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Abstract—Network utility maximization has been widely used
to model resource allocation and network architectures. But in
practice often it cannot be solved optimally due to complexity rea-
sons. Thus motivated, we address the following two questions in
this paper: can suboptimal utility maximization maintain queue
stability? Can under-optimization of utility objective function
in fact benefit other network design objectives? We quantify
the following intuition: a resource allocation that is suboptimal
with respect to a utility maximization formulation maintains
maximum flow-level stability when utility gap is sufficiently
small and information delay is bounded, and can still provide a
guaranteed size of stability region otherwise. Utility-suboptimal
rate allocation can also enhance other network performance
metrics, e.g., it may reduce link saturation. These results provide
a theoretical support for turning attention from optimal but
complex solutions of network optimization to those that are
simple even though suboptimal.

I. INTRODUCTION

The framework of Network Utility Maximization (NUM)
has been very extensively studied over the last decade since
[1]. Formulating many resource allocation problems as max-
imization of an increasing and concave utility function over
a convex constraint set, a large number of publications have
developed iterative, distributed algorithms that converge to the
optimum.

Achieving optimality is clearly desirable for two reasons.
Not only does this attain the benchmark of the highest value
of network utility, it also guarantees flow-level stochastic
stability. The number of flows varies over time as they are
randomly generated by users and served by the network. This
system can be viewed as a queuing system where service rate
depends on the resource allocation (e.g., rate control) policy
employed by the network. For convex NUM and under the
assumptions of Poisson arrivals, exponentially-distributed files
sizes, and zero information delay (i.e. perfect queue-length
information), it has been shown that for all rate allocation
policies maximizing α-fair utilities with α > 0, flow-level
stochastic stability can be achieved if and only if traffic
intensity lies within the rate region, see, e.g., [4], [5], [7], [6].
In other words, rate region in the α-fair utility maximization
problem is also the maximum stability region under arrival
and departure dynamics.

Utility-optimality and flow-level stability are strong benefits
of optimizing NUM. However, in practice it is often prohibitive
to solve NUM optimally, due to computational complexity and
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information delay. The impact of suboptimal solution is not
well-studied in existing literature. It is of practical importance
to sharpen our understanding for two reasons:

• All rate-control algorithms require a non-negligible
amount of execution time before they can reach an
optimal rate allocation that maximizes system utility.
Most distributed rate-control algorithms cannot reach the
optimal rate allocation in any finite number of iterations.
Alternative decompositions also lead to different different
convergence behaviors [2], [3]. The time for the iterations
to converge is often so long that network states, e.g.,
the composition of user population, change many times
before convergence occurs. As a result, practical rate
allocation algorithms are subject to a positive, and possi-
bly random, time delay. Further, since we cannot afford
to run the algorithms until it converges, each instance
of the utility maximization problem can only be solved
suboptimally.

• In wireless networks, a scheduling problem has an ex-
ponential computational complexity despite the fact that
the rate region of the system is convex. For example,
when the feasible rate region of a network is obtained
by time-sharing among different subsets of users, a non-
convex multi-user/link scheduling problem still needs to
be solved in order to find the exact rate region achieved
by time-sharing [8]. Such high computational complexity
further increases the amount of time that is needed to
reach an optimal rate allocation. In addition, many cross
layer optimization algorithms that implement rate sched-
ulers as an inner loop require the scheduling iterations
to stop at some suboptimal point, for example, due to a
timescale separation assumption. There are many theoret-
ical studies that investigate the use of low-complexity and
even distributed scheduling algorithms. However, with
these scheduling algorithms the rate-allocation algorithm
will either take longer convergence time [9], or will
not converge to an optimal rate-allocation [8]. In either
case, if we are limited to a finite number of iterations,
suboptimality in the rate-allocation becomes the only
realistic outcome.

The gap between elegant theory and useful practice thus
leads us to the following question: between optimality and
simplicity, which one should we pick in solving NUM? Driven
by the practical need for simple yet suboptimal solutions, we
focus on suboptimal utility maximization, and then quantify
effects of information delay and utility-gap on flow-level
stability, and on other important network performance metrics,
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such as link saturation.
In [10], the authors show that for a class of rate allocation

algorithms based on so-called dual solutions, the optimal
stability region can be achieved even if an algorithm does not
converge to the optimal rate allocation at any time. Similar
observations have also been made in switching [11] and
scheduling [12] problems. In this paper, we take a different ap-
proach. We characterize the capability of a resource allocation
algorithm by two features: (1) the gap between its utility and
the optimal utility; and (2) the time delay of the queue-length
information. We study stability as a function of both utility gap
and information delay. Our results apply to a class of general
NUM formulations, in which flow-level queueing models are
not first-order Markov, thus making our proof technique of
independent interest to general flow-level queueing models.
Intuitively, one would think that the maximum stability region
may be retained if the utility gap is small and the time delay
is bounded, while only a reduced stability region can be
achieved when the utility gap becomes large. This is indeed
true. In Section III, we show that when information delay
is uniformly bounded by a constant and the ratio of the
utility gap (caused by a suboptimal rate allocation policy) to
the maximum utility approaches zero as queue length tends
to infinity, the maximum stability region can be retained.
However, when the utility gap is proportional to the maximum
utility, only a reduced stability region can be achieved. In this
case, we can still provide a lower bound for the achievable
stability region under rate allocation policies satisfying the
information delay and the utility gap conditions. These results
characterize the stability of a broad class of suboptimal rate
allocation policies.

When information delay is bounded, since suboptimal rate
allocations with a small enough utility gap are capable of
achieving the maximum stability, we investigate the potential
benefits of allowing such a utility gap, i.e., the upside of under-
optimizing utility objectives. It is clear that by deliberately
under-optimizing a utility, we can improve network perfor-
mance in other metrics. What remains unclear is precisely
how much improvement we can possibly achieve by under-
optimizing utility objectives with a given allowable gap. We
formulate the potential performance improvement as a function
of utility gap, and derive a first-order approximation of the
tradeoff curve based on a local sensitivity (shadow price)
analysis. This formulation generalizes that in [13], which
focuses on how network performance can be affected by the
choice of α-fair utilities and assumes that optimality always
holds. Our result not only illustrates potential benefits of
under-optimizing a utility, but also quantitatively characterizes
a tradeoff between sacrificing utility value and improving
other network performance metrics, e.g. link saturation. Our
analysis can be easily extended beyond the class of α-fair
utilities.

The results in this paper explore a new perspective to
look at suboptimal solutions of utility maximization problems.
We show that suboptimal rate-allocation policies may not
always be inferior in performance. More precisely, by under-
optimizing a utility and allowing a certain optimization gap,
we can still retain maximum flow-level stability and obtain
network performance improvements in other metrics. The rest

of the paper is organized as follows: In Section II, we introduce
a class of utility functions considered in this paper and define
utility gap for suboptimal rate allocations. Two stability results
are stated next. In Section III.A, a sufficient condition on
utility gap and information delay for achieving maximum
flow-level stability is provided. In Section III.B, when utility
gap is proportional to the maximum utility, we show that the
resulting achievable stability region can be strictly smaller, and
we further obtain a lower bound for all achievable stability
regions. In Section IV, we analyze a tradeoff between utility
gap and link saturation. Results based on a sensitivity analysis
are derived to measure the benefits of under-optimizing α-fair
utility. Simulation results are provided at the end of section
III and IV respectively. For smoother flow of the main results,
we collect all proofs in the appendices.

Throughout this paper, we use the following notations:
Vectors are denoted in small letters, e.g., x, with their ith
component denoted by xi. Matrices are denoted by capitalized
letters, e.g., A, with Aij denoting its {i, j}th component. Vec-
tor inequalities denoted by x º y are considered component-
wise. The superscript (·)T denotes the matrix transpose. P(M)
is the probability of an event M. We use R to denote a set
of vectors and Ř for its interior constructed by removing all
Pareto-boundary points.

II. UTILITY MAXIMIZATION AND GAP

Consider a communication network shared by a set of data
flows, which belong to N distinct flow classes. We refer to the
vector x = [x1, . . . , xN ] as the network state, where xi denotes
the number of flows of class i that remain in the system. The
problem of rate allocation is to determine the total rate allo-
cated to class-i flows at state x, denoted by φi(x). Rate φi(x)
is equally shared by all class-i flows, each assigned a rate
φi(x)/xi. We refer to the vector φ(x) = [φ1(x), . . . , φN (x)]
as the rate allocation at state x. Let R ⊂ RN

+ be a set of
all possible rate allocation vectors. Rate allocation φ(x) is
restricted by φ(x) ∈ R, which means that the network can
support the rate vector φ(x). In this paper, we only require the
set R to be convex, compact, and coordinate-convex1, which
holds in many settings, e.g., [5], [8].

Various network rate control policies can be derived as
solving some utility maximization problems with different
utility functions:

φopt(x) = arg max
φ∈R

∑

i:xi≥1

xiUi(
φi

xi
) (1)

where Ui(·) is a utility function for flow class i. In this
paper, we assume that the utility functions are continuous and
twice differentiable on (0, +∞). In addition, the following
conditions are satisfied:

(a) Ui(z) ≥ 0 ∀z and Ui(0) = 0, or Ui(z) ≤ 0 ∀z, i.
(b) Ui(z) is concave and monotonically increasing.
(c) limz→0 U

′
i (z) = ∞, ∀i.

(d) There exists s, s.t. zU
′′
i (z)

U
′
i (z)

≥ −s, ∀z, i.
Assumptions (a) and (b) are commonly used in the literature
[6]. The assumption that all utility functions take the same sign

1A set R is coordinate convex when the following is true: If x ∈ R, then
y ∈ R for all y component-wisely less than x.
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is a technical condition that is required to remove the absolute
value in Condition (7) and prove Lemma 4 (see Appendix
C). Assumption (c) can be interpreted as one that prevents
starvation, since it implies that the slope of the utility function
increases to infinity as the rate approaches zero. Condition (d)
requires that the utility function does not have sharp changes.
One example of such utility functions satisfying assumptions
(a-d) is a class of well-used α-fair utility functions [14],
defined by

Ui(z) =
{

z1−α

1−α , α > 0 and α 6= 1
log z, α = 1

(2)

where α is a positive constant. It is easy to verify that the
assumptions (a-d) are satisfied with s = α. Parameter α ≥ 0
models the level of fairness, which includes several special
cases. For example, maximizing the α-fair utility corresponds
to maximizing weighted throughput as α → 0, weighted
proportional fairness as α = 1, minimum potential delay as
α = 2 and max-min fairness as α →∞ [5].

It may be impractical to solve the rate allocation problem
(1) optimally for all network states. In this paper, we consider
a more general scenario where rate allocations are not optimal
and thus could possibly reduce network performance. This
work is motivated by two issues in practical networks: First, all
practical rate allocation policies are subject to a positive delay
due to the time requirement for gathering network information
and for algorithm convergence. In other words, a practical rate
allocation vector φ(x̂) can at best correspond to the optimal
rate allocation φopt(x̂) for some vector x̂, where x̂ 6= x is the
network state observed by a practical rate allocation policy.
Second, due to computational overhead or requirement for
distributed computation, even given the perfect network state
x̂, a practical rate allocation policy may still not be able to
solve the NUM problem (1) optimally. There may exist a
utility gap due to suboptimality of the rate allocation policy.
We quantify suboptimality of a practical rate allocation φ(x̂)
with respect to state x̂ by a utility gap as follows

∆(x̂) =
∑

i:x̂i≥1

x̂iUi

(
φopt,i(x̂i)

x̂i

)
− x̂iUi

(
φi(x̂)

x̂i

)
(3)

Utility gap ∆(x̂) measures the difference between subop-
timal rate allocations and the optimal allocation, caused only
by the imperfect computation of a rate allocation algorithm.
Given certain conditions on utility gap ∆(x̂) and a model for
observed network states x̂, in section III we will characterize
the stability region of an arbitrary suboptimal rate allocation
policy. In section IV, we will formulate and analyze a tradeoff
between utility gap and two network performance metrics.

III. INFORMATION DELAY AND STABILITY

Consider a network where class-i flows arrive according
to a Poisson process of intensity λi ≥ 0 and have i.i.d.
exponential file sizes of mean 1/µi. A flow is considered
to have left the network when its file transfer is completed.
Let ρi = λi/µi be the traffic intensity of class-i flows. We
formulate a stochastic process of the network state, denoted
by x(t). To model observed network state x̂(t) at time t,
we introduce an information delay process τ(t), such that
observed state of class-i flows is given by x̂i(t) = xi(t−τi(t)),

for an information delay τi(t). Since network information may
arrive out of order, information delay τi(t) is not necessarily
increasing over time t. Therefore, the rate allocation at time t
is given by

φ(x̂(t)) = φ(xi(t− τi(t))). (4)

We say that flow-level stability holds under rate allocations
φ(x̂(t)) if there exists a positive non-decaying function f(·)
with limz→∞ f(z) = ∞, such that the resulting queue-length
process x(t) satisfies

lim sup
T→∞

1
T

∫ T

0

E

[
N∑

i=1

f(xi(t))

]
dt < ∞. (5)

The stability condition in (5) is usually referred to as stability
in the mean [12], [17]. If we further assume that the rate
allocation policy and the information delay make the queueing
system an aperiodic Markov chain with a single communicat-
ing class (which is the case where there is no information delay
and utility gap), then the stability in the mean property in (5)
further implies that the Markov chain is positive recurrent [17].

Remark 1: For ease of exposition, in the above model we
have assumed that the actual rate allocation is a given function
φ(·) of observed network states x̂. The result of this paper
could also be extended to the case where φ(·) is replaced by
a function φt(·) that also varies with time. In that case, ∆(x̂)
in (3) can be defined as a supremum of the utility gaps caused
by a time-varying φt(·) over t.

When there is no utility gap or information delay, flow-
level stability has been studied in [4], [5], [6], [7] using first-
order Markov models. If a feasible rate region R is compact
and convex, and an optimal rate allocation φopt(x(t)) that
maximizes problem (1) with an α-fair utility is implemented
at each time t, it is proven that such a policy achieves the
maximum stability region Ř (i.e. the interior constructed by
removing all Pareto-boundary points from feasible rate region
R). In other words, a sufficient and necessary condition for
stability is that the traffic intensity vector must belong to Ř.

However, due to information delay, rate allocation φ(x̂(t))
depends on previous network states at time t − τi(t), for
i = 1, . . . , N . Therefore, the usual method of flow-level
stability analysis in [4], [5], [6], which requires a first-order
Markov model of the queue-length process, is inadequate. In
this paper, we consider non-optimal rate allocation policies
and prove stability by evaluating an expected Lyapunov drift.
Let h > 0 be a small time interval. The evolution of the ith
queue is described by the following equation:

xi(t + h) = xi(t) + ai(t, h)− di(t, h), (6)

where ai(t, h) is the number of flows arriving to flow class i
during time t to t + h and di(t, h) is the number of departing
flows. Due to utility gap, the departure rate now depends on
the sub-optimal rate allocation φ(x̂(t)), given an observed
state x̂(t) = xi(t − τi(t)). In this section, we will derive a
sufficient condition for achieving maximum stability. When the
condition is not satisfied, we prove that the resulting achievable
stability region may be strictly smaller than the feasible rate
region. The main results are stated in Theorems 1 and 2.
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A. A Sufficient Condition for Maximum Stability

Theorem 1: For an arbitrary suboptimal rate allocation
φ(x̂), if information delay τ(t) is uniformly bounded by a
constant Ω > 0 and the order of utility gap (which is non-
negative due to the definition in (3)) caused by imperfectness
of rate allocation algorithm is less than that of the optimal
utility when the number of active flows grows large, i.e.,

lim sup
maxi x̂i→∞

∆(x̂)∣∣∣∑i:x̂i≥1 x̂iUi(
φopt,i(x̂)

x̂i
)
∣∣∣

= 0, (7)

then the network is stable if traffic condition ρ ∈ Ř is satisfied,
i.e., the maximum stability region can be obtained.

There are two key difficulties in the proof. First, to account
for utility gap, we need to derive a relationship between traffic
intensity and the sub-optimal rate allocation φ(x̂(t)), which is
of a stronger form than those used in [5], [6] (see Lemma 4
in Appendix B). Second, information delay leads to a further
gap between φ(x̂(t)) and φ(x(t)). We need to carefully bound
the effect of this gap, especially when the difference between
x̂(t) and x(t) is large (see detailed comment after Lemma 5 in
Appendix B). We refer readers to Appendix B for the detailed
proof of Theorem 1.

Remark 2: Theorem 1 establishes a sufficient condition for
achieving maximum stability: It shows that it is not neces-
sary to solve the optimal solution to the utility optimization
problem (1) and to obtain perfect information on network
states x(t). Condition (7) could be used to construct stopping
rules for designing sub-optimal rate-control policies that can
achieve maximum stability. We note that such a stopping rule
could be designed without knowledge of the optimal rate-
allocation φopt. For example, consider a rate controller based
on a dual algorithm for solving the NUM problem (1). The
optimal utility is upper bounded by the objective value of the
dual problem, which can be easily calculated from current
dual prices. Similarly, current primal variables can be used to
generate a feasible rate-allocation and to compute achievable
utility values. Therefore, if the controller stops whenever the
difference between the dual objective value and the achievable
utility values is smaller than a threshold Γ, then we can
show that the resulting utility gap (between the optimal utility
and the achievable utility value) is bounded by ∆(x̂) ≤ Γ.
Condition (7) is then satisfied, since:

lim sup
maxi x̂i→∞

∆(x̂)∣∣∣∑i:x̂i≥1 x̂iUi(
φopt,i(x̂)

x̂i
)
∣∣∣

≤ lim sup
maxi x̂i→∞

Γ∣∣∣∑i:x̂i≥1 x̂iUi(
φopt,i(x̂)

x̂i
)
∣∣∣

= 0.

Hence, maximum stability region can be achieved by this
stopping rule according to Theorem 1. Although the above
example assumes a centralized controller to check the stopping
rule, we envision that distributed versions of the stopping
rule are also possible, which we leave for future work. The
condition in (7) is useful because it provides a guideline for
designing such stopping rules for general networks.

B. A Lower Bound on the Achievable Stability Region

When Condition (7) in Theorem 1 is not satisfied and utility
gap is on the same order as that of the optimal utility, the
resulting achievable stability region could be smaller than the
feasible rate region, even if the delay τ(t) is zero.

Proposition 1: There exists a suboptimal rate allocation
φ(x̂) such that its utility gap is on the same order as the order
of the optimal utility and its information delay is zero, i.e., for
some constant η ∈ (0, 1),

lim sup
maxi x̂i→∞

∆(x̂)∣∣∣∑i:x̂i≥1 x̂i(t)Ui(
φopt,i(x̂)

x̂i
)
∣∣∣
≤ η, (8)

but the resulting achievable stability region is strictly smaller
than R, even if rate allocation φ(x̂) is Pareto-optimal (i.e. φ(x̂)
lies on the boundary of the feasible rate region).

Proposition 1 implies that if utility gap is large, there exists
a suboptimal rate allocation policy whose achievable stability
region is strictly smaller than Ř, regardless of information
delay. Raised from this example, a challenge is to answer the
question: what is the minimum stability region that a subop-
timal rate allocation policy can achieve given that Condition
(8) is satisfied?

In the next theorem, we show that (1−η)
1

|1−s|R is a lower
bound of all achievable stability regions, if the ratio of utility
gap and the optimal utility is asymptotically bounded by a
constant η < 1 as the number of active flows grows large. The
lower bound is tight in the sense that there exists a suboptimal
rate allocation policy whose stability region is exactly (1 −
η)

1
|1−s|R.

Theorem 2: For an arbitrary suboptimal rate allocation
φ(x̂), if information delay is uniformly bounded by a constant
and the order of utility gap is the same as that of the optimal
utility, i.e.,

lim sup
maxi x̂i→∞

∆(x̂)∣∣∣∑N
i=1 x̂iUi(

φopt,i(x̂)
x̂i

)
∣∣∣
≤ η, (9)

then the resulting achievable stability region is lower bounded
by (1 − η)

1
|1−s| Ř, where s is the parameter defined in As-

sumption (d) in Section II. There also exists a suboptimal rate
allocation policy satisfying (9) whose stability region is exactly
(1− η)

1
|1−s| Ř. Therefore, the lower bound is tight.

According to Lemma 1, if a utility function satisfies As-
sumptions (a-d) and is positive, then we have U(a) ≥(

a
b

)|1−s|
U(b), i.e. the utility function U(·) shows a polyno-

mial growth rate with exponent |1−s|. This implies that when
the order of utility gap is the same as that of optimal utility,
stability depends on s since utility value has a polynomial
growth rate with the exponent |1− s|.

Remark 3: Theorem 2 provides a lower bound for achiev-
able stability regions. Of course, under Condition (9), there
might still exist certain suboptimal rate allocation policies that
are capable of achieving the maximum stability. However, the
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lower bound in Theorem 2 is tight in the worst case, i.e., there
exists a suboptimal rate allocation policy with zero information
delay and its stability region is exactly (1− η)

1
|1−s|R. Propo-

sition 1 and Theorem 2 together characterize the stability of
a broad class of suboptimal rate allocation policies.

C. Numerical Examples

Fig. 1. A ring network with ten users and ten flow classes.

Consider a ring network with N = 10 flow classes and
L = 10 unit-capacity links as shown in Fig.1. Flow class i
is initiated by user i and contains xi(t) ≥ 0 active flows at
time t. Let R be the shortest-distance routing matrix for this
ring network. For an α-fair utility function with α = 1 (i.e.
a logarithmic utility), we compute the optimal rate allocation
φopt(x(t)) for each time t and then perturb it randomly to
construct a set of suboptimal rate allocations, resulting in
constant information delay and utility gap:

τ0 = τi(t) and ∆0 = ∆(x̂(t)), ∀t. (10)

According to Remark 1, since both utility gap and information
delay are constants, suboptimal rate allocation policy φ(·)
constructed above will achieve the maximum stability region,
which is constructed by link capacity constraints R = {φ ∈
RN

+ : Rφ < 1, φ º 0}, where R is L × N routing matrix:
Rli = 1 if class-i flows use link l, and Rli = 0 otherwise.
The rate region is a polytope determined by a set of linear
link-capacity constraints. .

Figure 2 illustrates flow-level stability of the ring net-
work under different suboptimal rate allocation policies for
(∆0, τ0) = {(0, 0), (5, 0), (0, 2), (5, 2)} respectively, by plot-
ting average total queue length vs. traffic load. In this simula-
tion, we assume that flow arrival rates for all flow classes are
equal, i.e. ρi = ρ0 for i = 1, . . . , 10. For ρ0 ∈ [0, 1

3 ), we have
ρ = ρ0 · 1 ∈ R, which implies that the expected queue-length
should remain finite. Figure 2 also shows that average queue-
length of a suboptimal policy φ(x̂(t)) approaches that of the
optimal rate allocation policy, when utility gap and information
delay go down to zero.

IV. UTILITY GAP AND NETWORK PERFORMANCE

Section III showed that a suboptimal rate allocation policy
may still achieve the maximum stability region. Since each
utility function is designated to capture one particular network
objective, allowing a non-zero utility gap (or, equivalently,
under-optimizing a utility) gives us freedom to potentially
improve other network performance objectives, such as the
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Fig. 2. This figure plots average total queue-length of the ring network for
four different rate allocation policies. It is shown that the three suboptimal rate
allocation policies with constant utility gap and information delay still stabilize
the network for traffic intensity ρ0 < 1

3
, although their delay performances

measured by average queue lengths are worse compared to that of the optimal
rate allocation policy with (∆0, τ0) = (0, 0).

maximum link saturation discussed in this section. More
precisely, there exists a tradeoff between the utility gap and
the maximum network performance improvement we can po-
tentially achieve. In this section we first provide a formulation
of this tradeoff. Then we develop an approximation of the
tradeoff curve based on local sensitivity analysis. To obtain
closed-form solutions, we focus on α-fair utility functions in
this section, although our result can be extended to general
concave utility functions. Our approach is different from [13],
which is restricted to a throughput-fairness tradeoff for optimal
solutions only. In contrast, in this section, we address the
following question pertaining to suboptimality: by deliberately
under-optimizing a utility with gap ∆, what is the maximum
performance improvement we can possibly achieve?

A. Model and Analysis
We focus on the following model for wireline networks,

which is an important special case of the model described
in section III. Consider a network of L links, indexed by l =
1, . . . , L, each with a finite link capacity cl. Therefore, feasible
rate regions are defined by R = {φ : Rφ ¹ c, φ º 0}, where c
is a vector of link capacities and R is an L×N routing matrix:
Rli = 1 if class-i flows use link l, and Rli = 0 otherwise. At
each state x, the optimal rate allocation is obtained by solving
problem (1) with α-fair utility, i.e.,

max
φ

N∑

i=1

xα
i

φ1−α
i

1− α
(11)

s.t. Rφ ¹ c, φ º 0

Let φopt be the optimal rate allocation that solves the
maximization problem (11). We say that a rate allocation φ
under-optimizes an α-fair utility by a gap ∆ if

∆ = Uopt −
N∑

i=1

xα
i

φ1−α
i

1− α
(12)
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where Uopt =
∑N

i=1 xα
i φ1−α

opt,i/(1 − α) is the optimal utility
value achieved by rate allocation φopt. Since α-fair utility
is designated for achieving fairness, under-optimizing it with
a gap ∆ relaxes maximization problem (11). Thus, it gives
freedom to potentially improve other network performance
objectives, such as maximum link saturation. However, it is
unclear how much performance improvement we can achieve
by under-optimizing an α-fair utility with a given allowable
gap. For example, if we prepare to sacrifice utility by 5%, how
much reduction of link saturation can be expect in return?
We formulate this tradeoff and provide a local sensitivity
analysis based on examining the Karush-Kuhn-Tucker (KKT)
conditions.

We consider maximum link saturation defined by

Z = max
l∈L

∑
i Rilφi

cl
. (13)

as a target network performance metric. By under-optimizing
a utility, it is possible to reduce maximum link saturation
and balance network traffic over all links, an important goal
in the operation of large networks by the Internet Service
Providers. Moreover, reducing the maximum link saturation
could potentially minimize the occurrence of ‘bottleneck’ links
in a network, reduce packet delay, and make the network more
robust to link capacity fluctuation and traffic bursts.

To characterize the optimal tradeoff between utility gap and
maximum link saturation, we compute the minimum Z that
can be achieved by under-optimizing an α-fair utility with a
designated utility gap. This tradeoff is formulated as function
Z(∆) as follows

Z(∆) = min
φ

max
l∈L

∑
i Rilφi

cl
(14)

subject to Rφ ¹ c, φ º 0
N∑

i=1

xα
i

φ1−α
i

1− α
≥ Uopt −∆

Remark 4: For the tradeoff defined by (14), it is easy to
see that increasing utility gap relaxes its constraint set and
leads to a smaller optimal objective value. Thus, maximum
link saturation Z(∆) is monotonically decreasing over utility
gap ∆. Furthermore, it is easy to verify that the optimization
problem (14) is convex.

Now we conduct a local sensitivity analysis for the
saturation-utility tradeoff defined by (14). Again, we make the
assumption that the active constraint set in (14) is unchanged
when utility gap ∆ is perturbed locally. The main result is
summarized in the next theorem. We denote Z0 as the link
saturation at ∆ = 0.

Theorem 3: When the utility gap is small, the saturation-
utility tradeoff can be approximated using its first order
expansion:

Z − Z0 =
[

dZ

d∆

∣∣∣
∆=0

]
∆ + o(∆). (15)

The first order derivative (shadow price) is given by

dZ

d∆

∣∣∣
∆=0

= − 1

cT (RD−1RT )−1
c
, (16)

where D = α·diag
{

[xα
1 φ−α−1

opt,1 , . . . , xα
Nφ−α−1

opt,N ]
}

is a diagonal
matrix.

B. Numerical Examples

In this subsection, we plot the saturation-utility tradeoff
curve and its first-order approximation obtained in Theorem
3 for the ring network described in Section III.C. Since all
links have unit capacities, the feasible rate region is given by
R = {φ : Rφ ≤ 1, φ º 0}, where R is the routing matrix for
the ring network. Let xi denote the number of active flows
for source i. We can solve the convex optimization problem
(14) for different utility gap ∆ to obtain the exact tradeoff
curve Z(∆), which is plotted in Figure 3 using solid lines.
The number of active flows is chosen to be xi = 10, ∀i. A
proportional fairness utility function corresponding to α = 1
is employed.

When utility gap ∆ is small, the saturation-utility tradeoff
can be approximated by its first order expansions in (15).
Using the closed-form solution in Theorem 3, we compute
the first order gradient dZ

d∆

∣∣∣
∆=0

= −0.010. Thus the tradeoff
curve can be approximated by

T (∆) ≈ Z(0)− 0.01∆ (17)

Figure 3 shows that the saturation-utility tradeoff defined in
(14) can be well approximated by its first order expansion,
given by the closed-form expression in Theorem 3. This
tradeoff curve allows us to predict how much performance
improvement we can possibly achieve by under-optimizing the
utility with a designated small utility gap. For example, if we
under-optimize the utility by 1%, i.e. ∆ = 1% |Uopt| = 0.312,
it is clear from Equation (17) that a link saturation reduction
of 0.31% (Z − Z0 = −0.0031) could be expected in return.
This result not only illustrates the potential benefits of under-
optimizing an α-fair utility, but also quantitatively character-
izes a tradeoff between sacrificing utility value and achieving
network performance improvement. Whether this particular
tradeoff is worth making or not depends on operator’s pref-
erence, but it is important to provide the choices of tradeoffs
through results like those in this section.
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Fig. 3. saturation-utility tradeoff curve and its first order approximation.
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V. CONCLUDING REMARKS

Suboptimal resource allocation with a utility gap is simply
an inevitable phenomenon in real networking. Fortunately, it
may still be able to maintain stability region and even en-
hance other network performance metrics. Intuition on stability
and utility-saturation tradeoff are quantified with closed-form
expressions in this paper. There are open questions to be
addressed in studying the impact of suboptimal solutions to
network optimization, e.g., in characterizing degradation of
fairness due to utility gap and in conducting a global sensitivity
analysis, before we fully understand “how bad suboptimal rate
allocation is”.

APPENDIX: PROOFS

From Assumptions (a-d) in Section II, in Appendix A we
first prove two lemmas, which are useful throughout the rest of
the proofs. Appendix B gives the proof of stability in Theorem
1. It makes use of Lemma 3 (whose proof is omitted due to
space limitation and can be found in [15]) and Lemmas 4-
6 (which are proven in Appendices C-E, respectively). The
proof of Theorem 2 in Appendix G is very similar to that of
Theorem 1, except that Lemma 4 is replaced by Lemma 7
under a different utility gap condition. Finally, the saturation-
utility tradeoff is proven in Appendix H.

A. Useful Lemmas.
We first collect three useful properties, which will be used

to bound the difference between rate allocations by their utility
values or first order derivatives.

Lemma 1: If U(·) is a utility function satisfying Assump-
tions (a-d), then we have (i) U

′
(a) ≥ (

a
b

)−s
U
′
(b) for

all a ≥ b > 0, and (ii) U
′
(a) ≤ (

a
b

)−s
U
′
(b) for all

b ≥ a > 0. (iii) Further, if the utility function is negative,
then U(a) ≤ (

a
b

)−|1−s|
U(b) for all a ≥ b > 0. Otherwise, if

the utility function is positive, U(a) ≥ (
a
b

)|1−s|
U(b) for all

a ≥ b > 0.
Proof: To prove part (i), from Assumption (d), we have

U”(z)

U ′ (z)
≥ − s

z . Choose a ≥ b > 0 and integrate both side of the

inequality from b to a. We obtain U
′
(a) ≥ (

a
b

)−s
U
′
(b). By

switching a and b, we can prove part (ii). To show part (iii),
if the utility function is negative (i.e. case 2 in Assumption
(a)), we fix b in the inequality in part (i) and integrate it from
a = b to a = +∞, i.e.

bsU
′
(b)

∫ +∞

b

1
ys

dy ≤ U(∞)− U(b) ≤ −U(b) (18)

where U(∞) exists because the utility function is monotoni-
cally increasing and upper bounded by zero as in Assumption
(a). This implies that the integration on the left hand side also
exists and thus s > 1. We can derive −U

′
(b)

U(b) ≤ s−1
b . Integrat-

ing it again from a to b ≥ a, we obtain U(a) ≤ (
a
b

)1−s
U(b),

which is the desired result. Similarly, when the utility function
is positive, we consider the integral of U

′
(a) ≥ (

a
b

)−s
U
′
(b)

from b = 0 to b = a and derive the result in Lemma 1.
Lemma 2: For C ≥ 0, there exist a constant Kc such that(

1 + C
z

)s ≤ 1 + KcC
z holds for all z ≥ 1, and

(
1− C

z

)s ≥
1− KcC

z holds for all z ≥ C.

Proof: The proof is straightforward by comparing the first
order derivatives with respect to z.

B. Proof of Theorem 1.

Proof: We first sketch the main steps of the proof. To
prove stability, we define a Lyapnov function V (x(t)) and
analyze its expectation W (t) = E[V (x(t))] as a function
of time2. We first derive an expression for Ẇ (t), the drift
of the expected value of the Lyapunov function. Here we
need to use the Dominated Convergence Theorem in order
to exchange the order of a limit and an expectation (Lemma
3). Then, using Lemmas 4-6, we upper bound the drift Ẇ (t)
by a negative function of the network state x(t), plus some
positive constants. Finally, integrating the drift Ẇ (t) and its
upper bound from time t = 0 to t = T establishes the
stability condition in (5) and completes the proof. For ease
of presentation, in this section we present the main flow of
the proof with statements of Lemmas 3-6. The detailed proofs
are summarized in Appendices C-F. We remind the readers
that we will use the Lemmas in Appendix A.

Consider the following Lyapunov function

V (x(t)) =
N∑

i=1

Vi(xi(t)) =
N∑

i=1

xi(t)∑
n=1

1
µi

U
′
i

(cρi

n

)
, (19)

where c > 0 is a constant defined later in the proof. Let Ft =
σ {x(u), u ≤ t} denote the σ-field generated by the history up
to time t. For h > 0, we derive

lim
h→0

W (t + h)−W (t)
h

(20)

= lim
h→0

E [E[V (x(t + h))|Ft]− V (x(t))]
h

= lim
h→0

E
[ N∑

i=1

+∞∑

n=−Xi(t)

P(xi(t + h)− xi(t) = n|Ft)
hµi

·(Vi(xi(t) + n)− Vi(xi(t)))
]
.

In order to move the limit (as h → 0) inside the expectation
and the summation on the right hand side of (20), we will make
use of the Dominated Convergence Theorem, which requires
the following Lemma.

Lemma 3: There exists an integrable function g(xi(t)) such
that, for all 0 < h < 1 and m ≥ 0,∣∣∣∣∣

+∞∑

n=−Xi(t)

P(xi(t + h)− xi(t) = n|Ft)
hµi

(21)

·(Vi(xi(t) + n)− Vi(xi(t)))

∣∣∣∣∣ ≤ g(xi(t))

This lemma provides the bound needed for the Dominated
Convergence Theorem to hold. Its proof can be found in [15].
We can move the limit inside the expectation on the right hand
side of (20). Due to the orderliness property of Poisson process
(which implies that arrivals do not occur simultaneously),

2A similar problem with feedback delay is treated in [12] although the
model there does not involve any flow-level dynamics.
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we can take the limit (as h → ∞) and narrow down the
conditional probability terms in (20) to get

Ẇ (t) =
N∑

i=1

E [λi(Vi(xi(t) + 1)− Vi(xi(t)))]

−
N∑

i=1

E [φi(t)µi(Vi(xi(t))− Vi(xi(t)− 1))] .

Using ρi = λi/µi and plugging in the Lyapunov in (19)
function into above, we obtain

Ẇ (t) =
N∑

i=1

E
[
ρiU

′
i

(
cρi

xi(t) + 1

)]
(22)

−
N∑

i=1

E
[
φi(x̂(t))U

′
i

(
cρi

xi(t)

)
1{xi(t)≥1}

]
.(23)

In the following proof, we will bound (22) and (23) separately.
Derive a bound for (23). In order to bound ˙W (t) by a

negative function of x(t), we first derive a bound for the
second summation (23) and replace the rate allocation φ(x̂(t))
by a function of traffic intensity ρi. The resulting bound will
then have a form similar to (22) so that we can compare
the difference. This bound for (23) is stated in the following
lemma:

Lemma 4: For any traffic intensity ρ ∈ Ř and constant C >
0, if the suboptimal rate allocation φ(x̂(t)) satisfies the utility
gap condition in (7), there exist positive constants γ > 0 and
ε > 0 such that, for all |r| < C and for any network state
satisfying maxi x̂i(t) > γ, the following inequality holds:

∑

i:x̂i(t)≥1

ρi(1 + ε)3U
′
i

(
cρi

x̂i(t)

)
− φi(x̂(t))U

′
i

(
cρi

x̂i(t) + r

)

≤ 0, (24)

where c = (1 + ε)4 is a constant.
We choose r = x(t) − x̂(t) in (24). Note that in order to

use Lemma 4 to bound (23), we need the network state to
satisfy maxi x̂i(t) > γ and the quantity |x(t) − x̂(t)| to be
bounded by C. Toward this end, we define the event Et =
{||x(t − u) − x(t − Ω)||1 < C/2, ∀u ∈ [0, Ω]}, i.e., it is the
event that the maximum change of network state within time
t−Ω to t is bounded by C/2. Since the information delay is
bounded by τ(t) < Ω, event Et implies the following:

||x(t)− x̂(t)||1
≤ ||x(t)− x(t− Ω)||1 + ||x̂(t)− x(t− Ω)||1 ≤ C

Therefore, we can bound (23) by

−
N∑

i=1

E
[
φi(x̂(t))U

′
i

(
cρi

xi(t)

)
1{xi(t)≥1}

]
(25)

≤ A1 −
∑

i:x̂i(t)≥1

E
[
φi(x̂(t))U

′
i

(
cρi

xi(t)

)
1Et1{maxi x̂i(t)>γ}

]

≤ A1 − (1 + ε)3
∑

i:x̂i(t)≥1

E
[
ρiU

′
i

(
cρi

x̂i(t)

)
1Et1{maxi x̂i(t)>γ}

]

Note that x̂i(t) ≤ C if xi(t) = 0 under event Et. To change
the summation from {i : xi(t) ≥ 1} to {i : x̂i(t) ≥ 1} in the

first step above, we have added

A1 =
N∑

i=1

ψU
′
i (

cρi

C
). (26)

where we choose φi(x̂(t)) ≤ ψ since the feasible rate region
R is compact. The last step of (25) follows from Lemma 4.
In order to compare the difference with (22), we still need
to replace the x̂(t) on the right hand side by x(t). Let G =
{x(t) : maxi xi(t) ≤ ξ} be a bounded region with ξ = γ+2C.
We can prove the following result, which further bound the
last step (25) by a term similar to (22).

Lemma 5: There exists A2, A3 > 0 such that the right hand
side of (25) can be further bounded by

−(1 + ε)2
∑

i:x̂i(t)≥1

E
[
ρiU

′
i

(
cρi

x̂i(t)

)
1Et

1{maxi x̂i(t)>γ}

]

≤ A2 + 4A3 −
∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1{x(t)∈Gc}

]
.(27)

The intuition behind Lemma 5 is that: when Et occurs, the
absolute difference between x(t) and x̂(t) is bounded by C.
If in addition the network state is large, then the relative
difference between x(t) and x̂(t) will be small, and hence
the corresponding values of U

′
i (·) will be close to each other.

Proving Lemma 4 turns out to be non-trivial. The challenge is
that x̂(t) and Et in (27) are dependent. To handle this difficulty,
we consider the σ-field Ft−Ω = σ {x(u), u ≤ t− Ω}. If we
introduce the network state xΩ(t) = x(t− Ω) as an auxiliary
variable, then x̂(t) and Et can be bounded with respect to
xΩ(t), separately. For details, please refer to Appendix D.

Derive a bound for (22). We next provide a corresponding
bound for (22) to compare with (27). Note that region G is
compact. As part of the proof of Lemma 5, A2 is chosen in
(49) such that:

N∑

i=1

ρiU
′
i

(
cρi

xi(t) + 1

)
1{x(t)∈G} ≤ A2 < ∞. (28)

Applying A2 to (22), we have
N∑

i=1

E
[
ρiU

′
i

(
cρi

xi(t) + 1

)]
(29)

≤ A1 +
∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t) + 1

)]

≤ A1 + A2 +
∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t) + 1

)
1{x(t)∈Gc}

]

where A1 is added to change the summation to {i : xi(t) ≥ 1}.
To further bound (29), we make use of Lemma 1 (b), with
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a = cρi/x(t) and b = cρi/(x(t) + 1):
∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t) + 1

)
1{x(t)∈Gc}

]

≤
∑

i:xi(t)≥1

E
[
ρi

(
1 +

1
xi(t)

)s

U
′
i

(
cρi

xi(t)

)
1{x(t)∈Gc}

]

≤
∑

i:xi(t)≥1

E
[
ρi

(
1 +

K1

xi(t)

)
U
′
i

(
cρi

xi(t)

)
1{x(t)∈Gc}

]
(30)

where K1 in the last step is the constant defined in Lemma 2.
Finally, we use the following result to further bound the last
step of (30).

Lemma 6: For any K1, C, ε > 0 there exists ξ such that,
for any maxi x̂i(t) > ξ, we have

∑

i:x̂i(t)≥1

ρi

(
K1C

x̂i(t)
− ε

2

)
U
′
i

(
cρi

x̂i(t)

)
≤ 0. (31)

Combining Lemma 6 for C = 1 with (29) and (30), we derive
the following upper bound for (22):

N∑

i=1

E
[
ρiU

′
i

(
cρi

xi(t) + 1

)]
(32)

≤ A1 + A2 +
∑

i:xi(t)≥1

E
[
ρi

(
1 +

ε

2

)
U
′
i

(
cρi

xi(t)

)
1{x(t)∈Gc}

]

Prove stability. We define another constant A0 by

A0 = 2A1 + (2 + ε)A2 + (4 + 4ε)A3.

Replacing (22) and (23) by their upper bounds, we can bound
the expected drift Ẇ (t) by:

Ẇ (t) ≤ A0 − ε

2

∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1{x(t)∈Gc}

]

≤ A0 + A2 − ε

2

∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)]
. (33)

where inequality (28) is used in the last step and a constant
A2 is added. Rearranging the terms and integrating (33) from
t = 0 to t = T , we obtain

lim sup
T→∞

1
T

∫ T

t=0

E


 ∑

i:xi(t)≥1

ρiU
′
i

(
cρi

xi(t)

)
 dt

= lim sup
T→∞

2W (0)− 2W (T )
Tε

+
2A0 + 2A2

ε

≤ 2A0 + 2A2

ε
(34)

where the last step uses the fact that W (T ) ≥ 0 is positive.
Since function U

′
i (·) is a non-negative and non-decreasing, and

lim
z→∞

U
′
i (1/z) = ∞, equation (34) implies the stability of the

network, as claimed in the stability definition (5).

C. Proof of Lemma 4

Proof: According to the utility gap condition in (7), we
can conclude that for any δ ≥ 0, there exists a positive γ such

that, for x̂(t) satisfying maxi x̂i(t) > γ, we have

∆(x̂(t)) ≤ δ

∣∣∣∣∣∣
∑

i:x̂i(t)≥1

x̂i(t)Ui(
φopt,i(x̂(t))

x̂i(t)
)

∣∣∣∣∣∣
. (35)

To remove the absolute value on the right hand side of (35), we
first assume that the utility function is non-negative. Plugging
the expression of utility gap ∆(x̂(t)) into (35), we have

0 ≤
∑

i:x̂i(t)≥1

x̂i(t)Ui

(
φi(x̂(t))

x̂i(t)

)
(36)

−(1− δ)x̂i(t)Ui

(
φopt,i(x̂i(t))

x̂i(t)

)

Since φopt,i(x̂i(t)) is the optimal rate allocation for the NUM
problem (1) at state x̂i(t), no rate vector u ∈ R can achieve
a higher utility value. Choose ε > 0 and δ > 0 such that:

u , (1 + ε)4(1− δ)−
1

|1−s| ρ ∈ R. (37)

Such ε > 0 and δ > 0 exist due to the traffic condition ρ ∈ Ř.
Let δ0 = (1− δ)

1
|1−s| . We then have

0 ≤
∑

i:x̂i(t)≥1

x̂i(t)Ui

(
φi(x̂(t))

x̂i(t)

)
− (1− δ)x̂i(t)Ui

(
ui

x̂i(t)

)

≤
∑

i:x̂i(t)≥1

x̂i(t)Ui

(
φi(x̂(t))

x̂i(t)

)
− x̂i(t)Ui

(
δ0ui

x̂i(t)

)

≤
∑

i:x̂i(t)≥1

[φi(x̂(t))− δ0ui]U
′
i

(
δ0ui

x̂i(t)

)

=
∑

i:x̂i(t)≥1

[
φi(x̂(t))− (1 + ε)4ρi

]
U
′
i

(
(1 + ε)4ρi

x̂i(t)

)
(38)

where the second step uses Lemma 1 (iii) with a = ui/x̂i(t)
and b = δ0ui/x̂i(t), the third step uses the concavity of the
utility function Ui(·), and the last step is from (37). Note that
a similar expression for (38) can also be shown if the utility
function is negative. Specifically, When the utility value in
(35) is negative, using the same proof technique and choosing
δ0 = (1 + δ)−

1
|1−s| , we can show that the inequality (38) is

also satisfied. Refer to [15] for the proof.

Note that (38) is almost the same as (24), except for a
constant r in the denominator and an additional (1+ ε) factor.
Let c = (1 + ε)4. For |r| < C, we have

∑

i:x̂i(t)≥1

−φi(x̂(t))U
′
i

(
cρi

x̂i(t) + r

)
(39)

≤
∑

i:x̂i(t)≥C

−φi(x̂(t))U
′
i

(
cρi

x̂i(t) + r

)

≤
∑

i:x̂i(t)≥C

−φi(x̂(t))U
′
i

(
cρi

x̂i(t)− C

)

≤
∑

i:x̂i(t)≥C

−φi(x̂(t))
(

1− C

x̂i(t)

)s

U
′
i

(
cρi

x̂i(t)

)
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≤
∑

i:x̂i(t)≥C

−φi(x̂(t))
(

1− KcC

x̂i(t)

)
U
′
i

(
cρi

x̂i(t)

)

≤
∑

i:x̂i(t)≥C

−
(

(1 + ε)4ρi − KcCφi(x̂(t))
x̂i(t)

)
U
′
i

(
cρi

x̂i(t)

)

In the first step of (39) some negative terms are dropped.
The second step makes use of the monotonicity of U

′
i (·). The

third step uses Lemma 1 (i). The fourth step uses Lemma 2.
The last step is from (38). Since φi(x̂(t)) ≤ ψ, using the
proof in Lemma 6, we can show that for large enough γ and
maxi x̂i(t) > γ,

∑

i:x̂i≥C

−
(

(1 + ε)3ερi − KcCψ

x̂i(t)

)
U
′
i

(
cρi

x̂i(t)

)
≤ 0. (40)

Applying (40) to (39), we derive
∑

i:x̂(t)≥1

(1 + ε)3ρiU
′
i

(
cρi

x̂i(t)

)
− φi(x̂(t))U

′
i

(
cρi

x̂i(t) + r

)
≤ 0,

which completes the proof of Lemma 4.

D. Proof of Lemma 5

Proof: To prove (27), we use network state xΩ(t) = x(t−
Ω) at time t−Ω as an auxiliary variable, and bound both sides
of (27) with respect to xΩ(t), respectively.

Bound the left hand side of (27). Define the event XΩ
t =

{maxi xΩ
i (t) > ξ − C}, i.e. it is the event that the maximum

queue length at time t−Ω is greater than ξ−C. We start with
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1Et1XΩ

t

]

≤ A3 +
∑

i:x̂i(t)≥1,xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1Et1XΩ

t

]
(41)

where a constant A3 is added to change the summation from{
i : xΩ

i (t) ≥ 1
}

to {i : x̂ ≥ 1}. Such A3 satisfies
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1{x̂i(t)=0}

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρi

∣∣xΩ
i (t)

∣∣s U
′
i

(cρi

1

)
1{x̂i(t)=0}

]

=
∑

i:xΩ
i (t)≥1

E
[
ρi

∣∣x̂i(t)− xΩ
i (t)

∣∣s U
′
i

(cρi

1

)
1{x̂i(t)=0}

]

≤ A3 < +∞, (42)

where A3 in the last step exists because
∣∣x̂i(t)− xΩ

i (t)
∣∣ can

be bounded by a Poisson random variable with mean ωΩ. The
second step uses Lemma 1 (ii). To proceed from (41), we have

∑

i:x̂i(t)≥1,xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1Et1XΩ

t

]

≤
∑

i:x̂i(t)≥1

E
[
ρiU

′
i

(
cρi

x̂i(t) + C

)
1Et1XΩ

t

]

≤
∑

i:x̂i(t)≥1

E
[
ρi

(
1 +

C

x̂i(t)

)s

U
′
i

(
cρi

x̂i(t)

)
1Et1XΩ

t

]

≤
∑

i:x̂i(t)≥1

E
[
ρi

(
1 +

KcC

x̂i(t)

)
U
′
i

(
cρi

x̂i(t)

)
1Et

1XΩ
t

]

≤
∑

i:x̂i(t)≥1

E
[
ρi

(
1 +

ε

2

)
U
′
i

(
cρi

x̂i(t)

)
1Et

1XΩ
t

]
(43)

The first step uses the monotonicity of U
′
(·) and the condition

|xΩ
i (t) − x̂i(t)| < C under event Et. The second step above

uses Lemma 1 (ii). The third step is due to
(
1 + C

z

)s ≤ 1 +
KcC

z in Lemma 2. The last step follows from the proof of
Lemma 6. Applying the result to (41), we derive an upper
bound for the left hand side of (27) as follows:

∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1Et

1XΩ
t

]
−A3 (44)

≤
∑

i:x̂i(t)≥1

E
[
ρi(1 +

ε

2
)U

′
i

(
cρi

x̂i(t)

)
1Et1XΩ

t

]

≤
∑

i:x̂i(t)≥1

E
[
ρi(1 +

ε

2
)U

′
i

(
cρi

x̂i(t)

)
1Et

1{maxi x̂i(t)≥γ}

]

where the last step uses ξ = γ + 2C and

Et ∩ XΩ
t ⊂

{
||xΩ

i (t)− x̂i(t)||1 <
C

2
, max

i
xΩ

i (t) > ξ − C

}

⊂
{

max
i

x̂i(t) > γ
}

. (45)

Derive a bound for the right hand side of (27). Define
the event Xt = {x(t) ∈ Gc} = {maxi xi(t) > ξ}, i.e. it is the
event that the maximum queue length at time t is greater than
ξ. Using the argument for (41) and (43), we first change the
summation on the right hand side of (27) from {i : xi(t) ≥ 1}
to {i : xΩ

i (t) ≥ 1} by adding A3 (which is defined in (42)):
∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt

]

≤ A3 +
∑

i:xΩ
i (t)≥1,xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt

]
(46)

To bound (46), we define the event Li = {xi(t) > xΩ
i (t)},

and evaluate (46) over three events: Ec
t ∩ Li, Ec

t ∩ Lc
i , and

Et, separately. For Ec
t ∩ Li, note that Ec

t ∩ Li implies that the
increase of x(t) in the interval t − Ω to t is larger than C.
The number of arrivals in this interval must also be larger
than C. Since the arrival process is Poisson, when C is large,
we can bound the probability of this event by a small number.
Hence, the contribution to the expectation in (46) will be small.
Specifically, let ai(t) be the arrival within time t−Ω to t. We
have

∑

i:xΩ
i (t)≥1,xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt1Ec

t
1Li

]

≤
∑

i:xΩ
i (t)≥1,xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Ec

t
1Li

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρi

(
xi(t)
xΩ

i (t)

)s

U
′
i

(
cρi

xΩ
i (t)

)
1Ec

t
1Li

]
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≤
∑

i:xΩ
i (t)≥1

E
[
ρi

(
1 +

ai(t)
xΩ

i (t)

)s

U
′
i

(
cρi

xΩ
i (t)

)
1Ec

t
1Li

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρi (1 + ai(t))

s
U
′
i

(
cρi

xΩ
i (t)

)
1Ec

t
1Li

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
K

]
(47)

where the second step uses Lemma 1 (ii), and the third step
uses the monotonicity of U

′
(·) and xi(t) − xΩ

i (t) ≤ ai(t)
(since ai(t) is the arrival within time t − Ω to t), and the
quantity K in the last step is chosen as,

K = E
[
(1 + ai(t))

s 1Ec
t

∣∣Ft−Ω

]
. (48)

The conditional expectation is taken over the σ-field Ft−Ω =
σ {x(u), u ≤ t− Ω}, generated by the history up to time
t − Ω. Given Ft−Ω, ai(t) is Poisson-distributed with mean
λiΩ. Therefore, using E [(1 + ai(t))

s] < ∞, we can use the
Dominant Convergence Theorem to show

lim
C→∞

K = lim
C→∞

E
[
(1 + ai(t))

s (1− 1Et)
∣∣Ft−Ω

]

= E
[
(1 + ai(t))

s (1− lim
C→∞

1Et)
∣∣Ft−Ω

]
= 0.

This implies that we can make C > 0 to be sufficiently large,
so that K ≤ ε

4 . Applying this result to (47), we conclude
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
K

]

≤
∑

i:xΩ
i (t)≥1

E
[

ε

4
ρiU

′
i

(
cρi

xΩ
i (t)

)]

≤ ε

4
A2 +

∑

i:xΩ
i (t)≥1

E
[

ε

4
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t

]
(49)

where A2 defined in (49) bounds
∑

i:xΩ
i (t)≥1 ρiU

′
i

(
cρi

xΩ
i (t)

)
≤

A2, over the compact region (XΩ
t )c = {maxi xΩ

i (t) ≤ ξ−C}.

Similarly, we evaluate (46) over Ec
t ∩ Lc

i :
∑

i:xΩ
i (t)≥1,xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt1Ec

t
1Lc

i

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1Xt1Ec

t
1Lc

i

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1Ec

t

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
E[1Ec

t

∣∣Ft−Ω]
]

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
K

]

≤ ε

4
A2 +

∑

i:xΩ
i (t)≥1

E
[

ε

4
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t

]
(50)

The first step uses the monotonicity of U
′
(·) and xi(t) ≤

xΩ
i (t) under Lc

i . The fourth step is due to E[1Ec
t

∣∣Ft−Ω] ≤ K

according to (48). The last step uses the inequality (49).

Finally, we evaluate (46) over Et. Note that when Et occurs,
the difference between x(t) and xΩ(t) is small. We will use
this idea to replace the x(t) in the right-hand side of (46) by
xΩ(t). Recognizing

Et ∩ Xt ⊂
{
||xΩ

i (t)− xi(t)||1 <
C

2
, max

i
xi(t) > ξ

}

⊂
{

max
i

xΩ
i (t) > ξ − C

}
= XΩ

t , (51)

we obtain
∑

i:xΩ
i (t)≥1,xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt

1Et

]

≤
∑

i:xΩ
i (t)≥1,xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1XΩ

t
1Et

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t) + C

)
1XΩ

t
1Et

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρi

(
1 +

C

xΩ
i (t)

)s

U
′
i

(
cρi

xΩ
i (t)

)
1XΩ

t
1Et

]

≤
∑

i:xΩ
i (t)≥1

E
[
ρi

(
1 +

ε

2

)
U
′
i

(
cρi

xΩ
i (t)

)
1XΩ

t
1Et

]
(52)

where the second step uses the monotonicity of U
′
(·), and

the third step uses Lemma 1 (ii), and the fourth step is from
Lemma 2 and 6 (similar to the argument in (43)).

Note that 1Ec
t
1Li + 1Ec

t
1Lc

i
+ 1Et = 1. Therefore, putting

(49), (50), and (52) together, and plugging the result into (46),
we derive

∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt

]
−A3 − ε

2
A2 (53)

≤
∑

i:xΩ
i (t)≥1,xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt

]
− ε

2
A2

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t

(
1Et +

ε

2
1Et +

ε

2

)]

We still need to relate the last constant ε/2 above to 1Et .
Toward this end, we can show the following the inequality,
which is obtained in a similar way as the third and the last
lines of (50):

∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t
1Ec

t

]

≤ ε

4
A2 +

ε

4

∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t

]
(54)

We add
∑

i:xΩ
i (t)≥1 E

[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t
1Et

]
to both sides of
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(54) and rearrange the terms:
(
1− ε

4

) ∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t

]
(55)

≤ ε

4
A2 +

∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t
1Et

]

Since 1
2 < 1− ε

4 for ε < 1, we replace 1− ε
4 by 1

2 on the left
hand side of (55), and plug the result into the last line of (53)
to obtain

∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1Xt

]
−A3 − εA2

≤
∑

i:xΩ
i (t)≥1

E
[
ρiU

′
i

(
cρi

xΩ
i (t)

)
1XΩ

t
1Et

(1 +
3
2
ε)

]
,(56)

where it uses ε2

4 < ε
2 for ε < 1. Equation (56) establishes a

lower bound for the right hand side of (27).
Prove (27). To show inequality (27), we combine the two

bounds (44) and (56) to get
∑

i:xi(t)≥1

E
[
ρiU

′
i

(
cρi

xi(t)

)
1{x(t)∈Gc}

]
(57)

≤ εA2 + (2 +
3ε

2
)A3 + (1 +

ε

2
)(1 +

3ε

2
)

·
∑

i:x̂i(t)≥1

E
[
ρiU

′
i

(
cρi

x̂i(t)

)
1Et1{maxi x̂i(t)>γ}

]

Finally, note that ε < 1, 3
2ε < 2, and (1+ ε

2 )(1+ 3ε
2 ) < (1+ε)2.

Inequality (27) is immediate from (57).

E. Proof of Lemma 6.

Proof: We first show that there exists a constant A4, such
that

∑

i:x̂i(t)≥1

ρi

(
K1C

x̂i(t)
− ε

4

)
U
′
i

(
cρi

x̂i(t)

)
≤ A4. (58)

Since the left hand side of (58) is non-negative only if x̂i(t) ≤
4K1C/ε, we have

∑

i:x̂i(t)≥1

ρi

(
K1C

x̂i(t)
− ε

4

)
U
′
i

(
cρi

x̂i(t)

)

≤
∑

i

max
1≤x̂i(t)≤ 4K1C

ε

ρiK1C

x̂i(t)
U
′
i

(
cρi

x̂i(t)

)

≤
∑

i

ρiK1C

1
U
′
i

(
cρiε

4K1C

)
, A4 (59)

where negative terms are dropped in the first step, and the
second step uses the monotonicity of U

′
(·) and x̂i(t) ≥ 1.

Plugging this into the left hand side of (31), we have
∑

i:x̂i(t)≥1

ρi

(
K1C

x̂i(t)
− ε

2

)
U
′
i

(
cρi

x̂i(t)

)

≤ A4 −
∑

i:x̂i(t)≥1

ρiε

4
U
′
i

(
cρi

x̂i(t)

)
(60)

According to Assumption (c) in Section II, for ξ → ∞ and
maxi x̂i(t) > ξ, we have (60)→ −∞. Therefore, there exists
large enough ξ, such that (60)≤ 0.

F. Proof of Proposition 1.

Proof: To prove that the network is unstable when the
information delay is zero and the utility gap is on the same
order as that of the optimal utility (8), we construct a counter-
example, in which the expected total queue-length grows
unbounded as time t increases. Consider a network with two
classes of flows and a feasible rate region (which is convex
and compact, e.g., an ellipse), depicted in Figure 4. For an

A

B

2

1

C

Fig. 4. The feasible rate region under consideration.

α-fair utility with α = 1/2, let φopt(x(t)) denote the optimal
rate allocation for state x(t) at time t. We define a suboptimal
rate allocation by

φ(x̂(t)) =





φopt(x(t)), if φopt(x(t)) does not lie on ÂB
φA, otherwise, if x1(t) > x2(t)
φB , otherwise, if x1(t) ≤ x2(t)

where ÂB denotes the boundary of the rate region between
points A and B, and φA and φB are the optimal rate vectors
at points A and B respectively. To prove Proposition 1, we
notice that ∆(x(t)) = 0 for all φopt(x(t)) /∈ ÂB. It can be
shown that the utility gap is on the same order as the optimal
utility, i.e.,

lim sup
maxi xi(t)→∞

∆(x(t))∣∣∣∑N
i=1 xi(t)Ui(

φopt,i(t)
xi(t)

)
∣∣∣

= 1− lim inf
maxi xi(t)→∞

√
x1(t)φ1(t) +

√
x2(t)φ2(t)√

x1(t)φopt,1(t) +
√

x2(t)φopt,2(t)

≤ 1− lim inf
maxi xi(t)→∞

√
x1(t)φB,1 +

√
x2(t)φA,2√

x1(t)φA,1 +
√

x2(t)φB,2

≤ 1−min

(√
φB,1

φA,1
,

√
φA,2

φB,2

)

where the second step holds because φB,1 ≤ φ1(t) ≤ φA,1

and φA,2 ≤ φ2(t) ≤ φB,2 for any rate vector φ(x̂(t)) that
lies on ÂB. Hence, the rate allocation policy φ(x̂(t)) satisfies
condition (8) as claimed.

Next, we choose a point C as the middle point of line
AB and show that for small enough ε > 0, the network is
unstable under traffic intensity ρ = (1+ε)φC ∈ Ř. Consider a
Lyapunov function defined by the weighted sum queue-length

V (x) = µ−1
1 w1x1 + µ−1

2 w2x2 (61)
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where w1 = φB,2−φA,2 and w2 = φA,1−φB,1 are two posi-
tive constants. Then, we can formulate the expected Lyapunov
function W (t) = E [V (x(t))] and derive an expression for the
drift Ẇ (t) using the same manner as in (22) and (23). In the
following, we show that the expected drift is strictly above
zero for traffic intensity ρ = (1 + ε)φC ∈ R with a small
enough ε > 0, i.e.

Ẇ (t) = E

[
2∑

i=1

λi

µi
wi − wiφi(x̂(t))

]

= ε(w1φC,1 + w2φC,2) + E [w1(φC,1 − φ1(t))]
+E [w2(φC,2 − φ2(t))]

≥ ε(w1φC,1 + w2φC,2) > 0

where the third inequality holds since the suboptimal rate
allocation φ(x̂(t)) always lies below the straight line AB,
whose slope is −w1

w2
. Thus, for the choice of Lyapunov

function (61) and the traffic intensity ρ = (1 + ε)φC ∈ R,
the expected drift Ẇ (t) is strictly above zero by a constant
ε(w1φC,1+w2φC,2). This implies that the network is unstable,
since lim

t→∞
W (t) = ∞ as t →∞.

G. Proof of Theorem 2.
Proof: The proof is almost the same as that of Theorem 1,

except that we need to prove a result similar to Lemma 3, but
with traffic intensity ρ ∈ (1 − η)

1
|1−s| Ř. For the Lyapunov

function V (x) =
∑N

i=1

∑xi

n=1 U
′
i

(
cρi

n

)
/µi, we derive the

same drift Ẇ (t) as in (22) and (23). To bound Ẇ under
the new utility gap condition (9), we prove the following
lemma, which generalizes Lemma 4 to traffic intensity ρ ∈
(1− η)

1
|1−s| Ř.

Lemma 7: Let c = (1 + ε)4. For any traffic intensity ρ ∈
(1 − η)

1
|1−s| Ř and constant C > 0. If the suboptimal rate

allocation φ(x̂(t)) satisfies the utility gap condition in (9),
there exist positive constants γ > 0 and ε > 0 such that, for all
|r| < C and for any network state satisfying maxi x̂i(t) > γ,
the following inequality holds:

∑
i:x̂i(t)≥1 ρi(1 + ε)3U

′
i

(
cρi

x̂i(t)

)
− φi(x̂(t))U

′
i

(
cρi

x̂i(t)+r

)

≤ 0. (62)

Proof: From the utility gap condition in (9), we conclude
that for any δ ≥ 0, there exists a positive γ such that, for x̂(t)
satisfying maxi x̂i(t) > γ, we have

∆(x̂(t)) ≤ η(1 + δ)

∣∣∣∣∣∣
∑

i:x̂i(t)≥1

x̂i(t)Ui(
φopt,i(x̂(t))

x̂i(t)
)

∣∣∣∣∣∣
.(63)

We first assume that the utility function is non-negative.
Plugging the expression of utility gap ∆(x̂(t)) into (63), we
obtain

0 ≤
∑

i:x̂i(t)≥1

x̂i(t)Ui(
φi(x̂(t))

x̂i(t)
)

−[1− (1 + δ)η]x̂i(t)Ui(
φopt,i(x̂i(t))

x̂i(t)
)(64)

Since φopt,i(x̂i(t)) maximizes the NUM problem (1) at state
x̂i(t). We can replace φopt,i(x̂i(t)) above by the following

choice of rate vector:

u = (1 + ε)4[1− (1 + δ)η]−
1

|1−s| ρ ∈ R. (65)

Such ε > 0 and δ > 0 exist due to the traffic condition ρ ∈
(1 − η)

1
|1−s| Ř. Let δ0 = [1 − (1 + δ)η]

1
|1−s| . Similar to (38)

in the proof of Lemma 3, we have

0 ≤
∑

i:x̂i(t)≥1

x̂i(t)Ui(
φi(x̂(t))

x̂i(t)
)

[1− (1 + δ)η]x̂i(t)Ui(
ui

x̂i(t)
)

≤
∑

i:x̂i(t)≥1

x̂i(t)Ui(
φi(x̂(t))

x̂i(t)
)− x̂i(t)Ui(

δ0ui

x̂i(t)
)

≤
∑

i:x̂i(t)≥1

[φi(x̂(t))− δ0ui]U
′
i (

cρi

x̂i(t)
) (66)

The first step uses Lemma 1 (iii), and the last step uses the
concavity of the utility function Ui(·). Note that (66) is exactly
the same as (38) in the proof of Lemma 3. Therefore, re rest of
the proof below (38) can be copied directly to prove Lemma
5 for traffic intensity ρ ∈ (1− η)

1
|1−s| Ř.

Except for Lemma 5, other derivations in the proof of
Theorem 1 can be applied directly. To summarize, we conclude

lim sup
T→∞

1
T

∫ T

t=0

E


 ∑

i:xi(t)≥1

λiU
′
i

(
cρi

xi(t)

)
 dt

≤ 2A0 + 2A2

ε

Because function U
′
i (·) is a non-negative and non-decreasing

function and lim
z→∞

U
′
i

(
1
z

)
= ∞, the last equation above

implies the stability of the network under the traffic intensity
ρ ∈ (1− η)

1
|1−s|R.

H. Proof of Theorem 3.

Proof: We first notice that optimization problem (14) can
be rewritten as

Z(∆) = min
φ

Z (67)

s.t. Rφ ¹ Zc, φ º 0
N∑

i=1

xα
i

φ1−α
i

1− α
≥ Uopt −∆

Its Lagrangian is then given by

L(φ,Z, p, q) = Z + pT (Rφ− Zc) + q(Uopt − V (φ)−∆)

At the optimal point of (67), the KKT conditions for optimality
are given by

Rφ = Zc, V (φ) = Uopt −∆ (68)
RT p− q∇φV (φ) = 0, pT c = 1 (69)

From the implicit function theorem, variables φ, Z, p and q
can be viewed as implicit functions of ∆, which are uniquely
defined by the KKT conditions (68) and (69). We define a
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vector y = [φ; p; q; Z] and a residual

G(y, ∆) =




RT p− q∇φV (φ)
Rφ− Zc

Uopt −∆− V (φ)
1− pT c


 (70)

Then the KKT conditions (68) and (69) are equivalent to
G(y, ∆) = 0.

From the implicit function theorem, we have
dZ
d∆ = − (∇yG)−1∇∆G, (71)

Plugging ∇yG and ∇∆G into above and performing some
matrix manipulations, we can derive the result in Theorem 4.
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