint, we have provided the
full proof with all the details in our online technical report
[14]. However, in this paper we do provide an outline of
the proof in Appendix B, and give the intuition behind it
as follows. First, it is easy to see that the First-come First-
serve (FCFS) policy, which serves theoldest packets first,
is (sample-path) delay-optimal in a single-queue single-server
system. Also, it is not hard to see that for a multi-queue multi-
server system withfull connectivity, where all pairs of queue
and server are connected, a policy that chooses to serve the
oldest packets (over the whole system) first is delay-optimal.
These motivate us to ask a natural and interesting question:if a
policy chooses to serve the oldest packets first in a multi-queue
multi-server system with time-varying and partial connectivity
(as we consider in this paper), does it achieve rate-function
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delay optimality?Note that in such a system, at mostn packets
can be served in each time-slot. Hence, if in each time-slot a
policy can serve all then oldest packets in the system (as in the
case with full connectivity), this policy should yield optimal
delay performance. However, due to the random connectivity
between queues and servers, no policy may be able to do so.
Hence, we propose a class of policies that choose to serve the
k oldest packets for the largest possible value ofk. In other
words, for anyk ∈ {1, 2, . . . , n}, if the k oldest packets can be
served by some scheduling policy, then our proposed policies
will serve thesek packets too.

A similar, but less thorough, analysis was also carried
out in [10], [11]. There, the authors proposed theFrame
Based Scheduling (FBS)policy, which aims to serve the
oldest packets in each time-slot and can be viewed as an
approximation of FCFS policy. The FBS policy serves packets
in units of frames. With a given positive integerh as the
operating parameter, each frame is constructed such that: 1)
the difference of the arrival times of any two packets within
a frame must be no greater thanh; and 2) the total number
of packets in each frame is no greater thann0 = n − Lh.
In each time-slot, the packets arrived at the beginning of this
time-slot are filled into the last frame until any of the above
two conditions are violated, in which case a new frame will
be opened. In any time-slot, the FBS policy serves the HOL
frame that contains the oldest (up ton0) packets with high
probability for largen. As discussed at the beginning of this
section, it has been shown that the FBS policy with a properly
chosen operating parameterh is rate-function delay-optimal in
some cases.

However, FBS maynot be rate-function delay-optimal in
some other cases. Specifically, consideri.i.d. Bernoulli arrivals
with L = 1. As pointed out in [10], the rate-function attained
by the FBS policy is not optimal in this scenario. We provide
the intuition as follows. Suppose there are a total ofnt
packet arrivals to the system in an interval oft time-slots.
It is easy to see that FBS needs at leastt + 1 time-slots to
completely serve these packets since at mostn− Lh packets
can be served by FBS in one time-slot. This could lead to a
sub-optimal rate-function. To see this, consider theperfect-
matching policy defined as follows. LetQ andS denote the
set of queues and set of servers, respectively. In a time-slot τ ,
let C , {Ci,j(τ) : Ci,j(τ) = 1} denote the set of edges
betweenQ and S. Clearly, G[Q ∪ S, C] forms a bipartite
graph. If a perfect matching can be found in the bipartite graph
G[Q∪S, C], then the servers are allocated to serve the oldest
packets in the respective queues as determined by the perfect
matching. Otherwise, none of servers will be allocated to the
queues. It has been shown in [6] that in each time-slot, a
perfect matching can be found with high probability for large
n. Hence, in the case described above, the perfect-matching
policy needs onlyt time-slots to drain all thesent packets
with high probability for largen, while FBS is sub-optimal.

On the other hand, the perfect-matching policy does not
perform well in many other cases due to the fact that it cannot
serve more than one packet from each queue in a time-slot.
For example, consider the case where there areL packets
existing inQ1 and the other queues are all empty. FBS can

drain these packets within one time-slot with high probability,
yet the perfect-matching policy needs at leastL time-slots.

The above discussions suggest that if we can find a policy
that dominates both the FBS policy and the perfect-matching
policy, there is a hope that this policy may be able to
achieve the optimal rate-function in general. We will show
in Lemma 3 that a policy that satisfies the sufficient condition
in Theorem 2, indeed dominates both the FBS policy and the
perfect-matching policy in a sample-path sense.

In order to state the dominance property of Lemma 3 below,
we consider the following versions of the FBS policy and the
perfect-matching policy. Suppose that packetp is the xp-th
arrival to the queueQq(p) in time-slot tp. Then, we define
the weight of the packetp in time-slot t as ŵ(p) = t− tp +
L+1−xp

L+1 + n+1−q(p)
(L+1)(n+1) . For two packetsp1 and p2, we say

p1 is older thanp2 if ŵ(p1) > ŵ(p2). The above way of
defining the weight ensures that among the packets that arrive
at the same time, the priority is given to the packet that has an
earlier order of arrival in each queue; and further, among the
packets (in different queues) with the same order of arrival,
the priority is given to the packet that arrives to the queue
with a smaller index. For the FBS policy, we assume that the
packets with a larger weight are filled to the frame with a
higher priority when there are multiple packets arriving atthe
same time. While for the perfect-matching policy, we require
that in time-slott, the perfect-matching policy only serves
packets with the largest value oft− tp +

L+1−xp

L+1 . Under this
version of the perfect-matching policy, it is possible thata
queue may not have any of its packets served even if a perfect-
matching is found and a server is allocated to the queue. It
should be noted that the above versions of the FBS policy and
the perfect-matching policy are used for analysis only. Next,
we present the dominance property in the following lemma.

Lemma 3:Consider the versions of the FBS policy and the
perfect-matching policy described above. Suppose that policy
P satisfies the sufficient condition in Theorem 2. Then, for
any given sample path, by the end of any time-slott, policy
P has served every packet that the FBS policy or the perfect-
matching policy has served.

We prove Lemma 3 by contradiction, and provide the
proof in Appendix C. Further, by using of this dominance
property, and following a similar argument as in the rate-
function delay analysis for FBS (Theorem 2 of [10]), we prove
Theorem 2. Specifically, we consider all the sample paths that
lead to the delay-violation event. There are different ways
that the delay-violation event can occur, each of which has
a corresponding rate-function for its probability of occurring.
Large-deviations theory then tells us that the rate-function for
delay violation is determined by the smallest rate-function
among these possibilities (i.e., “rare events occur in the most
likely way”.) An outline of the proof for Theorem 2 is provided
in Appendix B.

Next, we define a class of OPF policies as follows.
Definition 1: A scheduling policyP is said to be in the

class of Oldest Packets First (OPF) policies if policy P

satisfies the sufficient condition in Theorem 2.
Clearly, the class of OPF policies are all rate-function

delay-optimal. We would like to emphasize that the sufficient
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condition in Theorem 2 is very easy to verify and can
be readily used to design other rate-function delay-optimal
policies. Specifically, Theorem 2 enables us to identify a new
rate-function delay-optimal policy, called theDWM-n policy,
which substantially reduces the complexity toO(n2.5 logn).
This in turn allows us to designlow-complexityhybrid schedul-
ing policies that are boththroughput-optimalandrate-function
delay-optimal(in Section V).

Now, we review theDelay Weighted Matching (DWM)
policy proposed in [10], [11]. DWM operates in the following
way. In each time-slott, define the weight of thel-th packet
of Qi asZi,l(t), i.e., the delay of this packet at the beginning
of time-slot t, which is measured since the time when this
packet arrived to queueQi until time-slot t. Then, construct
a bipartite graphG[X ∪ Y,E] such that the vertices inX
correspond to then oldest packets from each of then queues
andY is the set of all servers. Thus,|X | = n2 and |Y | = n.
Let Xi ⊆ X be the set of packets from queueQi. If queue
Qi is connected to serverSj , then for each packetx ∈ Xi,
there is an edge betweenx andSj in graphG and the weight
of this edge is set to the weight of packetx. The schedule
is then determined by a maximum-weight matching overG.
Clearly, DWM maximizes the sum of the delays of the packets
scheduled.

It has been shown in [10], [11] that the DWM policy
is rate-function delay-optimal in some cases. However, it is
unclear whether it is delay-optimal in general.We would
like to highlight that our proposed sufficient condition in
Theorem 2 allows us to show that a slightly modified version
of the DWM policy is rate-function delay-optimal in general
(under an additional mild assumption - the second part of
Assumption 2).Specifically, in the modified version of the
DWM policy, we assign the weight of a packetp as ŵ(p)
instead of its delay only. Then, by simply duplicating the proof
of Lemma 7 in [10], we can show that the modified version
of the DWM policy is an OPF policy and is thus rate-function
delay-optimal.

However, the DWM policy still suffers from a high com-
plexity, which renders it impractical. Specifically, DWM has
a complexity ofO(n5), since the complexity of finding a
maximum-weight matching [15] over a bipartite graphG[V,E]
is O(|V ||E|+ |V |2 log |V |) in general, and the bipartite graph
constructed by DWM has|V | = O(n2) and |E| = O(n3).

To overcome the high-complexity issue, we develop a
simpler policy that is also in the class of the OPF policies
(and is thus rate-function delay-optimal), but has a much lower
complexity of O(n2.5 logn). The new policy is called the
DWM-n policy due to the high-level similarity with DWM.
However, it exhibits critical differences when picking packets
to construct the bipartite graphG[X ∪ Y,E] and finding the
maximum-weight matching overG. The differences are as
follows:

1) In each time-slot, instead of considering then oldest
packets from each queue (and thusn2 packets in total) as
in DWM, DWM-n considers only then oldest packets in
the whole system. Hence, the bipartite graph constructed
by DWM-n has|X | = n and |Y | = n.

2) The rest of the operations of DWM-n are similar to

that of DWM, i.e., the schedule is determined by a
maximum-weight matching overG, except that DWM-n
finds a maximum-weight matching based on thevertex
weights. Such a maximum-weight matching is also
called Maximum Vertex-weighted Matching (MVM)
[16], [17]. Specifically, the weight of each vertexp ∈ X
is set to ŵ(p) (i.e., the weight of the corresponding
packetp), and the weight of each vertex in the setY is
set to 0.

In the following proposition, we show that the DWM-n
policy is rate-function delay-optimal and has a low complexity.

Proposition 4: The DWM-n policy is an OPF policy, and
is thus rate-function delay-optimal under Assumptions 2 and
3. Further, the DWM-n policy has a low complexity of
O(n2.5 logn).

We provide the proof in Appendix D. The fact that the
DWM-n policy is an OPF policy follows from a property of
MVM [16] that if there exists a matching that matches all
of the k heaviest vertices, then any MVM matches all of the
k heaviest vertices as well. The low complexity of DWM-n
follows immediately from the fact that DWM-n reduces the
number of packets under consideration (n packets in total),
and that an MVM in ann × n bipartite graph can be found
in O(n2.5 logn) time [16]. Note that even if the DWM policy
adopts MVM when determining the schedule, its complexity
can only be reduced toO(n4 log n).

Although the DWM-n policy achieves rate-function delay
optimality with a low complexity, it may not be throughput-
optimal in general. This is because the DWM-n policy con-
siders only then oldest packets in the system. It is likely that
certain servers may not be connected to any of the queues that
contain thesen packets, which results in the server being idle
and is thus a waste of service. Hence, DWM-n is a lazy policy.
In fact, we can construct a simple counter-example to show
that the DWM-n policy is, in general, not throughput-optimal
as stated in Proposition 5.

Proposition 5: The DWM-n policy is not throughput-
optimal in general.

We prove Proposition 5 by constructing a special arrival
pattern that forces certain servers to be idle, even when they
can serve some of the queues. We provide the proof in
Appendix E. Proposition 5 suggests that a rate-function delay-
optimal policy may not have good throughput performance
(for a fixedn). This may appear counter-intuitive at the first
glance. However, it should be noted that the rate-function delay
optimality is studied in the asymptotic regime, i.e., whenn
goes to infinity. Although the convergence of the rate-function
is typically fast, the throughput performance may be poor for
small to moderate values ofn. Our simulation results (Fig. 3
in Section VI) will provide further evidence of this.

B. Throughput Optimality

In this section, we present a sufficient condition for through-
put optimality in very general non-asymptotic settings.

Recall thatQi(t) denotes the length of queueQi at the
beginning of time-slott immediately after packet arrivals,
Zi,l(t) denotes the delay of thel-th packet ofQi at the
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beginning of time-slott, Wi(t) = Zi,1(t) denotes the HOL
packet delay ofQi at the beginning of time-slott, andCi,j(t)
denotes the connectivity betweenQi andSj in time-slott. Let
Sj(t) denote the set of queues being connected to serverSj

in time-slot t, i.e., Sj(t) = {1 ≤ i ≤ n | Ci,j(t) = 1}, and
let Γj(t) denote the subset of queues inSj(t) that have the
largest weight in time-slott, i.e.,Γj(t) , {i ∈ Sj(t) |Wi(t) =
maxl∈Sj(t) Wl(t)}. We now present the main result of this
section.

Theorem 6:Let i(j, t) be the index of the queue that is
served by serverSj in time-slot t, under a scheduling policy
P. Under Assumption 1, policyP is throughput-optimal if
there exists a constantM > 0 such that, in any time-slot
t and for all j ∈ {1, 2, . . . , n}, queueQi(j,t) satisfies that
Wi(j,t)(t) ≥ Zr,M (t) for all r ∈ Γj(t) such thatQr(t) ≥ M .

We prove Theorem 6 using fluid limit techniques [13], [18]
and standard Lyapunov argument. Due to space constraint,
we provide the proof in our online technical report [14]. The
condition in Theorem 6 means the following: In each time-
slot, each server chooses to serve a queue with HOL packet
delay no less than the delay of theM -th packet in the queue
with the largest HOL delay (among the queues connected to
the server); if this queue (with the largest HOL delay) has
less thanM packets, then the server may choose to serve any
queue.

It is well-known that the MaxWeight Scheduling (MWS)
policy [12], [13], [19]–[22] that maximizes the weighted sum
of the rates, where the weights are queue lengths or delays,
is throughput-optimal in very general settings, includingthe
multi-channel system that we consider in this paper. The
intuition behind Theorem 6 is that to achieve throughput
optimality in our multi-channel system, it is sufficient for
each server to choose a connected queue with a large enough
weight such that this queue has the largest weight in the fluid
limit. This relaxes the condition that each server has to find
a queue with the largest weight in the original system, and
thus significantly expands the set of known throughput-optimal
policies.

Next, we define the class of Maximum Weight in the Fluid
limit (MWF) policies as follows.

Definition 2: A policy P is said to be in the class of
Maximum Weight in the Fluid limit (MWF) policies if
policy P satisfies the sufficient condition in Theorem 6.

Clearly, the class of MWF policies are all throughput-
optimal. It is claimed in [10], [11] that the DWM policy is
throughput-optimal, yet the throughput optimality was notex-
plicitly proved there. For completeness, we state the following
proposition on throughput optimality of the DWM policy, and
provide its proof in our online technical report [14].

Proposition 7: The DWM policy is an MWF policy, and is
thus throughput-optimal under Assumption 1.

Next, we study a simple extension of the delay-based
MaxWeight policy [12], [13], [22] that is throughput-optimal
in our multi-channel system.
Delay-based MaxWeight Scheduling (D-MWS) policy:In
each time-slott, the scheduler allocates each serverSj to serve
queueQi(j,t) such thati(j, t) = min{i | i ∈ Γj(t)}. In other
words, each server chooses to serve a queue that has the largest

HOL delay (among all the queues connected to this server),
breaking ties by picking the one with the smallest index if
there are multiple such queues.

It is easy to see that D-MWS is an MWF policy and
is thus throughput-optimal. Also, it is worth noting that D-
MWS has a low complexity ofO(n2) in our mutli-channel
system. However, we can show that D-MWS suffers from
poor delay performance. Specifically, we show in the following
proposition that under D-MWS, the probability that the largest
HOL delay exceeds any fixed threshold, is at least a constant,
even if n is large. This results in a zero rate-function.

Proposition 8: Consider i.i.d. Bernoulli arrivals, i.e., in
each time-slot, and for each user, there is a packet arrival with
probabilityp, and no arrivals otherwise. By allocating servers
to queues according to D-MWS, we have that

lim sup
n→∞

−1

n
logP (W (0) > b) = 0, (5)

for any fixed integerb ≥ 0.
Due to space constraint, we provide the proof in our online

technical report [14] and explain the intuition behind it inthe
following. Note that under D-MWS, each server chooses to
serve a connected queue having the largest weight without
accounting for the decisions of the other servers. This way of
allocating servers may incur an unbalanced schedule such that
in each time-slot, with high probability, only a small fraction
of the queues (O(logn) out ofn queues) get served, while the
number of queues having arrivals is much larger (O(n)). This
then leads to poor delay performance. By an argument similar
to that in Theorem 3 of [7] (where the authors show that the
Queue-length-based MaxWeight Scheduling (Q-MWS) policy
results in a zero queue-length rate-function), we can show that
under D-MWS, the delay-violation event occurs with at leasta
constant probability for any fixed threshold even ifn is large.

We conclude this section with a summary of the scheduling
policies proposed and/or discussed in this section. The FBS
policy is a good policy that is useful for the rate-function delay
analysis of other policies, yet it is neither throughput-optimal
nor rate-function delay-optimal in general. Although (themod-
ified version of) the DWM policy is both throughput-optimal
and rate-function delay-optimal, it yields an impractically high
complexity. Our analysis shows that our proposed the DWM-n
policy is rate-function delay-optimal and substantially reduces
the complexity toO(n2.5 logn), but it is not throughput-
optimal. Further, we show that a simple throughput-optimal
policy, the D-MWS policy, suffers from a zero rate-function.

V. HYBRID POLICIES

It is clear from the previous section that a policy that
satisfies the sufficient conditions in Theorems 2 and 6 is
both throughput-optimal and rate-function delay-optimal. It
remains however to find such a policy with alow complexity.
Interestingly, our carefully chosen sufficient conditionspossess
the following special features, which allow us to constructa
low-complexity hybrid policy that is both rate-function delay-
optimal and throughput-optimal:



8

• The sufficient condition for throughput optimality has a
decoupling feature, in the sense that the condition can be
separately verified for each individual server.

• The sufficient condition for rate-function delay optimality
guarantees not only rate-function delay optimality itself,
but also that all scheduled servers for then oldest packets
satisfy the sufficient condition for throughput optimality.

Hence, by exploiting the above useful features of our sufficient
conditions, we can now develop a class of two-stage hybrid
OPF-MWF policies that runs an OPF policy (focusing on
the n oldest packets only) in stage 1, and runs an MWF
policy in stage 2 over the remaining servers (that are not
allocated in stage 1) only. We will then show that all policies
in this class of hybrid OPF-MWF policies are both rate-
function delay-optimal and throughput-optimal. In particular,
we can find simple OPF-MWF policies with a low complexity
O(n2.5 logn).

We now formally define the class of two-stage hybrid OPF-
MWF policies.

Definition 3: A scheduling policyP is said to be in the
class ofhybrid OPF-MWF policies, if the following condi-
tions are satisfied under policyP: In each time-slott, there
are two stages:

1) in stage 1, it runs an OPF policy over then oldest
packets only;

2) in stage 2, letR(t) denote the set of servers that are not
allocated by the OPF policy in stage 1, and leti(j, t) be
the index of the queue that is matched by serverSj for
j ∈ R(t) in stage 2. There exists a constantM > 0 such
that in any time-slott and for allj ∈ R(t), queueQi(j,t)

satisfies thatWi(j,t)(t) ≥ Zr,M (t) for all r ∈ Γj(t) such
thatQr(t) ≥ M . In other words, it runs an MWF policy
over the system with the remaining servers and packets.

In the following theorem, we show that the class of
OPF-MWF policies are both rate-function delay-optimal and
throughput-optimal.

Theorem 9:Any hybrid OPF-MWF policy is rate-function
delay-optimal under Assumptions 2 and 3, and is throughput-
optimal under Assumption 1.

We provide the proof in Appendix F, and give the intuition
behind it as follows. In stage 1, an OPF policy not only
guarantees rate-function delay optimality,but also satisfies the
sufficient condition for throughput optimality for all allocated
servers in this stage. Note that the allocated servers and pack-
ets in stage 1 will not be considered in stage 2. In stage 2,we
run an MWF policy for the remaining servers and packets only.
Hence, it ensures that the sufficient condition for throughput
optimality is satisfied for the remaining servers as well. Since
the allocated servers and packets in stage 1 are not touched
in stage 2, the satisfaction of the sufficient condition for delay
optimality is not perturbed, and the sufficient condition for
throughput optimality is also satisfied.

We note that the idea of combining different policies into
(heuristic) hybrid policies to improve the overall performance,
is not new. However, our goal in this paper is to achieve
provable optimality in terms of both throughput and delay.
Hence, the task of designing the right hybrid policy becomes

much more challenging. Further, it is not necessary that all
combinations of the OPF and MWF policies lead to desired
hybrid policies. For example, it is unclear that the sufficient
condition for throughput optimality can be satisfied if instead,
we run an MWF policy in stage 1 and do post-processing
by applying an OPF policy in stage 2. In this case, because
the servers allocated by an MWF policy in stage 1 can be
reallocated in stage 2, the sufficient condition for throughput
optimality may not hold any more. In contrast, our solutions
exploit the special features of our carefully chosen sufficient
conditions, and intelligently combine different policiesin
a right way, to achieve the optimal performance for both
throughput and delay.

There are still many policies in the class of hybrid OPF-
MWF policies. In the following, as an example, we show that
the DWM-n policy combined with the D-MWS policy yields
anO(n2.5 log n)-complexity hybrid OPF-MWF policy that is
both throughput-optimal and rate-function delay-optimal. Let
this policy be calledDWM-n-MWS policy. Then, we present
the main result of this paper in the following theorem.

Theorem 10:DWM-n-MWS policy is in the class of hybrid
OPF-MWF policies, and is thus both throughput-optimal and
rate-function delay-optimal. Further, DWM-n-MWS policy
has a complexity ofO(n2.5 logn).

To show that DWM-n-MWS is a hybrid OPF-MWF policy,
it suffices to show that Condition 2) of Definition 3 is satisfied.
We provide the proof in Appendix G.

VI. SIMULATION RESULTS

In this section, we conduct simulations to compare the
performance of the scheduling policies proposed or discussed
in this paper, where the Hybrid policy we consider is DWM-
n-MWS policy. We also compare the delay performance
of our proposed policies along with twoO(n2)-complexity
queue-length-based policies (i.e., using queue lengths instead
of delays to calculate weights when making scheduling de-
cisions): Queue-based Server-Side-Greedy (Q-SSG) and Q-
MWS, which have been studied in [6], [7]. We implement
and simulate these policies in Java, and compare the empirical
probabilities that the largest HOL delay in the system in any
given time-slot exceeds a constantb, i.e.,P(W (0) > b).

For the arrival processes, we consider bursty arrivals that
are driven by a two-state Markov chain and are thus correlated
over time. (We obtained similar results fori.i.d. 0-L arrivals
over time, but omit them here due to space constraints.) We
adopt the same parameter settings as in [10], [11]. For each
user, there are 5 packet-arrivals when the Markov chain is in
state 1, and no arrivals when the Markov chain is in state 2.
The transition probability of the Markov chain is given by
the matrix [0.5, 0.5; 0.1, 0.9], and the state transitions occur
at the end of each time-slot. The arrivals for each user are
correlated over time, but they are independent across users. For
the channel model, we first assumei.i.d. ON-OFF channels
(as in Assumption 4) and setq = 0.75, and later consider
more general scenarios with heterogeneous users and bursty
channels that are correlated over time. We run simulations for
a system withn ∈ {10, 20, . . . , 100}. The simulation period
lasts for107 time-slots for each policy and each system.
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Fig. 2. Performance comparison of different
scheduling policies in the case with homoge-
neousi.i.d. channels, for delay thresholdb = 2.
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Fig. 3. Performance comparison of different
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Fig. 4. Performance comparison of different
scheduling policies in the case with Markov-
chain driven heterogeneous channels, for delay
thresholdb = 2.

The results are summarized in Figs. 2 and 3, where the
complexity of each policy is labeled. In order to compare the
rate-functionI(b) as defined in Eq. (2), we plot the probability
over the number of channels or users, i.e.,n, for a fixed value
of thresholdb. In Fig. 2, we compare the rate-functionI(b)
of different scheduling policies forb = 2. The negative of
the slope of each curve can be viewed as the rate-function
for the corresponding policy. From Fig. 2, we observe that
the Hybrid and DWM-n policies perform closely to DWM,
and that D-MWS and Q-MWS have a zero rate-function,
which supports our analytical results. Further, the results show
that the delay-based policies (DWM, DWM-n and Hybrid)
consistently outperform Q-SSG in terms of delay performance,
despite that it has been shown through simulations that Q-SSG
performs closely to a rate-function (queue-length) optimal
policy [6], [7]. This provides further evidence of the fact that
good queue-length performance does not necessarily translate
to good delay performance.

We also plot the probability over delay thresholdb as in
[6]–[8], [10], [11] to investigate the performance of different
policies whenn is small. In Fig. 3, we report the results for
n = 10 and b ∈ {0, 1, 2, . . . , 29}. From Fig. 3, we observe
that the Hybrid policy consistently performs closely to DWM
for almost all values ofb that we consider, while DWM-n is
worse than DWM. This is because DWM-n may not schedule
all the servers, and the probability that some of the serversare
kept idle can be significant whenn is small.

Finally, we evaluate the performance of different scheduling
policies in more realistic scenarios, where users areheteroge-
neousand channels arecorrelated over time. Specifically, we
consider channels that can be modeled by a two-state Markov
chain, where the channel is “ON” when the Markov chain is
in state 1, and is “OFF” when the Markov chain is in state 2.
This type of channel model can be viewed as a special case
of the Gilbert Elliot model that is widely used for describing
bursty channels. We assume that there are two classes of
users: users with an odd index are callednear-users, and users
with an even index are calledfar-users. Different classes of
users see different channel conditions: near-users see better
channel condition, and far-users see worse channel condition.
We assume that the transition probability matrices of channels

for near-users and far-users are[0.833, 0.167; 0.5, 0.5] and
[0.5, 0.5; 0.167, 0.833], respectively. The arrival processes are
assumed to be the same as in the previous case. Also, the delay
requirements are assumed to be the same for different classes
of users, i.e., we still consider the probability that the largest
HOL delay exceeds a fixed threshold, without distinguishing
different classes of users.

The results are summarized in Fig. 4. We observe similar
results as in the previous case, where channels arei.i.d.
in time. In particular, our low-complexity policies (DWM-
n and Hybrid) again perform closely to DWM, in terms of
rate-function, although the delay-violation probabilityis a bit
smaller under DWM whenn is not large (i.e.,n < 50),
which is expected. Note that in this scenario, rate-function
delay-optimal policies arenot known yet. For future work, it
would be interesting to explore whether our proposed policies
can achieve optimality of both throughput and delay in more
general scenarios.

VII. C ONCLUSION

In this paper, we addressed the question of designing low-
complexity scheduling policies that provide optimal perfor-
mance of both throughput and delay in multi-channel systems.
We derived simple and easy-to-verify sufficient conditions
for throughput optimality and rate-function delay optimality,
which allowed us to later develop a class of low-complexity
hybrid policies that simultaneously achieve both throughput
optimality and rate-function delay optimality.

Our work in this paper leads to many interesting questions
that are worth exploring in the future. It would be interesting
to know if one can further relax the sufficient conditions,
and design even simpler policies that can provide optimal
performance for both throughput and delay. Further, it would
be worthwhile to analytically characterize the fundamental
trade-off between performance and complexity.

Further, it is important to investigate the scheduling problem
in more realistic scenarios, e.g., accounting for more general
multi-rate channels that are correlated over time, rather than
i.i.d. ON-OFF channels, and heterogeneous users with differ-
ent statistics as well as different delay requirements. Ourhope
is to find efficient schedulers that can guarantee a nontrivial
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lower bound of the optimal rate-function, if it is too hard to
achieve (or prove) the optimal delay performance itself in more
general scenarios.

Finally, it is interesting and important for us to understand
the delay performance beyond rate-function optimality as we
considered in this paper. The log-asymptotic results from the
large-deviations analysis may not suffice, since they do not
account for the pre-factor of the delay-violation probability.
Therefore, a very important direction is to analyze and under-
stand the exact delay asymptotics as well as the mean delay
performance.

APPENDIX A
PROOF OFTHEOREM 1

We begin with stating an important property ofIA(t, x)
in the following lemma, which will be used in deriving the
upper bound in Theorem 1. Recall that we define the quantity
I+A (t, x) , limy→x+ IA(t, y).

Lemma 11:SupposeL > 1. For any given integert >
0, and for all x ∈ [0, (L − 1)t), the limit I+A (t, x) =
limy→x+ IA(t, y) exists and we haveIA(t, x) = I+A (t, x).

Proof: Consider any given integert > 0. First, note that
the total number of packet arrivals to the system during an
interval of t time-slots cannot exceedLnt. Hence, we only
need to considerIA(t, x) defined on[0, (L − 1)t]. By the
second part of Assumption 2, it is easy to see thatIA(t, x)
must be finite in[0, (L−1)t). Note thatIA(t, x) is a supremum
(overθ) of linear functions (ofx). Hence,IA(t, x) is a convex
function (of x), and is thus continuous on(0, (L − 1)t) (i.e.,
the interior of[0, (L− 1)t]) [23, Pg. 68]. Further, it is easy to
see thatIA(t, x) is monotone (non-decreasing) on[0, (L−1)t]
due to (3). Hence, it is not hard to show thatIA(t, x) is right-
continuous at the left-most pointx = 0. Therefore, the limit
limy→x+ IA(t, y) exists and we haveIA(t, x) = I+A (t, x) for
any x ∈ [0, (L− 1)t).

First, we focus on the case whereL > 1, and consider three
types of events,E1, Ec

2 , andEc
3 , that imply the delay-violation

event{W (0) > b}.
Event E1: Suppose that there is a packet that arrives to the

network in time-slot−b − 1. Without loss of generality, we
assume that the packet arrives to queueQ1. Further, suppose
that Q1 is disconnected from alln servers in all time-slots
from −b− 1 to −1.

Then, at the beginning of time-slot 0, this packet is still
in the network and has a delay ofb + 1. This impliesE1 ⊆
{W (0) > b}. Note that the probability that eventE1 occurs
can be computed as

P(E1) = (1− q)n(b+1) = e−n(b+1)IX .

Hence, we have

P(W (0) > b) ≥ e−n(b+1)IX ,

and thus

lim supn→∞
−1
n

logP(W (0) > b) ≤ (b + 1)IX .

Event Ec
2 : Consider any fixedc ∈ {0, 1, . . . , b} and any

t > tb−c. Recall thattb−c =
b−c
L−1 . Then, for allt > tb−c, we

haveb − c < (L − 1)t, and thusIA(t, b − c) = I+A (t, b − c)
from Lemma 11. Hence, for any fixedǫ > 0, there exists
a δ > 0 such thatIA(t, b − c + δ) ≤ I+A (t, b − c) + ǫ =
IA(t, b− c)+ ǫ. Suppose that from time-slot−t− b to −b−1,
the total number of packet arrivals to the system is greater
than or equal tont + n(b − c + δ), and letp(b−c+δ) denote
the probability that this event occurs. Then, from Cramer’s
Theorem, we havelimn→∞

−1
n

log p(b−c+δ) = IA(t, b − c +
δ) ≤ IA(t, b− c)+ ǫ. Clearly, the total number of packets that
are served in any time-slot is no greater thann. For any fixed
δ, we havenδ ≥ 1 for large enoughn (whenn ≥ 1

δ
). Hence,

if the above event occurs, at the end of time-slot−c− 1, the
system contains at least one packet that arrived before time-slot
−b. Without loss of generality, we assume that this packet is in
Q1. Now, assume thatQ1 is disconnected from alln servers in
the nextc time-slots, i.e., from time-slot−c to−1. This occurs
with probability (1− q)cn = e−ncIX , independently of all the
past history. Hence, at the beginning of time-slot 0, there is
still a packet that arrived before time-slot−b. Thus, we have
W (0) > b in this case. This impliesEc

2 ⊆ {W (0) > b}. Note
that the probability that eventEc

2 occurs can be computed as

P(Ec
2) = p(b−c+δ)e

−ncIX .

Hence, we have

P(W (0) > b) ≥ p(b−c+δ)e
−ncIX ,

and thus

lim sup
n→∞

−1

n
logP(W (0) > b) ≤ IA(t, b− c) + ǫ+ cIX .

Since the above inequality holds for anyc ∈ {0, 1, . . . , b},
any t > tb−c, and anyǫ > 0, by lettingǫ tend to 0, taking the
infimum over allt > tb−c, and taking the minimum over all
c ∈ {0, 1, . . . , b}, we have

lim sup
n→∞

−1

n
logP(W (0) > b)

≤ min
c∈{0,1,...,b}

{ inf
t>tb−c

IA(t, b − c) + cIX}.

Event Ec
3 : Consider any fixedc ∈ Ψb. Suppose that from

time-slot −tb−c − b to −b − 1, the total number of packet
arrivals to the system is equal tontb−c + n(b− c) = nLtb−c,
and let p′(b−c) denote the probability that this event occurs.
Note that the total number of packet arrivals to the system from
time-slot−tb−c−b to −b−1 can never exceednLtb−c. Then,
from Cramer’s Theorem, we havelimn→∞

−1
n

log p′(b−c) =
IA(tb−c, b− c). Clearly, the total number of packets that can
be served during the interval[−tb−c− b,−c− 1] is no greater
thann(tb−c + b− c) = nLtb−c. Suppose that there exists one
queue that is disconnected from all the servers in any one
time-slot in the interval[−tb−c − b,−c− 1]. Then, at the end
of time-slot−c − 1, the system contains at least one packet
that arrived before time-slot−b. Without loss of generality,
we assume that queueQ1 is disconnected from all the servers
in a time-slot, say time-slot−tb−c− b. This event occurs with
probability (1 − q)n = e−nIX . Further, assume thatQ1 is
disconnected from all then servers in the nextc time-slots,
i.e., from time-slot−c to −1. This occurs with probability
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(1 − q)cn = e−ncIX , independently of all the past history.
Hence, at the beginning of time-slot 0, there is still a packet
that arrived before time-slot−b. Thus, we haveW (0) > b
in this case. This impliesEc

3 ⊆ {W (0) > b}. Note that the
probability that eventEc

3 occurs can be computed as

P(Ec
3) = p′(b−c)e

−n(c+1)IX .

Hence, we have

P(W (0) > b) ≥ p′(b−c)e
−n(c+1)IX ,

and thus

lim sup
n→∞

−1

n
logP(W (0) > b) ≤ IA(tb−c, b− c) + (c+ 1)IX .

Since the above inequality holds for anyc ∈ Ψb, by taking
the minimum over allc ∈ Ψb, we have, forL > 1,

lim sup
n→∞

−1

n
logP(W (0) > b)

≤ min
c∈Ψb

{IA(tb−c, b− c) + (c+ 1)IX}.

Considering eventsE1, Ec
2 , andEc

3 , we have

lim sup
n→∞

−1

n
logP(W (0) > b)

≤ min{(b+ 1)IX ,

min
0≤c≤b

{ inf
t>tb−c

IA(t, b− c) + cIX},

min
c∈Ψb

{IA(tb−c, b− c) + (c+ 1)IX}}

= I0(b).

Next, we consider the case whereL = 1. In this
case, we only need to consider eventE1, and we have
lim supn→∞

−1
n

logP(W (0) > b) ≤ (b+ 1)IX .
Combining both cases ofL = 1 and L > 1, we have

lim supn→∞
−1
n

logP(W (0) > b) ≤ I∗0 (b). This completes
our proof.

APPENDIX B
PROOF OFTHEOREM 2

Suppose policyP satisfies the sufficient condition in The-
orem 2. We want to show that for any given integer threshold
b ≥ 0, the rate-function attained by policyP is no smaller
than I∗0 (b). The proof follows a similar argument as in the
proof of Theorem 2 in [10]. However, our proof exhibits the
following key difference. In [10], the authors prove that the
FBS policy can attain a certain rate-function, which, in some
cases only, meets the upper bound derived in [10]. In contrast,
in the following proof, by exploiting the dominance property
over both the FBS policy and the perfect-matching policy in
Lemma 3, we will show that the rate-function attained by
policy P is always no smaller than the upper boundI∗0 (b)
that we derived in Theorem 1 and is thus optimal.

We first consider the case ofL > 1, and want to show that
the rate-function attained by policyP is no smaller thanI0(b).

In the following proof, we will use the dominance property
of policy P over the FBS policy and the perfect-matching
policy considered in Lemma 3. We first choose the value of
parameterh for FBS based on the statistics of the arrival

process. We fixδ < 2
3 and ǫ < p

2 . Then, from Assumption 3,
there exists a positive functionIB(ǫ, δ) such that for all
n ≥ NB(ǫ, δ) and t ≥ TB(ǫ, δ), we have

P

(

∑l+t

τ=l+1 1{|A(τ)−pn|>ǫn}

t
> δ

)

< exp(−ntIB(ǫ, δ)),

for any integerl. We then choose

h = max

{

TB(ǫ, δ),

⌈

1

(p− ǫ)(1 − 3δ
2 )

⌉

,

⌈

2I0(b)

IB(ǫ, δ)

⌉

}

+ 1.

The reason for choosing the above value ofh will become
clear later on. Recall from Assumption 2 thatL is the
maximum number of packets that can arrive to a queue in any
time-slot t. Let H = Lh. Then,H is the maximum number
of packets that can arrive to a queue during an interval ofh
time-slots, and is thus the maximum number of packets from
the same queue in a frame.

Let L(−b) be the last time before time-slot−b, when the
backlog is empty, i.e., all the queues have a queue-length of
zero. Also, letEt be the set of sample paths such thatL(−b) =
−t− b− 1 andW (0) > b under policyP. Then, we have

P(W (0) > b) =
∑∞

t=1 P(Et). (6)

Let EF
t andEPM

t be the set of sample paths such that given
L(−b) = −t − b − 1, the eventW (0) > b occurs under
the FBS policy and the perfect-matching policy, respectively.
Recall that policyP dominates both the FBS policy and the
perfect-matching policy. Then, for anyt > 0 we have

Et ⊆ EF
t ∩ EPM

t . (7)

Recall thatp is the mean arrival rate to a queue. Now, we
choose any fixed real numberp̂ ∈ (p, 1), and fix a finite time
t∗ as

t∗ , max{T1,
⌈

I0(b)
IBX

⌉

,max{tb−c | c ∈ Ψb}}, (8)

where
T1 , max{TB(p̂− p, 1−p̂

6(L+2) ),
⌈

6
1−p̂

⌉

} (9)

and
IBX , min{ (1−p̂)IX

9 , IB(p̂− p, 1−p̂
6(L+2) )}. (10)

The reason for defining the above value oft∗ will become clear
later on. Then, we apply (7) to (6) and split the summation as

P(W (0) > b) ≤ P1 + P2,

where
P1 ,

∑t∗

t=1 P(E
F
t ∩ EPM

t )

and
P2 ,

∑∞
t=t∗ P(E

F
t ∩ EPM

t ).

We divide the proof into two parts. In Part 1, we show that
there exists a finiteN1 > 0 such that for alln ≥ N1, we have

P1 ≤ C1n
7bHe−nI0(b).

Then, in Part 2, we show that there exists a finiteN2 > 0 such
that for alln ≥ N2, we have

P2 ≤ 4e−nI0(b).
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Finally, combining both parts, we have

P(W (0) > b) ≤
(

C1n
7bH + 4

)

e−nI0(b),

for all n ≥ N , max{N1, N2}. By taking log-
arithm and limit as n goes to infinity, we obtain
lim infn→∞

−1
n

logP (W (0) > b) ≥ I0(b), and thus the de-
sired results.

The detailed proof is provided in our online technical report
[14].

APPENDIX C
PROOF OFLEMMA 3

Suppose policyP satisfies the sufficient condition in The-
orem 2. We first want to show that policyP dominates the
version of the FBS policy described in Section IV-A. The proof
follows a similar argument as in the proof of Lemma 7 in [10].

Consider two queueing systems,Q̄1 andQ̄2, both of which
have the same arrival and channel realizations. We assume that
Q̄1 adopts policyP andQ̄2 adopts the FBS policy. Recall that
the weight of a packetp in time-slot t is defined asŵ(p) =
t− tp+

L+1−xp

(L+1) + n+1−q(p)
(L+1)(n+1) . For two packetsp1 andp2, we

sayp1 is older thanp2 if ŵ(p1) > ŵ(p2).
Let Ri(t) represent the set of packets present in the system

Q̄i at the end of time-slott, for i = 1, 2. Then, it suffices to
show thatR1(t) ⊆ R2(t) for all time t. We letA(t) denote the
set of packets that arrive at timet. Let Xi(t) denote the set of
packets that depart the system̄Qi at time t, fori = 1, 2. Hence,
we haveRi(t+1) = (Ri(t)∪A(t+1))\Xi(t+1), for i = 1, 2.

We then proceed the proof by contradiction. Suppose that
R1(t) * R2(t) for some timet. Without loss of generality, we
assume thatτ is the first time such thatR1(τ) * R2(τ) occurs.
Hence, there must exist a packet, sayp, such thatp ∈ R1(τ)
andp /∈ R2(τ). Becauseτ is the first time when such an event
occurs, packetp must depart from the system̄Q2 in time-slot
τ , i.e., p ∈ X2(τ).

Let Bi(v) denote the set of packets inRi(τ − 1) ∪ A(τ)
with weight greater than or equal tov, for i = 1, 2. Clearly,
we haveB1(v) ⊆ B2(v) for all v, asR1(τ − 1) ⊆ R2(τ − 1)
by assumption. Since packetp is served in the system̄Q2

in time-slot τ , we know from the operations of FBS that all
packets inB2(ŵ(p)) must also be served in time-slotτ . This
is because packetp is part of the HOL frame in time-slotτ
(as packetp is served in time-slotτ ), and all packets with a
weight greater than̂w(p) must be filled to the frames with
higher priority than packetp and thus should also belong to
the HOL frame in time-slotτ . This further implies that in the
systemQ̄1, there exists a feasible schedule that can match all
packets inB1(ŵ(p)), sinceB1(ŵ(p)) ⊆ B2(ŵ(p)) and both
systems have the same channel realizations.

Now, from the sufficient condition in Theorem 2, policyP
will serve all packets inB1(ŵ(p)), including packetp. This
contradicts with the hypothesis that packetp is not served (by
policy P) in the systemQ̄1 in time-slotτ (i.e., p /∈ R1(τ)).

So far, we have shown that for any given sample path and
for any value ofh, by the end of any time-slott, policy P

has served every packet that the FBS policy has served.
Next, we want to show that policyP dominates the version

of the perfect-matching policy described in Section IV-A.

Note that in each time-slot, the packets served by the perfect-
matching policy are the oldest packets in the system. The
difference between FBS and the perfect-matching is the fol-
lowing. The HOL frame that can be served by FBS has at most
Lh packets from each queue and has at mostn0 = n − Lh
packets from the system, while the set of packets that can be
served by the perfect-matching policy has at most one packet
from each queue and has at mostn packets from the system.
Following a similar argument as above for the FBS policy, we
can show that for any given sample path, by the end of any
time-slott, policy P has served every packet that the perfect-
matching policy has served. This completes the proof.

APPENDIX D
PROOF OFPROPOSITION4

We first prove that DWM-n policy is an OPF policy
and is thus rate-function delay-optimal. The proof follows
immediately from a property of the MVM in bipartite graphs.
We restate this property in the following lemma.

Lemma 12 (Lemma 6 of [16]):Consider a bipartite graph,
and thek heaviest vertices, for somek. If there is a matching
that matches all the heaviestk vertices, then any MVM
matches all of them too.

Since DWM-n policy finds an MVM in the constructed
bipartite graph, Lemma 12 implies that for anyk ∈
{1, 2, . . . , n}, if the k oldest packets can be served by some
scheduling policy, then DWM-n policy can serve thesek
packets as well. This completes the first part of the proof.

Next, we prove that DWM-n policy has a complexity of
O(n2.5 logn). Note that in order to select then oldest packets
in the system, it is sufficient to sort then2 packets picked
by DWM policy, i.e., then oldest packets of each of then
queues, as no other packets can be among then oldest packets
in the system. The complexity of sortingn2 packets [24] is
O(n2 logn). Given then oldest packets in the system, DWM-
n policy constructs ann×n bipartite graph and finds an MVM
[16] in O(n2.5 logn) time. Hence, the overall complexity of
DWM-n is O(n2.5 logn), which completes the proof.

APPENDIX E
PROOF OFPROPOSITION5

The following simple counter-example shows that DWM-n
cannot stabilize a feasible arrival rate vector, and is thusnot
throughput-optimal in general.

Consider a system with two queues and two servers, i.e.,
a system withn = 2. We assume thei.i.d. ON-OFF channel
model as in Assumption 4, i.e., each server is connected to
each queue with probabilityq ∈ (0, 1), and is disconnected
otherwise. In each time-slot, a server can serve at most one
packet of a queue that is connected to this server. In such
a system, the optimal throughput region can be described as
Λ∗ = {λ | λ1 ≤ 2q, λ2 ≤ 2q, andλ1 + λ2 ≤ 2(2q − q2)},
where the first two inequalities are obvious, and the last
inequality is due to the following. For each of the two servers,
the probability that at least one queue is connected to the server
is 2q−q2, hence, the service each server can provide is2q−q2,
and the total (effective) capacity is thus2(2q− q2). Note that
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any arrival rate vectorλ strictly inside the optimal throughput
regionΛ∗, is feasible.

Next, we construct an arrival process as follows. Consider
a frame consisting of two time-slots. In each frame, there are
packet arrivals to the system with probabilityp ∈ (0, 1), and
no arrivals otherwise. In a frame that has arrivals, there are
K packet arrivals to queueQ1 and no arrivals to queueQ2 in
the first time-slot, and there are no arrivals to queueQ1 and
K packet arrivals to queueQ2 in the second time-slot, where
we assume thatK ≥ 4. This type of arrival process yields an
arrival rate vector ofλ∗ = [pK2 , pK

2 ]. It is easy to check that
λ∗ is feasible, ifpK ≤ 4q − 2q2.

Now, we characterize an upper bound of the service rate
under DWM-n policy. Recall that DWM-n considers only the
n oldest packets in the system and maximizes the sum of
the delays of the packets scheduled over thesen packets, and
no other packets will be scheduled. Hence, in each time-slot,
DWM-n considers only the two oldest packets in the system.
Consider any time-slott1, whereK − 1 out of theK packets
arriving to queueQ1 in the same time-slot are still waiting in
the system. The other one packet could have been scheduled
with a packet inQ2, or with a packet that arrived toQ1 earlier,
or it could have been scheduled alone in a time-slot beforet1.
Note that the firstK − 2 packets out of theseK − 1 packets
cannot be scheduled with packets in queueQ2, due to the
operations of DWM-n. Hence, in any time-slott2 before these
K − 1 packets are completely evacuated, each server must
serve queueQ1 if this server is connected to queueQ1, and
no server will serveQ2 even if this server is connected to
queueQ2, as the packets ofQ2 are not among the two oldest
packets in the system in such time-slott2. Hence, the expected
service rate for theseK − 2 packets is2q, and it thus takes
K−2
2q time-slots on average to evacuate theK − 2 packets.

Similarly, it takesK−2
2q time-slots on average to evacuate such

K−2 packets in queueQ2. Therefore, the total service rate of
the system under DWM-n is no greater than 2K

2(K−2)
2q

= 2qK
K−2 .

It is clear that the system is unstable if the total arrival rate
is greater than the total service rate, i.e.,pK > 2qK

K−2 . Then,
by choosingp = 17

96 , q = 1
2 andK = 8, we obtain a feasible

arrival rate vectorλ∗ that cannot be stabilized by DWM-n.
This completes the proof.

APPENDIX F
PROOF OFTHEOREM 9

We first show that a hybrid OPF-MWF policy is an (overall)
OPF policy and is thus rate-function delay-optimal. Note that
in stage 1, the operations of an OPF policy guarantees that
the sufficient condition in Theorem 2 is satisfied. In stage 2,
since the matched servers and packets in stage 1 will not be
considered, it ensures that the operations do not perturb the
satisfaction of the sufficient condition for rate-functiondelay
optimality.

In the following, we want to show that a hybrid OPF-MWF
policy is an (overall) MWF policy and is thus throughput-
optimal. Let M = n. We want to show that the sufficient
condition in Theorem 6 is satisfied, i.e., in any time-slott
and for all j ∈ {1, 2, . . . , n}, a hybrid OPF-MWF policy

allocates serverSj to serve queueQi(j,t), which satisfies that
Wi(j,t)(t) ≥ Zr,n(t) for all r ∈ Γj(t) such thatQr(t) ≥ n.

First, we want to show that in stage 1, an OPF policy also
guarantees thatall allocated servers in stage 1 satisfies the
sufficient condition for throughput optimality.Consider each
serverSl such thatl ∈ {1, 2, . . . , n}\R(t), i.e., all servers
Sj that are allocated in stage 1. Then,Qi(l,t) is the queue
served by serverSl in stage 1 of time-slott. Since we run
an OPF policy in stage 1, serverSl serves a packet among
the n oldest packets in the system, and it must satisfy that
Wi(j,t)(t) ≥ Zr,n(t) for any r ∈ Γl(t) such thatQr(t) ≥ n.

Next, consider each serverSj such thatj ∈ R(t), then
Qi(j,t) is the queue served by serverSj in stage 2 of time-slot
t. It is clear from Condition 2) of Definition 3 thatWi(j,t)(t) ≥
Zr,n(t) for all r ∈ Γj(t) such thatQr(t) ≥ n.

Therefore, a hybrid OPF-MWF policy is an (overall) MWF
policy and is thus throughput-optimal.

APPENDIX G
PROOF OFTHEOREM 10

To show that DWM-n-MWS is a hybrid OPF-MWF policy,
it is sufficient to show that Condition 2) of Definition 3 is
satisfied.

Given any time-slott, consider each serverSj such that
j ∈ R(t), then Qi(j,t) is the queue served by serverSj in
stage 2 under D-MWS. LetM = n. We want to show that
Wi(j,t)(t) ≥ Zr,n(t) for all r ∈ Γj(t) such thatQr(t) ≥ n.

Let W ′
i (t) be the HOL delay of queueQi at the beginning

of stage 2. LetΓ′
j(t) denote the set of queues that are

connected to serverSj and have the largest weight among
the connected queues at the beginning of stage 2 of time-slot
t, i.e., Γ′

j(t) , {i ∈ Sj(t) | W ′
i (t) = maxl∈Sj(t) W

′
l (t)},

whereSj(t) = {1 ≤ i ≤ n | Ci,j(t) = 1}. According to the
operations of D-MWS, the index of queue that is served by
serverSj satisfies thati(j, t) = min{i | i ∈ Γ′

j(t)}, hence, we
haveW ′

i(j,t)(t) = W ′
r(t) for any r ∈ Γ′

j(t). This implies that
Wi(j,t)(t) ≥ W ′

i(j,t)(t) = W ′
r(t) ≥ Zr,n(t) for any r ∈ Γ′

j(t)
such thatQr(t) ≥ n, where the last inequality is because
Qr(t) ≥ n and thus the HOL packet of queueQr at the
beginning of stage 2 must not have a later position than the
n-th packet in queueQr at the beginning of time-slott. This
holds for allj ∈ R(t) and any time-slott. Therefore, DWM-
n-MWS is a hybrid OPF-MWF policy.

Since the complexity of DWM-n and D-MWS is
O(n2.5 logn) andO(n2), respectively, the overall complexity
of DWM-n-MWS policy isO(n2.5 logn).
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