
1

Optimal Anycast Technique for Delay-Sensitive
Energy-Constrained Asynchronous Sensor Networks

Joohwan Kim,Student Member, IEEE, Xiaojun Lin, Member, IEEE, and Ness B. Shroff,Fellow, IEEE

Abstract—In wireless sensor networks, asynchronous sleep-
wake scheduling protocols can be used to significantly reduce
energy consumption without incurring the communication over-
head for clock synchronization needed for synchronous sleep-
wake scheduling protocols. However, these savings could come
at a significant cost in delay performance. Recently, researchers
have attempted to exploit the inherent broadcast nature of the
wireless medium to reduce this delay with virtually no additional
energy cost. These schemes are called “anycasting,” where each
sensor node forwards the packet to the first node that wakes
up among a set of candidate next-hop nodes. In this paper, we
develop a delay-optimal anycasting scheme under periodic sleep-
wake patterns. Our solution is computationally simple and fully
distributed. Further, we show that periodic sleep-wake patterns
result in the smallest delay among all wake-up patterns under
given energy constraints. Simulation results illustrate the benefit
of our proposed schemes over the state-of-the art.

Index Terms—Anycast, Sleep-wake scheduling, Sensor net-
work, Energy-efficiency, Delay, Periodic wake-up process

I. I NTRODUCTION

The most efficient method to save energy in wireless sensor
networks (WSNs) is to put nodes to sleep when there is
no need to relay or transmit packets. Such mechanisms are
calledsleep-wake schedulingand have been used to dramati-
cally reduce energy consumption in energy-constrained WSNs.
However, it is well known that sleep-wake scheduling can
significantly increase the packet-delivery delay because,at
each hop, an event-reporting packet has to wait for its next-hop
node to wake up. Such additional delays can be detrimental to
delay-sensitive applications, such as Tsunami/fire detection,
environmental monitoring, security surveillance, etc. Inthis
paper, we study how to improve this tradeoff between energy-
savings and delay, by using a technique called “anycasting”
(to be described later) that exploits the broadcast nature of the
wireless medium.

In the literature, many synchronous sleep-wake scheduling
protocols have been proposed [2]–[6]. In these protocols,

This work has been partially supported by the National Science Foundation
through awards CNS-0626703, CNS-0721477, CNS-0721434, CCF-0635202,
and ARO MURI Award Nos. W911NF-07-10376 (SA08-03) and W911NF-
08-1-0238. An earlier version of this paper has appeared in the Proceedings
of IEEE INFOCOM, 2009 [1].

J. Kim and X. Lin are with School of Electrical and Com-
puter Engineering, Purdue University, West Lafayette, IN 47907, USA
(Email:{jhkim,linx}@purdue.edu)

N. B. Shroff is with Department of Electrical and Computer Engineering
and Department of Computer Science and Engineering, The Ohio State
University, Columbus, OH 43210 (Email: shroff@ece.osu.edu).

P. Sinha is with Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH 43210 (Email: prasun@cse.ohio-
state.edu).

sensor nodes periodically exchange synchronization messages
with neighboring nodes. However, this message exchange
inevitably incurs additional communication overhead, andcon-
sumes a considerable amount of energy. In this paper, we focus
on asynchronous sleep-wake scheduling, where nodes do not
synchronize their clocks with other nodes and thus wake up
independently [7]–[9]. Asynchronous sleep-wake scheduling is
simpler to implement, and it does not consume energy required
for synchronizing sleep-wake schedules across the network.
However, because nodes do not know the wake-up schedules
of other nodes, they have to estimate the wake-up schedule,
which can result in additional delays that could detrimental to
delay-sensitive applications.

Recently, anycast packet-forwarding schemeshave been
shown to substantially reduce the one-hop delay under asyn-
chronous sleep-wake scheduling [10]–[20]. Note that in tra-
ditional packet-forwarding schemes, nodes forward packets to
their designated next-hop nodes. In contrast, in anycast-based
forwarding schemes, nodes maintain multiple candidates of
next-hop nodes and forward packets to thefirst candidate
node that wakes up. Hence, an anycast forwarding scheme
can substantially reduce the one-hop delay over traditional
schemes, especially when nodes are densely deployed, as is
the case for many WSN applications. (See the example in
Section I and Fig. 1 of [20] that illustrates the advantage of
anycasting over traditional schemes.) However, the reduction
in the one-hop delay may not necessarily lead to a reduction in
the expected end-to-end delay experienced by a packet because
the first candidate node that wakes up may not have a small
expected end-to-end delay to the sink. Hence, the anycast
forwarding policy (with which nodes decide whether or not
to forward a packet to an awake node) needs to be carefully
designed.

Exiting solutions that exploit path diversity attempt to
address this issue by dealing with some local metrics. The
anycast protocols in [10]–[12] let each node use the geograph-
ical distance from each neighboring node to the sink node to
prioritize the forwarding decision to its neighboring nodes.
The work in [13], [14] proposes anycast packet-forwarding
protocols that work on top of a separate routing protocol in the
network layer. The anycast protocols in [15]–[18] use the hop-
count information (i.e., the number of hops for each node to
reach the sink) such that at each hop the forwarding decisionis
chosen to reduce the hop count to the sink as soon as possible.
However, these aforementioned approaches are heuristic in
nature and do not directly minimize the expected end-to-end
delay.

In our prior work [19], [20], we developed a distributed

2

anycast forwarding policy that simultaneously minimizes the
expected end-to-end delays from all nodes to the sink, when
the wake-up rates of the nodes are given. (The wake-up
rate represents the frequency with which a node wakes up.)
However, the delay-optimal anycast policy in [19], [20] was
derived based on the assumption that nodes wake up according
to a Poisson process (i.e., the wake-up intervals of a node
are i.i.d. exponential random variables). Hence, the following
questions remain unanswered: (1) If we can control the wake-
up patterns (subject to given wake-up rates) in addition to
the anycast forwarding policy, is there a wake-up pattern that
results in optimal delay performance? and (2) If such a pattern
exists, which forwarding policy is delay-optimal for the wake-
up pattern? These questions make the problem more complex
than the one considered [19], [20] because we can no longer
exploit the memoryless property of a Poisson Process.

In this paper, we extend the results in [19], [20] to address
these questions. For given wake-up rates of nodes (in other
words, given energy budget at each node), we obtain the
anycast forwarding policy and the wake-up pattern that can
minimize the expected end-to-end delays from all nodes to the
sink. Specifically, we show that using asynchronous periodic
wake-up patterns along with an optimal forwarding policy can
minimize the expected end-to-end delay over all asynchronous
wake-up patterns. Further, we provide an efficient distributed
algorithm that can implement the delay-optimal anycast for-
warding policy for the periodic wake-up pattern.

The rest of this paper is organized as follows. In Section II,
we describe our system model and formulate the delay-
minimization problem that we intend to solve. In Section III,
we study the delay-optimal anycast forwarding policy when
nodes wake up periodically. In Section IV, we show that given
an average wake-up rate, the periodic wake-up pattern is the
best in terms of delay performance. In Section V, we provide
simulation results that illustrate the superior performance of
our proposed solution.

II. SYSTEM MODEL

We consider an event-driven WSN withN sensor nodes.
Let N be the set of all nodes. We assume in this paper that
event information is reported to a single sink nodes, but the
analysis can be readily extended to the scenario with multiple
sink nodes. Each nodei has a setNi of neighboring nodes to
which nodei is able to directly transmit packets.

The lifetime of an event-driven WSN under asynchronous
sleep-wake scheduling consists of two phases:the configu-
ration phaseand the operation phase. When sensor nodes
are deployed, the configuration phase begins, during which
the nodes determine their packet-forwarding and sleep-wake
scheduling policies. It is also during this phase that the
optimization on these policies (which we will study in this
paper) is carried out. Once the optimal policies are determined,
the operation phase begins, during which the nodes apply
the policies determined in the configuration phase to perform
their main functions: detecting events and reporting the event
information. Specifically, during this phase, sensor nodesalter-
nate between sleeping and waking up, independently of other

nodes. Consider a node that wakes up and hears a request from
a neighboring node for relaying the event-reporting packets. If
it is an eligible next-hop node based on the packet-forwarding
policy, it receives the packet and then finds a new next-hop
node to forward the packet. If the node successfully forwards
the packets, it returns to sleep and follows the sleep-wake
scheduling policy again.

A. Basic Forwarding and Sleep-Wake Scheduling Protocols

We first introduce the basic packet-forwarding and sleep-
wake scheduling protocols that are used in the operation phase.

Sender i

Node j wakes up and

hears an ongoing signal

Receiver j

Beacon
2

CTS

ID
Beacon

1 ID

tB tC

Beacon
h

ID CTS

tA

receiving
the packetID

Node j stays awake

to receive the ID signal

Beacon
1 ID

t I

t

forwarding
the packet

tA

Fig. 1. System model

Packet-Forwarding Protocol:When a nodei has a packet
to deliver to the sink, it must wait for its neighboring nodes
to wake up. Under asynchronous sleep-wake scheduling, we
simply assume that the clocks at different nodes are not
synchronized. Hence, the sending nodei does not know
exactly when its neighboring nodes will wake up (although
it may have some statistical information of their wake-up
patterns and wake-up rates).1 Fig. 1 describes the protocol
with which sending nodei transmits its packet to one of its
neighboring nodes. As soon as nodei is ready to transmit
the packet, it sends a beacon signal (Beacon 1 in Fig. 1) of
duration tB, and ID signal of durationtC , and then listens
for acknowledgements (CTS: Clear-To-Send) for durationtA.
The sending node repeats this sequence until it hears an
acknowledgement. The ID signal contains the identity of the
sending node and the sequence number of the last beacon
signal. When a node wakes up and senses theh-th beacon
signal, it will stay awake to decode the following ID signal,
in which case we say that the node receives theh-th ID signal.
(If a node wakes up in the middle of the ID signal, it must stay
awake to decode the next ID signal.) Then, such a node has two
choices.Choice 1: If the node chooses to receive the packet,
it responds with a CTS message containing its identity during
the acknowledgement periodtA that immediately follows the
ID signal. Once the sending node hears the CTS, it forwards
the packet to the awake node during the data transmission
periodtD. Choice 2: If the awake node decides not to receive
the packet, it goes back to sleep. For simplicity of notation,
let tI = tB + tC + tA, which denotes the duration of each
beacon-ID signaling iteration (See Fig. 1).

Remark:In the above basic protocol, we have ignored the
possibility of collisions, which can be due to either multiple

1It may be possible for neighboring nodes to synchronize their clocks when
they are forwarding event-reporting packets. However, since we assume that
events occur rarely compared to the wake-up rates, by the time that the next
event occurs, their clocks will drift substantially.

3

awake nodes or multiple sending nodes. In our on-line tech-
nical report [21, Section V], we describe an extended packet-
forwarding protocol that addresses these collision scenarios
using random or deterministic back-offs. However, in a low
duty-cycle WSN where nodes seldom wake up, chances are
small that multiple neighboring nodes wake up at the same
beacon signal. Due to this reason, we use the basic protocol for
our analysis and study the effect of collisions using simulation
in Section V.

Sleep-Wake Scheduling Protocol:In order to save energy,
each node wakes up infrequently and goes back to sleep if
there is no activity in the neighborhood. Note that if the
duration for which the node stays awake is shorter thantA,
the node may stay awake only within an acknowledgement
period tA and miss on-going beacon-ID signals. In order to
avoid such a case, we assume that nodes must stay awake for
at leasttA. Further, since a longer awake duration results in
higher energy consumption, we set the awake duration to be
exactly equal totA. The next time to wake up is determined
by the sleep-wake scheduling policy of the node.

B. Sleep-Wake Scheduling and Anycast Forwarding Policies

In this subsection, we define the sleep-wake scheduling
and anycast forwarding policies that are computed during the
configuration phase and applied during the operation phase.
These policies affect the end-to-end delay experienced by a
packet, and the energy consumption of the network.

Sleep-Wake Scheduling Policy:Recall that, under asyn-
chronous sleep-wake scheduling, nodes wake up independently
of other nodes. Thus, the wake-up schedule of a nodei can
be seen as an independent random point process from the
viewpoint of other nodes. We call this process thewake-up
process of nodei. Let #i(t) be the number of times that node
i has woken up in the time interval[0, t]. If a nodej wakes up
at time t and observe its neighboring nodei for ∆t amount
of time, the number of times that nodei wakes up within this
period is given by#i(t + ∆t)−#i(t). However, since nodes
do not synchronize their clocks with their neighboring nodes,
the time t does not provide any further information on the
distribution of #i(t + ∆t) − #i(t). Hence, we can assume
that the wake-up process of a nodei is as a stationary process
from the viewpoint of other nodes, i.e., the distribution of
#i(t + ∆t) − #i(t) does not depend on timet. We further
assume that the wake-up process is ergodic, i.e., statistical
properties of the wake-up process can be deduced from a
sample path of the process (to be discussed in Section IV).

Wake-up Rate:We define the wake-up rateri of nodei as
the expected number of times that nodei wakes up per unit
time. Since the wake-up process is ergodic, the wake-up rate
ri must satisfy

lim
t→∞

#i(t)

t
= ri almost surely. (1)

Let~r = (r1, r2, · · · , rN) be the global wake-up rate (or simply
the wake rate). Note that a higher wake-up rate consumes
energy faster.

Wake-up Pattern:For any stationary and ergodic wake-up
process of a given nodei, by re-scaling time, we can convert

it to a process with a wake-up rate of 1. We define the wake-
up patternwi as the control variable that fully characterizes
this scaled wake-up process of nodei. For example, if a node
choosesa periodic wake-up patternwi = wper, and its wake-
up rate isri, it will wake up every1/ri time, i.e., the wake-up
intervals are given by1/ri. If the Poisson wake-up pattern is
chosen, the intervals will bei.i.d exponential random variables
with mean1/ri. Node i can also choose a wake-up pattern
such that the wake-up intervals are correlated, e.g., nodei can
alternate with the wake-up intervals of length12ri

and 3
2ri

. Let
~w = (w1, w2, · · · , wN) denote the global wake-up pattern (or
simply the wake-up pattern).

Remark:While the wake-up rate determines the expected
wake-up interval, the wake-up pattern determines the distribu-
tion of the interval. Hence, the wake-up rate and the wake-
up pattern of a node fully determine the wake-up process
(schedule) of the node.

Anycast Forwarding Policy: Suppose that a sending node
i has sent theh-th beacon-ID signal, and a setX ⊂ Ni of the
neighboring nodes wakes up and receives the ID signal. We
let fi,h(X) denote the corresponding decision of the sending
nodei, which is to be specified next. We letfi,h(X) = j if the
sending nodei decides to transmit the packet to nodej ∈ X ,
and we letfi,h(X) = i if the sending nodei decides to send
out the(h+1)-st beacon-ID signal, i.e., the packet remains at
nodei. This forwarding decision may seem inconsistent with
the packet-forwarding protocol decribed in Subsection II-A,
in which the sending node is restricted to transmit the packet
whenever it receives a CTS. However, we only use this more
general setting to find the optimal forwarding decisions and
then show that such optimal decisions can be implemented
by our packet-forwarding protocol that lets the sending node
always transmit the packet whenever it receives a CTS. Let
fi = {fi,1, fi,2, · · · } denote the anycast forwarding policy of
node i (or simply the anycast policy of nodei). We further
denote byf = {f1, f2, · · · , fN} the global anycast forwarding
policy (or simply the anycast policy).

Remark:In [19], [20], the wake-up pattern is assumed to
be Poisson. Due to the memoryless property of the Poisson
wake-up pattern, the probability that each neighboring node
wakes up at a beacon-ID signal does not change with the
number h of beacon-ID signals sent. Hence, the optimal
forwarding decisions must also be the same at each iteration,
i.e., fi,1 = fi,2 = · · · . In contrast, since we remove the
Poisson assumption in this paper, we have to also consider
policies that change withh, i.e., fi,1 6= fi,2 6= · · · .

C. Performance Metrics and Optimization

In this section, we define the notion of the end-to-end delay.
We then formulate the problem of minimizing the end-to-end
delay by jointly controlling the anycast forwarding policyand
the sleep-wake scheduling policy.2

Expected end-to-end delay:During the operation phase,
we define the end-to-end delay as the delay from the time

2As mentioned earlier, our goal during the configuration phase is to design
the system to minimize the delay of interest during the operation phase.

4

when a source node detects an event and generates the event-
reporting packet (or packets) to the time thefirst packet
is received at the sink. For applications that use a single
packet to carry the event information, the above definition
captures the actual delay for reporting the event information.
For applications that use multiple packets, if the nodes that
relayed the first packet stay awake for a while, the delay
to relay subsequent packets will be much smaller than that
experienced by the first packet. (For instance, these subsequent
packets may be sent a few nodes behind the first packet, and
hence they can reach the sink soon after the first packet reaches
the sink.) Hence, the actual event-reporting delay can still be
approximated by the delay experienced by the first packet.

The sleep-wake scheduling policy(~r, ~w) and anycast for-
warding policyf fully determine the stochastic process with
which the first packet traverses the network from the source
node to the sink. Hence, we useDi(~r, ~w, f) to denote the
expected end-to-end delay from nodei to the sink under the
joint policy (~r, ~w, f). For simplicity, from now on, we simply
call the expected end-to-end delay from nodei to the sink as
“the delay from nodei.”

Delay-Minimization Problem:The objective of this paper is
to find the optimal joint policy(~w, f) that solves the following
delay-minimization problem for given wake-up rate~r:

min
~w,f

Di(~r, ~w, f). (2)

Note that~r controls the duty cycle of the sensor network,
which in turn controls the energy expenditure. Hence, the
problem can also be viewed as minimizing the delays for
a given energy budget. In Sections III and IV, we develop
an algorithm that solves this problem for all nodesi, i.e.,
our solution can simultaneously minimize the delays from all
nodes.

III. D ELAY-OPTIMAL ANYCAST POLICY FOR A GIVEN

SLEEP-WAKE SCHEDULING POLICY

As a preliminary step to solving the delay-minimization
problem, in this section we first fix a sleep-wake scheduling
policy (~r, ~w) and study delay-optimal anycast policies for
the fixed sleep-wake scheduleing policy. This problem can
be formulated as a stochastic shortest path (SSP) problem,
where the state corresponds to the node that is holding the
packet, and the cost corresponds to the delay for each packet
to reach the sink. In Section III-A, we will derive a solution
to this problem, by using the value-iteration algorithm. A key
part of the value-iteration algorithm is, assuming that node
i knows the end-to-end delay from its neighboring nodes to
the destination, how nodei should update its own forwarding
policy. This corresponds to a sub-problem, in which the
sending node needs to decide whether to forward the packet
to an awake node, or to send the next beacon signal and
wait for another node to wake up. This problem can again
be formulated as an infinite-horizon dynamic programming
problem where the state corresponds the set of awake nodes
after each beacon signal. We derive the solution to this sub-
problem in Section III-B. However, the optimal policy in
Sections III-A and III-B can be difficult to compute in practice

due to the infinite horizon. In Section III-C, we proposed
a more practical truncated version of the forwarding policy,
and show that the optimal truncated policy will converge to
the original optimal policy as a parameter approaches infinity.
Finally, in Section III-D, we study the important properties of
periodic wakeup patterns and show that the truncated policy
becomes exactly optimal under the periodic wake-up pattern.

A. Value-Iteration Algorithm

In this subsection, we develop the value-iteration algo-
rithm. Given a sleep-wake scheduling policy(~r, ~w), the delay-
minimization problem can be formulated as a stochastic short-
est path (SSP) problem [22, Chapter 2], where the sensor
node that has a packet corresponds to the “state”, and the
delay corresponds to the “cost” that we intend to minimize.
The sinks corresponds to the terminal state, where no further
cost (delay) will be incurred. Leti0, i1, i2, · · · , iL = s be the
sequence of nodes that relay the packet from the source node
i0 to the sinks in L steps. Note that under anycasting, this
sequence is random because each node has a set of candidate
next-hop nodes and does not know which of them will wake up
first to receive the packet. LetDhop,i(~ri, ~wi, fi) be the expected
one-hop delay at nodei under the forwarding policyfi, where
the wake-up rates and patterns of neighboring nodes are given
by ~ri , (rj , j ∈ Ni) and ~wi , (wj , j ∈ Ni). We note that the
wake-up rates and patterns of the other nodes not inNi do not
affect the one-hop delay of nodei. Then, the end-to-end delay
Di(~r, ~w, f) from each nodei0 to the sink can be expressed as

Di(~r, ~w, f) = E
{

L
∑

l=0

Dhop,il
(~ril

, ~wil
, fil

)
}

, (3)

where the expectation is taken with respect to the random
sequencei1, i2, · · · , iL. Given the sleep-wake scheduling pol-
icy (~r, ~w), let D∗

i (~r, ~w) , minf Di(~r, ~w, f) be the minimum
expected delay from nodei. Then, according to the Bellman
equation [22, Section 2.2], for all nodesi, the minimum delay
D∗

i (~r, ~w) of nodei must satisfy

D∗
i (~r, ~w) =

min
fi

(

Dhop,i(~ri, ~wi, fi) +
∑

j∈Ni

qi,j(~ri, ~wi, fi)D
∗
j (~r, ~w)

)

, (4)

whereqi,j(~ri, ~wi, fi) is the probability that nodej is chosen
as the next-hop node of nodei under the forwarding policy
fi. Further, using the following value-iteration algorithm [22,
Section 1.3], we can find the delay-optimal forwarding policy
that achievesD∗

i (~r, ~w) for all nodesi:
Value Iteration Algorithm: At the initial iteration k = 0,
all nodesi set their initial delay valuesD(0)

i to ∞, and the
sink s sets its delay valueD(0)

s to zero. At each iteration
k = 1, 2, · · · , every nodei collects the delay valuesD(k−1)

j

from its neighboring nodesj and then updates its delay value
D

(k)
i by solving

D
(k)
i = min

fi

(

Dhop,i(~ri, ~wi, fi)+
∑

j∈Ni

qi,j(~ri, ~wi, fi)D
(k−1)
j

)

.

(5)

5

TABLE I
TABLE OF NOTATIONS

Notation Definition
Dj Expected delay from neighboring nodej to the sink
Xh Set of awake neighboring nodes right after beacon signalh
xh Nodej that has the smallet delay valueDj among the nodes

in Xh

P
(h)
x,x′

Conditional probability thatxh = x′ conditioned on that
xh−1 = x and nodei sends beacon signalh

pj,h Conditional probability that nodej wakes up at stageh
conditioned on not having woken up at earlier stages

d(h)(xh) Expected delay after nodei sends beacon signalh conditioned
on that the current state isxh, and the optimal forwarding
policy will be used afterward

d
(h)
wait(xh) Expected delay after nodei sends beacon signalh conditioned

on that the current state isxh, and nodei sends beacon signal
h + 1 and uses the optimal forwarding policy afterward

Let f
(k)
i be the forwarding policy of nodei that minimizes

(5). Then, according to [22, Proposition 2.2.2], the delay
value D

(k)
i of each nodei converges to the minimum delay

D∗
i (~r, ~w), i.e., limk→∞ D

(k)
i = D∗

i (~r, ~w), and the correspond-
ing forwarding policyf (k) = {f

(k)
1 , f

(k)
2 , · · · } also converges

to the delay-optimal forwarding policy, i.e.,limk→∞ f (k) ∈
arg minf Di(~r, ~w, f) for all nodesi.

The key step in this value iteration algorithm is how every
nodei solves the sub-problem in (5) at each iterationk. Note
that this subproblem is equivalent to the following problem: we
need to find a forwarding policy of nodei that minimizes the
expected delay from nodei when the delays from neighboring
nodesj to the sink are given byD(k−1)

j , and the sleep-wake
scheduling policies of neighboring nodes are given by(~ri, ~wi).
In the next two subsections, we will develop the LOCAL-OPT
algorithm that solves this sub-problem.

B. LOCAL-OPT Algorithm

To solve the above sub-problem, we focus on a nodei that
has a packet. For ease of exposition, let the expected delays
from neighboring nodesj be denoted byDj = D

(k−1)
j (j ∈

Ni), which is equal toD(k−1)
j for iteration k in the value-

iteration algorithm. Without loss of generality, we assumethat
the nodei has neighboring nodes1, 2, · · · , Ni (Ni = |Ni|),
and their expected delays are sorted in increasing order, i.e.,
D1 ≤ D2 ≤ · · · ≤ DNi

. To avoid confusion, we further
assume that the indexi of the sending node is larger than
Ni+1. In Table I, we summarize the definition of the notations
that will be used in this section.

After the sending nodei sends out theh-th beacon signal, it
has to choose either totransmit the packet to one of the awake
nodes, or towait for the other node to wake up by sending
the next beacon signal. We call this moment the decision stage
h (or simply stageh) and denote the set of the awake nodes
at this moment byXh. By definition, fi,h(Xh) = j (j ∈
Xh) implies that nodei decides to transmit to nodej, and
fi,h(Xh) = i implies that nodei decides to wait and send the
(h + 1)-st beacon signal. Since stage 0 is the moment when
nodei is about to send the first beacon signal, we setX0 = ∅
and fi,0(X0) = i. This state transition terminates whenever
the sending node transmits the packet to an awake nodej.

When this happens, the packet will be relayed by the nodej
and eventually arrive at the sink afterDj time (the delay from
nodej). We denote this terminal state by state0.

Since the number of possible states at each stage increases
exponentially with the numberNi of neighboring nodes (2Ni

states at each stage), it is more convenient to deal with a
simpler transition model as follows. Note that if nodei decides
to transmit the packet to one of the awake nodes inXh, clearly
it should choose the nodej with the smallest delayDj among
all the awake nodes in order to minimize the delay from the
next-hop node to the sink. Hence, at each stageh, nodei only
needs to remember the awake node with the smallest delay.
In other words, if a delay-optimal policy is applied, only the
awake node with the smallest delay affects the state transition
dynamics. We denote this node byxh = arg minj∈Xh

Dj .
(Ties are broken arbitrarily.) If no nodes are awake (Xh = ∅),
we denote the corresponding statexh by xh = Ni + 1. (For
example, sinceX0 = ∅, the initial state is always given by
x0 = Ni + 1.) From now on, we can use a simpler state
transition modelx0, x1, x2, · · · to solve the sub-problem (5)
without any loss of optimality. Due to the same principle,
we abuse notation slightly, and usefi,h(xh) to denote the
decision of nodei at statexh as follows:fi,h(xh) = xh if
the sending nodei decides to transmit the packet to nodexh,
and fi,h(xh) = i if the nodei decides to wait. We further
use the following assumption to simplify the dynamics for the
state transitionsx0, x1, · · · . (However, this is not a required
assumption, as we will soon see.)
Assumption 1: If an awake node is not chosen as the next-
hop node, we assume that the node stays awake to remain
eligible to be chosen as the next-hop node at following
stages. Under this assumption, the state transition must satisfy
x0 ≥ x1 ≥ · · · .
Remark:Assumption 1 not only simplifies the analysis, but it
also clearly leads to smaller delay, compared to the case where
an awake node can return to sleep when it is not immediately
chosen as the next-hop node. However, one could argue that
keeping nodes awake consumes more energy. In Section III-D,
we will show that the optimal anycast forwarding policy
achieves the minimum delay without Assumption 1, and thus
the awake nodes in fact do not need to stay awake. But for
now, we use the assumption to simplify the analysis.

We next consider the state transition probability. LetP
(h)
x,x′

be the state transition probability from statexh−1 = x to state
xh = x′, given that nodei decides to wait at stageh− 1, i.e.,
P

(h)
x,x′ , Pr

(

xh = x′|xh−1 = x andfi,h−1(x) = i
)

. Let pj,h

be the conditional probability that nodej wakes up at stageh
conditioned on not having woken up at earlier stages. Using
pj,h, we can express the state transition probability as

P
(h)
x,x′ =











px′,h

∏x′−1
j=1 (1− pj,h) if x′ < x,

∏x′−1
j=1 (1− pj,h) if x′ = x,

0 otherwise.

(6)

The state transition probability conditioned onfi,h−1(x) = x
is trivial because, if the sending node decides to transmit the
packet to nodex, the next state must be 0. Note that if the
wake-up pattern of node 1 is such that node 1 must wake

6

up before beacon signalh, the probabilityP
(h)
x,x′ is not well

defined forx > 1 because the conditional eventxh−1 = x
cannot happen. Hence, we say that statexh = x is admissible
if Pr(xh = x|fi,h′(xh′) = i, ∀h′ < h) > 0, and we define
the state transition probability only for admissible states. We
also definexh,max as the upperbound of the admissible state
at stageh, i.e., xh ≤ xh,max.

In our dynamic programming problem, the cost to be
minimized is delay. Letg(xh, fi,h(xh)) be the one-step delay
between stagesh and h + 1 when decisionfi,h is used at
state xh. If the sending nodei sends out the next beacon
signal (fi,h(xh) = i), the delay incurred by this decision is
the beacon-ID durationtI . If node i transmits the packet,
the packet will be transmitted to the next-hop nodexh for
the packet transmission periodtD and will arrive at the sink
Dxh

time later. Hence, the delay incurred by this decision is
tD + Dxh

. Once the packet reaches the sink, no more delay
will be incurred. Hence, the one-step delay can be expressed
as

g(xh, fi,h(xh)) =

{

tI if fi,h(xh) = i, (7)

tD + Dxh
if fi,h(xh) = xh. (8)

for xh 6= 0 and g(xh, fi,h(xh)) = 0 for xh = 0. Using the
above state transition probability and the one-step delay,we
can represent the sub-problem (5) as the following infinite-
horizon dynamic program (DP) problem [22, Chapter 1]: given
the delaysDj from the neighboring nodesj, we want to find
the anycast forwarding policyfi of nodei that minimizes the
overall cost (delay) function

dfi
= lim

h̄→∞
E







h̄−1
∑

h′=0

g(xh′ , fi,h′(xh′))







(9)

wherex0, x1, x2, · · · are the states visited, and the expectation
is taken with respect to these states. Then,minfi

dfi
and

arg minfi
dfi

corresponds toD(k)
i and f

(k)
i of the value-

iteration algorithm in (5), respectively.
To solve this DP problem, we defined(h)(xh) as the

expected delay from statexh ≥ 1 at stageh, given that the
optimal forwarding policy is applied afterward, i.e.,

d(h)(xh) , min
fi,h,fi,h+1,···



 lim
h̄→∞

E







h̄−1
∑

h′=h

g(xh′ , fi,h′(xh′))











wherexh+1, xh+2, · · · are the states to be visited after stage
h, and the expectation is taken with respect to these states.
By definition, it immediately follows thatd(0)(Ni + 1) =
minfi

dfi
. The delay functiond(h)(xh) can be interpreted as

the minimum expected delay from statexh. Suppose that the
sending nodei at statexh decides totransmit the packet to
nodexh (fi,h(xh) = xh). By (7), the minimum expected delay
conditioned on this decision istD + Dxh

. If node i decides
to wait (fi,h(xh) = i), the minimum expected delayd(h)

wait(xh)
conditioned on this decision is given by

d
(h)
wait(xh) = tI +

xh
∑

xh+1=1

P (h+1)
xh,xh+1

d(h+1)(xh+1), (10)

assuming that the optimal decisionsf∗
i,h+1, f

∗
i,h+2, · · · are

applied afterward.Then, the optimal forwarding decision at
stageh is the one that incurs a smaller delay [22, Equation
(1.3) on Page 5], i.e.,

f∗
i,h(xh) =

{

xh if tD + Dxh
< d

(h)
wait(xh),

i otherwise.
(11)

Further, the minimum expected delayd(h)(xh) at stageh is
given by

d(h)(xh) = min(d
(h)
wait(xh), tD + Dxh

). (12)

Although (11) and (12) are not well defined forxh = Ni + 1,
by settingDNi+1 = ∞, we can still use (11) and (12) even
whenxh = Ni +1. In this case,d(h)(Ni + 1) is always equal
to d

(h)
wait(Ni + 1). (In other words, if no nodes are awake, the

only choice left is to send the next beacon-ID signal.)
Clearly, whenever node 1 has woken up, the optimal deci-

sion is to forward the packet to node 1. Hence, the optimal
forwarding decision must satisfy

f∗
i,h(1) = 1 andd(h)(1) = tD + D1 for all h. (13)

Furthermore, since the packet will be forwarded to a neigh-
boring nodej eventually, takingtD + Dj expected time, it
must hold that

d(h)(xh) ≥ tD + D1 for xh > 0. (14)

We have shown that for an arbitrary sleep-wake process the
optimal forwarding decisionf∗

i,h and the delay valued(h) must
satisfy the necessary conditions in (11) and (12), respectively.
If there is a reference stagēh such that the minimum delay
d(h̄)(xh̄) is known for all admissible statesxh̄, we can then use
(10) and (12) as a backward iteration from stageh̄ to stage
0, and can find the optimal forwarding decisions. However,
such a reference stage may not exist in general. In practice,
we can artificially impose a reference stageh̄ and use a
truncated policy after̄h. In the next section, we will study
the performance of such a truncated packet-forwarding policy
as h̄→∞.

C. A Truncated Forwarding Policy

We usef̂i,h to denote a packet-forwarding policy that uses
truncated decisions after a given stageh̄. In the rest of the
paper, we refer to it asthe truncated policy. Specifically, if
the sending node has not chosen its next-hop node until stage
h̄, it then waits only for node1 (the node with the smallest
delay) to wake up and then forwards the packet to node1. Let
H be the number of beacon signals that the sending node has
to send until node 1 wakes up. Then, if node 1 has not woken
up for the firsth̄ beacon signals, i.e,xh̄ > 1, the sending node
has to sendH− h̄ more beacon signals until node 1 wakes up.
Similar tod(h)(xh), we defined̂(h)(xh) as the expected delay
from statexh at stageh under the truncated policy. Then, the
expected delaŷd(h̄)(xh̄) at stagēh is given by

d̂(h̄)(xh̄) =

{

tD + D1 if xh̄ = 1,
E[H − h̄|H > h̄] · tI + tD + D1 if xh̄ > 1.

(15)

7

Since we now know the value of̂d(h̄)(xh̄) for all admissible
statesxh̄ at stagēh, we can compute the optimal forwarding
decision at stagesh < h̄ for the truncated policy. Similarly to
(10) and (12), we computêd(h)

wait(xh) (the minimum expected
delay conditioned on the WAIT decision) and̂d(h)(xh) for
h = h̄− 1, h̄− 2, · · · , 1, 0, using

d̂
(h)
wait(xh) = tI +

xh
∑

xh+1=1

P (h+1)
xh,xh+1

d̂(h+1)(xh+1), (16)

and
d̂(h)(xh) = min(d̂

(h)
wait(xh), tD + Dxh

). (17)

Once we obtain these values, the optimal truncated policy can
be expressed as follows:

f̂i,h(xh) =















1 if xh = 1,
xh if xh > 1, h < h̄, and

Dxh
< d̂

(h)
wait(xh)− tD,

i otherwise.

(18)

Since the delay under the truncated policy cannot be smaller
than that under the optimal policy, we have

d(h)(xh) ≤ d̂(h)(xh), (19)

for all h and admissible statesxh. Note that d̂(0)(Ni + 1)
corresponds to the expected delay of the sending node under
the truncated policy, andd(0)(Ni+1) corresponds to that under
the optimal forwarding policy. In the following proposition, we
show that the delay gap between the optimal and the truncated
forwarding policies will approach to zero ash̄→∞.

Proposition 1: The truncated forwarding policŷfi has the
following properties:
(a) d̂(0)(Ni + 1)− d(0)(Ni + 1) ≤ Pr(H > h̄)E[H − h̄|H >
h̄] · tI ,
(b) d̂(0)(Ni + 1)− d(0)(Ni + 1)→ 0 as h̄→∞.

Proof: We first show by induction that

d̂(h)(xh)− d(h)(xh) ≤ Pr(H > h̄|xh)E[H − h̄|H > h̄] · tI .
(20)

holds for h ≤ h̄ and all admissible statesxh > 0. At stage
h̄, if xh̄ = 1, we haved̂(h̄)(1) − d(h̄)(1) = 0 from (13) and
(15), and thus (20) holds. Ifxh̄ > 1, from (14), it holds that
d(h̄)(xh̄) ≥ tI + D1. Hence, using (15) and (19), we have

d̂(h̄)(xh̄)− d(h̄)(xh̄) ≤ E[H − h̄|H > h̄] · tI .

Sincexh̄ > 1, i.e., node 1 has not woken up until stageh̄, we
have Pr(H > h̄|xh̄) = 1. Hence, (20) holds forh = h̄.

We now assume that (20) holds for stageh + 1. Since
d̂
(h+1)
wait (1) = d

(h+1)
wait (1), using (10) and (16), we have

d̂
(h)
wait(xh)− d

(h)
wait(xh)

≤
xh
∑

xh+1=2

P (h+1)
xh,xh+1

Pr(H > h̄|xh+1)E[H − h̄|H > h̄] · tI

= Pr(H > h̄|xh)E[H − h̄|H > h̄] · tI . (21)

From (12) and (17), we havêd(h)(xh)−d(h)(xh) ≤ d̂
(h)
wait(xh)−

d
(h)
wait(xh). Hence, from (21), Inequality (20) holds forh. Then,

by induction, (20) holds for allh = 0, 1, · · · , h̄.

Sincex0 = Ni +1 with probability 1, it holds that Pr(H >
h̄|x0 = Ni + 1) = Pr(H > h̄). Hence, forh = 0, we have

d̂(0)(Ni + 1)− d(0)(Ni + 1)

≤ Pr(H > h̄)E[H − h̄|H > h̄] · tI (22)

= E[(H − h̄)1{H>h̄}] · tI , (23)

where1{·} is an indicator function. From (22), Property (a)
follows. SinceE[H] < ∞, (23) must converge to 0 as̄h
increases. Hence, Property (b) follows.
Proposition 1 implies that (a)the truncated forwarding policy
is asymtotically optimal,and (b) the rate of convergence
depends on the decay rate of the tail probability Pr(H > h̄). If
nodes, for instance, wake up according to the Poisson wake up
pattern,E[H − h̄|H > h̄] will be given by a constant because
of the memoryless property, and the probability Pr(H > h̄)
will decay exponentially. Hence, the delay gap between the
truncated policy and the optimal policy will decrease expo-
nentially.

Although we can compute the optimal truncated policyf̂i,
it is still difficult to implement such a policy because of
the following reasons. First, the policy requires the sender to
know the list (Xh or xh) of awake nodes at each stageh.
It can be difficult for the sender to acquire this information
during a short periodtA between two beacon-ID signals
because of collisions. Second, the optimal policy is based on
Assumption 1, which requires that an awake node stay awake
even if it is not immediately chosen as the next-hop node.
However, if the node is not chosen as the next-hop node in the
end, the additional energy that it has spent to remain awake is
then wasted. The following proposition contains an important
result to address the above implementation issues.

Proposition 2: For h = 0, 1, · · · , h̄− 1 and all admissible
statesxh = x′, x′′ such that1 < x′ ≤ x′′, we have

d̂
(h)
wait(x

′′)− d̂
(h)
wait(x

′) ≤ Dx′′ −Dx′ . (24)

Proof: We prove this result by induction. Forh = h̄− 1,
by applying (15) to (16), we can verify that̂d

(h)
wait(x

′′) is equal
to d̂

(h)
wait(x

′) for all statesx′′ ≥ x′ > 1. Hence, (24) holds for
h = h̄− 1.

We now assume that (24) holds for stageh + 1 ≤ h̄ − 1.
From (17), we also have

d̂(h+1)(x′′)− d̂(h+1)(x′) ≤ Dx′′ −Dx′ . (25)

for 0 < x′ ≤ x′′. Using (6) and (10), we have

d̂
(h)
wait(x

′′)− d̂
(h)
wait(x

′)

=

x′′

∑

xh+1=x′

P
(h+1)
x′′,xh+1

d(h+1)(xh+1)− P
(h+1)
x′,x′ d(h+1)(x′).

Note that
∑x′′

xh+1=x′ P
(h+1)
x′′,xh+1

= P
(h+1)
x′,x′ from (6). Hence, the

R.H.S. of the above can be expresses as

x′′

∑

xh+1=x′

P
(h+1)
x′′,xh+1

(d(h+1)(xh+1)− d(h+1)(x′))

≤
x′′

∑

xh+1=x′

P
(h+1)
x′′,xh+1

(Dxh+1
−Dx′) ≤ Dx′′ −Dx′ ,

8

where in the last step we have used (25). Hence, (24) also
holds for stageh. By induction, the result follows.
Using Proposition 2, the sending nodei can implement the
optimal truncated policy as follows during the operation phase:
Implementation of the optimal truncated policy: In the
configuration phase, every neighboring nodei computes the
seth(i)

j of beacon signals forj ∈ Ni such that

h
(i)
j , {h < h̄ | j ≤ xh,max, Dj < d

(h)
wait(j)− tD} (26)

and then informsh(i)
j to each neighboring nodej. In the

operation phase, if nodej wakes up and hears beacon signalh

from nodei, it sends a CTS if and only ifh ∈ h
(i)
j . If h /∈ h

(i)
j ,

nodej returns to sleep and wakes up at the next beacon signal
in h

(i)
j . Among the neighboring nodes that have sent a CTS,

the sending nodei forwards the packet to the nodej with the
smallest delay valueDj .

We now show that the above method implements the optimal
truncated policy. If nodej wakes up and hears beacon signal
h, the current statexh must be at least statej, i.e., xh ≤ j.
We now consider three cases.Case (A): If j > xh,max, there
must exist another awake node that has a smaller delay value
than Dj . Hence, nodej has no chance to be a next-hop
node, and thus it does not need to respond.Case (B-1): If
j ≤ xh,max and Dj < d̂

(h)
wait(j) − tD, it immediately follows

from Proposition 2 thatDxh
< d̂

(h)
wait(xh) − tD. Hence, from

(18), the decision must bêfi,h(xh) = xh, and nodexh will
receive the packet. (Ifxh = 1, in which case Proposition 2
does not apply, we still havêfi,h(xh) = xh from (18).) In
the above implementation, since bothxh and j will respond,
the correct decision is reached.Case (B-2): If j ≤ xh,max

andDj ≥ d
(h)
wait(j) − tD, nodej cannot be the next-hop node

according to the truncated policy in (18). Hence, nodej does
not need to respond, and it can wait until the next beacon
signal h′ such thatDh′ < d

(h′)
wait (j) − tD. From all the cases

(A), (B-1), and(B-2), we can conclude that the above method
exactly implements the optimal truncated policy, and does not
require for the sending node to know the current statexh.
However, we still need Assumption 1 because nodej in case
(B-2) has to wake up at a later beacon signal.In the next
subsection, we will show that when all neighboring nodes
wake up periodically, Assumption 1 is not even necessary for
the implementation.

We below summarize the value-iteration algorithm and the
LOCAL-OPT algorithm that every nodei runs during the
configuration phase.

Value-Iteration Algorithm

1: D
(0)
i ←∞

2: for k = 1 to kmax do
3: Collect D(k−1)

j from neighboring nodesj

4: (D
(k)
i , (h

(i)
j , j ∈ Ni)) ← LOCAL-OPT ((D

(k−1)
j , j ∈

Ni))
5: end for
6: return D

(k)
i ,(h(i)

j , j ∈ Ni)

LOCAL-OPT Algorithm

1: Receive(D
(k−1)
j , j ∈ Ni)

2: Sort (D(k−1)
j , j ∈ Ni) in an increasing order

3: Let D1, D2, · · · , DNi
be the sorted delay and

m(1), m(2), · · · , m(Ni) be the corresponding node
indices.

4: Set h̄
5: for j = 1 to Ni + 1 do
6: Set d̂(h̄)(j) using (15)
7: h

(i)
j ← ∅

8: end for
9: for h = h̄− 1 to 0 do

10: for j = 1 to xh,max do
11: Computed̂

(h)
wait(j) using (16)

12: if Dj < d
(h)
wait(j)− tD then

13: h
(i)
m(j) ← h

(i)
m(j) ∪ {h}

14: end if
15: d̂(h)(j)← min(d̂

(h)
wait(j), tD + Dxh

)
16: end for
17: end for
18: h

(i)
m(1) ← h

(i)
m(1) ∪ {h̄, h̄ + 1, · · · }

19: return d̂(0)(Ni + 1), (h
(i)
j , j ∈ Ni)

During the operation phase that follows the configuration
phase, each nodej uses the implementation for the optimal
truncated policy.

Sleep-wake Scheduling Protocol
1: loop
2: Set up the next timetwake that nodej has to wake up

according the sleep-wake scheduling policy(rj , wj).
3: Wake up at timetwake.
4: if Hear beacon signalh from a neighboring nodei then
5: if h ∈ h

(i)
j then

6: Respond a CTS signal to the sending nodei

7: else if There existsh′ > h such thath′ ∈ h
(i)
j , then

8: twake← twake+ tI · (h
′ − h)

9: Go to Line 3
10: end if
11: end if
12: end loop

D. Optimal Anycast Policy for Periodic Wake-Up Processes

So far, we have developed the value-iteration algorithm
and a truncated version of the local-opt algorithm, which are
asymptotically optimal for a general sleep-wake scheduling
policy. In this subsection, we show that for periodic wake-up
patterns these algorithms are exactly optimal for appropriately
chosen parameters̄h and kmax. In the next section, we will
then study why the periodic wake-up pattern is delay-optimal
over all the other wake-up patterns.

Assume that all nodes wake up periodically (~w = ~wper).
Then, each neighboring nodej must wake up every1/rj time.
Hence, nodej must be awake after stageb 1/rj

tI
c. If we seth̄ to

9

the beacon signalb 1/r1

tI
c, statexh̄ = 1 is the only admissible

state at stagēh. Then, under the periodic wake-up pattern, the
result of Proposition 1 becomes stronger as follows:

Proposition 3: If all neighboring nodes wake up periodi-
cally, andh̄ is set tob 1/r1

tI
c, the truncated forwarding policy

f̂i is optimal, i.e.,

d̂(0)(Ni + 1) = d(0)(Ni + 1).

Proof: Sincexh̄ = 1 is the only admissible state, it holds
that d̂(h̄)(xh̄) = d(h̄)(xh̄) for admissible statesxh̄. Then, from
(10) and (16), we also havêd(h̄−1)

wait (xh̄−1) = d
(h̄−1)
wait (xh̄−1) for

all admissible statesxh̄−1. (P (h)
x′,x′′ = 0 for inadmissible state

xh = x′′.) From (12) and (17), it follows that̂d(h̄−1)(xh̄−1) =

d(h̄−1)(xh̄ − 1) for all admissible statesxh̄−1. By induction,
we can conclude that̂d(0)(Ni + 1) = d(0)(Ni + 1).
Proposition 3 implies that the truncated forwarding policy
becomes exactly optimal under the periodic wake-up pattern.
Hence, when the wake-up pattern of neighboring nodes are
periodic, i.e., ~wi = ~wper, we can completely solve the sub-
problem in (5).

The periodic wake-up pattern not only makes the truncated
policy optimal, but also simplifies the implementation by the
following proposition.

Proposition 4: If all neighboring nodes wake up periodi-
cally, andh̄ is set tob 1/r1

tI
c, the conditional delaŷd(h)

wait(xh)
is non-increasing, i.e.,

d̂
(h−1)
wait (xh−1) ≥ d̂

(h)
wait(xh), (27)

for h = 1, 2, · · · , h̄− 1, and all admissible statesxh.
The detailed proof is provided in Appendix A. The result of
Proposition 4 can be interpreted as follows: as more stages
pass by, the neighboring nodes are more likely to wake up, and
the conditional delayd(h)

wait then decreases. This property can
further simplify the implementation of our solution. Recall that
in the original truncated policy, if nodej wakes up at beacon
signalh and satisfies the conditionDj + tD ≥ d̂

(h)
wait(j), it has

to sleep and wake up again at the next beacon signal when
the condition is satisfied. However, under the periodic wake-up
pattern, such a nodej will never satisfiy the condition in the
following beacon signals becausêd(h)

wait(j) is non-increasing.
Hence, instead of maintaining the set ofh

(i)
j of all beacon

signals that it has to respond with a CTS, each neighboring
nodej only needs to maintain the last beacon signal that it has
to respond.Furthermore, this property provides an opportunity
to reduce the complexity of the LOCAL-OPT algorithm. In
[21], we provide the simplified LOCAL-OPT algorithm for
the periodic wake-up pattern, whose complexity is reduced
O(ĥN2

i) to O(ĥNi).
We now study the convergence properties of the value-

iteration algorithm under the periodic wake-up pattern. Define
h̄

(k)
i = minj∈Ni

{b
1/rj

tI
c|j ∈ argminD

(k−1)
j } as the maxi-

mum number of beacon signals until the neighboring node
j with the smallest delay valueD(k−1)

j wakes up. Then, the
next proposition states the convergence of the value-iteration
algorithm:

Proposition 5: If all nodesi wake up periodically and set
h̄ = h̄

(k)
i at each iterationk of the value-iteration algorithm,

the algorithm converges to the optimal solution withinN
iterations, i.e.,D(N)

i = Di(~r, ~wper, f
(N)) = D∗

i (~r, ~wper).
Proof: To show the convergence withinN iterations, we

first show that there exists an acyclic optimal solution, which
minimizes the delays from all nodes simultaneously for given
sleep-wake scheduling policy(~r, ~wper), and does not incur any
cyclic routing paths. Letf denote an optimal solution. Then,
this optimal policy must satisfy the Bellman equation in (4).
Hence, for each nodei, fi must minimize the R.H.S. of the
sub-problem (5), when the delays of other nodes are given by
D

(k−1)
j = D∗

j (~r, ~wper). D∗
i (~r, ~wper) must be the corresponding

delay valueD(k)
i in (5). In the sub-problem, to be an eligible

next-hop node under the optimal policyf , the neighboring
nodesj must satisfyD∗

j (~r, ~w)+ tD ≤ d̂
(h)
wait(j) for someh. By

repeatedly applying Proposition 4, we haved̂
(0)
wait(Ni + 1) ≥

d̂
(h)
wait(j). Hence, all eligible next-hop nodesj of nodei must

satisfy d̂
(0)
wait(Ni + 1) ≥ D∗

j (~r, ~w) + tD. Since d̂
(0)
wait(Ni + 1)

corresponds toD∗
i (~r, ~w), we haveD∗

j (~r, ~w) < D∗
i (~r, ~w). This

implies that under policyf , a packet at a nodei will only be
forwarded to a nodej, whose delay valueD∗

j (~r, ~w) is smaller
thanD∗

i (~r, ~w). Hence, the solution does not incur any cyclic
path.

We have shown the existence of an acyclic solution. Then,
based on the proof in [22, Page 107],D

(h)
i converges to

D∗
i (~r, ~w) for eachi within N iterations, andf (N) becomes

the corresponding optimal forwarding policy.
From Proposition 5, every node needs to run the LOCAL-

OPT algorithm for onlyN iterations, and the last forward-
ing policy f (N) is delay-optimal when all nodes wake up
periodically. Hence, under the periodic wake-up pattern, the
overall complexity experienced by each nodei is alleviated
from O(kmaxh̄N2

i) to O(Nh̄Ni). We remind the reader again
that this computation overhead only occurs at the configuration
phase.

The value-iteration algorithm is a synchronous algorithm
that requires all nodes to execute the value-iteration (5) in
locked steps. Depending on the application setting, the fol-
lowing asynchronous version of the value-iteration algorithm
may be more useful: each node chooses either to solve (5) or
to skip it (i.e.,D(k)

i = D
(k−1)
i) independently, of other nodes.

Then, the following proposition states the convergence of the
asynchronous value-iteration algorithm.

Proposition 6: If each node i updates its delay value
D

(k)
i using (5) infinitely often, then the delay values and

the forwarding policies of all nodes converge to the opti-
mal, i.e., limk→∞ D

(k)
i = D∗

i (~r, ~wper), and limk→∞ f (k) ∈
argminf Di(~r, ~wper, f) for all nodesi

Proof: The proof follows from the standard result of
Proposition 1.3.5 in [22].

IV. OPTIMAL WAKE-UP PATTERN

In the previous section, we have developed an asymptoti-
cally optimal anycast forwarding policy for a general sleep-
wake policy(~r, ~w). In this section, we fix the wake-up pattern
to the periodic (~w = ~wper), i.e., all nodes wake up periodically,
and study the special properties of the periodic wake-up

10

pattern. We will show that, among all wake-up patterns,
the periodic wake-up pattern and the corresponding optimal
forwarding policy attain the smallest delay. Hence, they are
the solution to the delay-minimization problem (2) that we
originally intend to solve.

A. Fundamental Properties of Wake-up Patterns

We begin by studying the fundamental properties of the
wake-up patterns. As in Section III-B, we fix the sending
nodei and a neighboring nodej. We define the residual time
Rj(t) as the interval from timet to the next wake-up time
of node j, i.e., Rj(t) = infs:#j(s)−#j(t)=1 s − t. Since the
wake-up process of a node is a stationary and ergodic process
from the viewpoint of other nodes, the distribution ofRj(t)
does not depend on timet. Hence, we can drop the variable
t and use the random variableRj to denote the residual time.
Let FRj

be the cumulative distribution function (CDF) ofRj ,
i.e., FRj

(y) = Pr(Rj ≤ y). Note that since nodes wake
up independently of other nodes under asynchronous sleep-
wake scheduling, the residual timeRj is independent of those
of other nodes. Furthermore, since the wake-up process is
ergodic, it must satisfy

lim
T→∞

1

T

∫ T

0

1{Rj(t)≤y}dt = FRj
(y) almost surely, (28)

where1{·} is an indicator function.
Let F ∗

Rj
(y) be the cumulative distribution function (CDF) of

the residual timeRj when the given nodej uses the periodic
wake-up patterns. Since the node wakes up every1

rj
time in

a periodic wake-up process with a random offset, the residual
time Rj is uniformly distributed in[0, 1

rj
]. Hence, thecdf

of the residual time under the periodic wake-up process is
F ∗

Rj
(y) , rjy1{0≤y≤ 1

rj
}+1{y> 1

rj
}. The following proposition

then shows the essential properties of thecdf of the residual
time.

Proposition 7: For any stationary and ergodic wake-up
process with raterj , the cdf FRj

(y) of the residual timeRj

satisfies the following properties:

(a) FRj
(y) ≤ F ∗

Rj
(y),

(b)
dFRj

(y)

dy ≤
dF∗

Rj
(y)

dy for 0 ≤ y ≤ 1
rj

.

Proof: We first show Property (a). We first estimate
∫ T

0

1{Rj(t)<y}dt. (29)

Let t1, t2, · · · be the sequence of times the node wakes up (as
shown in Fig. 2.) To satisfyRj(t) < y, time t ∈ [0, T] must
be in the shaded area,i.e.,

t ∈ ∪∞k=1[tk − y, tk]. (30)

Hence, we can express (29) as follows:
∫ T

0

1{Rj(t)<y}dt ≤
∞
∑

k=1

∫ T

0

1{t∈[tk−y,tk]}dt (31)

≤
∞
∑

k=1

y1{tk∈[0,T+y]} = y ·#j(T + y). (32)

From (28), we haveFRj
(y) ≤ y limT→∞

#j(T+y)
T . Using

(1), we haveFRj
(y) ≤ yrj almost surely. This establishes

Property (a).

�������
�������
�������

�������
�������
�������

���
���
���

���
���
���

������
������
������
������

�������
�������
�������

�������
�������
�������

����
����
����

����
����
����

y y
y

y y

0 T T+yt t1 2 t3 4 5t t* * *
Wake up

Fig. 2. Example of the sequence of times a node wakes up

We next show Property (b). To show this, we need to
computeFRj

(y2)−FRj
(y1) for 0 ≤ y1 < y2 ≤

1
rj

. As we did

to show Property (a), we first estimate
∫ T

0 1{Rj(t)∈[y1,y2]}dt.
We follow the same logic used for showing Property (a). We
replaceRj(t) < y and [tk − y, tk] with Rj(t) ∈ [y1, y2] and
[tk−y2, tk−y1], respectively, in (29)-(31). Then, the right-hand
side of (32) is replaced with(y2−y1)·#j(T +y2). From (28),
we haveFRj

(y2) − FRj
(y1) ≤ (y2 − y1) limT→∞

#j(T+y2)
T .

Using (1) again, we haveFRj
(y2)− FRj

(y1) ≤ rj(y2 − y1),
which corresponds to Property (b).

Proposition 7 shows that for all0 ≤ y ≤ 1/rj , the cdf

FRj
(y) and the derivative

dFRj
(y)

dy are maximized when the
wake-up pattern is periodic.3

Recall that the awake probabilitypj,h is defined as the
conditional awake probability that the given nodej wakes
up and receives theh-th beacon-ID signal, conditioned on
that it has not woken up at earlier beacon-ID signals. In
order to receive the ID signalh, the residual timeRj until
nodej wakes up must be in the interval[(h− 1)tI , htI], i.e.,
pj,h = Pr{Rj ∈ ((h− 1)tI , htI] | Rj ∈ [0, (h− 1)tI)}. Using
the cdfFRj

(y), we can express the awake probability as

pj,h =
FRj

(htI)− FRj
((h− 1)tI)

1− FRj
((h− 1)tI)

. (33)

Let p∗j,h be the awake probability of nodej when nodej wakes
up periodically. Since nodej wakes up every1/rj time, the
probabilityp∗j,h is 1 if h = b 1/rj

tI
c and

p∗j,h =
tI

1/rj − (h− 1)tI
if h < b

1/rj

tI
c. (34)

Then, from Proposition 7, we obtain the following two impor-
tant properties of wake-up processes.

Proposition 8: For h = 1, · · · , b 1/rj

tI
c, we have

(a) p∗j,h−1 < p∗j,h, and(b) p∗j,h ≥ pj,h.

Proof: (a) Since nodej must wake up by stageb 1/rj

tI
c,

the awake probability is one forh = b 1/rj

tI
c. Hence, Property

(a) holds for this case. Forh < b 1/rj

tI
c, the numerator in (33)

is a constant, and the denominator decreases withh. Hence,
Property (a) still holds.

3Proposition 7 is closely related to the standard results forrenewal processes
that periodic renewal processes have the smallest mean residual time [23,
Chapter 5.2]. These standard results require the wake-up intervals to be
independent, while Proposition 7 does not require such an assumption. Since
we were unable to find a result in the literature that covered the non-
independent case, we have provided the full proof here.

11

(b) By Proposition 7(a), the denominator is minimized under
the periodic wake-up pattern. Further, by Proposition 7(b), the
numerator is maximized under the periodic wake-up pattern.
Hence, we directly obtain Property (b).

Property (a) implies that under the periodic wake-up pattern,
the awake probabilityp∗j,h increases with respect to the number
h of the beacon-ID signals sent. Property (b) implies that
the conditional awake probability is maximized when the
neighboring node wakes up periodically.

B. Optimality of Periodic Wake-up Patterns

Using the properties of the periodic wake-up patterns, we
show that the periodic wake-up patterns result in the smallest
delay from all nodes. To show this, we first revisit the
subproblem (5) that we have solved in Section III-B and in
Section III-D.

Consider two scenarios:
(Scenario 1)Each neighboring nodej wakes up periodically
every 1/rj time. The optimal forwarding policyf∗

i that we
obtained in Section III-D is applied. For this scenario, we use
the same notations that are used for the optimal forwarding
policy, e.g,d(h)

wait(xh), d(h)(xh), P
(h)
xh−1,xh

, hj,max, andxh,max.
Recall that the packet at the sending node is forwarded no
later than stagēh = h1,max.
(Scenario 2)The wake-up process of each neighboring node
j is arbitrary, but the wake-up rate is still given byrj . We
denote byf̃i the optimal forwarding policy for the given wake-
up processes of the neighboring nodes. To differentiate from
Scenario 1, we put a tilde (∼) on all notations in this scenario,
e.g., d̃

(h)
wait(xh), d̃(h)(xh), P̃

(h)
xh−1,xh , etc. Similarly, nodej must

have woken up no later than stageh̃j,max, and let x̃h,max

be the node with the smallest delay among the nodes that
must be awake at stageh. By simply settingh̃j,max = ∞
and x̃h,max = Ni + 1, we can still use these notations for
the wake-up processes under which there is no such a finite
limit point. For instance, if all neighboring nodesj follow the
Poisson wake-up pattern, then the residual times until they
wake up are independent exponential random variables, and
we thus havẽhj,max = ∞ for j ∈ Ni and x̃h,max = Ni + 1
for all h ≥ 0. Since the awake probability is maximized when
nodes wake up periodically, it follows thathj,max ≤ h̃j,max

and xh,max ≤ x̃h,max. Further, the optimal policyf̄i must
satisfy the necessary conditions (12) and (11).

We now compare the delays from both scenarios.

Proposition 9: d(h)(xh) ≤ d̃(h)(xh) for h = 0, 1, · · · , h̄
andxh ≤ xh,max,

Proof: We prove this by induction. By (13), we must have
d(h̄)(1) = d̃(h̄)(1) = tI + tD +D1. At stageh̄, node 1 must be
awake under the periodic wake-up process (i.e.,xh̄,max = 1).
Hence, Proposition 9 holds forh = h̄.

Assume thatd(h)(xh) ≤ d̃(h)(xh) holds forh = h′+1, h′+
2, · · · , h̄ andxh ≤ xh,max. We then show that this also holds

for h = h′. From (10), we have the following inequality:

d̃
(h′)
wait (xh′)− tI =

∑xh′

xh′+1=1 P̃
(h′+1)
xh′ ,xh′+1

d̃(h′+1)(xh′+1)

≥
∑xh′

xh′+1=1 P̃
(h′+1)
xh′ ,xh′+1

d(h′+1)(xh′+1) (35)

≥
∑xh′

xh′+1=1 P
(h′+1)
xh′ ,xh′+1

d(h′+1)(xh′+1) (36)

To obtain (35), we have used the induction hypothesis. The
inequality in (36) can be understood as follows: according to
Proposition 8(b), neighboring nodes are more likely to wake
up under the periodic wake-up patterns, and thus the delay is
also minimized under the periodic wake-up pattern. To obtain
(36), we have used Lemma 1 in Appendix A, whereL =

xh′ , α
(1)
j = p′j,h′+1 (equivalently,β(1)

j = P̃
(h′+1)
xh′ ,j), α

(2)
j =

pj,h′+1 (equivalently,β(2)
j = P

(h′+1)
xh′ ,j), andθj = d(h′+1)(j).

Sinceθ1 ≤ · · · ≤ θh̄ by Proposition 24, andα(1)
j ≤ α

(2)
j by

Proposition 8, the conditions for the lemma hold.
Since (36) is equal tod(h′)

wait (xh′)− tI , we haved(h′)
wait (xh′) ≤

d̃
(h′)
wait (xh′). Then, from (12), we haved(h′)(xh′) ≤ d̃(h′)(xh′).

Hence, Proposition 9 holds forh = h′. By induction, this also
holds forh = 0, 1, · · · , h̄.

From Proposition 9, we can infer thatd(0)(Ni + 1) ≤

d̃(0)(Ni+1), which impliesD(k)
i ≤ D̃

(k)
i in the value iteration

algorithm. Hence, when the delays from the neighboring nodes
are given, the delay from the sending nodei is minimized
when the neighboring nodes wake up periodically and the
corresponding optimal forwarding policy is applied.

We next apply this result to the Stochastic Shortest
Path (SSP) problem in (3). Assume that each nodei can
control the wake-up patterns~wi of its neighboring nodes
j, as well as its forwarding policyfi. Then, to min-
imize (3) with respect to(~w, f), every node i should
carry out the following value-iteration algorithm, which is
a generalized version of (5): fork = 1, 2, · · · , D

(k)
i =

min~wi,fi
(Dhop,i(~r, ~wi, fi) +

∑

j∈Ni
qi,j(~r, ~wi, fi)D

(k−1)
j). In

this equation, the expected one-hop delayDhop,i(~r, ~wi, fi) and
the probabilityqi,j(~r, ~wi, fi) that nodei forwards the packet to
nodej depend only on~wi (instead of~w). This is because the
wake-up patterns of nodes other than the neighboring nodes
do not affect the one-hop delay and the transition probability
from nodei. From Proposition 9,D(k)

i is maximized when
~wi is given by~wper and the corresponding optimal forwarding
policy is chosen. Hence, the following proposition holds:

Proposition 10: minf Di(~r, ~wper, f) = min~w,f Di(~r, ~w, f)
for all nodesi.
Let f∗(~r) be the optimal forwarding policy for a given
sleep-wake scheduling policy(~r, ~wper). From Proposition 5,
f∗(~r) is equal tof (N) in the value-iteration algorithm. Then,
Proposition 10 implies that(~wper, f

∗(~r)) is the solution to the
delay-minimization problem (2).

V. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the delay performance of the proposed solution. To simulate
more realistic scenarios, we randomly deploy 690 nodes over
a 1 km-by-1km area with obstructions as shown in Fig 3(b).

12

0 500 1000 1500
0

5

10

15

20

25

30

Average wake−up interval 1/r (ms)

M
ax

im
um

 D
el

ay
 (

se
c)

Optimal−Periodic−NoCollision
Optimal−Periodic−WithCollision
Optimal−Poisson
C−MAC

(a) Delay Comparison

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Mountain

Lake

Lake

(b) Node Deployment and Possible Paths

Fig. 3. (a) Maximum delay under different wake-up rater and (b) Node
deployment and the possible routing paths for 300 ms averagewake-up
interval under Optimal-Periodic-NoCollision (blue solidlines) and CMAC (red
dotted lines). The paths under Optimal-Periodic-NoCollision pass through the
network diagonally while the paths under CMAC circumvent the lake.

We set the transmission range to 70 m and the durationtI and
tD to 6 ms and 30 ms, respectively.

We will compare the delay performance of the following
algorithms:
Optimal-Periodic-NoCollision: This corresponds to the opti-
mal anycast forwarding policy with periodic wake-up patterns,
and the effect of collision is ignored. We obtain the expected
delay simply from the output of the value iteration algorithm
in (5).
Optimal-Periodic-WithCollision: This corresponds to the
optimal anycast policy with periodic wake-up patterns. We
simulate the policy with the collision resolution component in
[21, Appendix D, Deterministic Backoff]
Optimal-Poisson: This corresponds to the optimal anycast
forwarding policy in [20] with Poisson wake-up patterns. We
also simulate the policy with the same collision resolution
component in Optimal-Periodic-WithCollision. (Refer to [20]
to see the performance advantage ofOptimal-Poisson over
existing solutions (includeling CMAC) over different simula-
tion environments.)

CMAC (Convergent MAC): This corresponds to the heuristic
algorithm with Poisson wake-up pattern that was proposed
in [12]. CMAC uses geographical information to choose the
packet forwarding policy. LetD and R be the random vari-
ables that denote the one-hop delay and process in reducing the
Euclidean distance to the sink when a packet is forwarded to
the next-hop node. Then, under CMAC, each nodei selects the
set of eligible next-hop nodes that can maximize the expected
normalized-latencyE[D/R]. Since the performance advantage
of CMAC over other existing anycast-based heuristics has been
extensively studied in [12] and [20], we only compare the
performance of our optimal algorithm to that of CMAC.
To simulate these algorithms, we generate 50 packets at each
node and take the average on the measured delay.

In Fig. 3(a), we compare the maximum expected end-to-
end delay over all nodes under different wake-up ratesr. We
observe that ‘Optimal-Periodic-NoCollision’ and ‘Optimal-
Periodic-WithCollision’ significantly reduce the end-to-end
delay compared with the other algorithms. This is consistent
with our result that the periodic wake-up pattern is delay-
optimal. We also observe the significant performance gap
between ‘CMAC’ and ‘Optimal-Periodic-WithCollision.’ To
explain this performance gap, we show in Fig. 3(b) the possible
routing paths under both algorithms. Under CMAC, packets
tend to be forwarded to the nodes with higher progress.
However, overall the packets may take longer paths to go
around the obstructions. In contrast, under ‘Optimal-Periodic-
Withcollision,’ the next-hop nodes are chosen by delay. Hence,
it is possible for a packet to be first forwarded to nodes with
negative progress, if doing so reduces the delay beyond the
next-hop node. For example, in Fig. 3(b), ‘Optimal-Periodic-
WithCollision’ results in paths that are shorter than thoseunder
‘CMAC.’ From Fig. 3(b), we can infer that if there is no strong
correlation between distance and delay (e.g. where there are
obstructions), the heuristic anycast solutions such as CMAC
can perform poorly. Finally, we can observe from Fig. 3(a) that
the performance gap between ‘Optimal-Periodic-NoCollision’
and ‘Optimal-Periodic-WithCollision’ is negligible overaver-
age wake-up intervals (from 30 ms to 1800 ms). Hence, as long
as collisions are resolved properly, they will not significantly
impact the performance of our proposed solution at reasonable
wake-up rates.

VI. CONCLUSION

In this paper, we have studied the optimal anycast forward-
ing and sleep-wake scheduling policies that minimize the end-
to-end delay. We have shown that among all wake-up patterns
with the same wake-up rate, the periodic wake-up pattern
maximizes the probability that a neighboring node wakes up
at each beacon signal. Using this result, we have developed
the optimal anycast forwarding algorithms for periodic wake-
up patterns and have shown that the algorithms guarantee the
minimum end-to-end delay of all nodes for given wake-up
rates (which correspond to given energy budgets). Through
simulation results, we have illustrated the benefits of using
asynchronous periodic sleep-wake scheduling.

13

APPENDIX A
PROOF OFPROPOSITION4

Proof: We prove by induction that̂d(h−1)
wait (x) ≥ d̂

(h)
wait(x)

holds for h = h̄ − 1, · · · , 1, 0 and admissible statesxh = x.
At stageh̄− 1, from (16), we havêd(h̄−1)

wait (x) = tI + d̂(h̄)(1)
because state 1 is the only admissible state at stageh̄. By (17),
we haved̂

(h̄−1)
wait (x) = tI + tD + D1. At stageh̄− 2, we must

haved̂
(h̄−2)
wait (x) ≥ tI+tD+D1 sinced̂(h̄−1)(xh̄−1) ≥ tD+D1.

Thus, it holds that̂d(h̄−2)
wait (x) ≤ d̂

(h̄−1)
wait (x) for admissible states

xh̄−1 = x.

Assume thatd(h−1)
wait (x) ≥ d

(h)
wait(x) holds forh = h′+1, h′+

2, · · · , h̄ and admissible statesxh = x. We then show that
this also holds forh = h′. To this end, we need the following
lemma:

Lemma 1: Supposeα(1)
j , α

(2)
j , β

(1)
j , β

(2)
j , andθj for j =

1, · · · , L such that0 ≤ α
(1)
j ≤ α

(2)
j ≤ 1, α

(m)
L = 1, β

(m)
j =

∏j−1
k=1(1− α

(m)
k)α

(m)
j for m = 1, 2, andθ1 ≤ θ2 ≤ · · · ≤ θL.

Then, the following inequality holds:

L
∑

j=1

β
(1)
j θj ≥

L
∑

j=1

β
(2)
j θj . (37)

The detailed proof is provided in Appendix B. Lemma 1 has
the following interpretation. Assume that there are two users
m = 1, 2 and each userm picks up at least oneθj ’s from
{θ1, θ2, · · · , θL} independently of the other user.α

(m)
j is the

probability that userm will pick θj , independently of whether
it picks otherθk ’s (k 6= j). Sinceα

(m)
L = 1, at leastθL must

be picked up by each user. Ifθ1 ≤ θ2 ≤ · · · ≤ θL, then for
the user with a larger value ofα(m)

j , the expected value of the
smallestθj picked will be lower.

Using Lemma 1, we can show the following inequality: for
all x ≤ xh′,max

d
(h′−1)
wait (x) =tI +

x
∑

x′=1

P
(h′)
x,x′ d

(h′)(x′)

≥tI +

x
∑

x′=1

P
(h′+1)
x,x′ d(h′)(x′). (38)

Let L in Lemma 1 bex. For m = 1, 2, let α
(m)
j = pj,h′−1+m

if 1 ≤ j < L, and letα(m)
L = 1. Sinceβ

(m)
j =

∏j−1
h′=1(1 −

α
(m)
h′)α

(m)
j , β

(m)
j is given byP

(h′−1+m)
x,j from (6). Note that

under the periodic wake-up process, the awake probabilitypj,h

in (34) increases withh, which means0 ≤ α
(1)
j ≤ α

(2)
j ≤ 1.

Let θj = d(h′)(j). By Proposition 24, we haved(h′)(1) ≤
d(h′)(2) ≤ · · · ≤ d(h′)(xh′,max), which satisfies the condition
θ1 ≤ θ2 ≤ · · · ≤ θL. Since all conditions forα(m)

j , β
(m)
j , and

θj (j = 1, 2, · · · , L andm = 1, 2) are satisfied, we obtain the
inequality in (38) from Lemma 1.

Combining the induction hypothesis and (12), we can obtain
d(h′)(x′) ≥ d(h′+1)(x′) for 1 ≤ x′ ≤ xh′+1,max. Since
P

(h′+1)
x,x′ = 0 for x′ > xh′+1,max, we can obtain the following

inequality from (38): forx ≤ xh′,max,

tI +

x
∑

x′=1

P
(h′+1)
x,x′ d(h′)(x′)

≥ tI +
x

∑

x′=1

P
(h′+1)
x,x′ d(h′+1)(x′) (39)

= d
(h′)
wait (x).

Combining (38) and (39), we haved(h′−1)
wait (x) ≥ d

(h′)
wait (x) for

1 ≤ x ≤ xh′,max. By induction, Proposition 4 follows.

APPENDIX B
PROOF OFLEMMA 1

Proof: We prove this lemma by induction. First, the
lemma holds forL = 1 becauseα(1)

1 = α
(2)
1 = 1 and

β
(1)
1 θ1 = α

(1)
1 θ1 = α

(2)
1 θ1 = β

(2)
1 θ1.

We now assume that (37) holds forL = 1, 2, · · · , K − 1
and supposeL = K. Let α̃

(m)
j , α

(m)
j+1, θ̃j , θj+1, and

β̃
(m)
j ,

β
(m)
j+1

1− α
(m)
1

=

j−1
∏

k=1

(1− α̃
(m)
k)α̃

(m)
j

for m = 1, 2 and j = 1, 2, · · · , K − 1. Then, by induction
hypothesis, we have

K−1
∑

j=1

β̃
(1)
j θ̃j ≥

K−1
∑

j=1

β̃
(2)
j θ̃j . (40)

Using the above, we can obtain the following inequality:
K

∑

j=1

β
(1)
j θj = α

(1)
1 θ1 +

K
∑

j=2

β
(1)
j θj

= α
(1)
1 θ1 + (1 − α

(1)
1)

K−1
∑

j=1

β̃
(1)
j θ̃j

≥ α
(1)
1 θ1 + (1 − α

(1)
1)

K−1
∑

j=1

β̃
(2)
j θ̃j (41)

= α
(1)
1



θ1 −
K−1
∑

j=1

β̃
(2)
j θ̃j



 +

K−1
∑

j=1

β̃
(2)
j θ̃j . (42)

To obtain (41), we have used (40). Since
∑K−1

j=1 β̃
(2)
j θ̃j is a

weighted average ofθ2, θ3, · · · , θK , and all these values are no
smaller thanθ1, the term(θ1−

∑K−1
j=1 β̃

(2)
j θ̃j) is non-positive.

Sinceα
(1)
1 ≤ α

(2)
1 , we can rewrite (42) as

K
∑

j=1

β
(1)
j θj ≥ α

(2)
1



θ1 −
K−1
∑

j=1

β̃
(2)
j θ̃j



 +

K−1
∑

j=1

β̃
(2)
j θ̃j

= α
(2)
1 θ1 + (1− α

(2)
1)

K−1
∑

j=1

β̃
(2)
j θ̃j .

=

K
∑

j=1

β
(2)
j θj . (43)

Hence, (37) holds forL = K. By induction, the result of the
lemma follows.

14

REFERENCES

[1] J. Kim, X. Lin, and N. B. Shroff, “Optimal Anycast Technique for
Delay-Sensitive Energy-Constrained Asynchronous SensorNetworks,”
in Proceedings of IEEE INFOCOM, (Rio De Janeiro, Brazil), April
2009.

[2] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-Saving Protocols for
IEEE 802.11-Based Multi-Hop Ad Hoc Networks,”Computer Networks,
vol. 43, pp. 317–337, Oct. 2003.

[3] W. Ye, H. Heidemann, and D. Estrin, “Medium Access Control with Co-
ordinated Adaptive Sleeping for Wireless Sensor Networks,” IEEE/ACM
Transactions on Networking, vol. 12, pp. 493–506, June 2004.

[4] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” inProc. SenSys, pp. 171–180,
November 2003.

[5] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An Adaptive
Energy-Efficient and Low-Latency MAC for Data Gathering in Wireless
Sensor Networks,” inProc. IPDPS, pp. 224–231, April 2004.

[6] J. Elson, L. Girod, and D. Estrin, “Fine-grained networktime synchro-
nization using reference broadcasts,”SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 147–163, 2002.

[7] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing
sensor networks in the energy-latency-density design space,” IEEE
Transactions on Mobile Computing, vol. 1, pp. 70–80, January-March
2002.

[8] J. Polastre, J. Hill, and D. Culler, “Versatile Low PowerMedia Access
for Wireless Sensor Networks,” inProc. SenSys, pp. 95–107, November
2004.

[9] J. Polastre, J. Hill, P. Levis, J. Zhao, D. Culler, and S. Shenker, “A
Unifying Link Abstraction for Wireless Sensor Networks,” in Proc.
SenSys, pp. 76–89, November 2005.

[10] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF) for
Ad Hoc and Sensor Networks: Energy and Latency Performance,” IEEE
transactions on Mobile Computing, vol. 2, pp. 349–365, October 2003.

[11] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF) for
Ad hoc and Sensor Networks: Multihop Performance,”IEEE Transac-
tions on Mobile Computing, vol. 2, pp. 337–348, October 2003.

[12] S. Liu, K.-W. Fan, and P. Sinha, “CMAC: An Energy Efficient MAC
Layer Protocol Using Convergent Packet Forwarding for Wireless Sensor
Networks,” in Proc. SECON, (San Diego, CA), June 2007.

[13] R. R. Choudhury and N. H. Vaidya, “MAC-Layer Anycastingin Ad
Hoc Networks,”SIGCOMM Computer Communication Review, vol. 34,
pp. 75–80, January 2004.

[14] S. Jain and S. R. Das, “Exploiting Path Diversity in the Link Layer in
Wireless Ad Hoc Networks,” inProc. WoWMoM, pp. 22–30, June 2007.

[15] P. Larsson and N. Johansson, “Multiuser diversity forwarding in mul-
tihop routing for wireless networks,” inProceedings of IEEE WCNC,
2005.

[16] S. Biswas and R. Morris, “ExOR: opportunistic multi-hop routing for
wireless networks,”Proceedings of ACM SIGCOMM, vol. 35, pp. 133–
144, October 2005.

[17] M. Rossi and M. Zorzi, “Integrated Cost-Based MAC and Routing
Techniques for Hop Count Forwarding in Wireless Sensor Networks,”
IEEE Transactions on Mobile Computing, vol. 6, pp. 434–448, April
2007.

[18] M. Rossi, M. Zorzi, and R. R. Rao, “Statistically Assisted Routing
Algorithm (SARA) for Hop Count Based Forwarding in WirelessSensor
Networks,” Wireless Networks, vol. 14, pp. 55–70, February 2008.

[19] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “On Maximizingthe
Lifetime of Delay-Sensitive Wireless Sensor Networks withAnycast,”
in Proceedings of IEEE INFOCOM, (Pheonix, AZ), April 2008.

[20] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “Minimizing Delay and
Maximizing Lifetime for Wireless Sensor Networks with Anycast,”
accepted for publication inIEEE/ACM Trans. on Networking, 2009,
and also available at http://web.ics.purdue.edu/˜kim309.

[21] J. Kim, X. Lin, and N. B. Shroff, “Optimal Anycast Technique for Delay-
Sensitive Energy-Constrained Asynchronous Sensor Networks,” Techni-
cal Report, http://web.ics.purdue.edu/˜kim309/Kim08tech3.pdf, 2008.

[22] D. P. Bertsekas,Dynamic Programming and Optimal Control vol. 2.
Athena Scientific, 3 ed., 2007.

[23] L. Kleinrock, Queueing Systems vol. 1: Theory. Wiley-Interscience,
1 ed., 1975.

Joohwan Kim (S’07) received his B.S. degree from
Yonsei University, Seoul, Korea, in 2004, and his
M.S. degree from Purdue University, West Lafayette,
Indiana in 2006. He is currently a Ph.D. candidate
of Electrical and Computer Engineering at Purdue
University.
His research interests range over the various area
of wireless communication networks: scheduling,
routing, power control, network pricing and wireless
resource optimization in sensor and mobile ad hoc
networks.

Xiaojun Lin (S’02 / M’05) received his B.S. from
Zhongshan University, Guangzhou, China, in 1994,
and his M.S. and Ph.D. degrees from Purdue Uni-
versity, West Lafayette, Indiana, in 2000 and 2005,
respectively. He is currently an Assistant Professor
of Electrical and Computer Engineering at Purdue
University.
Dr. Lin’s research interests are resource allocation,
optimization, network pricing, routing, congestion
control, network as a large system, cross-layer de-
sign in wireless networks, mobile ad hoc and sensor

networks.
He received the IEEE INFOCOM 2008 best paper award and 2005 best paper
of the year award fromJournal of Communications and Networks. His paper
was also one of two runner-up papers for the best-paper awardat IEEE
INFOCOM 2005. He received the NSF CAREER award in 2007.

Ness B. Shroff(S’91 / M’93 / SM’01 / F’07) Ness
B. Shroff received his Ph.D. degree from Columbia
University, NY in 1994 and joined Purdue university
immediately thereafter as an Assistant Professor.
At Purdue, he became Professor of the school of
Electrical and Computer Engineering in 2003 and
director of CWSA in 2004, a university-wide center
on wireless systems and applications. In 2007, he
joined The Ohio State University as the Ohio Em-
inent Scholar of Networking and Communications
and Professor of ECE and CSE.

His research interests span the areas of wireless and wireline communication
networks. He is especially interested in fundamental problems in the design,
performance, control, and security of these networks.
Dr. Shroff has served on the editorial boards of IEEE/ACM Trans. on
Networking, the Computer Networks Journal, and IEEE Communications
Letters. He was the technical program co-chair of IEEE INFOCOM’03, IEEE
CCW’99, the program co-chair for the symposium on high-speed networks,
Globecom 2001, and the panel co-chair for ACM Mobicom’02. Hewas also a
co-organizer of the NSF workshop on Fundamental Research inNetworking,
held in Arlie House Virginia, in 2003. In 2008, he served as the technical
program co-chair of ACM Mobihoc 2008 and as General co-chairof WICON.
Dr. Shroff received the IEEE INFOCOM 2008 best paper award, IEEE
INFOCOM 2006 best paper award, the IEEE IWQoS 2006 best student
paper award, the 2005 best paper of the year award for the Journal of
Communications and Networking, the 2003 best paper of the year award for
Computer Networks, and the NSF CAREER award in 1996 (his INFOCOM
2005 paper was also selected as one of two runner-up papers for the best
paper award).

