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Abstract— In this paper, we are interested in wireless schedul-
ing algorithms for the downlink of a single cell that can minimize
the queue-overflow probability. Specifically, in a large-deviation
setting, we are interested in algorithms that maximize the
asymptotic decay-rate of the queue-overflow probability, as the
queue-overflow threshold approaches infinity. We first derive an
upper bound on the decay-rate of the queue-overflow probability
over all scheduling policies. We then focus on a class of scheduling
algorithms collectively referred to as the “α-algorithms.” For
a given α ≥ 1, the α-algorithm picks the user for service at
each time that has the largest product of the transmission rate
multiplied by the backlog raised to the power α. We show
that when the overflow metric is appropriately modified, the
minimum-cost-to-overflow under theα-algorithm can be achieved
by a simple linear path, and it can be written as the solution of a
vector-optimization problem. Using this structural property, we
then show that when α approaches infinity, the α-algorithms
asymptotically achieve the largest decay-rate of the queue-
overflow probability. Finally, this result enables us to design
scheduling algorithms that are both close-to-optimal in terms
of the asymptotic decay-rate of the overflow probability, and
empirically shown to maintain small queue-overflow probabilities
over queue-length ranges of practical interest.

Index Terms— Queue-Overflow Probability, Wireless Schedul-
ing, Large Deviations, Asymptotically Optimal Algorithms, Cel-
lular System.

I. I NTRODUCTION

Link scheduling is an important functionality in wireless
networks due to both the shared nature of the wireless medium
and the variations of the wireless channel over time. In the
past, it has been demonstrated that, by carefully choosing
the scheduling decision based on the channel state and/or
the demand of the users, the system performance can be
substantially improved (see, e.g., the references in [2]).Most
studies of scheduling algorithms have focused on optimizing
the long-term average throughput of the users, or in other
words stability. Consider the downlink of a single cell in a
cellular network. The base-station transmits toN users. There
is a queueQi associated with each useri = 1, 2, ..., N . Due to
interference, at any given time the base-station can only serve
the queue of one user. Hence, this system can be modelled as
a single server servingN queues. Assume that data for useri
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arrives at the base-station at a constant rateλi. Further, assume
a slotted model, and in each time-slot the wireless channel
can be in one ofM states. In each statem = 1, 2, ..., M ,
if the base-station picks useri to serve, the corresponding
service rate isF i

m. Hence, at each time-slotQi increases
by λi, and if it is served and the channel is at statem, Qi

decreases byF i
m. We assume that perfect channel information

is available at the base-station. In a stability problem [3]–[5],
the goal is to find algorithms for scheduling the transmissions
such that the queues are stabilized at given offered loads. An
important result along this direction is the development ofthe
so-called “throughput-optimal” algorithms [3]. A scheduling
algorithm is calledthroughput-optimalif, at any offered load
under which any other algorithm can stabilize the system,
this algorithm can stabilize the system as well. It is well-
known that the following class of scheduling algorithms are
throughput-optimal [3]–[5]: For a givenα ≥ 1, the base-
station picks the user for service at each time that has the
largest product of the transmission rate multiplied by the
backlog raised to the powerα. In other words, if the channel is
in statem, the base-station chooses the useri with the largest
(Qi)

αF i
m. To emphasize the dependency onα, in the sequel

we will refer to this class of throughput-optimal algorithms as
α-algorithms.

While stability is an important first-order metric of success,
for many delay-sensitive applications it is far from sufficient.
In this paper, we are interested in the probability of queue
overflow, which is equivalent to the delay-violation probability
under certain conditions. The question that we attempt to
answer is the following: Is there an optimal algorithm in the
sense that, at any given offered load, the algorithm can achieve
the smallest probability that any queue overflows, i.e., the
smallest value ofP[max1≤i≤N Qi(T ) ≥ B], whereB is the
overflow threshold. Note that if we impose a quality-of-service
(QoS) constraint on each user in the form of an upper bound
on the queue-overflow probability, then the above optimality
condition will also imply that the algorithm can support the
largest set of offered loads subject to the QoS constraint.

Unfortunately, calculating the exact queue-distributionis
often mathematically intractable. In this paper, we use large-
deviation theory [11], [12] and reformulate the QoS constraint
in terms of the asymptotic decay-rate of the queue-overflow
probability asB approaches infinity. In other words, we are
interested in finding scheduling algorithms that can achieve
the smallest possible value of

lim sup
B→∞

1

B
logP[ max

1≤i≤N
Qi(T ) ≥ B]. (1)
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Our main results are the following. We show that there
exists an optimal decay-rateIopt such that for any scheduling
algorithm

lim inf
B→∞

1

B
log(P[ max

1≤i≤N
Qi(0) ≥ B]) ≥ −Iopt.

Further, forα-algorithms,

lim
α→∞

lim sup
B→∞

1

B
logP

α
0 [ max

1≤i≤N
Qi(T ) ≥ B] ≤ −Iopt,

where P
α
0 is the probability measure for theα-algorithm.

Hence, whenα approaches infinity, theα-algorithms asymp-
totically achieve the largest decay-rate of the queue-overflow
probability.

For the above problem, it is natural to use the large-deviation
theory∗ because the overflow probability that we are interested
in is typically very small [11], [12]. Large-deviation theory
has been successfully applied to wireline networks (see, e.g.,
[13]–[19]) and to wireless scheduling algorithms that only
use the channel state to make the scheduling decisions [20]–
[22]. However, when applied to wireless scheduling algorithms
that use also the queue-length to make scheduling decisions
(e.g., theα-algorithms), this approach encounters a significant
amount of technical difficulty. Specifically, in order to apply
the large-deviation theory to queue-length-based scheduling
algorithms, one has to use sample-path large-deviation, and
formulate the problem as a multi-dimensional calculus-of-
variations (CoV) problem for finding the “most likely path to
overflow.” The decay-rate of the queue-overflow probability
then corresponds to the cost of this path, which is referred
to as the “minimum cost to overflow.” Unfortunately, for
many queue-length-based scheduling algorithms of interest,
this multi-dimensional calculus-of-variations problem is very
difficult to solve. In the literature, only some restricted cases
have been solved: Either restricted problem structures are
assumed (e.g., symmetric users and ON-OFF channels [23]),
or the size of the system is very small (only two users)
[24]. In this paper, to circumvent the difficulty of the multi-
dimensional calculus-of-variations (CoV) problem, we apply
a novel technique introduced in [26]. Specifically, we use a
Lyapunov function to map the multi-dimensional CoV prob-
lem to a one-dimensional problem, which allows us to bound
the minimum-cost-to-overflow by solutions of simple vector-
optimization problems. This technique is of independent inter-
est and may be useful for analyzing other queue-length-based
scheduling algorithms as well.

In a recent work [25]†, the author shows that the
“exponential-rule” can maximize the decay-rate of the queue-
overflow probability over all scheduling policies. The results
in this paper are comparable but different. The advantage of
working with theα-algorithms instead of the exponential-rule,
is that theα-algorithms are scale-invariant (i.e., the outcome
of the scheduling decision does not change if all queue-lengths
are multiplied by a common factor). Hence, we can use the

∗Alternatively, one may use other asymptotic techniques such as heavy-
traffic limits [6]–[8] or focus on order-optimal bounds on the expected queue-
length/packet delay [9], [10].

†Note that this work is published after our preliminary results reported in
[1].

standard sample-path large-deviation principle (LDP), instead
of the refined LDP used in [25] that is more technically-
involved. In addition, our results highlight the role that the
exponentα plays in determining the asymptotic decay-rate.
Finally, using the insight of our main result, we design a
scheduling algorithm that is both close-to-optimal in terms of
the asymptotic decay-rate of the overflow probability, and em-
pirically shown to maintain small queue-overflow probabilities
over queue-length ranges of practical interest.

II. T HE SYSTEM MODEL AND ASSUMPTIONS

We consider the downlink of a single cell in which a base-
station servesN users. We assume a slotted system, and we
assume that the state of the channel at each time slot is chosen
i.i.d from one ofM possible states. LetC(t) denote the state
of the channel at timet = 1, 2, . . . , and letpm = P[C(t) =
m], m = 1, 2, . . . , M. Let p = [p1, ..., pM ]. We assume that
the base-station can serve one user at a time. LetF i

m denote
the service rate for useri when it is picked for service and
the channel state ism.

We assume that data for useri arrive as fluid at a constant
rateλi. Let λ = [λ1, . . . , λN ]. Let Qi(t) denote the backlog of
useri at timet, and letQ(t) = [Q1(t), . . . , QN(t)]. In general,
the decision of picking which user to serve is a function of
the global backlogQ(t) and the channel stateC(t). Let U(t)
denote the index of the user picked for service at timet. The
evolution of the backlog for each useri is then governed by

Qi(t + 1) = [Qi(t) + λi −

M
∑

m=1

1{C(t)=m,U(t)=i}F
i
m]+ (2)

where [·]+ denotes the projection to[0, +∞). Note that
∑M

m=1

∑N
i=1 1{C(t)=m,U(t)=i} = 1 since only one user can

be served at a time.
A particular class of scheduling algorithms that we will

focus on are collectively referred to as the “α-algorithms”,
whereα is a parameter that takes values from the set of natural
numbers. Givenα, the behavior of the algorithm is as follows.
When the backlog of the users isQ(t) and the state of the
channel isC(t) = m, the algorithm chooses to serve the user
i for which the productQα

i (t)F i
m is the largest. If there are

several users that achieve the largestQα
i (t)F i

m together, one
of them is chosen arbitrarily. It is well-known that this class of
algorithms are throughput-optimal, i.e. they can stabilize the
system at the largest set of offer-loadsλ [3]–[5]. Note that
although these algorithms do not explicitly keep track of past
history, they do so implicitly by their dependence onQ(t).
Hence they are able to stabilize the system without explicit
knowledge of the operating conditions such as arrival rate and
channel probabilities.

Consider the system when it is operated at a given offered
load λ and is stable under a given scheduling algorithm.
Specifically, we assume that there is a positive numberǫ́ > 0
such thatλ(1 + ǫ́) is in the capacity region of the system.
This implies (refer [3]) that there exists[γ̂i

m] ≥ 0 such that
∑N

i=1 γ̂i
m = 1 for all m = 1, ..., M and

λi(1 + ǫ́) ≤

M
∑

m=1

pmγ̂i
mF i

m for all i = 1, ..., N. (3)
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In this paper, we are interested in the probability that the
largest backlog exceeds a certain thresholdB. i.e.,

P[ max
1≤i≤N

Qi(0) ≥ B]. (4)

Note that the probability in (4) is equivalent to a delay-
violation probability when the arrival ratesλi are constant,
because the two types of events are related by (see [23], [27])
P[Delay at link i ≥ di] = P[Qi(0) ≥ λidi]. The focus of this
paper is in scheduling algorithms that minimize (4).

The problem of calculating the exact probability
P[max1≤i≤N Qi(0) ≥ B] is often mathematically intractable.
In this work, we are interested in using large-deviation theory
to compute estimates of this probability. Specifically, we will
use the following limits:

I0(λ) , − lim inf
B→∞

1

B
logP

[

max
1≤i≤N

Qi(0) ≥ B

]

(5)

J0(λ) , − lim sup
B→∞

1

B
logP

[

max
1≤i≤N

Qi(0) ≥ B

]

. (6)

In essence,I0(λ) and J0(λ) are upper and lower bounds,
respectively, of the decay rate of (4), as the overflow threshold
B approaches infinity. In the following sections, we will
show that no scheduling algorithm can have a decay-rate
larger than a certain valueIopt (defined in Section IV), i.e.
I0(λ) ≤ Iopt. Then, we will show that theα-algorithms
asymptotically achieve the decay-rateIopt. In other words,
for the α-algorithms,J0(λ) approachesIopt, asα → ∞.

III. PRELIMINARIES

Since the channel states arei.i.d. in time, the following
sample-path large-deviation principle (LDP) holds for the
channel-state process. Specifically, we define the empirical
measure processS(t) = [Sm(t), m = 1, ..., M ] as follows,

Sm(t) =

∫ t

0

1{C(⌊τ⌋)=m}dτ,

where ⌊τ⌋ represents the largest integer no greater than
τ . Then, for any non-negative integerB, define the scaled
channel-rate process

sB(t) =
S(Bt)

B
. (7)

It is easy to see thatsB(·) is Lipschitz continuous and hence
its derivative exists almost everywhere. For any givenT >
0, let Ψ̃T denote the space of mappings from[0, T ] to R

M ,
equipped with the essential supremum norm [12, p176, p352].
Let PM denote the set of probability vectors of dimensionM ,
i.e. φ = [φm, m = 1, ..., M ] ∈ PM implies thatφ ≥ 0 and
∑M

m=1 φm = 1. For anyφ ∈ PM define‡

H(φ||p) =

M
∑

m=1

φm log
φm

pm
,

with the convention that0 log 0 = 0. Then, asB → ∞,
it is well-known that the sequence of scaled channel-rate
processessB(·) on the interval[0, T ] satisfies a sample-path

‡This is commonly known as the relative entropy betweenφ andp.

large-deviation principle (LDP) with good rate function [12,
Mogulskii’s Theorem (Thm 5.1.2), p176]:

IT
s (s(·)) =

{
∫ T

0
H(ṡ(t)||p)dt, if s(·) ∈ AC

∞ otherwise

whereAC denote the set of absolute continuous functions in
Ψ̃T . This LDP means that, for any setΓ̃ of trajectories inΨ̃T ,
the following inequality holds:

− inf
s(·)∈Γ̃o

IT
s (s(·)) ≤ lim inf

B→∞

1

B
logP[sB(·) ∈ Γ̃]

≤ lim sup
B→∞

1

B
logP[sB(·) ∈ Γ̃]

≤ − inf
s(·)∈Γ̃

IT
s (s(·)), (8)

whereΓ̃o and Γ̃ denote the interior and closure, respectively,
of the setΓ̃. In addition, if Γ̃ is a continuityset [12, p5], the
two bounds meet and we then have,

lim
B→∞

1

B
logP[sB(·) ∈ Γ̃] = − inf

s(·)∈Γ̃
IT
s (s(·)). (9)

Hence, the large-deviation rate-fucnctionIT
s (s(·)) character-

izes how “rarely” the trajectorys(·) occurs.
Using a similar scaling assB(·), define the scaled backlog

process

qB(t) =
Q(Bt)

B
, for t = 0, 1

B , 2
B , ..., (10)

and by linear interpolation otherwise. Hence, for eachsB(·)
and a given initial conditionqB(0), we can use (2) to
determine the correspondingqB(·). As B → ∞, we will have
a sequence ofsB(·) and qB(·). It is easy to see that both
sB(·) andqB(·) are Lipschitz-continuous. Hence, there must
exist a subsequence that converges uniformly over the interval
[0, T ]. We use(s(·), q(·)) to denote such a limit, and we refer
to it as afluid sample path.

In essense, the goal of the rest of the paper is to use the
known sample-path LDP ofsB(·) to characterize that ofqB(·)
and that of the queue-overflow probability. In [1], we assume
that a sample-path LDP also holds forqB(·). Unfortunately,
such an assumption appears to be difficult to verify. Instead,
in this paper we will use a different approach to establish the
desirable results.

IV. A N UPPERBOUND ON THE DECAY-RATE OF THE

OVERFLOW PROBABILITY

In this section, we first present an upper boundIopt on
I0(λ) (defined in (5)) under a given offered loadλ. This
valueIopt bounds from above the decay-rate for the overflow
probability of the stationary backlog processQ(t) over all
scheduling policies. For every probability vectorφ ∈ PM ,
define the following optimization problem:

w(φ) , inf
[γ̃i

m]
max

1≤i≤N

[

λi −
M
∑

m=1

φmγ̃i
mF i

m

]+

subject to
N
∑

i=1

γ̃i
m = 1 for all m = 1, ..., M

γ̃i
m ≥ 0 for all i = 1, ..., N andm.
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Here, γ̃i
m can be interpreted as some long-term fraction-of-

time that useri is served when the channel state ism. Hence,
if the channel-rate process is given bys(t) = φt, then [λi −
∑M

m=1 φmγ̃i
mF i

m]+ denotes the long-term growth-rate of the
backlog of useri. Further, if all queues start empty, thenw(φ)
is the minimum rate of growth of the backlog of the largest
queue.

Next, defineIopt as:

Iopt , inf
{φ∈PM | w(φ)>0}

H(φ||p)

w(φ)
. (11)

Given a fixed offered loadλ, assume that the backlog process
Q(·) under a given scheduling policy is stationary and ergodic.
We will show the following result§.

Proposition 1: Under any scheduling policy, the following
holds,

lim inf
B→∞

1

B
P

(

max
1≤i≤N

Qi(0) ≥ B

)

≥ −Iopt. (12)

In other words,Iopt is an upper bound for the decay-rate of the
overflow probability over all scheduling policies. This upper
bound, although in a different form, is equal to the one derived
in [25].

Towards this end, we first show that the functionw(·)
provides a lower bound on the backlog of the largest queue,
as proved in the following lemma.

Lemma 2:For anyǫ > 0, there existsB0 > 0 such that for
all B ≥ B0 and all scaled channel-rate processsB(·) (with
sB(0) = 0), the following holds

max
1≤i≤N

qB
i (T ) ≥ Tw

(

sB(T )

T

)

− ǫ, for all T > 0.

Proof: Note that the queue backlog process is related to
the channel-state process by Equation (2). Take the scalingin
(7) and (10). Then, givensB(·), at any timet such thatBt is
an integer, we must have,

qB
i (t) ≥

[

λit −

∫ t

0

M
∑

m=1

ṡB
m(τ)1{U(⌊Bτ⌋)=i}F

i
mdτ

]+

.

For anyT > 0, there must exist a value oft such thatBt is
an integer and|t − T | ≤ 1/B. Hence, for anyǫ > 0, there
must existB0 > 0 such that for allB ≥ B0,

qB
i (T ) ≥

[

λiT −

∫ T

0

M
∑

m=1

ṡB
m(τ)1{U(⌊Bτ⌋)=i}F

i
mdτ

]+

− ǫ.

Let φm = sB
m(T )/T, m = 1, ..., M . If φm > 0, let

γ̃i
m =

1

sB
m(T )

∫ T

0

ṡB
m(τ)1{U(⌊Bτ⌋)=i}dτ.

Otherwise, letγ̃1
m = 1 and γ̃i

m = 0 for i ≥ 2. We then

have,qB
i (T ) ≥ T

[

λi −
∑M

m=1 φmγ̃i
mF i

m

]+

− ǫ. Taking the
maximum over alli = 1, ..., N , we have

max
1≤i≤N

qB
i (T ) ≥ T max

1≤i≤N

[

λi −

M
∑

m=1

φmγ̃i
mF i

m

]+

− ǫ.

§Note Proposition 1 also holds trivially if the system is unstable.

Finally, since
∑N

i=1 1{U(⌊Bτ⌋)=i} = 1, [γ̃i
m] is a feasible point

for the optimization problemw(sB(T )
T ). Thus, we obtain the

lower bound that max
1≤i≤N

qB
i (T ) ≥ Tw(sB(T )

T ) − ǫ.

In addition, it is easy to show that the value ofw(φ) is
continuous with respect toφ as stated below in Lemma 3. Let
‖φ‖ denote the Euclidean norm ofφ.

Lemma 3:Let φ1 and φ2 be vectors fromPM . The opti-
mization problemw(·) is continuous in the sense that for any
ǫ > 0 and

∥

∥φ
1 − φ

2
∥

∥ < ǫ, the following holds,

|w(φ1) − w(φ2)| ≤ ǫ

N
∑

i=1

M
∑

m=1

F i
m.

The intuition behind Lemma 3 comes from the fact that the
function max

1≤i≤N
[λi −

∑M
m=1 φmγ̃i

mF i
m]+ is continuous inφ

for any [γ̃i
m]. The detailed proof is provided in our technical

report [28]. We can now prove Proposition 1.
Proof: (of Proposition 1) For anyδ > 0, we can

find φδ from {φ ∈ PM | w(φ) > 0} such that H(φδ||p)
w(φδ) <

Iopt + δ. Define sδ(t) , tφδ for t ≥ 0. Let ǫ be some

positive number and letT =
1+ǫ+ǫ

∑M
m=1

∑N
i=1 F i

m

w(φ
δ
)

. Let

BT (sδ(·), ǫ) be the set of functions in the spaceΨ̃T such that
supt∈[0,T ] ‖s(t) − sδ(t)‖ < ǫ. Therefore, for anyB, sB(·) ∈

BT (sδ(·), ǫ) implies
∥

∥

∥

sB(T )
T − φδ

∥

∥

∥
< ǫ

T . By Lemma 3, this
in turn implies that

Tw

(

sB(T )

T

)

≥ Tw(φδ) − ǫ

M
∑

m=1

N
∑

i=1

F i
m. (13)

Now, using Lemma 2, for allB > B0 and sB(·), we have
max

1≤i≤N
qB
i (T ) ≥ Tw(sB(T )

T )− ǫ. Hence, by (13) we conclude

that, for allB > B0 andsB(·) ∈ BT (sδ(·), ǫ), we have,

max
1≤i≤N

qB
i (T ) ≥ Tw(φδ) − ǫ − ǫ

M
∑

m=1

N
∑

i=1

F i
m = 1, (14)

where equality holds by the definition ofT . Therefore,

P

(

max
1≤i≤N

Qi(0) ≥ B

)

= P

(

max
1≤i≤N

Qi(BT ) ≥ B

)

= P

(

max
1≤i≤N

qB
i (T ) ≥ 1

)

≥ P(sB(·) ∈ BT (sδ(·), ǫ)).

By the LDP forsB(·) (see Inequality (8)), we then have

lim inf
B→∞

1

B
logP

(

max
1≤i≤N

Qi(0) ≥ B

)

≥ lim inf
B→∞

1

B
logP[sB(·) ∈ BT (sδ(·), ǫ)]

≥ − inf
s(·)∈BT (sδ(·),ǫ)

∫ T

0

H(ṡ(t)||p)dt

≥ −

∫ T

0

H(ṡδ(t)||p)dt = −TH(φδ||p)

≥ −

(

1 + ǫ + ǫ

M
∑

m=1

N
∑

i=1

F i
m

)

(Iopt + δ).
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Sinceδ andǫ can be arbitrarily small, we conclude that

lim inf
B→∞

1

B
log

(

P

(

max
1≤i≤N

Qi(0) ≥ B

))

≥ −Iopt.

V. A L OWER BOUND ON THE DECAY-RATE OF THE

OVERFLOW PROBABILITY FOR α-ALGORITHMS

In this section, we will use the following modified
queue-overflow event{Vα(qB(t)) ≥ 1}, where Vα(q) ,
(
∑N

i=1(qi)
α+1)

1
α+1 . Note that this overflow-event is different

from the queue-overflow event{ max
1≤i≤N

qB
i (t) ≥ 1} that is

used in earlier sections. It turns out that computing the
large-deviation decay-rate forPr{ max

1≤i≤N
qB
i (t) ≥ 1} requires

solving a calculus-of-variations problem that is very difficult.
The reason to use the modified overflow metricVα(qB(t)) is
that the corresponding decay rate is much easier to compute
andVα(qB(t)) approximates the functionmax

1≤i≤N
qB
i (t) when

α is large. To see this, note that asα → ∞, the difference be-
tweenVα(qB(t)) and max

1≤i≤N
qB
i (t) decreases to0. Further, the

function Vα(Q) is a Lyapunov function for theα-algorithm.
Hence, the theory developed in [26] applies and enables us
to provide analytical results for this modified overflow metric.
On the other hand, even thoughmax

1≤i≤N
Qi may be viewed as

a Lyapunov function for some throughput-optimal algorithm,
e.g., the exponential-rule [25], the algorithm is typically not
scale-invariant. Hence, it appears to be difficult to apply the
theory of [26] directly on max

1≤i≤N
Qi.

A. A General Lower Bound

We first provide a lower-bound that relates the decay-rate
of the overflow probability to the “minimum-cost-to-overflow”
among all fluid sample paths. For ease of exposition, instead
of considering the stationary system, we consider a system that
starts at time0 (although the results can also be extended to the
stationary system as we will comment later). Specifically, let
Q(0) = 0. Let P0 denote the probability measure conditioned
on Q(0) = 0. For anyT > 0, let Γ̂T denote the set of fluid
sample paths(s(·), q(·)) on the interval[0, T ] such thatq(0) =
0 andVα(q(T )) ≥ 1. We then have the following lower-bound,
which is comparable to Theorem 7.1 of [25] although we do
not need to use the refined LDP.

Proposition 4: ConsiderΓ̂T as defined earlier. Then, the
following holds:

lim sup
B→∞

1

B
logP0[Vα(qB(T )) ≥ 1]

≤ − inf
(s(·),q(·))∈Γ̂T

∫ T

0

H(ṡ(t)||p)dt. (15)

Remark:The infimum on the right-hand-side of (15) is often
called the “minimum cost to overflow.” This result reflects the
well-celebrated large-deviation philosophy that “rare events
occur in the most likely way.” Specifically, Proposition 4 states
that the probability of queue overflow is determined mostly by
the smallest cost among all fluid sample paths that overflow.

This fluid sample path is often referred to as the “most likely
path to overflow.”

Proof: Fix T > 0. Recall that we have setqB(0) = 0 for
all B. Let Γ̃B be the set of channel rate processessB(·) such
that the corresponding backlog process satisfiesVα(qB(T )) ≥
1. For all n ≥ 1, we have

lim sup
B→∞

1

B
logP

[

sB(·) ∈ Γ̃B
]

(16)

≤ lim sup
B→∞

1

B
logP

[

sB(·) ∈ ∪∞
B́=n

Γ̃B́
]

. (17)

By the LDP forsB(·) (see (8)), we have

lim sup
B→∞

1

B
log P

[

sB(·) ∈ ∪∞
B́=n

Γ̃B́
]

≤ − inf
s(·)∈∪∞

B=n
Γ̃B

∫ T

0

H(ṡ(t)||p)dt.

Note that the sequence of sets∪∞
B=nΓ̃B is decreasing inn,

we therefore have

lim sup
B→∞

1

B
logP

[

sB(·) ∈ Γ̃B
]

≤ − lim
n→∞

inf
s(·)∈∪∞

B=n
Γ̃B

∫ T

0

H(ṡ(t)||p)dt. (18)

It remains to show that the right-hand-side of (18) is no
greater than that of (15). For eachn, we can findyn(·) ∈

∪∞
B=nΓ̃B such that
∫ T

0

H(ẏn(t)||p)dt < inf
s(·)∈∪∞

B=n
Γ̃B

∫ T

0

H(ṡ(t)||p)dt +
1

n
.

(19)
Since yn(·) is equicontinuous, we can find a subsequence
that converges uniformly on[0, T ]. For ease of exposition, we
slightly abuse notation and denote this subsequence byyn(·).
Let y∗(·) denote its limit, i.e.,limn→∞ yn(·) = y∗(·). Since
the cost function

∫ T

0 H(·||p)dt is lower semi-continuous, we
have

lim inf
n→∞

∫ T

0

H(ẏn(t)||p)dt ≥

∫ T

0

H(ẏ∗(t)||p)dt. (20)

For each yn(·), since it belongs to the closure
of ∪∞

B=nΓ̃B, we can find a sequenceyn,m(·) ∈

∪∞
B=nΓ̃B, m = 1, 2, ... such thatyn(·) = limm→∞ yn,m(·).

Then from all yn,m(·), n = 1, 2, ..., m = 1, 2, ...,
we can find another sequenceyn,mn

(·), n = 1, 2, ...
such that limn→∞ yn,mn

(·) = y∗(·). (For example, we
can let m1 = 1. Then, given mn, we can choose
mn+1 such thatsup{t∈[0,T ]}

∥

∥

∥yn+1,mn+1
(t) − yn+1(t)

∥

∥

∥ <

sup{t∈[0,T ]}‖yn,mn
(t)−yn(t)‖

2 .) For notational convenience, let
ýn(·) denote the sequenceyn,mn

(·) from here on.
For eachn, let q́n(·) be the backlog process corresponding

to the channel rate processýn(·). By construction,́qn(0) = 0
andVα(q́n(T )) ≥ 1 for all n. Since the backlog processes are
equicontinuous, we can find a subsequence of(ýn, q́n) such
that this subsequence converges to(y∗(·), q∗(·)) uniformly
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over the interval[0, T ], whereq∗(·) satisfiesq∗(0) = 0 and
Vα(q∗(T )) ≥ 1. Therefore,(y∗(·), q∗(·)) is in Γ̂T and thus
∫ T

0

H(ẏ∗(t)||p)dt ≥ inf
(s(·),q(·))∈Γ̂T

∫ T

0

H(ṡ(t)||p)dt.

Combining with (19) and (20), we conclude that

lim
n→∞

inf
s(·)∈∪∞

B=n
Γ̃B

∫ T

0

H(ṡ(t)||p)dt

≥ lim inf
n→∞

∫ T

0

H(ẏn(t)||p)dt

≥ inf
(s(·),q(·))∈Γ̂T

∫ T

0

H(ṡ(t)||p)dt.

This along with (18) proves the proposition.

B. Bounding the Minimum-Cost-to-Overflow Through Lya-
punov Functions

Finding the minimum-cost to overflow in (15) is a multi-
dimensional calculus-of-variations problem, which is often
very difficult [23], [24], [29]. In this section, we first use
the idea of [26] to show another much simpler lower bound
(Proposition 6). We will exploit the fact thatVα is a Lyapunov
function of the system operated under theα-algorithm. We
will then show that this lower bound is indeed equal to the
minimum-cost to overflow, and it can be attained by a simple
linear trajectory.

We begin with a result that characterizes the relationship
betweenVα(q(·)) and the channel-rate processs(·).

Proposition 5: Let (s(·), q(·)) be any fluid sample path.
Except for a setT0 of measure zero, at any timet /∈ T0 and
q(t) 6= 0, the drift of the Lyapunov functionVα(q(t)) is:

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)

−α
α+1

[

N
∑

i=1

(qi(t))
αλi

−
M
∑

m=1

ṡm(t) max
1≤k≤N

((qk(t))αF k
m)

]

. (21)

The proof is provided in our technical report [28].
Remark:An intuitive way to understand Proposition 5 is as

follows. From (2), if we take the scaling in (7) and (10) and
let B → ∞, we would expect that the limiting fluid sample
path will follow an ordinary differential equation as follows:
There exists̃γi

m(t), i = 1, ..., N, m = 1, ..., M such that

q̇i(t) = λi −

M
∑

m=1

ṡm(t)γ̃i
m(t)F i

m

if qi(t) > 0 or λi −
∑M

m=1 ṡm(t)γ̃i
m(t)F i

m ≥ 0; q̇i(t) = 0,
otherwise; and[γ̃i

m(t)] are non-negative and satisfy

N
∑

i=1

γ̃i
m(t) = 1 for all m = 1, ..., M, (22)

γ̃i
m(t) = 0 whenever(qi(t))

αF i
m < max

1≤k≤N
(qk(t))αF k

m.

The variables̃γi
m(t) can be viewed as the fraction of time that

user i is served when channel state ism, in an infinitesimal

interval immediately aftert. Then, using the definition of
Vα(·), at any timet whenq(t) is differentiable, we must have

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)

−α
α+1

[

N
∑

i=1

(qi(t))
αλi

−

M
∑

m=1

ṡm(t)

N
∑

i=1

(qi(t))
αγ̃i

m(t)F i
m

]

.

Using (22), Equation (21) then follows. In our technical report
[28] , we provide the proof of Proposition 5, which makes this
argument more precise.

Next, for anyφ ∈ PM , let x = [xi, i = 1, ..., N ], and let

a(φ) = max
x≥0

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
1≤k≤N

(xα
k F k

m)

]

subject to
N
∑

i=1

xα+1
i ≤ 1. (23)

We will show soon that the Lyapunov drift on the right-hand-
side of (21) must be no larger thana(ṡ(t)). Further, let

Jα , inf
{φ∈PM | a(φ)>0}

H(φ||p)

a(φ)
. (24)

Then intuitively,Jα can be interpreted as a lower bound on
unit cost to raiseVα(q(t)). In order to overflow, we must raise
Vα(q(t)) from 0 to 1. Hence,Jα should be a lower bound on
the minimum-cost to overflow, which is indeed the case as we
show in the following proposition.

Proposition 6: For anyT > 0, the following holds,

lim sup
B→∞

1

B
logP0[Vα(qB(T )) ≥ 1] ≤ −Jα. (25)

Remark:Note that the eventVα(qB(T )) ≥ 1 is equivalent to
Vα(Q(BT )) ≥ B. As T → ∞, we would expect that the prob-
ability P0[Vα(qB(T )) ≥ 1] approaches the stationary overflow
probabilityP[Vα(qB(0)) ≥ 1]. SinceJα is independent ofT ,
we would then expect thatJα becomes a lower bound for the
decay rate of the stationary overflow probability, i.e.

lim sup
B→∞

1

B
logP[Vα(qB(0)) ≥ 1] ≤ −Jα.

This convergence can indeed be shown using the so-called
Freidlin-Wentzell theory [11], [25]. However, the detailsare
quite technical. Due to space constraints, we do not provide
the details here. Interested readers can refer to our technical
report at [28].

Proof: (of Proposition 6) FixT > 0. Recall the definition
of Γ̂T in Section V-A. For any fluid sample path(s(·), q(·))
in Γ̂T (which overflows at timeT ), we will show that the
cost of the path

∫ T

0 H(ṡ(t)||p)dt is at leastJα. The result
of the proposition then follows from Proposition 4. Towards
this end, note that since the backlog processq(·) is Lipschitz-
continuous, it is differentiable almost everywhere. According
to Proposition 5, for anyt such thatt /∈ T0 andq(t) 6= 0, we
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must have,

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)

−α
α+1

[

N
∑

i=1

(qi(t))
αλi

−

M
∑

m=1

ṡm(t) max
1≤k≤N

((qk(t))αF k
m)

]

=

N
∑

i=1

q̃α
i λi −

M
∑

m=1

ṡm(t) max
1≤k≤N

(q̃α
k F k

m)

where q̃i = qi(t)
[

∑N
i=1(qi(t))

α+1
]− 1

α+1

, i = 1,...,N. Since
∑N

i=1 q̃α+1
i = 1, q̃ = [q̃i] is a feasible point that satisfies the

constraint in (23). We then have

V̇α(q(t)) ≤ a(ṡ(t)).

Hence, if V̇α(q(t)) > 0, we must havea(ṡ(t)) > 0. Then,
using the definition ofJα in (24), we have

H(ṡ(t)||p) ≥ JαV̇α(q(t)).

On the other hand, iḟVα(q(t)) ≤ 0, the above inequality also
holds trivially. Hence, the cost of the path must satisfy

∫ T

0

H(ṡ(t)||p)dt ≥ Jα

∫ T

0

V̇α(q(t))dt.

Recall that any fluid sample path in̂ΓT must satisfyq(0) = 0
andVα(q(T )) ≥ 1. Hence,

∫ T

0

V̇α(q(t))dt ≥ 1.

The result of the proposition then follows.
Remark:We briefly comment on why it is critical to use a

Lyapunov function in the above procedure. Although a result
similar to Proposition 6 could also be derived if we replace
Vα(·) by any function ofq(t), such a result is only useful
when the lower boundJα is positive (otherwise the bound is
trivial). The fact thatVα(·) is a Lyapunov function is the key
to ensure this property. To see this, note that ifφ = p, then the
drift of the Lyapunov function will be negative for anyq(t)
(which is required for the stability of the system), implying
that the value ofa(p) = 0. Hence, for the constraint in (24) to
be satisfied,φ must be away fromp. As a result, the objective
function of (24) must be positive. We will see soon that this
then implies that the infimum in (24) is also positive.

C. The Path-to-Overflow That Attains the Lower BoundJα

In this subsection, we further simplifyJα, and then show
that Jα is equal to the minimum-cost to overflow in (15).
We define the following optimization problem. Lety =
[y1, ..., yN ]. For anyφ ∈ PM , define

wα(φ) = min
y≥0,[γ̃i

m]≥0
Vα(y)

subject to yi =

[

λi −

M
∑

m=1

φmγ̃i
mF i

m

]+

for all i

N
∑

i=1

γ̃i
m = 1 for all m = 1, ..., M.

Note thatwα(φ) is analogous tow(φ) defined in section IV.
Again, γ̃i

m can be interpreted as some long-term fraction-of-
time that useri is served when the channel state ism. Hence, if
the channel-rate process is given bys(t) = φt, thenyi denotes
the long-term growth-rate of the backlog of useri. Further, if
all queues start empty, thenwα(φ) is the minimum rate of
growth of Vα(q(t)) over all policies. We have the following
important lemma.

Lemma 7:For anyφ ∈ PM , the following holds,

(a)
wα(φ) = a(φ).

(b) The optimizerx∗ for a(φ) and the optimizery∗ for
wα(φ) are both unique and they satisfyx∗ = γy∗ for
someγ > 0. Further, if the optimizerx∗ 6= 0, thenx∗

and y∗ are the only vectors that satisfy the following
conditions: there existµi

m ≥ 0 such that
∑N

i=1 µi
m =

φm, y∗
i = [λi −

∑M
m=1 µi

mF i
m]+, x∗

i = γy∗
i for some

γ > 0,
∑N

i=1(x
∗
i )

α+1 ≤ 1, and

µi
m = 0 whenever(x∗

i )
αF i

m < max
1≤k≤N

(x∗
k)αF k

m.

This lemma is proved by showing that the two problemsa(φ)
andwα(φ) can be viewed as dual problems of each other. The
details of the proof is provided in appendix A.

Using part (a) of Lemma 7, we immediately obtain the
following.

Jα = inf
{φ∈PM | wα(φ)>0}

H(φ||p)

wα(φ)
. (26)

Further, according to Proposition 6, the above expression
provides a lower bound for the decay-rate of the queue-
overflow probabilityP0[Vα(qB

i (T )) ≥ 1] for any T > 0.
The following lemma shows thatJα is positive, and hence the
above bound is non-trivial.

Proposition 8:

Jα ≥
1

N
1

α+1

Iopt.

Proof: Recall thatJα = inf{φ∈PM | wα(φ)>0}
H(φ||p)

wα(φ)

andIopt = inf{φ∈PM | w(φ)>0}
H(φ||p)

w(φ)
.

For all x ≥ 0, we haveN
1

α+1 max
1≤i≤N

xi ≥ Vα(x). Further,

sincew(φ) andwα(φ) have the same constraint set, we have
N

1
α+1 w(φ) ≥ wα(φ) and as a consequence we have

{φ | wα(φ) > 0} ⊆ {φ | w(φ) > 0}. (27)

Hence, for anyφ such thatwα(φ) > 0, we have

H(φ‖|p)

wα(φ)
≥

1

N
1

α+1

H(φ‖|p)

w(φ)
.

Taking infimum over the corresponding constraint sets and
using (27), we then obtainJα ≥ 1

N
1

α+1
Iopt.

Finally, we can show that the lower boundJα is tight, in the
sense that there existsT > 0 and a trajectory that overflows
at T with costJα. We will need the following lemma, which
provides a structural property of the fluid sample path when
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the channel-rate process is linear. Specifically, if the channel-
rate processs(·) is linear, then the queue trajectoryq(·) must
also be linear, and its derivative must solvewα(φ).

Lemma 9:Consider a fluid sample path(s(t), q(t)) under
theα-algorithm. Ifq(0) = 0 ands(t) = tφ for t ≥ 0, then the
corresponding queue trajectoryq(t) must satisfy the following:

(a) The queue trajectory is linear, i.e., there existsỹ =
[ỹi, i = 1, ..., N ] ≥ 0, such thatq(t) = tỹ for all t ≥ 0.

(b) There must existµi
m ≥ 0 such that

∑N
i=1 µi

m = φm,
ỹi = [λi −

∑M
m=1 µi

mF i
m]+ and

µi
m = 0 whenever̃yα

i F i
m < max

1≤k≤N
ỹα

k F k
m.

In other words, the queue trajectoryq(t) is consistent
with the scheduling rule of theα-algorithm.

(c) y∗ = ỹ is the unique minimizer ofwα(φ).
Proof: Let

Ω(φ) =
{

λ | there existsµi
m ≥ 0 such that

λi ≤

M
∑

m=1

µi
mF i

m for all i = 1, ..., N,

and
N
∑

i=1

µi
m = φmfor all m = 1, ..., M

}

.

Note that if φ = p, then Ω(φ) corresponds to the capacity
region of the system (for stability) [3]. The variablesµi

m can
be viewed as some long-term fraction of time that useri is
picked and the channel state ism.

Recall from Proposition 5 that

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)

−α
α+1

×

[

N
∑

i=1

(qi(t))
αλi −

M
∑

m=1

φm max
1≤k≤N

(qk(t))αF k
m

]

.

First, consider the case whenλ ∈ Ω(φ). We will have
V̇α(q(t)) ≤ 0 if q(t) 6= 0. Hence, starting fromq(0) = 0,
we must haveVα(q(t)) = 0 and q(t) = 0 for all t ≥ 0.
Therefore, part (a) holds with̃yi = 0 for all i. Part (b) then
trivially holds. Part (c) follows since the minimizer ofwα(φ)
for this case isy∗ = 0.

On the other hand, ifλ /∈ Ω(φ), then for allq(t) 6= 0, by
settingq̂i(t) = qi(t)

[
∑

N
i=1(qi(t))α+1]

1
α+1

, we have

V̇α(q(t)) =

N
∑

i=1

q̂α
i (t)λi −

M
∑

m=1

φm max
1≤k≤N

q̂α
k (t)F k

m,

and
∑N

i=1 q̂α+1
i (t) = 1. We thus haveV̇α(q(t)) ≤ a(φ) and

Vα(q(t)) ≤ ta(φ) for all t ≥ 0. This shows thatta(φ) upper
bounds the maximum growth ofVα(q(t)). On the other hand,
let µi

m be the average fraction of time in[0, t] that useri is
picked and the channel state ism. Then

∑N
i=1 µi

m = φm for
all m, and

qi(t) ≥ t

[

λi −

M
∑

m=1

µi
mF i

m

]+

.

(The inequality is due to the fact that the queueqi may be
empty at some points in this interval). Hence,

Vα(q(t)) ≥ twα(φ).

However, by Lemma 7,a(φ) = wα(φ). We thus have

Vα(q(t)) = ta(φ) = twα(φ),

i.e. there is only one possible trajectoryVα(q(t)) given that
s(t) = tφ. Further, we haveVα(q(t)

t ) = wα(φ), i.e., q(t)
t

optimizeswα(φ). Since the optimizer ofwα(φ), denoted by
ỹ, is unique, we thus haveq(t) = tỹ. This shows parts (a)
and (c). Part (b) follows from part (b) of Lemma 7.

The following result then shows that the lower boundJα is
tight. Recall the definition of̂ΓT in Section V-A.

Proposition 10: There existsT and a fluid sample path in
Γ̂T whose cost is equal toJα.

Proof: Let φ∗ denote the solution toJα in (26), i.e.,
Jα = H(φ∗||p)

wα(φ∗) , and letw∗ = wα(φ∗) > 0. (We can show that
such aφ∗ always exists by showing that the infimum in (26)
can be taken within a closed subset of the original constraint
set.) If we uses(t) = tφ∗, t ≥ 0 as the channel-rate process,
and let the queue process start fromq(0) = 0, thenq(·) must
follow a linear trajectory according to Lemma 9, i.e.,

q(t) = tx̃, for all t ≥ 0,

wherey∗ = x̃ is the minimizer ofwα(φ∗).
Let T = 1

wα(φ∗
)
. Consider such a trajectory over the

interval [0, T ]. Clearly, the cost of this trajectory is equal to
Jα. It only remains to show that the trajectory must overflow
at T , which is true becauseVα(T x̃) = Twα(φ∗) = 1.

Hence, we conclude that the minimum-cost to overflow is
attained by a simple linear trajectory whose cost isJα.

VI. A SYMPTOTICAL OPTIMALITY OF α-ALGORITHMS

In this section, we will establish that in the limit asα → ∞,
theα-algorithms asymptotically achieve the largest minimum-
cost-to-overflow equal toIopt given in (11). To emphasize
the dependence onα, we useP

α
0 to denote the probability

distribution conditioned onQ(0) = 0 under theα-algorithm
(with a particular value ofα). We now show the following:

Proposition 11: For anyT > 0, the following holds

lim
α→∞

lim sup
B→∞

1

B
logP

α
0

[

max
1≤i≤N

qB
i (T )) ≥ 1

]

≤ −Iopt.

Proof: Since max
1≤i≤N

qi(T ) ≥ 1 implies Vα(q(T )) ≥ 1,

we must have

P
α
0

[

max
1≤i≤N

qB
i (T )) ≥ 1

]

≤ P
α
0 [Vα(q(T )) ≥ 1].

Using Proposition 6, for allT > 0,

lim sup
B→∞

1

B
logP

α
0

[

max
1≤i≤N

qB
i (T )) ≥ 1

]

≤ lim sup
B→∞

1

B
logP

α
0 [Vα(q(T )) ≥ 1] ≤ −Jα.

From Proposition 8,limα→∞ Jα ≥ Iopt. The result then
follows.
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Combining Proposition 1 and Proposition 11, we conclude
that theα-algorithms asymptotically achieve the largest decay-
rateIopt of the queue-overflow probability over all scheduling
policies.

We briefly comment on the behavior of theα-algorithms
when α increase. Asα → ∞, the α-algorithm places more
and more emphasis on the queue length. For instance, in a two
user system, ifQ1(t) > Q2(t), F 1

C(t) > 0 andF 2
C(t) > 0, then

all α-algorithms withα >
log(F 2

C(t)/F 1
C(t))

log(Q1(t)/Q2(t))
would serveQ1. On

the other hand, ifQ1(t) = Q2(t), then the link with the larger
capacityF i

C(t) would be served. Therefore, asα → ∞, we
would expect that theα-algorithm would give more and more
preference to the link with the largest queue backlog among
all links with non-zero rates. If there are several links that
have the same (largest) backlog, the link with the highest rate
among them would be served. However, we caution that, if we
chooseα = ∞, then the resulting algorithm is the max-queue
algorithm, which is not throughput-optimal for general channel
models. Therefore, the above intuition does not directly lead
to a stable scheduling policy. We will obtain more intuition
about this issue when we look at the simulation results in
Section VII.

Note that in [7], the authors provide an explanation, in the
heavy traffic regime, for the conjecture that whenα → 0, the
α-algorithm becomes asymptotically optimal in minimizing
the average delay. The reason that we have a different regime
of asymptotic optimality (i.e.α → ∞) is because we study
a different objective. Although the delay metric in [7] is not
clearly defined, the objective appears to be closely relatedto
minimizing the sum of queues, while our goal is to minimize
max

1≤i≤N
Qi. Hence, in our case it is more important to serve

the queue with the largest backlog, while in [7] it is more
important to increase the total service rate in each time-slot.

A. Systems with ON-OFF Channels

Consider the scenario whereF i
m can either take the value

0 or a positive constantC. This scenario corresponds to a
wireless system with ON-OFF channels and the ON-rates for
all users are the same. In this case, for anyα > 0,

(qi)
αF i

m S max
1≤k≤N

(qk)αF k
m ⇔ qiF

i
m S max

1≤k≤N
qkF k

m.

Hence, for anyα ≥ 1, the α-algorithms are equivalent to the
max-weight algorithm (i.e. withα = 1). Using the result in
this paper, we immediately reach the following corollary.

Corollary 12: For the above ON-OFF channel model, the
max-weight scheduling algorithm (i.e.,α = 1) achieves the
largest decay-rateIopt of the queue-overflow probability over
all scheduling policies.

VII. S IMULATION RESULTS

In this section we will provide simulation results to verify
the analytical results in earlier sections. We simulate the
following system with4 links (i.e.,N = 4) and3 states (i.e.,
M = 3). In each time-slot, one unit of data arrives at each of
the links (i.e.,λ1 = λ2 = λ3 = λ4 = 1). The probabilities
of each channel state are denoted asp1, p2 andp3, and will
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Fig. 1. Case 1: Plot ofP[ max
1≤i≤N

Qi ≥ B] versus the overflow-

threshold B for the α-algorithms. Each curve corresponds to a
different value ofα.
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Fig. 2. Case 1: Plot ofP[ max
1≤i≤N

Qi ≥ B] versus the overflow

thresholdB for the exponential-rule. Each curve corresponds to a
different value ofη.

TABLE I

L INK CAPACITIES IN DIFFERENT STATES

F i
m m = 1 m = 2 m = 3

i = 1 0 3 5
i = 2 0 9 0
i = 3 0 9 1
i = 4 0 9 1

be given shortly. The capacityF i
m of link i in channel state

m is given by Table I. The95%-confidence intervals are very
small, and hence they are not shown in the figures.

We first simulate Case 1 whenp1 = 0.3, p2 = 0.6 andp3 =
0.1. In Fig. 1, we plot the value ofP[ max

1≤i≤N
Qi ≥ B] (in log-

scale) against the overflow-thresholdB for the α-algorithms,
where each curve corresponds to a different value ofα. We
have also plotted a line with slope equal toIopt given by
(11). Recall thatIopt is the maximum decay-rate of the queue-
overflow probability. We can observe from Fig. 1 that, as the
value ofα increases, the slopes at the tail of the curves (i.e.,
for largeB) approachIopt. Hence, this confirms our analytical
result that, as the value ofα increases, the asymptotic decay-
rate of theα-algorithms approaches the optimal decay-rate
Iopt.

We have also simulated the exponential-rule of [25]. At any
time t, if the channel state ism, the exponential-rule chooses
to serve the linki∗ such that

i∗ = argmax
i=1,...N

exp





Qi(t)

1 +
(

1
N

∑N
k=1 Qk(t)

)η



F i
m,
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Fig. 3. Case 2: Plot ofP[ max
1≤i≤N

Qi ≥ B] versus the overflow-

threshold B for the α-algorithm. Each curve corresponds to a
different value ofα.
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Fig. 4. Case 2: Plot ofP[ max
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Qi ≥ B] versus the overflow

thresholdB for the exponential-rule. Each curve corresponds to a
different value ofη.

where η is a constant parameter in(0, 1). In Fig. 2, we
plot P[ max

1≤i≤N
Qi ≥ B] against the overflow thresholdB for

the exponential rule, as the parameterη varies. According to
the results of [25], the exponential rule achieves the optimal
decay-rate of the queue-overflow probability for any0 < η <
1. We observe from Fig. 2 that, forη = 0.25 andη = 0.5, the
slopes at the tail of the curves indeed become parallel toIopt

for largeB. For η = 0.75, such convergence has not occurred
even for overflow-probability as low as10−5. Note that one
should not conclude from the last curve that the results of
[25] are violated: the LDP results of [25] will still kick in
eventually, although at a larger value of the thresholdB.

The previous set of simulation results raise some important
issues on the applicability of large-deviation results. Specif-
ically, the results in this paper (and in [25]) are large-buffer
asymptotes, i.e., they characterize the behavior of the queue
only when the overflow-threshold approaches infinity. The
results often do not provide much information on what buffer
level is large enough for the asymptotic behavior to become
dominant. Further, an LDP only specifies the exponential
decay-rate. The factor in front of exponential term can still
vary substantially. Hence, one needs to be careful when com-
paring the performance predicted by an LDP with the actual
performance of the protocol. This point is best illustratedwith
Case 2 that we simulated. Here, the probability of each channel
state is given byp1 = 0.35, p2 = 0.5 and p3 = 0.15. In
Fig. 3, we again plot the value ofP[ max

1≤i≤N
Qi ≥ B] against the

overflow-thresholdB for the α-algorithms. We observe from
Fig. 3 that, asα increases, the slopes at the tail of the curve
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µ2

µ3

λ

Fig. 5. Shape of the capacity region.

indeed approachesIopt. However, for smallB the curve in fact
shifts to the right, indicating that the actual queue-overflow
probability P[ max

1≤i≤N
Qi ≥ B] increases asα increases. Such

a shift is more evident for smaller value ofB. As B increases,
for larger values ofα the effect of the steeper slopes eventually
dominates, and the queue-overflow probability improves as
well.

To better understand this behavior, we introduce a state-
space plot as in Fig. 6. The x-axis and the y-axis are the length
of any two chosen queues (e.g.Q1 andQ3 as in Fig. 6). This
state space is divided into regions, each of which corresponds
to a fixed scheduling decision. For example, in Region1,
Queue1 is served irrespective of the channel state (this is
the case because the length of Queue1 is much larger than
Queue3). In Region2, Queue1 is served in channel state
m = 3, and Queue3 is served in channel statem = 2.
Finally, in Region3, Queue3 is served irrespective of the
channel state. We refer to these regions asdecision regions,
and their boundary is determined by the scheduling policy.
The dots in the figure are the states that have been visited by
the system in the simulation (over some given length of time).
A similar state space plot for case 2 is shown in Fig. 8.

Once the probabilities of channel states are given, the
capacity region of the system can be determined. For example,
Fig. 5 represents the capacity regions of case 1 and 2, projected
to the space ofQ1 and Q3. For this system with two active
states, we can draw a correlation between the decision regions
(e.g. Fig. 6), and the capacity region (e.g. case 1 in Fig. 5).We
will refer to Region 1 and Region 3 asmax-queueregions, in
the sense that the decision is to serve the link with the longest
queue, irrespective of the channel state. We refer to Region
2 as themax-rateregion, in the sense that now the decision
is to serve the link with the higher rate, depending on which
channel state the system is in. The two max-queue regions can
be correlated to the pointsµ1 andµ3 of the capacity region,
where one user will be served in all states. The max-rate region
can be correlated to the pointµ2 of the capacity region. The
significance of this correlation is that region 2 contributes to
an enlarged capacity region (i.e., the triangular areaµ1µ2µ3).

Forα-algorithms, as the value ofα increases, the boundaries
between the decision regions all converge to the diagonal line.
This convergence has two implications. First, a larger value
of α enlarges the two max-queue regions (see Fig. 7). For
example, Point A that was in a max-rate region for smallα



VENKATARAMANAN AND LIN: ON WIRELESS SCHEDULING ALGORITHMS FOR MINIMIZING THE QUEUE-OVERFLOW PROBABILITY 11

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

 Queue 1

 Q
ue

ue
 3

boundary 1

boundary 2

region 1

region 2

region
   3

A

Fig. 6. Case 1: Plot of the state space forα = 1.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

 Queue 1

 Q
ue

ue
 3

boundary 1

boundary 2

A

Fig. 7. Case 1: Plot of the state space forα = 7.

(see Fig. 6), now moves to the max-queue region (see Fig. 7).
Note that at Point A, we haveQ1 > Q3. Hence, as the decision
boundaries approach the diagonal line, the algorithm places
more emphasis on reducing the largest queue. Intuitively, this
helps to improve the decay-rate of the probability that the
largest queue overflows.

However, a second effect of increasingα is that the size of
the max-rate region (i.e., Region 2) is reduced. As a result,
for smaller value of queue-length, it becomes less likely that
the system state falls into the max-rate region. Recall that
the decision rule in the max-rate region contributes to the
improved capacity region (i.e., triangular areaµ1µ2µ3). Hence,
with large value ofα, the scheduling algorithm is unlikely
to take advantage of the increased capacity at small queue-
lengths, which leads to a tendency for the queue-length to
grow. This phenomenon can be observed by the fact that the
dots in Fig. 7 now grows along the two boundary lines. It is
even more evident in a similar plot for Case 2 (in Fig. 9). After
the queue length increases, eventually the width of Region 2
will be sufficiently large so that the system state is more likely
to fall into the max-rate region. Only after that, the effectof
LDP starts to kick in, and the decay-rate of the queue-overflow
probability starts to improve.

Although the above discussion is restricted to the dynamics
of two queues over two active states, we feel that the above
two conflicting trends apply to more general cases. Indeed,
the understanding of these two trends help us to interpret the
results in Fig. 1 and Fig. 3. First, refer to Fig. 6 for Case 1. For
small value ofα, the queues tend to accumulate around the
boundary between Region1 and Region2. As α increases,
the max-queue region (Region1) enlarges, which helps to
reduce the longer queue and push the state space to the origin
(Fig. 7). The conflicting effect due to thinning of the max-rate
region is not so strong, and the beneficial effect of largeα
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is manifested. Thus, these plots explain why the performance
plot in Fig. 1 improves with increasingα. Now, comparing
the capacity region for the two cases (Fig. 5), we find that in
case 2, the offered load,λ, is closer to the lineµ1µ3. Hence,
the triangular sectionµ1µ2µ3 plays a more significant role in
reducing the queue length. We would thus expect the effect of
thinning of the max-rate region to be relatively stronger than
in the previous case. This is exactly what we observe in Fig. 8
and Fig. 9. At small value ofα (Fig. 8), the queues tend to
accumulate relatively more in the max-rate region. Now, as
α increases, the stronger effect caused by the thinning of the
max-rate region forces the queue length to increase (Fig. 9).
As a result, at small values of threshold,B, the overflow
probability in fact deteriorates.

The above observations motivate us to design a new class of
hybrid scheduling policies that have the benefits of both large
α (for improving the large-deviation decay-rate of the queue-
overflow probability) and smallα (for having a large max-
rate region, which helps to improve the overflow probabilityat
small queue lengths). Essentially, to have good large-deviation
decay-rates of the queue-overflow probability, we need to use
a largeα so that the decision boundaries become close to
parallel to the diagonal line. However, this may lead to poor
performance at small queue-lengths due to the thinner max-
rate regions. To avoid this, we first use a smaller value ofα
when the queue-length is small and gradually change to large
α when queue increases. Note that this does not mean that we
can useα = ∞ and α = 0 for the largeα region and the
small α region, respectively. The reason is thatα = ∞ and
α = 0 will degenerate to the max-queue policy and the max-
rate policy, respectively, and neither of them are throughput-
optimal policies (see also the discussions before Section VI-
A). For example, if we useα = ∞, the decision boundaries
will be exactly parallel to the diagonal. This means that the
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max-rate region will not become “thicker” as the queue lengths
increase. This may cause instability because the queue state
may not be able to stay in the max-rate region for a sufficient
fraction of time.

More specifically, the hybrid policy works by modifying the
weight function. The scheduling policy still picks the useri for
service such that it has the largest value ofwi(q)F i

m. However,
the weight of useri, wi(q), is not equal toqα

i anymore.
Instead, it contains both a term for smallα, and a term for
large α. Specifically, let us assume that we are interested in
transitioning from smallα to largeα when the queue length
is aroundB∗ = 10. We tested a hybrid policy that uses a
combination ofα = 1 andα = 15¶. The weight function we
used iswi(q) = qi + ([qi −

K(q)
F i

m
]+)15 where the valueK(q)

will be specified later. Forqi < K(q)
F i

m
, the weight function is

simply qi. Hence, the behavior of the scheduling algorithm
is similar to α = 1. For largeqi, the term (qi −

K(q)
F i

m
)15

dominates. Hence, the behavior of the scheduling algorithm
switches to that ofα = 15. The offset K(q)

F i
m

is chosen to
ensure that the decision boundary does not have sudden jumps.
Specifically, the value ofK(q) is given by

K(q) = min
1≤i≤N

(

B∗F
i
m + [B∗ − qi]

+ max
1≤k≤N

F k
m

)

. (28)

To understand the intuition behind (28), first consider
the case when qi > B∗ for all queues. Then,
K(q) = B∗ min

1≤i≤N
F i

m. The offset in this case becomes

(
B∗ min

1≤i≤N
F i

m

F 1
m

, . . . , B∗, . . . ,
B∗ min

1≤i≤N
F i

m

F N
m

) which is exactly the
point where the decision boundary ofα = 1 meets the
threshold boundarymax

1≤i≤N
qi = B∗. However, if we just use

K(q) = B∗ min
1≤i≤N

F i
m, the problem is that the transition to

largeα occurs too early in the case when not allqi are greater
thanB∗. For example, consider channel statem = 2. In this
case, the offset described above becomes(B∗,

B∗

3 , B∗

3 , B∗

3 ).
The projection of this offset value to the space of the queues
q2, q3 andq4 is (B∗

3 , B∗

3 , B∗

3 ). As a result, the transition from
α = 1 to α = 15 would occur too early (atB∗

3 ) for q2, q3

or q4 if q1 is small. To compensate for this effect, we have
introduced the second term in (28). Essentially, ifq1 is small,
its channel rates do not play much role in determining the
minimum value of (28). In this specific example, ifq1 = 0
andq2, q3, q4 > B∗, then the offset value is(3B∗, B∗, B∗, B∗).
Hence, the transition occurs at the desirable values ofq2, q3

andq4.
We plot the decision boundaries for this hybrid algorithm in

Fig. 10. As we can see, the max-rate region is large even for
small queue-lengths. In Fig. 3, we also plotted the performance
of the hybrid algorithm. Compare with the curve forα = 15,
we note that the curve for the hybrid algorithm has moved
to the left as desired. Also note that the slope of the curve
is close toIopt. Hence, this figure confirms that the hybrid
algorithm achieves the benefit of both largeα and smallα.

¶We chooseα = 1 because we would like to compare with the standard
max-weight algorithm, which is anα-algorithm with α = 1. The choice
of α = 15 is somewhat arbitrary. Simulations usingα = 30 (not shown)
resulted in almost identical performance.
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Fig. 10. Plot of the decision boundaries for the hybrid algorithm.
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Fig. 11. Plot of the decision boundaries for exponential-rule for
various values ofη.

We find that the same intuitions seem to also apply for
the exponential-rule [25]. Recall that Fig. 2 plots the value
of P[ max

1≤i≤N
Qi ≥ B] versus the overflow-thresholdB for the

exponential-rule when the parameterη varies. A similar figure
for Case 2 is given in Fig. 4. To understand whyη = 0.5 seems
to produce the best overall performance, we plot the decision
boundaries of the exponential-rule in Fig. 11. We can see that,
if the value ofη is too small, then the max-rate region (between
the decision boundaries) is too narrow, which increases the
queue-overflow probability at small threshold values. If the
value ofη is too large, then the max-rate region is big enough.
However, the decision boundaries do not become parallel to
the diagonal line until the queue-length is very large. Hence,
the large-deviation decay-rate kicks in only at a larger queue-
length. A medium value ofη (around0.5) seems to achieve
a balance between the above two cases, and produces a state-
space plot that is similar to our hybrid algorithm (Fig. 10).
We have also plotted the performance of the exponential-rule
and our hybrid algorithm in Fig. 4. Their performance appears
to be quite comparable. Finally, we plot the performance of
the hybrid algorithm for case 1 and we find that the hybrid
algorithm also performs very well, which indicates that the
hybrid algorithm is quite robust and seems to work well in all
cases.

VIII. C ONCLUSION

In this paper, we study wireless scheduling algorithms for
the downlink of a single cell that can maximize the asymptotic
decay-rate of the queue-overflow probability, as the overflow
threshold approaches infinity. Specifically, we focus on the
class of “α-algorithms,” which pick the user for service at
each time that has the largest product of the transmission rate
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multiplied by the backlog raised to the powerα. We show that
when α approaches infinity, theα-algorithms asymptotically
achieve the largest decay-rate of the queue-overflow proba-
bility. A key step in proving this result is to use a Lyapunov
function to derive a simple lower bound for the minimum-cost-
to-overflow under theα-algorithms. This technique, which is
of independent interest, circumvents solving the difficultmulti-
dimensional calculus-of-variations problem typical in this type
of problems. Finally, using the insight from this result, we
design hybrid scheduling algorithms that are both close-to-
optimal in terms of the asymptotic decay-rate of the overflow
probability, and empirically shown to maintain small queue-
overflow probabilities over queue-length ranges of practical
interest. For future work, we plan to extend the results to more
general network and channel models.

A potential limitation of the large-deviations approach used
in this work is that although we show optimality in terms of the
decay-rate, we have not been able to quantify the coefficients
before the exponential decay-term. Such coefficients may also
play an important role, especially when considering small
queue values. Unfortunately, they are much more difficult
to quantify. The hybrid algorithm in Section VII can be
interpreted as an intuitive design engineered to have a better
coefficient than the pureα-algorithm.

APPENDIX

A. Proof of Lemma 7

Proof: We first show thata(φ) and wα(φ) are dual
problems of each other. Lettingξi = xα

i , i = 1, ..., N , ξ = [ξi]
and introducing the variablesηm ≥ max

1≤i≤N
ξiF

i
m, the problem

a(φ) can be rewritten as

a(φ) = max
ξ≥0,η

[

N
∑

i=1

ξiλi −

M
∑

m=1

φmηm

]

subject to
N
∑

i=1

ξ
α+1

α

i ≤ 1

ηm ≥ ξiF
i
m for all i, m.

This is a convex optimization problem. Introducing
the Lagrange multiplier µi

m ≥ 0 for each of the
constraints ηm ≥ ξiF

i
m, we obtain the Lagrangian

L(ξ, µ, η) =
∑N

i=1 ξi

(

λi −
∑M

m=1 µi
mF i

m

)

−
∑M

m=1 ηm

(

φm −
∑N

i=1 µi
m

)

. The dual objective function is
then given by

D(µ) = max
ξ≥0,η

L(ξ, µ, η)

subject to
N
∑

i=1

ξ
α+1

α

i ≤ 1.

Note that if
∑N

i=1 µi
m 6= φm, thenD(µ) = +∞ since we can

set |ηm| arbitrarily large. Otherwise, if
∑N

i=1 µi
m = φm for

all m, we then have,

D(µ) = max
ξ≥0

N
∑

i=1

ξi(λi −
M
∑

m=1

µi
mF i

m)

subject to
N
∑

i=1

ξ
α+1

α

i ≤ 1. (29)

Clearly, for thosei such thatλi < µi
mF i

m, the optimal solution
for D(µ) is ξi = 0. Let I denote the set ofi such that
λi − µi

mF i
m ≥ 0. If I is an empty set, thenD(µ) = 0. If

I is not empty, we can use Holder’s inequality that, for any
positivep andq such that1/p+1/q = 1, the following holds,
∑N

i=1 aibi ≤ [
∑N

i=1 ap
i ]

1/p[
∑N

i=1 bq
i ]

1/q, where equality holds
if and only if there is a constantγ such thatap

i = γbq
i for all

i. Hence, for allξ such that the constraint (29) is satisfied, we
have

∑

i∈I

ξi

(

λi −

M
∑

m=1

µi
mF i

m

)

=

N
∑

i=1

ξi

[

λi −

M
∑

m=1

µi
mF i

m

]+

≤

[

N
∑

i=1

ξ
α+1

α

i

]

α
α+1







N
∑

i=1





[

λi −
M
∑

m=1

µi
mF i

m

]+




α+1






1
α+1

≤







N
∑

i=1





[

λi −
M
∑

m=1

µi
mF i

m

]+




α+1






1
α+1

,

where equality holds if and only if

N
∑

i=1

ξ
α+1

α

i = 1, (30)

and for some constantγ > 0, ξ
α+1

α

i = γα+1([λi −
∑M

m=1 µi
mF i

m]+)α+1, for i = 1, . . . , N, or, equivalently,

ξ
1
α

i = γ[λi −
∑M

m=1 µi
mF i

m]+, for i = 1, . . . , N. Such
a vector ξ clearly exists whenI is not empty. Hence,
if
∑N

i=1 µi
m = φm for all m, we have D(µ) =

[

∑N
i=1([λi −

∑M
m=1 µi

mF i
m]+)α+1

]
1

α+1

, which is true even
when I is empty. We can therefore conclude that the dual
problem is

min
µ≥0

D(µ) = min
y≥0,µ≥0

(

N
∑

i=1

yα+1
i

)

1
α+1

subject to yi =

[

λi −
M
∑

m=1

µi
mF i

m

]+

N
∑

i=1

µi
m = φm for all m.

This is exactly the problemwα(φ). Hence, strong duality
implies thata(φ) = wα(φ).

The optimizer y of wα(φ) must be unique since the
objective function inwα(φ) is strictly convex iny. Using
the complementary slackness condition, for any optimizerξ
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and µ, we must haveµi
m ≥ 0,

∑N
i=1 µi

m = φm, ξ
1
α

i =

γ[λi −
∑M

m=1 µi
mF i

m]+,

µi
m = 0 if ξiF

i
m < max

1≤k≤N
ξkF k

m

and
∑N

i=1 ξ
α+1

α

i = 1 wheneverξ 6= 0 by (30). Sinceξi = xα
i

and yi = [λi −
∑M

m=1 µi
mF i

m]+, we must havex = γy.
Further, ifx 6= 0, then sincey is unique and

∑N
i=1 xα+1

i = 1,
x must also be unique. The above set of equations are then
exactly the condition in part (b) of the lemma. Conversely,
any ξ and µ (or, equivalently,x and µ) that satisfy the
condition must correspond to the maximizer ofa(φ) and
wα(φ), respectively. Since the optimizers ofa(φ) andwα(φ)
are both unique, there is at most onex that satisfies the set
of conditions in part (b) of the lemma.
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