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On Wireless Scheduling Algorithms for Minimizing
the Queue-Overflow Probability

V. J. Venkataramanan and Xiaojun LiMember, IEEE

Abstract— In this paper, we are interested in wireless schedul- arrives at the base-station at a constant kat&urther, assume
ing algorithms for the downlink of a single cell that can minimize 5 slotted model, and in each time-slot the wireless channel
the queue-overflow probability. Specifically, in a large-deiation can be in one of\/ states. In each state, — 1.2 M

. ,2, .., M,

setting, we are interested in algorithms that maximize the it the b tati ick it th di
asymptotic decay-rate of the queue-overflow probability, a the "I [N€ Dase-station picks userto serve, the corresponding

queue-overflow threshold approaches infinity. We first derie an  Service rate isF,. Hence, at each time-slad; increases
upper bound on the decay-rate of the queue-overflow probabitly by \;, and if it is served and the channel is at state Q;

over all scheduling policies. We then focus on a class of scheing  decreases by . We assume that perfect channel information

H = " H ” m*
algorithms collectively referred to as the “a-algorithms.” For s ayajlable at the base-station. In a stability problera-[g],
a given a > 1, the «-algorithm picks the user for service at

each time that has the largest product of the transmission ree the goal is to find algorithms fc?f, schedul!ng the transmissio
multiplied by the backlog raised to the power . We show Such that the queues are stabilized at given offered loads. A
that when the overflow metric is appropriately modified, the important result along this direction is the developmenthef
minimum-cost-to-overflow under thea-algorithm can be achieved go-called “throughput-optimal” algorithms [3]. A scheihg

by a simple linear path, and it can be written as the solution fa algorithm is callecthroughput-optimalf, at any offered load

vector-optimization problem. Using this structural property, we . . -
then show that when o approaches infinity, the a-algorithms under which any other algorithm can stabilize the system,

asymptotica”y achieve the |argest decay_rate of the quede th|S algorithm can Stabilize the SyStem as We” It iS We"-
overflow probability. Finally, this result enables us to deggn known that the following class of scheduling algorithms are

scheduling algorithms that are both close-to-optimal in tems  throughput-optimal [3]-[5]: For a givem > 1, the base-

of the asymptotic decay-rate of the overflow probability, aml — gation picks the user for service at each time that has the

empirically slhownhto malntalp smal_l qlljgue-overﬂow probabiities largest product of the transmission rate multiplied by the

over queue-length ranges of practical interest. X X .
backlog raised to the power. In other words, if the channel is

_ Index Terms— Queue-Overflow Probability, Wireless Schedul- , giater,, the base-station chooses the useith the largest
:nlg, Lsarge Deviations, Asymptotically Optimal Algorithms, Cel- (Q-)"‘F"' To emphasize the dependency @nin the sequel
ular System. i),

y we will refer to this class of throughput-optimal algoriteras

a-algorithms.
|. INTRODUCTION While stability is an important first-order metric of sucses
Link scheduling is an important functionality in wirelesdor many delay-sensitive applications it is far from suici.
networks due to both the shared nature of the wireless medilimthis paper, we are interested in the probability of queue
and the variations of the wireless channel over time. In terflow, which is equivalent to the delay-violation probiéy
past, it has been demonstrated that, by carefully choosi#gder certain conditions. The question that we attempt to
the scheduling decision based on the channel state and@@gwer is the following: Is there an optimal algorithm in the
the demand of the users, the system performance canSg&se that, at any given offered load, the algorithm caresehi
substantially improved (see, e.g., the references in [@pst the smallest probability that any queue overflows, i.e., the
studies of scheduling algorithms have focused on optimgizigmallest value oP[max;<;<n Qi(T") > B], whereB is the
the long-term average throughput of the users, or in oth@yerflow threshold. Note that if we impose a quality-of-seev
words stability. Consider the downlink of a single cell in 4Q0S) constraint on each user in the form of an upper bound
cellular network. The base-station transmits\fausers. There on the queue-overflow probability, then the above optimalit
is a queud); associated with each user=1,2, ..., N. Due to condition will also imply that the algorithm can support the
interference, at any given time the base-station can omyeselargest set of offered loads subject to the QoS constraint.
the queue of one user. Hence, this system can be modelled ddnfortunately, calculating the exact queue-distributisn
a single server servingy queues. Assume that data for user often mathematically intractable. In this paper, we usgdar
deviation theory [11], [12] and reformulate the QoS constra
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Our main results are the following. We show that therstandard sample-path large-deviation principle (LDP3teéad
exists an optimal decay-rafg,; such that for any schedulingof the refined LDP used in [25] that is more technically-

algorithm involved. In addition, our results highlight the role thaket
| exponenta plays in determining the asymptotic decay-rate.
liminf - log(P[ max Qi(0) 2 B]) 2 —lopt. Finally, using the insight of our main result, we design a

scheduling algorithm that is both close-to-optimal in teraf
the asymptotic decay-rate of the overflow probability, and e
pirically shown to maintain small queue-overflow probdtss
over queue-length ranges of practical interest.

Further, fora-algorithms,

1 «
im lim — . > < —
ali»wllgjip B log P§ [1m§%)§v Qi(T) > B] < —Iop,
where P§ is the probability measure for the-algorithm. II. THE SYSTEM MODEL AND ASSUMPTIONS

Hence, whem approaches infinity, the-algorithms asymp- . nciger the downlink of a single cell in which a base-

totically achieve the largest decay-rate of the queueflmver .
prob agility g y d station servesV users. We assume a slotted system, and we
: assume that the state of the channel at each time slot isrthose

For the above problem, it is natural to use the large-denati. . .
o0 . d from one of M possible states. Let'(¢) denote the state
heor he overflow pr ility that we are inter .

theory* because the overflow probability that we are inte esté# the channel at time = 1.2, ... and letp,, = P[C(t)

in is typically very small [11], [12]. Large-deviation thgo °

has been successfully applied to wireline networks (seg, eml, m=12...,M Letp=[p,..,py]. We assume that
the base-station can serve one user at a time Fl:etlenote

[13]-[19]) and to wireless scheduling algorithms that onl j te f rwhen it is picked f . q
use the channel state to make the scheduling decisions [2419 service rate for userwhen It 1S picked for service an
the channel state is.

22]. However, when applied to wireless scheduling aldoni . .
[22] ' PP 9 .. _\We assume that data for usearrive as fluid at a constant
that use also the queue-length to make scheduling decision

. . o rate);. LetA = [\, ..., An]. LetQ;(t) denote the backlog of
(e.g., thea-algorithms), this approach encounters a significant """ =

. e o . useri at timet, and letQ(¢t) = [Q1(t), ..., @n~(t)]. In general,
amount of technical difficulty. Specifically, in order to dpp L e . ; .

o the decision of picking which user to serve is a function of

the large-deviation theory to queue-length-based scheglul

algorithms, one has to use sample-path large-deviatiodh, e{he global backlog(t) and the channel staté(t). Let U(t)

o . ?Penote the index of the user picked for service at ttm€&he
formulate the problem as a multi-dimensional calculus-of-

variations (CoV) problem for finding the “most likely path toevoluﬂon of the backlog for ]e;\ch useis then governed by

overflow.” The decay-rate of the queue-overflow probability .

then corresponds to the cost of this path, which is referredi(f +1) = [Qi(1) + A — Z Lew=mum=iFnl" (2)

to as the “minimum cost to overflow.” Unfortunately, for m=1

many queue-length-based scheduling algorithms of irttere§here va denotes the projection tg0, +oo). Note that

this multi-dimensional calculus-of-variations problesvery Y om=12im1 L{c(t)=m,u()=iy = 1 since only one user can

difficult to solve. In the literature, only some restricteases D€ served at a time.

have been solved: Either restricted problem structures areé® Particular class of scheduling algorithms that we will

assumed (e.g., symmetric users and ON-OFF channels [zg} us on are collectively referred to as the-algorithms”,

or the size of the system is very small (only two userdynerea is a parameter that takes values from the set of natural

[24] In this paper, to circumvent the d|ff|cu|ty of the multi numbers. Givem)é, the behavior of the algorithm is as follows.

dimensional calculus-of-variations (CoV) problem, we Igpp WWhen the backlog of the users @(t) and the state of the

a novel technique introduced in [26]. Specifically, we use @annel isC(t) =m, the algorithm chooses to serve the user

Lyapunov function to map the multi-dimensional CoV probt for which the productQf (t)Fy, is the largest. If there are

lem to a one-dimensional problem, which allows us to bourf@veral users that achieve the larg@st(¢)F;,, together, one

the minimum-cost-to-overflow by solutions of simple veetorof them is chosen arbitrarily. It is well-known that this sseof

optimization problems. This technique is of independetarin algorithms are throughput-optimal, i.e. they can stabilize

est and may be useful for analyzing other queue-lengtheba§¥stem at the largest set of offer-loads[3]-[5]. Note that

scheduling algorithms as well. although these algorithms do not explicitly keep track datpa
In a recent work [25] the author shows that thehistory, they do so implicitly by their dependence Q11).

“exponentia|_ru|e” can maximize the decay_rate of the ql.‘euHence they are able to stabilize the SyStem without eXpIiCit

overflow probability over all scheduling policies. The rissu knowledge of the operating conditions such as arrival rate a

in this paper are comparable but different. The advantage @t@nnel probabilities.

working with thea-algorithms instead of the exponential-rule, Consider the system when it is operated at a given offered

is that thea-algorithms are scale-invariant (i.e., the outcom®ad A and is stable under a given scheduling algorithm.

of the scheduling decision does not change if all queuetiengSPecifically, we assume that there is a positive nunghero

are multiplied by a common factor). Hence, we can use tB8Ch thatA(1 + ¢) is in the capacity region of the system.
This implies (refer [3]) that there existg;,] > 0 such that
*Alternatively, one may use other asymptotic techniquesh aag heavy- 21\11 ’Ay,i =1foralm=1,.. M and
traffic limits [6][8] or focus on order-optimal bounds oretexpected queue- "=+ ™
length/packet delay [9], [10]. M o
TNote that this work is published after our preliminary résukported in Ai(1+€) < Z PV Fo, forall i =1, ..., N. 3)
[1]. m=1
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In this paper, we are interested in the probability that tHarge-deviation principle (LDP) with good rate function2[1

largest backlog exceeds a certain threshBld.e., Mogulskii’'s Theorem (Thm 5.1.2), p176]:
P[ max Q:(0) > B, ) 17 (s(- fo ®)llp)dt, if s(-) € AC
! s otherwise

Note that the probability in (4) is equivalent to a delaywhereAC denote the set of absolute continuous functions in
violation probability when the arrival rates; are constant, §.. This LDP means that, for any sBtof trajectories ind -
because the two types of events are related by (see [23), [ following inequality holds: ’

P[Delay at linki > d;] = P[Q;(0) > A;d;]. The focus of this

paper is in scheduling algorithms that minimize (4). — inf IT(s(-)) < hmmf log P[s?(-) e T
The problem of calculating the exact probability s(-)ere B—oo B
P[max;<;<n Q:(0) > B] is often mathematically intractable. < limsup 1 logP[sB(.) c 1:]
In this work, we are interested in using large-deviatiorotlye B—oo B
to compute estimates of this probability. Specifically, wié w < — inf I7(s(")), (8)
use the following limits: s(-)er

1 [ andT interi i
L\ 2 —lgriinf . log P [ max Qi(0) > B} ) wherel'® andI" denote the interior and closure, respectively,

<i<N of the setl’. In addition, ifI" is a continuityset [12, p5], the
N two bounds meet and we then have,
Jo(A) & fhmsupB log P [ max Qi(0) > B] . (6) 1 B}
B—oo Blim B logP[s?(:) e T] = — inf I7(s(-)). 9)
— 00 s(A)eI‘

In essencely(A) and Jy(\) are upper and lower bounds,
respectively, of the decay rate of (4), as the overflow trolesh Hence, the large-deviation rate-fucnctidfi(s(-)) character-
B approaches infinity. In the following sections, we willizes how “rarely” the trajectory(-) occurs.

show that no scheduling algorithm can have a decay-rateUsing a similar scaling as?(-), define the scaled backlog
larger than a certain valug,; (defined in Section V), i.e. process

Io(A) < I, Then, we will show that thev-algorithms Bt

asymptoticall)ly achieve the decay-rafg,. In other words, q"(t) = Q(B ) fort =05 % (10)
for the a-algorithms,.Jo () approaches,,;, asa — .

and by linear interpolation otherwise. Hence, for eaét(-)
and a given initial conditiong”(0), we can use (2) to
. PRELIMINARIES determine the correspondind’ (-). As B — oo, we will have
Since the channel states aited. in time, the following a sequence o8”(-) and ¢”(-). It is easy to see that both
sample-path large-deviation principle (LDP) holds for the?(.) andq”(-) are Lipschitz-continuous. Hence, there must
channel-state process. Specifically, we define the empiriexist a subsequence that converges uniformly over thevater

measure procesS(t) = [Sy(t),m =1, ..., M] as follows, [0,T]. We use(s(-), g(-)) to denote such a limit, and we refer
¢ to it as afluid sample path
S (t) :/ Lol ))=mydT, In essense, the goal of the rest of the paper is to use the
0

known sample-path LDP of? () to characterize that af”(-)
where || represents the largest integer no greater thamd that of the queue-overflow probability. In [1], we assume
7. Then, for any non-negative integét, define the scaled that a sample-path LDP also holds f@f(-). Unfortunately,

channel-rate process such an assumption appears to be difficult to verify. Instead
5 S(Bt) in this paper we will use a different approach to establigh th
s7(t) = —p— (7) desirable results.
It is easy to see that®(.) is Lipschitz continuous and hence V. AN UPPERBOUND ON THE DECAY-RATE OF THE
its derivative exists almost everywhere. For any gien> OVERFLOW PROBABILITY
0, let W7 denote the space of mappings frdi 7] to R, In this section, we first present an upper boufg; on

equipped with the essential supremum norm [12, p176, p35Z)(\) (defined in (5)) under a given offered load This
Let Py denote the set of probability vectors of dimensieh  value I,,,, bounds from above the decay-rate for the overflow

i.e. ¢ [pm,m = 1,..., M] € Py implies that¢ > 0 and probability of the stationary backlog proce€¥t) over all
Sy bm = 1. For any¢ € Pu definé scheduling policies. For every probability vectgr € Py,
M 5 define the following optimization problem:
H(¢||p) = Z ®m log pm R M L "
| | m=1 w(g) £ inf  max |- > bm Vi,
with the convention that)log0 = 0. Then, asB — oo, m=

it is well-known that the sequence of scaled channel-rate

N
processes?(-) on the interval[0, 7] satisfies a sample-path subjectto  » %, =1forall m=1,. M

i=1
#This is commonly known as the relative entropy betweeand p. ;ﬂn >0foralli=1,...,N andm.
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Here, 7!, can be interpreted as some long-term fraction-oFinally, sincezfv1 L Brp=iy = 1, [7¢,] is a feasible point
time that user is served when the channel staterisHence, for the optimization problemu( B(T)) Thus, we obtain the

if the channel-rate process is given bft) = ¢t, then|[\; sB(T)
Zm L oL FL]T denotes the long-term growth-rate of the lower bound thatmax 4’ (T) = Tu( ) e "
backlog of usei. Further, if all queues start empty, therip) ~ In addition, it is easy to show that the value of) is
is the minimum rate of growth of the backlog of the largestontinuous with respect t# as stated below in Lemma 3. Let
queue. ||@|| denote the Euclidean norm @f.
Next, definel,, as: Lemma 3:Let ¢' and ¢ be vectors fronP,,. The opti-
mization problemw(-) is continuous in the sense that for any
Tope 2 inf H(¢llp) (11) €>0and|[¢' — ¢*|| <, the following holds,
(PP | w(@)>0y w(P) N s
Given a fixed offered load, assume that the backlog process lw(e") —w(e?)| < ez Z
Q(-) under a given scheduling policy is stationary and ergodic,

We will show the following resuft The intuition behind Lemma 3 comes from the fact that the
Proposition 1: Under any scheduling policy, the following function gl%v[)‘i — Yot $mAl, FL] T is continuous ing
holds, for any [7: ]. The detailed proof is provided in our technical

report [28]. We can now prove Proposition 1.
llBIILlOIleP (lglaX Qi(0) > B) > —Iopt.  (12) Proof: (of Proposition 1) For anys > 2(¢V\|/|e)can
s1P

In other words ,,; is an upper bound for the decay-rate of thénd ¢; from {¢ € P [ w(¢) > 0} such that=/&E= <
overflow probability over all scheduling policies. This &p I,,, + 0. Define s5(t) = t¢p; for t > 0. Let ¢ be some
bonnsd] although in a different form, is equal to the one dativ positive number and le’ = Itete if(f(:bl)valF;_ Let
In . . W\s) |
Towards this end, we first show that the functieri:) B7(ss(-),¢) be the set of functions in the spag€ such that
provides a lower bound on the backlog of the largest queddPecio,r] Is(t) — s5(t )” < ¢. Therefore, for anys, s”(-) €
as proved in the following lemma. Br(ss(+),€) implies £ qb(;H < £. By Lemma 3, this
Lemma 2:For anye > 0, there existd3, > 0 such that for in turn implies that
all B > By and all scaled channel-rate proces¥(-) (with

s5(0) = 0), the following holds (sB(T))
! Tw | ——= ] > Tw( —€ E g 13
SB(T) T (b(s m=11i=1 m ( )
max q; Bry>Tw(=—=-2)—¢ foral T >0.
1<i< T Now, using Lemma 2 for alB > B, and s?(-), we have

Proof Note that the queue backlog process is related to > Bryy
the channel-state process by Equation (2). Take the SCNIng<z<N ¢(T) 2 Tw(® 7)€ Hence, by (13) we conclude
(7) and (10). Then, gives?(.), at any timet such thatBt is that, for all B > By ands®(-) € Br(s;(-),€), we have,
an integer, we must have,

1\/[

; + max_q¢” (T) > Tw(epy) —e—ezz Fl, =1, (14)
¢ (1) > lAt—/ )L u(Br =i Frndr

1<i<N
m=1i=1

where equality holds by the definition @f. Therefore,
For anyT > 0, there must exist a value ofsuch thatBt is (
P

an integer andt — T'| < 1/B. Hence, for anye > 0, there
must existBy > 0 such that for allB > By,

maxQ()>B) = P(maxQ(BT)>B)

1<i<N 1<i<

+

P (o, 01 > 1)

1<i<N
P(s7(-) € Br(ss ("), ).
Let ¢ = 5 (T)/T,m = 1,..., M. If ¢, >0, let By the LDP fors®(-) (see Inequality (8)), we then have

— €.

AiT*A Z m (T LU Br =iy FrndT

m=1

Y

1 T4
) /O $m(T) LU (| Br =iy dT-

Otherwise, lety), = 1 and %, = 0 for z > 2. We then

1
P O0) >
§i = = 1$1£f B logP <1r<nzzg§v Q:(0) > B>

|
> hBHl,lo%f B log P[SB(-) € Br(ss(-),€)]

B L ~1 7 _ H T
havg,qi (T)>T LAZ Zm L OmYLF, } €. Taking the > - / H3(0)||p)dt
maximum over alk = 1, ..., N, we have s(-)€Br(ss(").€)
Jr
> - / H(ss(0)|[p)dt = ~TH(gs]lp)
> - —e.
X g 2(T) > T max, [A Z DT Fy € 0

<1+e+ezz m) Iopt +0).

§Note Proposition 1 also holds trivially if the system is aise. =1 i1
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Sinced ande can be arbitrarily small, we conclude that This fluid sample path is often referred to as the “most likely
path to overflow.”
>) > —Iopt- Proof: Fix T > 0. Recall that we have set® (0) = 0 for
all B. LetT'® be the set of channel rate processésg.) such
B that the corresponding backlog process satidfigg” (7)) >
1. For alln > 1, we have

1
N 0) >
11Brri1£f log <P < max Q;(0) > B

1<i<N

V. ALOWERBOUND ON THE DECAY-RATE OF THE

. 1 .
OVERFLOW PROBABILITY FOR a-ALGORITHMS hglsup 5 logP [SB(') € FB} (16)
—00
In this section, we will use the following modified o1 B R
queue-overflow even{V,(¢”(t)) > 1}, where V,(q) £ = hgffopﬁlogp [8 () € Vgl } (47

1

(Zf;l(qi)a“)ﬁ. Note that this overflow-event is different B
from the queue-overflow everft max ¢ (1) > 1} that is By the LDP fors™(:) (see (8)), we have

used in earlier sections. It turns out that computing the i 1 { B oo ~B}
- . msup —logP [s7 () euUs T
large-deviation decay-rate fd?r{lrg;agv qP(t) > 1} requires e & () €Uz,
solving a calculus-of-variations problem that is very dit. < it g H(3(t)||p)dt
The reason to use the modified overflow metrigq?(t)) is T s(yeux_ 18 Jo Pt
B=n

that the corresponding decay rate is much easier to compute .

andV, (q”(t)) approximates the functiolrrn<a<>§v ¢P(t) when Note that the sequence of set§s_ T'? is decreasing im,
o is large. To see this, note that as— oo, the difference be- We therefore have

tweenV,,(¢gZ(t)) and B () decreases t0. Further, the 1 -

weenVa (g™ (1)) 1Zion di ®) sest0. Fu limsupglogP [SB(') € FB}

function V,,(Q) is a Lyapunov function for thev-algorithm. B—oo
Hence, the theory developed in [26] applies and enables us ) ) r
to provide analytical results for this modified overflow ni@tr s - nhf;o inf H(s(®)]lp)at. (18)

. s(-)eus_ TBJO
On the other hand, even thougigu%v Q; may be viewed as
<1

a Lyapunov function for some throughput-optimal algorithm 't rémains to show that the right-hand-side of (18) is no
e.g., the exponential-rule [25], the algorithm is typigatiot 9dreater than that of (15). For eaeh we can findy,,(-) €
scale-invariant. Hence, it appears to be difficult to apply t Us—,1'7 such that

theory of [26] directly on1r<n_zg§v Q;. T T 1
T H(y,(O)llp)ydt < inf [ H($(t)||p)dt + —.
0 s()euy_, I8 J0 n

A. A General Lower Bound (29)

We first provide a lower-bound that relates the decay-rapdC€ ¥, (-) is equicontinuous, we can find a subsequence
of the overflow probability to the “minimum-cost-to-overfiy that converges uniformly oft), 7']. For ease of exposition, we
among all fluid sample paths. For ease of exposition, insteflightly abuse notation and denote this subsequenag,6y.
of considering the stationary system, we consider a sydiam t-€t ¥ (-) denote its limit, i.e.lim, .o y,,(-) = y"(-). Since
starts at time) (although the results can also be extended to tifée cost functionf; H(-[|p)dt is lower semi-continuous, we
stationary system as we will comment later). Specificady, |have
Q(0) = 0. Let P, denote the probability measure conditioned T T
on Q(0) = 0. For anyT > 0, let I'; denote the set of fluid 11{2@/ H(y,(t)||p)dt > / H(y"(t)|[p)dt.  (20)
sample pathés(-), q(-)) on the interval0, 7] such thatz(0) = 0 0
0 andV,(q(T)) > 1. We then have the following lower-bound, For each y,(-), since it belongs to the closure
which is comparable to Theorem 7.1 of [25] although we dof U"ganB, we can find a sequencey, () €

not need to use the refined LDP. Up_, B, m = 1,2, ... such thaty,,(-) = limm—cc Yy, (")-

Proposition 4: ConsiderI'; as defined earlier. Then, theThen from all y, ..(-),n = 1,2,..m = 1,2,.,

following holds: we can find another sequencg,, (-),n = 1,2,..
. 1 5 such thatlim, . Y, m, (+) = y*(-). (For example, we
hrnsupglogPo[Va(q (T)) > 1] can let m; = 1. Then, given m,, we can choose

B—oo

T Mp41 such thatsupg,cpo 1)y Hyn+1,mn+1(t> *yn+1(t)H <

= _(s(.),;r(l.f»efT/o H(5()l[p)dt. (15)  supqiciomy [[¥nmn -9, ) For notational convenience, let

Remark:The infimum on the right-hand-side of (15) is oftery,, () denote2 the sequenag, ,,, () from here on.
called the “minimum cost to overflow.” This result reflecteth  For eachn, let §,,(-) be the backlog process corresponding
well-celebrated large-deviation philosophy that “rareer@¢ to the channel rate procegs (-). By constructiong,, (0) =0
occur in the most likely way.” Specifically, Proposition 4t&s andV,(g,,(T)) > 1 for all n. Since the backlog processes are
that the probability of queue overflow is determined mostly bequicontinuous, we can find a subsequencéiof, g,,) such
the smallest cost among all fluid sample paths that overflothat this subsequence converges(ig (-),q*(-)) uniformly
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) sa |sfiequ‘(0) = 0 and interval immediately aftert. Then, using the definition of
g*(+)) isinT'r and thus  V,(-), at any timef whengq(¢) is differentiable, we must have

H(y"(t)lp)dt > inf H(()||p)dt . N Sl
/o q<>>€rT/ Valg(t) = <Z(Qi(t>>a+1> [Z(Qi(t»a)\i

Combining with (19) and (20), we conclude that i=1 i=1

T M N
lim  inf / H(5(1)||p)dt =D m() Y _(ail F,

over the interval0, T, whereg*(-
Va(g*(T)) > 1. Therefore,(y*(-),

7L_>OOS(~)EU%°:TL1:‘B 0 m=1 i=1
T . . .
. . Using (22), Equation (21) then follows. In our technicalogp
>
- hr{rilo%f/ H(g, (1)l[p)dt [28] , we provide the proof of Proposition 5, which makes this
. _ argument more precise.

> (S(.)j(l_f))efT/O H(s(t)[|p)dt. Next, for any¢ € Py, letx = [z;,7 = 1,..., N], and let

This along with (18) proves the proposition. ]
a(o) = max Z:c Ai — Z d)m max (zQFR)

B. Bounding the Minimum-Cost-to-Overflow Through Lya- m=1

punov Functions subject to Zm?“ <1. (23)
Finding the minimum-cost to overflow in (15) is a multi- 4
dimensional calculus-of-variations problem, which iseoft
very difficult [23], [24], [29]. In this section, we first use \We will show soon that the Lyapunov drift on the right-hand-
the idea of [26] to show another much simpler lower bourgide of (21) must be no larger thaiis(t)). Further, let
(Proposition 6). We will exploit the fact thaf, is a Lyapunov
function of the system operated under thelgorithm. We i inf M, (24)
will then show that this lower bound is indeed equal to the (PePu | a(@)>0y (D)
minimum-cost to overflow, and it can be attained by a simple
linear trajectory.
We begin with a result that characterizes the relationshj
betweenV, (q(-)) and the channel-rate proces). »(q(t)) from 0 to 1. Hence,J,, should be a lower bound on
Proposition 5: Let (s(-),q(-)) be any fluid sample path. the minimume-cost to overflow, which is indeed the case as we

Except for a sefl; of measure zero, at any tinte¢ 7, and show in the following proposition.

Then intuitively, J, can be interpreted as a lower bound on
it cost to raisé’, (q(¢)). In order to overflow, we must raise

q(t) # 0, the drift of the Lyapunov functioi, (q(t)) is: Proposition 6: For anyT' > 0, the following holds,
= 1
: al I limsup — log Po[Va(¢”(T)) > 1] < —Ja. (25)
Va(q(t) = (waw“) [Z@(t»w 5o B e
i=1 i=1 Remark:Note that the event, (¢”(T)) > 1 is equivalent to

Vo(Q(BT)) > B.AsT — oo, we would expect that the prob-
- Z St max (g (1) m)] (21) ability Po[V,(¢®(T)) > 1] approaches the stationary overflow

probability P[V,, (g (0)) > 1]. Since.J, is independent of’,
we would then expect thaf, becomes a lower bound for the
giecay rate of the stationary overflow probability, i.e.

The proof is prowded |n our technlcal report [28].
Remark:An intuitive way to understand Proposition 5 is a
follows. From (2), if we take the scaling in (7) and (10) an
let B — oo, we would expect that the limiting fluid sample ) 1 B
path will follow an ordinary differential equation as folls: hgfgop B log P[Va(g™(0)) 2 1] < —Ja.
There existsy?, (t),i =1,...,N,m =1, ..., M such that
M This convergence can indeed be shown using the so-called
_ Z (1) Freidlin-Wentzell theory [11], [25]. However, the detadse
U m rrL . . . .
— quite technical. Due to space constraints, we do not provide
_ o the details here. Interested readers can refer to our teadhni
if gi(t) >0 0r X\ — > 3m(t).(O)F, > 0;d¢(t) =0, report at [28].
otherwise; and?;, ()] are non-negative and satisfy Proof: (of Proposition 6) FixI" > 0. Recall the definition
of fT in Section V-A. For any fluid sample patls(-), q(-))
Z =1foralm=1,..,M, (22) in I'r (which overflows at timel’), we will show that the
cost of the pathfo 5(t)||p)dt is at least.J,. The result
’ym( ) = 0 whenever(g;(t))*F}, < max (qk( ))“Fk . of the proposition then follows from Proposition 4. Towards
1Sk this end, note that since the backlog procgts is Lipschitz-
The variablesy!, (t) can be viewed as the fraction of time thatontinuous, it is differentiable almost everywhere. Actog
useri is served when channel statesis in an infinitesimal to Proposition 5, for any such thatt ¢ 7, andgq(t) # 0, we
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must have, Note thatw, (¢) is analogous tav(¢) defined in section IV.
N — N Again, 7% can be interpreted as some long-term fraction-of-
: _ at1 ey time that uset is served when the channel staterisHence, if
Vala(t)) = <;(% ®) ) Lz;(% ()" A the channel-rate process is givenddy) = ¢t, theny; denotes
o B the long-term growth-rate of the backlog of useFurther, if
_ Z m(t) max ((qu(t)*FF) all queues start empty, then,(¢) is the minimum rate of
= 1<k<SN " growth of V,,(q(t)) over all policies. We have the following
M important lemma.
— Zq‘a)\ - Z ém(t) max (qu ) Lemma 7:For any¢ € Py, the following holds,
=t ()
where g, = ¢;(t) {Zf\;l(qi(t))”lya_“ ,i=1,..N Since wa (@) = al¢).
SN @ =1, ¢ = [¢] is a feasible point that satisfies the (b) The optimizerz* for a(¢) and the optimizery* for
constraint in (23). We then have wq (¢) are both unique and they satisiy = yy* for
v < ofs some~y > 0. Further, if the optimizerc* # 0, thenx*
_ a(q(t)) < a(3(t)). and y* are the only vectors that satisfy the following
Hence, ifV,(q(t)) > 0, we must havez(s(¢)) > 0. Then, conditions: there existi, > 0 such thatziilujﬁn =
using the definition of/, in (24), we have Gm, Y = [)\ - ZM L FLY, ap = ~yr for some
. a+1
H(3(0)llp) > JaVala(t). 1> 0. Limyfe)* < 1, and
On the other hand, it’,(¢(t)) < 0, the above inequality also 1y, = 0 whenever(z;)* F,, < H}faXN(mk)aFffL

holds trivially. Hence, the cost of the path must satisfy This lemma is proved by showing that the two probleri®)
T . andw,(¢) can be viewed as dual problems of each other. The
H(s(t)|[p)dt = Ja/ Va(q(t))dt. details of the proof is provided in appendix A.

0 ) AO ) Using part (a) of Lemma 7, we immediately obtain the
Recall that any fluid sample path Ity must satisfyg(0) = 0 following.

andV,(q(T)) > 1. Hence,

T Jo, = inf H(4llp) (26)
/ Va(g(t))dt > 1. (PP | wa(@)>0) WalP)
0
The result of the proposition then follows. m Further, according to Proposition 6, the above expression

Remark:We briefly comment on why it is critical to use aprovides a lower bound for the decay-rate of the queue-
Lyapunov function in the above procedure. Although a resi@verflow probability Po[V,, (¢ (T')) > 1] for any T > 0.
similar to Proposition 6 could also be derived if we replacéhe following lemma shows that, is positive, and hence the
V. (-) by any function ofg(t), such a result is only useful above bound is non-trivial.
when the lower bound,, is positive (otherwise the bound is Proposition 8:

trivial). The fact thatV,,(-) is a Lyapunov function is the key 1

to ensure this property. To see this, note that i p, then the Jo 2 ——Lopt.

drift of the Lyapunov function will be negative for any(t) Nas H(Blip)
(which is required for the stability of the system), implgin ~ Proof: Recall thatJo = infigcp 10 (y>0) )

that the value ofi(p) = 0. Hence, for the constraint in (24) to ; H(Pllp)

be satisfied¢p mu(st )be away fronp. As a result, the obj(ectl)ve andop: = mf{‘ﬁepM | “’(‘z’)>0} w(@)

function of (24) must be positive. We will see soon that this For all« = 0, we haveN =1 (Ax T 2 Va(z). Further,

then implies that the infimum in (24) is also positive. sincew(¢) andw, (¢) have the same constraint set, we have
Nﬁlw(@ > w,(¢) and as a consequence we have

C. The Path-to-Overflow That Attains the Lower Bouhd
In this subsection, we further simplify,,, and then show {¢ | wa(@) >0} S {¢ | w(¢) > 0}. (27)
that J, is equal to the minimum-cost to overflow in (15).

. _ e Hence, for anyp such thatw,(¢) > 0, we have
We define the following optimization problem. Laj =

[y1, ..., yn]. FOr anye € Py, define H(¢lllp) . 1 H(dllp)
wa(¢)= min_ - Va(y) wal9) N wld)
v20.lnl= N Taking infimum over the corresponding constraint sets and
biect t N ; I using (27), we then obtaid, > ;Iopt. [ |
subjectfo B mZ:l Vo oralli Finally, we can show that the Iower boudd is tight, in the
N sense that there exists > 0 and a trajectory that overflows

Z;yi —1foralm=1 M at T with costJ,. We will need the following lemma, which
" s, M.

Pt provides a structural property of the fluid sample path when
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the channel-rate process is linear. Specifically, if thencles
rate process(-) is linear, then the queue trajectogy-) must
also be linear, and its derivative must solvg(¢).

Lemma 9:Consider a fluid sample patls(¢), g(t)) under
the a-algorithm. If g(0) = 0 ands(t) = t¢ for t > 0, then the
corresponding queue trajectayyt) must satisfy the following:

(&) The queue trajectory is linear, i.e., there exigts=

[g:,i=1,...,N] >0, such thaig(t) = tg for all t > 0.
(b) There must exist:’, > 0 such thath.V:1 pi = bm,
Ji = [N = Yoy i Fy] + and

ph, =0 wheneverj? F}

m m:*

~aFk
< 122(1\1 Yk
In other words, the queue trajectogyt) is consistent
with the scheduling rule of the-algorithm.
(c) y* = g is the unique minimizer ofv,(¢).
Proof: Let

Q) {X| there existsu!, > 0 such that

M
AiSZNin

m=1

N
and» i, = ¢mfor all m =1, ...,M} .

i=1

F! foralli=1,.., N,

Note that if ¢ = p, thenQ(¢) corresponds to the capacity

region of the system (for stability) [3]. The variablg§, can
be viewed as some long-term fraction of time that usés
picked and the channel stateris

Recall from Proposition 5 that

N at1
(Z(Qi(ﬂ)aH)

i=1
N

[Z(QZ( >‘ - Z Qbm

=1 m=1
First, consider the case wheh € Q(¢). We will have
Va(q(t)) < 0 if q(t) # 0. Hence, starting fromy(0) = 0
we must havel, (q(t)) = 0 and g(t) = 0 for all ¢ > 0.
Therefore, part (a) holds with; = 0 for all . Part (b) then
trivially holds. Part (c) follows since the minimizer af, (¢)
for this case iy* = 0.

On the other hand, iA ¢

Vala(t))

ar(1))" Fy,

max
1<k<N

Q(¢), then for allg(t) # 0, by

settingg; (t) = () we have
[0 (gi(t))ati]att
— k
Z )\ Z ¢77L I<r}€a<XN qk )an
and 2N | GoFL(t) = 1. We thus haveV,(g(t)) < a(¢) and

Va(q(t)) < ta(¢) for all t > 0. This shows thata(¢) upper

bounds the maximum growth 1, (g(¢)). On the other hand,

let 1, be the average fraction of time [ t] that useri is
picked and the channel stateris. Thenzz L ph = ¢ fO

all m, and

+

M
1) >t lAi =Dk,
m=1

(The inequality is due to the fact that the queyemay be
empty at some points in this interval). Hence,

Va(‘](t)) > twa(d’)
However, by Lemma 7q¢(¢) = w.(¢). We thus have

Va(q(t)) = ta(@) = twa(9),

i.e. there is only one possible trajectoVy (q(¢)) given that
s(t) = to. Further, we have/, (42) = w,(¢), i.e., L
optimizesw, (¢). Since the optimizer ofv, (¢), denoted by
9, is unique, we thus have(t) = tg. This shows parts (a)
and (c). Part (b) follows from part (b) of Lemma 7. |

The following result then shows that the lower bouhdis
tight. Recall the definition of 7 in Section V-A.

Proposition 10: There existsI” and a fluid sample path in
'z whose cost is equal td,.

Proof: Let ¢* denote the solution to/,, in (26), i.e.,

Jy = Ifu("b(dll’; and letw* = w,(¢p*) > 0. (We can show that
such a¢™ always exists by showing that the infimum in (26)
can be taken within a closed subset of the original congtrain
set.) If we uses(t) = t¢™, t > 0 as the channel-rate process,
and let the queue process start fraii) = 0, theng(-) must
follow a linear trajectory according to Lemma 9, i.e.,

q(t) =tx, forall t >0,

wherey* = Z is the minimizer ofw, (¢").

Let T = —==. Consider such a trajectory over the
interval [0, T]. &Iearly, the cost of this trajectory is equal to
Ju. It only remains to show that the trajectory must overflow
at 7', which is true becaus®, (7%) = Tw,(¢") = 1. [ |

Hence, we conclude that the minimum-cost to overflow is
attained by a simple linear trajectory whose cost/js

VI. ASYMPTOTICAL OPTIMALITY OF a-ALGORITHMS

In this section, we will establish that in the limit as— oo,
the a-algorithms asymptotically achieve the largest minimum-
cost-to-overflow equal td,,¢ given in (11). To emphasize
the dependence on, we useP{ to denote the probability
distribution conditioned or@Q(0) = 0 under thea-algorithm
(with a particular value ofy). We now show the following:
Proposition 11:For any7 > 0, the following holds

lim hmsup
=0 Bo

Proof: Since max ¢;
1<i<N

log P max g; (T)) > 1| < —Iopt

T) 2 1 implies V,(q(T)) > 1,

we must have
o >1| <P¥ > 1].
g | e 0#(1) > 1] < PEIVL(a() > 1
Using Proposition 6, for all” > 0,

lim sup — B log Py { max, qZB(T)) >1

B—oo

< limsup — —Ja.

B—oo

5 0gP§Va(a(T) = 1 <

From Proposition 8limy—.oc Jo > Iopte. The result then
follows. u
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—— =1

Combining Proposition 1 and Proposition 11, we conclude 10—y T
that then-algorithms asymptotically achieve the largest decay- . \\i’\ e
rate I, of the queue-overflow probability over all scheduling
policies.

We briefly comment on the behavior of thealgorithms
when « increase. Asex — oo, the a-algorithm places more

P(maxQ>B)

and more emphasis on the queue length. For instance, in a two 0
user system, iQ)1(t) > Qa(t), F(,) > 0andFg ) > 0, then
log(Fé(t)/Fé(t)) 107 ©

all a-algorithms witha: > (01 (1)/02 (1)) would serve®;. On
the Other hand’ i1 () = Q(1), then the link with the larger Fig. 1. Case 1: Plot oP[ max Q; > B] versus the overflow-
capacity ., would be ser_ved. Therefqre’ as — oo, We threshold B for the a-algolrﬁl‘llﬁw]; Each curve corresponds to a
would expect that t_ha-al_gonthm would give more and More g ot vaiue ofo. '
preference to the link with the largest queue backlog among
all links with non-zero rates. If there are several linksttha
have the same (largest) backlog, the link with the highest ra
among them would be served. However, we caution that, if we
choosen = oo, then the resulting algorithm is the max-queue
algorithm, which is not throughput-optimal for general chal
models. Therefore, the above intuition does not directhdle
to a stable scheduling policy. We will obtain more intuition
about this issue when we look at the simulation results in
Section VII.

Note that in [7], the authors provide an explanation, in the

heavy traffic regime, for the conjecture that whenr- 0, the Fig. 2. Case 1: Plot op[lgl_ixN Qi > BJ versus the overflow
K3

a-algorithm becomes asymptotically optimal in minimizingnhreshold B for the exponential-rule. Each curve corresponds to a
the average delay. The reason that we have a different regidiferent value ofy.

of asymptotic optimality (i.ea — o) is because we study
a different objective. Although the delay metric in [7] istho
clearly defined, the objective appears to be closely relaied
minimizing the sum of queues, while our goal is to minimize Iz

TABLE |
LINK CAPACITIES IN DIFFERENT STATES

. . . m=1 m =2 m=3
max Q;. Hence, in our case it is more important to serve i=1 0 3 5
<i< . . o =2 0 9 0
the queue with the largest backlog, while in [7] it is more 223 0 9 1
important to increase the total service rate in each tiroe-sl i=4 0 9 1

A. Systems with ON-OFF Channels

Consider the scenario whei, can either take the value be given shortly. The capaciti;, of link i in channel state
0 or a positive constan€’. This scenario corresponds to g IS given by Table |. The5%-confidence intervals are very
wireless system with ON-OFF channels and the ON-rates fgP@ll: and hence they are not shown in the figures.

all users are the same. In this case, for any 0, We first simulate Case 1 when = 0.3, p; = 0.6 andps =
0.1. In Fig. 1, we plot the value 0P[1I<n%v Q; > BJ (in log-

Nappi < ok i = k EYAS
()" F £ max (ax)"F, & aiF max kb scale) against the overflow-threshditdfor the a-algorithms,

where each curve corresponds to a different value.ofVe

> 1<E<N m > <N

Hence, for anyx > 1, the a-algorithms are equivalent to the . . :
max-weight algorithm (i.e. withv — 1). Using the result in have also plotted a line with slope equal ig,. given by
this paper, we immediately reach the following corollary. ~(11)- Recall thaloy, is the maximum decay-rate of the queue-
Corollary 12: For the above ON-OFF channel model, th@Qverflow probability. We can observe from Fig. 1 that, as the
max-weight scheduling algorithm (i.ea, = 1) achieves the value of« increases, the slopes at the tail of the curves (i.e.,

largest decay-raté,,,; of the queue-overflow probability overfor large B) approachypt. H(_ence, this confirms our a_nalytical
all scheduling policies result that, as the value af increases, the asymptotic decay-

rate of the«-algorithms approaches the optimal decay-rate
VII. SIMULATION RESULTS Lopt. , _
We have also simulated the exponential-rule of [25]. At any

In this section we will provide simulation results to verify,; . t, if the channel state is, the exponential-rule chooses
the analytical results in earlier sections. We simulate tl?g serve the linki* such that

following system with4 links (i.e., N = 4) and 3 states (i.e.,

M = 3). In each time-slot, one unit of data arrives at each of . Q:(t)
the links (i.e.,A\;1 = Ay = A3 = A4 = 1). The probabilities U7 =argmax  exp ~ 7| f'mo
of each channel state are denotedpasp. andps, and will =L..N 1+ (% D k=1 Qk(t))
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JS—Y
-a-q=15
v~ hybrid

opt

P(maxQ>B)
Queue 3

10°

B Queue 1

Fig. 3. Case 2: Plot 0P[1r<n'a<XN Qi > B] versus the overflow- Fig. 5. Shape of the capacity region.
1

threshold B for the a-algorithm. Each curve corresponds to a
different value ofa.

indeed approachds,. However, for smallB the curve in fact
shifts to the right, indicating that the actual queue-owerfl
probabilityP[lg;agV Q; > B] increases a& increases. Such

a shift is more evident for smaller value Bf As B increases,
for larger values ofv the effect of the steeper slopes eventually
dominates, and the queue-overflow probability improves as
well.

To better understand this behavior, we introduce a state-
space plot as in Fig. 6. The x-axis and the y-axis are thelengt
of any two chosen queues (e@; and@Qs as in Fig. 6). This

Fig. 4. Case 2: Plot OP[l?&XN Q; > B] versus the overflow state space is divided into regions, each of which corredpon
threshold B for the exponential-rule. Each curve corresponds to a to a fixed scheduling decision. For example, in Regign
different value ofy. Queuel is served irrespective of the channel state (this is

the case because the length of Quéuis much larger than
) ) ) Queue3d). In Region2, Queuel is served in channel state
where 7 is a constant pa_lrameter i(0,1). In Fig. 2, we m = 3, and Queue3 is served in channel state, — 2.
plot P[ max @Q; > B] against the overflow thresholf for  gjq)y in Region3, Queue3 is served irrespective of the
the exponential rule, as the parametevaries. According to channel state. We refer to these regiongdasision regions
the results of [25], the exponential rule achieves the ogitimand their boundary is determined by the scheduling policy.
decay-rate of the queue-overflow probability for dhy: 7 < The dots in the figure are the states that have been visited by
1. We observe from Fig. 2 that, for = 0.25 andn = 0.5, the the system in the simulation (over some given length of time)
slopes at the tail of the curves indeed become parallélgo A similar state space plot for case 2 is shown in Fig. 8.
for large B. Forn = 0.75, such convergence has not occurred Once the probabilities of channel states are given, the
even for overflow-probability as low as)~°. Note that one capacity region of the system can be determined. For example
should not conclude from the last curve that the results pfg 5 represents the Capacity regions of case 1 and 2, I[Edjec
[25] are violated: the LDP results of [25] will still kick in to the space le and QB- For this system with two active
eventually, although at a larger value of the threshld states, we can draw a correlation between the decisionnmggio
The previous set of simulation results raise some importatg. Fig. 6), and the capacity region (e.g. case 1 in Fig\®).
issues on the applicability of large-deviation resultseSp  will refer to Region 1 and Region 3 asax-queugegions, in
ically, the results in this paper (and in [25]) are largefeuf the sense that the decision is to serve the link with the Ishge
asymptotes, i.e., they characterize the behavior of thei@ugueue, irrespective of the channel state. We refer to Region
only when the overflow-threshold approaches infinity. Thg as themax-rateregion, in the sense that now the decision
results often do not provide much information on what buffes to serve the link with the higher rate, depending on which
level is large enough for the asymptotic behavior to becorg@annel state the system is in. The two max-queue regions can
dominant. Further, an LDP only specifies the exponentigé correlated to the points; and x5 of the capacity region,
decay-rate. The factor in front of exponential term carl stiyhere one user will be served in all states. The max-ratenegi
vary substantially. Hence, one needs to be careful when cogan be correlated to the poipt of the capacity region. The
paring the performance predicted by an LDP with the actuggnificance of this correlation is that region 2 contritsute
performance of the protocol. This point is best illustratéth  an enlarged capacity region (i.e., the triangular arga, s).
Case 2 that we simulated. Here, the probability of each oflann g ,_aigorithms, as the value ofincreases, the boundaries
state is given byp, = 0.35, p = 0.5 andps = 0.15. In" panyeen the decision regions all converge to the diagome li
Fig. 3, we again plot the value #[ max Q; > BJ againstthe Thjs convergence has two implications. First, a larger ealu
overflow-thresholdB for the a-algorithms. We observe from of o enlarges the two max-queue regions (see Fig. 7). For
Fig. 3 that, asy increases, the slopes at the tail of the curvexample, Point A that was in a max-rate region for snaall
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region
3

boundary 2
oundary 2

boundary 1
boundary 1

region 2

25 30 35

0 5 10 15 20 25 30 35 0 5 10 15 20
Queue 1 Queue 1

Fig. 6. Case 1: Plot of the state space doe 1. Fig. 8. Case 2: Plot of the state space doe 1.
35
35

20 boundary 2
0 boundary 2

boundary 1 boundary 1

25 30 35 0 5 10 15 20 25 30 35

0 5 10 15 20
Queue 1 Queue 1

Fig. 7. Case 1: Plot of the state space foe= 7. Fig. 9. Case 2: Plot of the state space fok= 7.

(see Fig. 6), now moves to the max-queue region (see Fig. i8)manifested. Thus, these plots explain why the performanc
Note that at Point A, we hav@, > ()3. Hence, as the decisionplot in Fig. 1 improves with increasing. Now, comparing
boundaries approach the diagonal line, the algorithm pladée capacity region for the two cases (Fig. 5), we find that in
more emphasis on reducing the largest queue. Intuitively, t case 2, the offered load\, is closer to the line.; 3. Hence,
helps to improve the decay-rate of the probability that th@e triangular sectiop; 23 plays a more significant role in
largest queue overflows. reducing the queue length. We would thus expect the effect of
However, a second effect of increasings that the size of thinning of the max-rate region to be relatively strongearth
the max-rate region (i.e., Region 2) is reduced. As a resdut,the previous case. This is exactly what we observe in Fig. 8
for smaller value of queue-length, it becomes less likebt thand Fig. 9. At small value of (Fig. 8), the queues tend to
the system state falls into the max-rate region. Recall thetcumulate relatively more in the max-rate region. Now, as
the decision rule in the max-rate region contributes to theincreases, the stronger effect caused by the thinning of the
improved capacity region (i.e., triangular area:» 13). Hence, max-rate region forces the queue length to increase (Fig. 9)
with large value ofa, the scheduling algorithm is unlikely As a result, at small values of threshol®, the overflow
to take advantage of the increased capacity at small quepesbability in fact deteriorates.
lengths, which leads to a tendency for the queue-length toThe above observations motivate us to design a new class of
grow. This phenomenon can be observed by the fact that tgbrid scheduling policies that have the benefits of botgdar
dots in Fig. 7 now grows along the two boundary lines. It ia (for improving the large-deviation decay-rate of the queue
even more evident in a similar plot for Case 2 (in Fig. 9). Afteoverflow probability) and smalk (for having a large max-
the queue length increases, eventually the width of Regiorrdte region, which helps to improve the overflow probabgity
will be sufficiently large so that the system state is moreljik small queue lengths). Essentially, to have good largeatievi
to fall into the max-rate region. Only after that, the effeft decay-rates of the queue-overflow probability, we need & us
LDP starts to kick in, and the decay-rate of the queue-overfla largea so that the decision boundaries become close to
probability starts to improve. parallel to the diagonal line. However, this may lead to poor
Although the above discussion is restricted to the dynamipsrformance at small queue-lengths due to the thinner max-
of two queues over two active states, we feel that the aboae regions. To avoid this, we first use a smaller valuer of
two conflicting trends apply to more general cases. Indeedhen the queue-length is small and gradually change to large
the understanding of these two trends help us to interpeet #hh when queue increases. Note that this does not mean that we
results in Fig. 1 and Fig. 3. First, refer to Fig. 6 for Casedr. Fcan usea = oo and a = 0 for the largea region and the
small value ofa, the queues tend to accumulate around trenall o region, respectively. The reason is that= oo and
boundary between Regioh and Region2. As « increases, a = 0 will degenerate to the max-queue policy and the max-
the max-queue region (Regiol) enlarges, which helps to rate policy, respectively, and neither of them are throwghp
reduce the longer queue and push the state space to the orgitimal policies (see also the discussions before Section V
(Fig. 7). The conflicting effect due to thinning of the maxera A). For example, if we usex = ~o, the decision boundaries
region is not so strong, and the beneficial effect of lange will be exactly parallel to the diagonal. This means that the
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max-rate region will not become “thicker” as the queue lasgt P
increase. This may cause instability because the queus stat 0
may not be able to stay in the max-rate region for a sufficient
fraction of time.

boundary 2———>,

More specifically, the hybrid policy works by modifying the gm
weight function. The scheduling policy still picks the uséor B
service such that it has the largest valuevpfq) F’,. However, b a3
the weight of useri, w;(q), is not equal tog®* anymore. °
Instead, it contains both a term for small and a term for I e e N I TR

Queue 1

large . Specifically, let us assume that we are interested in
transitioning from smalkx to large« when the queue length Fig. 10.  Plot of the decision boundaries for the hybrid atpan.
is aroundB, = 10. We tested a hybrid policy that uses a *
combination ofo = 1 anda = 159. The weight function we 2
used iswi(q) = ¢; + (jg; — S2]%)15 where the value (q)

will be specified later. Fog; < I;(,?), the weight function is

simply ¢;. Hence, the behavior of the scheduling algorithm
is similar to o = 1. For largeg;, the term(¢; — %)15 © K
dominates. Hence, the behavior of the scheduling”algorithm I bouncary 1
switches to that ofx = 15. The oﬁset% is chosen to ’
ensure that the decision boundary does not have sudden.jumps LN P

Specifically, the value of(q) is given by

Fig. 11. Plot of the decision boundaries for exponentié-ror

N . i IRPREEE k various values of.
K(q) = 1215DN (B*Fm + [Bs — qi] IISI}%XN Fm) . (28)

0o understand the intuition behind (28), first consider We find that the same intuitions seem to also apply for

the case wheng; > B, for all queues. Then ) ;
- . i . : ' the exponential-rule [25]. Recall that Fig. 2 plots the ealu
K(q) = B. 122\7 Fy,. The offset in this case becomesOfP[lrgi)iv Q; > B] versus the overflow-threshold for the

B, min_ F! B, min_F}, SUs . . .
( 1§5N ... B.,... 1§I;J§VN ) which is exactly the exponential-rule when the parametevaries. A similar figure

point Where the decision bolindary of = 1 meets the for Case 2 is given in Fig. 4. To understand why- 0.5 seems

threshold boundarymax ¢; = B,. However, if we just use to produce the best overall performance, we plot the detisio
. I=isN ) N boundaries of the exponential-rule in Fig. 11. We can seg tha
K(q) = B, min F,, the problem is that the transition 10t the value ofy is too small, then the max-rate region (between
largea occurs too early in the case when not@lire greater the decision boundaries) is too narrow, which increases the
than B... For example, consider channel state= 2. In this queue-overflow probability at small threshold values. & th
case, the offset described above becorfigs, %, %, Ef;j ). value ofy is too large, then the max-rate region is big enough.
The projection of this offset value to the space of the queuE®wever, the decision boundaries do not become parallel to
a2, g3 andgy is (B2, Z= B=)_ As a result, the transition from the diagonal line until the queue-length is very large. Henc
a =1 to a = 15 would occur too early (at%) for ¢2, g3 the large-deviation decay-rate kicks in only at a largerugye
or q4 if ¢ is small. To compensate for this effect, we haviength. A medium value of; (around0.5) seems to achieve
introduced the second term in (28). Essentiallyyifis small, a balance between the above two cases, and produces a state-
its channel rates do not play much role in determining thepace plot that is similar to our hybrid algorithm (Fig. 10).
minimum value of (28). In this specific example,df = 0 We have also plotted the performance of the exponential-rul
andqs, g3, ¢4 > Bix, then the offset value i8B., B., B., B.). and our hybrid algorithm in Fig. 4. Their performance appear
Hence, the transition occurs at the desirable valueg,of3 to be quite comparable. Finally, we plot the performance of
and g4. the hybrid algorithm for case 1 and we find that the hybrid
We plot the decision boundaries for this hybrid algorithm ialgorithm also performs very well, which indicates that the
Fig. 10. As we can see, the max-rate region is large even forbrid algorithm is quite robust and seems to work well in all
small queue-lengths. In Fig. 3, we also plotted the perforcea cases.
of the hybrid algorithm. Compare with the curve for= 15,
we note that the curve for the hybrid algorithm has moved
to the left as desired. Also note that the slope of the curve
is close tol,,;. Hence, this figure confirms that the hybrid In this paper, we study wireless scheduling algorithms for
algorithm achieves the benefit of both largeand smalla. the downlink of a single cell that can maximize the asymptoti
decay-rate of the queue-overflow probability, as the owverflo
TWe choosen = 1 because we would like to compare with the standarghreshold approaches infinity. Specifically, we focus on the
max-weight algorithm, which is am-algorithm with « = 1. The choice « . . . . .
of o = 15 is somewhat arbitrary. Simulations usilag= 30 (not shown) class of ‘a-algorithms,” which pICk the user for service at
resulted in almost identical performance. each time that has the largest product of the transmissien ra

VIII. CONCLUSION
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multiplied by the backlog raised to the powerWe show that all m, we then have,
when a approaches infinity, thei-algorithms asymptotically

N M
achieve the largest decay-rate of the queue-overflow proba- _ Iy i
bility. A key step in proving this result is to use a Lyapunov Dw) = e50 ;5’0" ;MmFm)
function to derive a simple lower bound for the minimum-eost L} -
to-overflow under thex-algorithms. This technique, which is subject to Zg;‘% <1. (29)
of independent interest, circumvents solving the diffiouldti- =1

dimensional calculus-of-variations problem typical iisttype o _ )
of problems. Finally, using the insight from this result, wé&learly, for those such that\; < y;,, F7,, the optimal solution
design hybrid scheduling algorithms that are both close-tf" D(u) is & = 0. Let 7 denote the set of such that
optimal in terms of the asymptotic decay-rate of the overflow — tm 7 = 0. If Z'is an empty set, thed)(p) = 0. If
probability, and empirically shown to maintain small queuel iS not empty, we can use Holder's inequality that, for any
overflow probabilities over queue-length ranges of pratticPOSitivep andg such thatl /p i-1/q = 1, the following holds,
interest. For future work, we plan to extend the results toemo_i—1 @ibi < [X2;2; af]"/?[32;2, b{]'/7, where equality holds
general network and channel models. if and only if there is a constant such thata! = ~b! for all

A potential limitation of the large-deviations approactedis 1. Hence, for all¢ such that the constraint (29) is satisfied, we
in this work is that although we show optimality in terms of th ave

decay-rate, we have not been able to quantify the coeffient M N M +
before the exponential decay-term. Such coefficients mey al Z& N\ — Z pl Fio| = Z& N\ — Z ph FL
play an important role, especially when considering small ieT m=1 i=1 m=1
queue values. Unfortunately, they are much more difficult i . Ly 1] T
to quantify. The hybrid algorithm in Section VII can be N || X Moo
interpreted as an intuitive design engineered to have &rbett = Zfi ° Z Ai — Z JU
coefficient than the pure-algorithm. Le=1 =1 m=1
[~ M £y o]
APPENDIX < > [Ai = i F :
=1 m=1

A. Proof of Lemma 7 _ ) _
where equality holds if and only if

Proof: We first show thata(¢) and w,(¢) are dual

problems of each other. Letting = z¢,i =1,..., N, £ = [&] al = (30)
and introducing the variableg,, > 11<n_z?§v &, the problem Z;gi -
a(¢) can be rewritten as o -
and for some constanty > 0, &= = 2T\ —
N M M 4 i 14+ \a+1 . .
o(®) = max Z&)\i_ Z%mm Z;mzlu EL1M) N for_z = 1,..., N, or, equivalently,
£>0,n p — & = i — o phFL]T, ford = 1,...,N. Such
N B a ve%orf clearly exists whenZ is not empty. Hence,
subject to Zgla% <1 if > s, = om for all m, we have D(p) =
- . [ = S0y i Bl )™+ ™ which is true even
m = &k, for all i, m. when 7 is empty. We can therefore conclude that the dual
problem is

This is a convex optimization problem. Introducing

the Lagrange multiplierp?, > 0 for each of the N ot
constraints 7,, > &F', we obtain the Lagrangian  minD(p)= min <Z yf‘“)
N M p i pn>0 y>0,u>0 —
Lemm = LL &N - L) - = X
M
M N P P o
Zm:lln'm (qu - Dy um) . The dual objective function is subjectto g = |\ — Z @ Fi
then given by 1
N .
D(u) = max  L(& p.m) Z;um = ¢ for all m.
N atl - - .
subjectto Y ¢+ <1 This is exactly the problemu,(¢). Hence, strong duality
i=1 implies thata(®) = wa ().

N The optimizery of w,(¢) must be unique since the
Note that if Y ;_, i, # ¢m, thenD(p) = +o0 since we can objective function inw,(¢) is strictly convex iny. Using
set |n,,| arbitrarily large. Otherwise, i®".", ut, = ¢, for the complementary slackness condition, for any optimg&er
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p, e must haveu}, S,
— Zmzl u'lrrLF'rZrL]+’

M:n =0 if giF'an < 1g}€a§XN kom

= 0,

a+1

SN, & =1 whenevert # 0 by (30) Since¢; = =¥

yi = [\ — X0l FiL]T, we must haver = .

Further, ifz # 0, then sincey is unique andy_ " 20! = 1,

x must also be unique. The above set of equations are tq

[16]

[17]

(18]

[29]

exactly the condition in part (b) of the lemma. Conversely,

any

¢ and p (or, equivalently,z and p) that satisfy the

condition must correspond to the maximizer of¢) and
wq (@), respectively. Since the optimizers @f¢) andw, (¢)
are both unique, there is at most omethat satisfies the set[22]

of conditions in part (b) of the lemma.
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