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Abstract—In this paper, we characterize the performance of
an important class of scheduling schemes, called Greedy Maximal
Scheduling (GMS), for multi-hop wireless networks. While a
lower bound on the throughput performance of GMS has been
well known, empirical observations suggest that it is quite loose,
and that the performance of GMS is often close to optimal.
In this paper, we provide a number of new analytic results
characterizing the performance limits of GMS. We first provide
an equivalent characterization of the efficiency ratio of GMS
through a topological property called the local-pooling factor of
the network graph. We then develop an iterative procedure to
estimate the local-pooling factor under a large class of network
topologies and interference models. We use these results to study
the worst-case efficiency ratio of GMS on two classes of network
topologies. We show how these results can be applied to tree
networks to prove that GMS achieves the full capacity region
in tree networks under the K-hop interference model. Then, we
show that the worst-case efficiency ratio of GMS in geometric
unit-diskgraphs is between 1

6
and 1

3
.

Index Terms—Communication systems, multi-hop wireless net-
works, greedy maximal scheduling, longest queue first, capacity
region.

I. INTRODUCTION

Over the last few years there has been significant interest in
studying the scheduling problem for multi-hop wireless net-
works [1]–[8]. In general, this problem involves determining
which links should transmit (i.e., which node-pairs should
communicate) at what times, what modulation and coding
schemes should be used, and at what power levels should
communication take place. While the optimal solution of this
scheduling problem has been known for a long time [1], the
resultant solution has high computational complexity and is
difficult to implement in multi-hop networks. For example,
consider the simplest 1-hop interference model (also known
as the node-exclusive or primary interference model), where
two links interfere with each other only if they are within a 1-
hop distance. Under this model, the throughput-optimal policy
of [1] corresponds to a Maximum Weighted Matching (MWM)
policy and its complexity is roughly O(N 3) [9], where N is
the total number of nodes in the network. While the 1-hop in-
terference model has been used as a reasonable approximation
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to Bluetooth or FH-CDMA networks [2], [10], [11], a large
class of systems can be modeled using the more general K-
hop interference models, in which any two links within a K-
hop distance cannot be activated simultaneously. For example,
the ubiquitous IEEE 802.11 DCF (Distributed Coordination
Function) wireless networks is often modeled using the 2-hop
interference model [12], [13], when the carrier-sensing range
is equal to the transmission range. On the other hand, when
the carrier-sensing range is (K − 1) times the transmission
range, we can model these networks with K-hop interference
models [14]. The complexity of the throughput-optimal policy
of [1] for the K-hop interference model is NP-Hard [14], and
hence, it is difficult to implement in practice.

In this paper, we are interested in a well-known subopti-
mal scheduling policy called the Greedy Maximal Scheduling
(GMS) [2], [15] (also known as Longest Queue First (LQF)
in [16], [17]), which determines a schedule by choosing links
in a decreasing order of the backlog, while conforming to
interference constraints. GMS has low complexity [2], [15],
[16] and may be implemented in a distributed manner [18].
However, to date its performance is not well-understood. We
characterize the performance of GMS through its efficiency
ratio γ∗, which is defined as the achievable fraction of the
optimal capacity region (see Definition 2 for a precise def-
inition). Under the 1-hop interference model, it is relatively
straightforward to show that the efficiency ratio of GMS is at
least 1

2 , i.e., GMS can sustain at least a half of the throughput
of the optimal policy. However, simulation results suggest that
the performance of GMS is often much better than this lower
bound in most network settings [6]. For the K-hop interference
model, the known performance guarantees of GMS are also
quite pessimistic [12], [14], [19].

Recently, Dimakis and Walrand [17] have shown that if the
network topology satisfies the so-called local-pooling condi-
tion, then GMS can in fact achieve the full capacity region.
The idea is extended in [20], [21] to find network topologies
that maximize the throughput under GMS. Unfortunately,
realistic network topologies may not satisfy the local-pooling
condition. Hence, the true efficiency ratio of GMS in many
network scenarios remains unknown.

The main objective of this paper is to understand the
achievable efficiency ratio of GMS for a large class of net-
work topologies and interference models. Understanding the
performance limits of GMS is important for the following
reasons. First, it has been empirically observed in [6] that
the centralized GMS outperforms many distributed scheduling
schemes and achieves virtually the same throughput as the
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throughput-optimal scheduler for a variety of networking
scenarios. Second, although there have been some recently
developed distributed scheduling schemes [5], [8] that can
achieve the maximum achievable throughput, the study of
GMS continues to remain attractive because, empirically, GMS
performs better than these schemes in terms of the resultant
queueing delay [3], [6]. Third, it has been known1 in [18] that
GMS can be also implemented in a distributed manner, which
is critical from the point of view of many multi-hop wireless
systems and applications. Finally, recent studies have proposed
even simpler constant-time-complexity random algorithms [4],
[6], [7] that appear to approximate the performance of GMS
by giving a larger weight to a link with a larger queue length.

In this paper, we provide a number of new analytical results
along this direction. We first generalize the notion of local-
pooling in [17] to the notion of the local-pooling factor, which
is a topological property of a graph. We show that, under
arbitrary interference models, the efficiency ratio of GMS for
a given network graph is equal to the local-pooling factor of
the graph. We then develop an iterative procedure to determine
a lower bound on the local-pooling factor of a network graph,
and a sufficient condition for a lower bound on the worst-case
local-pooling factor over a class of network topologies. We
next apply these results to two classes of network topologies.
First, we show how these results can be applied to tree
networks to prove that GMS achieves the full capacity for any
tree network under the K-hop interference model. (This result
is also shown in [21] by using a different approach.) Second,
we develop much sharper bounds on the worst-case efficiency
ratio for geometric unit-diskgraphs other than those known in
the literature.

The rest of the paper is organized as follows. We first
describe our system model in Section II. In Section III, we
provide an equivalent characterization of the efficiency ratio
of GMS through the local-pooling factor of the underlying
network graph. We develop an iterative analysis method
estimating the local-pooling factor of a network graph in
Section IV. Using the new methodology, we show that GMS
achieves the full capacity region in tree topologies under the
K-hop interference model in Section V. In Section VI, we
also provide new results bounding the efficiency ratio of GMS
in geometric unit-diskgraphs. We conclude in Section VII.

II. NETWORK MODEL

We model a wireless network by a graph G(V,E, I), where
V is the set of nodes, E is the set of undirected links,
and I represents interference constraints (e.g., an |E|x|E|
interference matrix). For each link l, let I(l) denote the set
of links that interfere with l. For convenience, we adopt the

1Although the distributed algorithm in [18] has been devised to compute
matching, it is not difficult to generalize the idea to K-hop interference
models. Specifically, we can let each link l decide either to schedule itself
or to give up, as follows: Link l will schedule itself if its weight is larger
than other interfering links (i.e., links within the K-hop distance from l).
Ties can be broken by pre-assigned link IDs. Otherwise, link l will wait
until all interfering links with larger weights have decided. If any one of the
interfering links with larger weight has been scheduled, link l will give up.
If all the interfering links with larger weights have given up, link l schedules
itself.

convention that l ∈ I(l). We define the interference degree d(l)
as the maximum number of links in I(l) that do not interfere
with each other. We assume a time-slotted system, where the
length of each time slot is of unit length. We assume that
in each time slot, link l can transmit one packet provided
that no other links in I(l) are transmitting at the same time.
If two interfering links transmit at the same time, neither of
these can transmit any data. This assumption of either collision
or perfect reception ignores the possibility of errors due to
background noise and also ignores the capture effect [22]. A
set of active (i.e., transmitting) links forms a feasible schedule
in E if none of them interfere with each other. The model is
very general representing a large class of wireless networks.
For example, in the so-called K-hop interference model, two
links within a K-hop “distance” interfere with each other. We
can correspondingly define I(l) as, for all links l ∈ E,

I(l) = {k ∈ E | the distance between links l and k
is less than or equal to K hops}.

A maximal schedule ~M on E is defined as a feasible
schedule such that when all links in ~M are activated, no
more links can be activated without violating the interference
constraints. We use a vector in {0, 1}|E| to denote a maximal
schedule ~M such that the k-th element Mk is set to 1 if link
k ∈ E is included in ~M , and to 0 otherwise. Let ME be the
set of all possible ~M’s and let Co(ME) denote its convex
hull, where the convex hull Co(A) of a set A is defined as

Co(A) := {∑i wi~αi | wi ≥ 0,
∑

i wi = 1, ~αi ∈ A}.

We define a maximal scheduling vector ~φ in E as a vector
~φ ∈ Co(ME).

We assume that packets arrive at each link l according
to a stationary and ergodic process, and that the average
arrival rate is λl. Further, we assume that the arrival process
satisfies the conditions for the fluid limit to hold (e.g., as in
[23]). The capacity region (or stability region) under a given
scheduling policy is defined as the set of arrival rate vectors
~λ = {λ1, λ2, . . . , λ|E|} for which the system is stable (i.e.,
all queues are kept finite). We define the optimal capacity
region Λ as the union of the capacity regions of all scheduling
policies. The optimal capacity region is known to be,

Λ =
{

~λ
∣

∣ ~λ � ~φ, for some ~φ ∈ Co(ME)
}

, (1)

where ~x � ~y denotes that ~x is component-wise dominated
by ~y. Let Λ̊ denote the interior of Λ. This expression can
be explained as follows. Assume that ~λ ≺ ~φ and ~φ can be
written as a convex combination of vectors in ME , i.e., ~φ =
∑

i wi
~Mi, where wi ≥ 0 and

∑

i wi = 1. Then by choosing
the maximal schedule ~Mi with probability wi, the service rate
at each link will be larger than the arrival rate. Hence the
system will be stable. On the other hand, if no vector ~φ ∈
Co(ME) exists such that ~λ � ~φ, then one can show that the
system is unstable under any scheduling algorithms [1], [24],
[25].

It is well-known that the scheduling policy of [1], which we
refer to as the Maximum Weighted Scheduling (MWS) policy,
achieves the capacity region Λ̊. MWS chooses a schedule at



3

v

Fig. 1. Given a network graph G(V,E, I), if there exist two vectors ~µ, ~ν ∈
Co(ML) for some subset of links L ⊂ E such that σ~µ � ~ν, then the graph
is said to be σ-dominant.

each time slot t that maximizes the total queue weighted rate
sum as

~M∗(t) = argmax
~M∈ME

∑

l∈E

ql(t)Ml,

where ql(t) is the backlog of link l at time t. However, this
policy has high computational complexity. The complexity
is O(N3) under the 1-hop interference model and is in
general NP-Hard under K-hop interference models (K ≥ 2).
In this paper, we are interested in a suboptimal (but much
simpler) policy called Greedy Maximal Scheduling (GMS) or
Longest Queue First (LQF) policy. GMS can be viewed as an
approximation to MWS. It operates as follows: start with an
empty schedule; first pick the link l with the largest backlog;
add l into the schedule, and disable other links in I(l); next
pick the link l′ with the largest backlog from the remaining
links, add l′ into the schedule, and disable other links in I(l′);
and this process continues until all links are either chosen
or disabled. All chosen links {l, l′, · · · } will be scheduled
during time slot t. Our goal of the paper is to characterize the
efficiency ratio of GMS under arbitrary network topologies.
The efficiency ratio is defined as follows.

Definition 1: We say that a scheduling policy achieves a
fraction γ of the capacity region under a given network
topology if it can keep the system stable for any offered load
~λ ∈ γΛ, where 0 ≤ γ ≤ 1.

Definition 2: The efficiency ratio γ∗(G) of a scheduling
policy under a given network graph G(V,E, I) is the supre-
mum of all γ such that the policy can achieve a fraction γ
(0 ≤ γ ≤ 1) of the capacity region, i.e.,

γ∗(G) := sup{γ | the system is stable under all offered
load vectors ~λ such that ~λ � γ~φ
for some ~φ ∈ Co(ME)}.

(2)

III. AN EQUIVALENT CHARACTERIZATION OF THE
EFFICIENCY RATIO OF GMS

In this section, we provide an equivalent characterization of
the efficiency ratio of GMS through its topological properties.
We start with the following definition.

Definition 3: A graph G(V,E, I) is said to be σ-dominant,
if there exist two vectors ~µ, ~ν ∈ Co(ML) for a subset of links
L ⊂ E such that σ~µ � ~ν, i.e., σµi ≥ νi for all i. The vectors
~µ and ~ν are called σ-dominant vectors.
Fig. 1 depicts the convex hull of maximal schedules Co(ML)
for some subset L and two vectors ~µ, ~ν ∈ Co(ML) satisfying
that σ~µ � ~ν. Then the graph G is said to be σ-dominant.

The reason that we are interested in σ-dominance is as
follows. Suppose that links in a subset L have larger queues
than the rest of the links. Since GMS will pick these links first,
its service vector will belong to Co(ML). However, there is
still some uncertainty as to which vector in Co(ML) is the
actual service vector. It turns out that if there exist two σ-
dominant vectors ~µ, ~ν ∈ Co(ML) such that σ~µ � ~ν, then
we can construct a traffic pattern that i) has an arrival rate
equal to σ~µ and ii) induces the service vector of GMS to be
~ν. (This point is made rigorously in Proposition 1.) Thus the
system is unstable at an arrival rate σ~µ, while the arrival rate ~µ
could have been stabilized under a throughput-optimal policy.
Hence, the efficiency ratio of GMS will be no greater than σ.

Clearly, if σ is too small, we will no longer be able to find
such a subset L and two σ-dominant vectors ~µ, ~ν ∈ Co(ML).
Intuitively, if we can find the smallest value of σ, for which
the graph is σ-dominant, then the smallest value will have
some relationship to the efficiency ratio of GMS. This notion
is reflected in the following definition.

Definition 4: The local-pooling factor σ∗(G) of a graph
G(V,E, I) is the infimum of all σ such that the graph G is
σ-dominant. In other words,
σ∗(G) := inf{σ| G is σ-dominant}
= inf{σ| σ~µ � ~ν for some L and some ~µ, ~ν ∈ Co(ML)}
= sup{σ| σ~µ � ~ν for all L and all ~µ, ~ν ∈ Co(ML)}.

(3)

The notion of local-pooling and local-pooling factor was
first introduced in [17] and [26], respectively. The definition
of local-pooling in [17] is equivalent to the definition of a
local-pooling factor of 1. (We refer to [26] for the details.)
It was shown in [17] that, if the local-pooling factor of an
arbitrary graph is 1, GMS can achieve the efficiency ratio of
1. However, realistic network topologies often do not have a
local-pooling factor of 1. In our earlier work [26], we show
that under the 1-hop interference model, the efficiency ratio of
GMS under a given network graph is equivalent to the local-
pooling factor of the graph. We next generalize this result to
arbitrary interference models.

Proposition 1: The efficiency ratio γ∗(G) of GMS under a
given network graph G(V,E, I) is equal to its local-pooling
factor σ∗(G).
Remark: Since both γ∗(G) and σ∗(G) are determined by the
network G, in the sequel we will simply use γ∗ and σ∗ when
there is no source of confusion regarding the network G.

The proof of Proposition 1 is a straightforward extension of
that of Proposition 8 in [26] and its supporting lemmas. We
next sketch the main idea of the proof and refer the readers
to [26] for the details. First, as we discuss at the beginning
of this section, we can show that γ∗ ≤ σ∗ by constructing
a particular traffic pattern with rate outside σ∗Λ such that
the system is unstable under GMS. Specifically, for any
σ < σ∗, we can find two σ-dominant vectors ~µ, ~ν ∈ Co(ML)
satisfying σ~µ � ~ν. Then for all ε > 0, we can construct a
traffic pattern with offered load ~λ = ~ν + ε~eL, under which
GMS selects the service vector ~ν on average, where ~eL is a
vector with ek = 1 for k ∈ L and ek = 0 for k /∈ L. Thus the
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(a) Topology (b) Maximal
schedule ~M0

(c) Maximal
schedule ~M2

Fig. 2. The 6-link cyclic network and the instances of maximal schedule
under the 1-hop interference model. The solid lines in (b) and (c) are the
active links.

system becomes unstable. Since ~ν � σ~µ, we have γ∗ ≤ σ for
all σ ≤ σ∗. In the other direction, we can obtain γ∗ ≥ σ∗ by
showing that the network is stable under GMS for any offered
load strictly in σ∗Λ. To elaborate, we can show that in the fluid
limit, the longest queue always decreases under GMS. To see
this, suppose that the set L of links have the longest queue
in the fluid limit and they all grow at the same rate ε > 0.
GMS will pick a service rate ~π such that ~π|L ∈ Co(ML),
where ·|L denotes the projection of a vector onto L. Hence,
we have ~π|L = ~λ|L − ε~eL � ~λ|L. However, since ~λ ∈ σ∗Λ̊,
there must exist a vector ~φ ∈ Co(ML) such that ~λ|L ≺ σ~φ for
some σ < σ∗. Then we obtain that ~π|L ≺ σ~φ, which implies
that ~π|L and ~φ are σ-dominant vectors. This contradicts to the
definition of the local-pooling factor σ∗. Hence, the longest
queue cannot grow. The result of the proposition then follows.

In the following, we further explain the first part of the proof
(i.e. γ∗ ≤ σ∗) using an example. Specifically, we illustrate
how, from two σ-dominant maximal scheduling vectors, we
can construct a traffic pattern with which the system is
unstable under GMS. This example will also illustrate how the
performance limits of GMS are related to maximal scheduling
vectors.

Example: We consider the 6-link cyclic network graph under
the 1-hop interference model. We illustrate its topology in
Fig. 2(a) and number all links clockwise from 0 to 5. All
possible maximal schedules under this network graph are listed
below.

• ~M0 = {1, 0, 1, 0, 1, 0}, ~M1 = {0, 1, 0, 1, 0, 1},
• ~M2 = {1, 0, 0, 1, 0, 0}, ~M3 = {0, 0, 1, 0, 0, 1}, ~M4 =
{0, 1, 0, 0, 1, 0}.

Note that the number of links included in a maximal schedule
is three for ~M0 and ~M1, and is two for ~M2, ~M3, and
~M4. Figs. 2(b) and 2(c) show the two instances of the

maximal schedules, i.e., ~M0 and ~M2. Note that we can take
two convex combinations ~µ, ~ν from maximal schedules (i.e.,
~µ, ~ν ∈ Co({ ~Mi}) as

~µ = 1
2
~M0 + 1

2
~M1 =

{

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

}

,

~ν = 1
3
~M2 + 1

3
~M3 + 1

3
~M4 =

{

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3

}

,

and hence, 2
3~µ � ~ν. This implies that the 6-link cyclic network

is σ-dominant with σ = 2
3 , i.e., its local-pooling factor σ∗ must

be no larger than 2
3 .

We now show that the efficiency ratio of GMS is no larger
than 2

3 by constructing a particular traffic pattern with offered
load ~λ = ~ν+ ε

3~e such that the system is unstable under GMS,

where ~e = {1, 1, 1, 1, 1, 1} and ε is a small positive number.
Assume that all queues in the system are of the same length
at time 0.

1) 1st time slot: One packet is applied to links 0 and 3.
Since GMS gives priority to links with a longer queue,
it will serve links 0 and 3. Therefore, at the end of time
slot 1, all queues will still have the same length.

2) 2nd time slot: One packet is applied to links 1 and 4.
For the same reason as above, GMS will serve links 1
and 4, and all queues will still have the same length at
the end of time slot 2.

3) 3rd time slot: With probability 1 − ε, one packet is
applied to links 2 and 5. With probability ε, two packets
are applied to links 2 and 5, and one packet is applied
to all other links. In both cases, links 2 and 5 have the
longest queue and will be served by GMS. At the end
of time slot 3, all queues still have the same length.
However, with probability ε, the queue length increases
by 1.

The pattern then repeats itself.
Over all links, the arrival rate is 1

3 + ε
3 and the queue length

increases by 1 with probability ε every three time slots. Hence,
the system with offered load ~ν + ε

3~e is unstable under GMS.
However, the optimal policy (MWS) can support an offered
load ~µ = 3

2~ν in this example. Hence, the efficiency ratio of
GMS is no greater than 2

3 , i.e., γ∗ ≤ 2
3 in this 6-link cyclic

network under the 1-hop interference model.
Remark: Note that the key in constructing the above traffic

pattern is that (i) we keep all queues in L of the same length
at all time, (ii) we inject packets according to the maximal
schedules that form the vector ~ν so that these maximal
schedules will be picked by GMS at all time, and (iii) the
offered load is slightly larger than ~ν, i.e., ~λ = ~ν+ ε~eL so that
the queues of L grow to infinity together. In [26], we show
that such a traffic pattern can be constructed for all ~µ, ~ν such
that σ~µ � ~ν.

Proposition 1 provides an equivalent characterization of the
efficiency ratio of GMS through the topological properties (i.e.,
the local-pooling factor) of the given graph. However, it can
still be quite difficult to compute the local-pooling factor for
an arbitrary network graph. In the next section, we will extend
the methodology of Proposition 1 to develop new approaches
to estimate the efficiency ratio and the local-pooling factor of
arbitrary network graphs.

IV. ESTIMATES OF THE LOCAL-POOLING FACTOR FOR
ARBITRARY NETWORK GRAPHS

In this section, we would like to answer the following
questions: (i) how do we estimate the local-pooling factor of
a given graph? and (ii) what types of graphs will have low
local-pooling factors? We now argue that both questions are
intimately related to the characterization of a set of unstable
links. We first state the following lemma. The proof is provided
in Appendix A.

Lemma 1: Given a network graph G(V,E, I) with local-
pooling factor σ∗, there exist a subset of links L ⊂ E, and
two maximal scheduling vectors ~µ∗, ~ν∗ ∈ Co(ML) such that
σ∗~µ∗ � ~ν∗.
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Remark: According to Definition 4, for any σ > σ∗, there
exist two σ-dominant vectors ~µ, ~ν ∈ Co(ML) such that
σ~µ � ~ν. However, since σ∗ is the infimum of such σ, it could
be possible that no σ∗-dominant vectors exist in Co(ML).
Lemma 1 shows that this is not the case.

The idea in the rest of the section is as follows. Suppose
that we want to show that σ∗ ≥ σ for some σ > 0. We want
to prove by contradiction. Assume in contrary that σ∗ < σ.
Given a network graph G(V,E, I) with local-pooling factor
σ∗, there exist a set Y ⊂ E and two ~µ∗, ~ν∗ ∈ Co(MY ) such
that σ∗~µ∗ � ~ν∗ from Lemma 1. According to the proof of
Proposition 1 (see the example in Section III), we can then
construct a traffic pattern with offered load ~ν∗+ε~eY such that
the queues of all links in Y increase to infinity together under
GMS. Let ~λ∗(ε) = ~ν∗ + ε~eY ∈ σΛ̊ denote this offered load2.
We refer to this set Y as the unstable links. Clearly, if we can
show that Y = ∅, then this leads to a contradiction, which
then implies that σ∗ ≥ σ.

Towards this end, we first study the properties of this set Y
of unstable links.

A. Properties of unstable links

For a subset L ⊂ E, we let IL(l) = I(l)∩L denote the set of
links in L that interfere with link l, and define the interference
degree dL(l) as the maximum number of links in IL(l) that
can be scheduled at the same time without interfering with
each other. We begin with the following two lemmas.

Lemma 2: If ~λ ∈ Λ̊, then
∑

j∈IL(l) λj ≤ dL(l) for all l ∈ L
and all L ⊂ E.
We note that when L = E, Lemma 2 reduces to Lemma 1 in
[12]. Lemma 2 is a generalization since the set L can be any
subset of E.

Proof: The lemma can be proven by contradiction. We
assume that there exist a subset L ⊂ E and a link l ∈ L
such that

∑

j∈IL(l) λj > dL(l). Since ~λ is within Λ̊, it can
be stabilized by some scheduling policy. However, at any
time, any schedule must satisfy the interference constraints
and thus, cannot serve more than dL(l) links out of IL(l).
Hence, the summation of any feasible service rate over IL(l)
cannot exceed dL(l), which is smaller than the sum of the rates
with which packets arrive at IL(l). Therefore, the network
is unstable, which contradicts our assumption. The result of
Lemma 2 then follows.

Lemma 3: Assume that Y is the set of unstable links under
GMS with offered load ~λ∗(ε) = ~ν∗ + ε~eY , then for all l ∈ Y ,
∑

j∈IY (l) λ
∗
j (ε) > 1.

Proof: Note that ~ν∗ ∈ Co(MY ) is a convex combination
of elements of MY . For each element ~M ∈ MY , if none
of the links in IY (l)\{l} is picked, then l must be picked.
Hence,

∑

j∈IY (l)Ml ≥ 1. We then have
∑

j∈IY (l) νl ≥ 1 and
∑

j∈IY (l) λ
∗
l (ε) > 1 for all ε > 0.

Lemma 4: Assume that ~ν∗ ∈ 1
d
Λ̊ for some d ≥ 1 and that

Y is the corresponding set of unstable links under GMS, then
for all links l ∈ Y , its interference degree in Y must be larger
than d, i.e., dY (l) > d.

2Note that there exists some small ε > 0 such that ~λ∗(ε) ∈ σΛ̊ because
~ν∗ ∈ σ∗Λ ⊂ σΛ̊.

Proof: Again, we prove by contradiction. Suppose that
there is a link l ∈ Y with dY (l) ≤ d. Pick ~λ∗(ε) = ~ν∗ +
ε~eY such that ~λ∗(ε) is strictly within 1

d
Λ ⊂ 1

dY (l)Λ, we have
∑

j∈IY (l) λ
∗
j (ε) ≤ 1 from Lemma 2. However, by Lemma 3,

we should have
∑

j∈IY (l) λ
∗
j (ε) > 1. This is a contradiction.

Hence, dY (l) must be larger than d.
From Lemma 4, we can derive the following main result.
Proposition 2: Given a network graph G(V,E, I), assume

that a sequence of links {l1, l2, . . . , l|E|} and a sequence of
sets {L1, L2, . . . , L|E|, L|E|+1} with L1 = E and L|E|+1 = ∅
satisfy that Li+1 = Li\{li} and dLi

(li) ≤ d for all 1 ≤ i ≤
|E| with some d ≥ 1. Then the local-pooling factor is bounded
by 1

d
, i.e., σ∗ ≥ 1

d
.

Proof: We prove the proposition by a contradiction.
Suppose that σ∗ < 1

d
, then there exists ~µ∗, ~ν∗ ∈ Co(MY )

such that σ∗~µ∗ � ~ν∗. Further, ~ν∗ ∈ 1
d
Λ̊ since σ∗ < 1

d
. Let Y

denote the corresponding set of unstable links. We now show
that Y must be ∅, which is a contradiction.

If Y 6= ∅, we can pick the link l ∈ Y with the smallest index
in the set {l1, l2, . . . , l|E|}, say l = lj . Then we have that all
links li /∈ Y for 1 ≤ i < j and hence, Y ⊂ Lj . Since ~ν∗ ∈ 1

d
Λ̊

and lj ∈ Y , we have dY (lj) > d from Lemma 4. Since we
also have dY (lj) ≤ dLj

(lj) from Y ⊂ Lj , and dLj
(lj) ≤ d

from our assumption, we arrive at a contradiction and, thus
Y = ∅.

Clearly, if there exists a number d such that dE(l) ≤ d
for all l ∈ E, then the assumption of Proposition 2 holds for
any sequence of links {l1, l2, . . . , l|E|}. Hence, σ∗ ≥ 1

d
and

the efficiency ratio of GMS is no smaller than 1
d

. Note that a
similar conclusion has been drawn for Maximal Scheduling.
In [12], it has been shown that if dE(l) ≤ d for all l ∈ E, then
given ~λ ∈ 1

d
Λ̊, a Maximal Scheduling policy can stabilize the

network. However, Proposition 2 is in fact much stronger than
the results in [12] and the efficiency ratio of GMS can often
be shown to be larger than that of Maximal Scheduling. We
highlight this important difference with the following example.

Example (Edge Effect): Consider N + 1 nodes
n1, n2, . . . , nN+1 lying in a straight line from left to right.
Each node is connected only to its immediate neighbors. We
denote link (ni, ni+1) by li. Assume the 1-hop interference
model. For this network graph, since dE(l) ≤ 2 for all links,
the efficiency ratio of GMS is no smaller than 1

2 . However,
GMS in fact achieves the full capacity for this graph The
reason is that there always exists a link at the end of the line
with interference degree of 1. The existence of this link in
fact determines the efficiency ratio of GMS. To see this, we
pick the sequence of links in Proposition 2 as {l1, l2, . . . , lN}.
We first look at link l1 on the end of the line. Let L1 = E.
Since dL1

(l1) = 1, the assumption of Proposition 2 holds for
i = 2. Now, we let L2 = L1\{l1} and move our attention
to the next link l2. Since dL2

(l2) = 1, the assumption of
Proposition 2 holds for i = 2. We can apply this procedure
iteratively to links l3, l4, . . . , lN . Therefore, after the N -th
iteration, we will have sequences of {l1, l2, . . . , lN} and
{E = L1, L2, . . . , LN+1 = ∅} satisfying Li+1 = Li\{li} and
dLi

(li) ≤ 1 for all 1 ≤ i ≤ N . Then from Proposition 2,
σ∗ ≥ 1.
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Although the techniques of [17] can also be used to draw
the same conclusion that GMS achieves full capacity in the
simple linear network discussed above, our emphasis here is
to illustrate an interesting “edge effect” of GMS, which has
not been studied in prior works [17], [20], [21]. The example
illustrates that the worst-case efficiency ratio of GMS depends
more on those links with the smallest interference degree. For
uniform networks, such links often fall on the edge of the
network. Hence, we refer to this property as the “edge effect.”
However, note that in general such links could also lie in the
interior of the network. In the next two sections, we make this
intuition rigorous by providing a procedure to derive a lower
bound of the efficiency ratio of arbitrary network graphs, and
a condition for the worst-case efficiency ratio for a class of
graphs.

B. An iterative approach

We present the procedure in Algorithm 1, which bounds the
local-pooling factor of the underlying graph, i.e., the efficiency
ratio of GMS. At each iteration, the algorithm picks up a link
and check the interference degree of the chosen link in the
remaining network graph.

Algorithm 1 Iterative analysis procedure
Initialization: L1 ← E, d← 1

1: for 1 ≤ i ≤ |E| do

2: Choose a link li from Li

3: if dLi
(li) ≥ d then

4: d← dLi
(li)

5: end if
6: Li+1 ← Li\{li}
7: end for
8: return d

Let de denote the returned value at the end of the algo-
rithm. We show that the local-pooling factor σ∗ of the graph
G(V,E, I) is at least 1

de
.

Lemma 5: Given G(V,E, I), if we obtain de from Algo-
rithm 1 with a sequence of {l1, l2, . . . , l|E|}, then σ∗ ≥ 1

de
.

Proof: The lemma directly follows from Propo-
sition 2. Note that the resulting sequence of links
{l1, l2, . . . , l|E|} and the corresponding sequence of sets {E =
L1, L2, . . . , L|E|+1 = ∅} satisfy two conditions of Li+1 =
Li\{li} and dLi

(li) ≤ de for all 1 ≤ i ≤ |E|. Hence, by
Proposition 2, σ∗ ≥ 1

de
.

The outcome of the algorithm depends on the sequence of
links chosen. One possibility is to choose at each iteration i
the link with the smallest interference degree in Li, i.e., in
line 2 of Algorithm 1, we choose li such that

li ← argmin
k∈Li

dLi
(k). (4)

This choice of li tends to produce a smaller value of de. This
procedure can be used to estimate the local-pooling factors of
arbitrary network graphs.

It is worth noting that there is some similarity between our
iterative procedure and the scheduling algorithms proposed
in [19]. Given a network graph, they both order links based
on some topological structure of the graph, and tackle the
links in the corresponding order. However, they were meant to
serve completely different purposes: Algorithm 1 is merely an
analytical procedure used to compute the performance bounds
of GMS. In contrast, the algorithms of [19] are actually used
to generate link schedules, and they are not related to GMS.

C. The worst-case local-pooling factor over a class of graphs

We are often interested in the worst-case efficiency ratio
of a scheduling policy for a class of network graphs. This
information is useful when the exact network topology is
unknown. Let P be a set of network graph with certain
topological properties and let σ+(P) and γ+(P) denote the
worst-case local-pooling factor and the worst-case efficiency
ratio, respectively, over all graphs in P, i.e.,

σ+(P) := inf{σ∗(G) | G ∈ P}, γ+(P) := inf{γ∗(G) | G ∈ P}.
We have σ+(P) = γ+(P) from Proposition 1.

We next use the methodology of Section IV-B to derive a
condition for a lower bound of σ+(P). Given P, define d+(P)
to be a positive integer with the following property: For any
G ∈ P, there must exist a link l∗ such that d(l∗) ≤ d+(P)
and further, G\{l∗} ∈ P. We call d+(P) as the recurrent
interference degree of P. The following proposition shows that
if we can find such a recurrent interference degree d+(P), the
worst-case efficiency ratio of GMS is bounded by 1

d+(P) , i.e.,
σ+(P) ≥ 1

d+(P) .
Proposition 3: Given a network graph G(V,E, I) ∈ P with

a recurrent interference degree d+(P), the local-pooling factor
is bounded by σ∗(G) ≥ 1

d+(P) .
Proof: Proposition 3 can be proven as Lemma 5. Since

G(V,E, I) ∈ P, there exists link l∗1 ∈ E with d(l∗1) ≤ d+(P)
and G\{l∗1} ∈ P. Let L1 = E and L2 = E\{l∗1}. Since
G\{l∗1} ∈ P, there exists link l∗2 ∈ L2 with dL2

(l∗2) ≤ d+(P)
and G\{l∗1, l∗2} ∈ P. Repeating this procedure until no link
remains, we obtain a sequence of links {l∗1, l∗2, . . . , l∗|E|} and
a sequence of sets {E = L1, L2, . . . , L|E|+1 = ∅} satisfying
Li+1 = Li\{l∗i } and dLi

(l∗i ) ≤ d+(P) for all 1 ≤ i ≤ |E|.
Hence, from Proposition 2, we conclude that σ∗(G) ≥ 1

d+(P) .

In the following section, we show how to apply Proposi-
tion 3 to a class of network graphs.

V. TREE NETWORK GRAPHS UNDER THE K-HOP
INTERFERENCE MODEL

We first study the efficiency ratio of GMS for tree networks.
In [17], [20], it has been shown that GMS achieves the
full capacity in tree networks under the 1-hop interference
model. We now show how to use the result in the previous
section to prove that GMS achieves full capacity for tree
network topologies under K-hop interference model. (This
result was shown in [21] by using a different approach.) Let
TK be the set of network graphs whose topology forms a tree
and the interference relationship is governed by the K-hop
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Fig. 3. Tree network graph with the deepest link l∗. Two links x, y ∈ IE(l∗)
interfere with each other.

interference constraints. Recall that in the K-hop interference
model, any two links within a K-hop distance cannot transmit
at the same time.

Proposition 4: GMS achieves the full capacity for tree
networks under the K-hop network model, i.e., σ+(TK) = 1.

Proof: It is sufficient to show that d+(TK) = 1 from
Proposition 3.

Consider a tree network graphGt(V,E, I) ∈ TK . We define
the depth of link l in E, denoted by D(l), as the number of
hops from link l to the root node of the tree. Let l∗ be the
link with the largest depth, i.e., l∗ := argmaxl∈E D(l). Since
l∗ is a leaf link of the tree, Gt\{l∗} is still a tree, and thus it
belongs to TK .

We next show that the interference degree d(l∗) of link l∗ is
1. It suffices to show that any two links x, y ∈ I(l∗) interfere
with each other. Let nx (or ny) denote the closest common
parent node of x (or y) and l∗. Note that both nx and ny

lie on the line from link l∗ to the root node. Without loss of
generality, we assume that ny is a parent of nx as shown in
Fig. 3. Let a, b, c, and d denote the number of links placed
between link y and node ny, between node ny and node nx,
between node nx and link l∗, and between node nx and link
x, respectively. We have the following constraints.

• a+ b+ c ≤ K − 1 since link y interferes with link l∗.
• d ≤ c since link l∗ has the maximum depth.

We thus have a+b+d ≤ K−1. In other words, any two links
x, y ∈ I(l∗) interfere with each other, and hence, d(l∗) = 1.

In summary, for a graph Gt(V,E, I) ∈ TK , there exists a
link l∗ ∈ E with the largest depth and its interference degree
is d(l∗) = 1. Further, Gt\{l∗} ∈ TK . Therefore, we conclude
that TK has a recurrent interference degree d+(TK) = 1 and
the result of Proposition 4 follows.

Proposition 4 show that GMS is a throughput-optimal
scheduling policy in tree networks under K-hop interference
models. However, when the network topology is not a tree, in
general GMS will not have an efficiency ratio of 1. In fact,
whenever K ≥ 2, we can construct network topologies, in
which the efficiency ratio of GMS can be arbitrarily small
under the K-hop interference model. (We refer readers to
[27] for the construction of these topologies.) As the reader
can see in [27], these topologies are somewhat artificial and
may not exist in practice. On the other hand, in our prior
work [26], we have shown that GMS achieves d̃

2d̃−1
under

the 1-hop interference model, where d̃ is the largest node
degree of the network graph. This suggests that we may be
able to obtain improved bounds on the worst-case performance

limits of GMS when there are additional constraints on the
network topology. Therefore, in the next section, we focus
on geometric unit-diskgraphs and revisit the question of the
worst-case efficiency ratio of GMS.

VI. ESTIMATES OF THE LOCAL-POOLING FACTOR FOR
GEOMETRIC UNIT-DISK NETWORK GRAPHS

In this section, we are interested in the performance of
GMS for undirected unit-disknetwork graphs, in which the
connectivity between nodes and the interference between
links depend on their geometric locations. We assume that
nodes lie on a finite two-dimensional space. We also assume
that two nodes ni and nj form a link if their distance
s(ni, nj) is less than the communication range c, and two
links li(n

1
i , n

2
i ) and lj(n

1
j , n

2
j ) interfere with each other if

the distance between any two nodes, one from each pair of
nodes {n1

i , n
2
i }, {n1

j , n
2
j}, is less than the interference range

r. We say that a unit-disknetwork graph operates under the
K-distance (interference) model if r = (K− 1)c, where K is
an integer no smaller than 2. Scheduling algorithms for these
types of networks have been studied by many researchers, e.g.,
in [12], [14], [28], [29]. It has been shown that distributed
scheduling algorithms can achieveO(1) fraction of the optimal
performance. More specifically, Chaporkar et al. [12] have
shown that the efficiency ratio of Maximal Scheduling is
bounded by 1

8 in arbitrary unit-diskgraphs under the 2-distance
model, and Sharma et al. [14] have shown that it is no smaller
than 1

49 under any K-distance model. In this section, we
will show that GMS typically has better efficiency ratios than
Maximal Scheduling studied in [12], [14].

Our methodology is again based on Proposition 3. Note that
the edge links in a unit-diskgraph typically have a smaller
interference degree than the links in the middle of the graph.
If we can bound the interference degree of some edge links
l to a number d, we can then use Proposition 3 to show that
the efficiency ratio is 1

d
. We will use the methodology first on

the 2-distance model, then on K-distance models.

A. Unit-disk graphs under the 2-distance model

Let Gg denote the set of graphs conforming to geo-
metric unit-diskconstraints. Given a unit-disknetwork graph
Gg(V,E, I) ∈ Gg, we can assign a two-dimensional coor-
dinate (x, y) for each node. We say that node A is to the left
of node B if A’s x-coordinate is less than B’s x-coordinate.
Then for each link l, we can define the left end-point (i.e.,
node) nL(l) and right end-point nR(l). If the two end-points
have the same x-coordinate, we assign them to the left or the
right arbitrarily. We consider the set of all right nodes of all
links NR

V = {nR(l) ∈ V | l ∈ E}. We say node n in NR
V is

located at the edge if there exist a line through node n such
that all other nodes in NR

V are in the interior of one of the
half-planes. Note that since the graph is on a two-dimensional
finite space, there always exists some right node that is on
the edge. Let nR

V denote the edge node that has the smallest
x-coordinate in NR

V . Then, all other nodes of NR
V are in the

interior of a half-plane (see Fig. 4) whose boundary is through
nR

V . We define a left-most link as a link whose right node is
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Fig. 4. Geometric network graph under the 2-distance model. Downward is
the left direction of the coordinate system as indicated by a big arrow. For
each link, its left node is colored in white and its right node in black. The
node nR

V is the left-most right node, the link l∗ is the left-most link. Note
that all other right nodes must be within an angle of less than 180o from nR

V
.

This figure shows how 6 other links can be placed within the interference
range of l∗ and they do not interfere with each other. Note that each node
of the 6 links must be outside an interference range of c of each other, and
further, their right node must be inside an angle less than 180o from nR

V .

nR
V . Assuming that every node in V is connected by some

links of E (otherwise, we can remove the node from V ), we
can always find at least one left-most link l∗ in E.

Let GK
g denote the set of unit-disknetwork graphs under

the K-distance model. The following lemma specifies the
performance limits of GMS in unit-disknetwork graphs under
the 2-distance model.

Proposition 5: The worst-case efficiency ratio of GMS in
geometric unit-diskgraphs under the 2-distance model is 1

6 ,
i.e., γ+(G2

g) ≥ 1
6 .

Sketch of proof: From Proposition 1, it suffices to show that
σ+(G2

g) ≥ 1
6 . Since a unit-disknetwork graph G(V,E, I) ∈

G2
g has at least one left-most link l∗ and G(V,E, I)\{l∗} ∈

G2
g, it suffices to show that d(l∗) ≤ 6. It then follows that

G2
g has a recurrent interference degree d+(G2

g) ≥ 6, and
σ+(G2

g) ≤ 1
6 by Proposition 3. We refer the readers to

Appendix B for the detailed proof of d(l∗) ≤ 6. In Fig. 4,
we show how 6 links that do not interfere with each other can
be placed within the interference range of l∗. In Appendix B,
we show that this is the largest number of non-interfering links
one can put in I(l∗).

Remark: The key step in the proof of Proposition 3 is to
bound the number of neighboring links that can be activated
simultaneously. Although the techniques that we used in
Appendix B have some similarity to those in [12], in order
to improve the bound from 8 (in [12]) to 6, we have to be
much more careful in the analysis. Specifically, the left-most
link must be carefully chosen (as described above), and more
cases of network topology must be considered. For details,
please refer to Appendix B.

Recall that Maximal Scheduling achieves an efficiency ratio
of 1

8 in unit-diskgraphs under the 2-distance model. Our result
shows that with some increase in computational complexity3,
GMS indeed outperforms Maximal Scheduling. In the rest
section, we show that the performance gap is even bigger for
K > 2.

3The complexity of state-of-the-art distributed GMS algorithms [18] is
O(|E|), which is higher than that of distributed Maximal Scheduling algo-
rithms [30], which is O(log |E|).

B. Unit-disk graphs under K-distance models

It is well known in the literature that the worst-case
efficiency ratio of Maximal Scheduling in unit-diskgraphs
degrades when K increases [12], [14]. We next show that
this is not the case for GMS. In fact, the worst-case efficiency
ratio of GMS tends to increase as K increases. In the next
lemma, we compare two graphs G1(V,E1, I) ∈ GK1

g and
G2(V,E2, I) ∈ GK2

g with K1 > K2. Note that both G1

and G2 have the same set of nodes V and have the same
interference range r. However, the communication range of
G1 is c1 = r

K1−1 , which is smaller than that of G2, (i.e,
c2 = r

K2−1 ).
Proposition 6: Given a set of nodes V and their location,

if K1 > K2, the local-pooling factor of the network graph
G1(V,E1, I) ∈ GK1

g is no smaller than the local-pooling factor
of the network graph G2(V,E2, I) ∈ GK2

g , i.e., σ∗(G1) ≥
σ∗(G2).

Proof: Note that the set of nodes is the same and the
interference range is also identical for both G1 and G2.
Suppose that we have a subset L ⊂ E1 in G1 and two maximal
scheduling vectors ~µ, ~ν ∈ Co(ML) such that σ~µ � ~ν. If the
same vectors ~µ, ~ν are also valid maximal scheduling vectors
in G2, then we have σ∗(G1) ≥ σ∗(G2) from the definition of
the local-pooling factor. Toward this end, we first show that
two maximal scheduling vectors in a subset of links in G1 are
also valid maximal scheduling vectors in G2.

Since the interference range is fixed, G1 has a smaller
communication range than G2. Hence, any link in G1 is
also a link in G2, i.e., E1 ⊂ E2. We consider the subset
L ⊂ E1. From E1 ⊂ E2, we have L ⊂ E2. Further, since
the interference range is identical, the interference constraints
between links in L do not change. Specifically, two links in
L that interfere with each other under the K1-distance model
also interfere under the K2-distance model. Hence, maximal
scheduling vectors ~µ, ~ν in L under the K1-distance model are
valid maximal scheduling vectors in L under the K2-distance
model.

Therefore, if there exist two maximal scheduling vectors
~µ, ~ν ∈ Co(ML) satisfying σ~µ � ~ν and a subset L of links in
G1, the same maximal scheduling vectors and the same subset
L are valid for G2. This implies that the local-pooling factor
under the K2-distance model is no greater than σ. Hence,
σ∗(G1) ≥ σ∗(G2).

Remark: Propositions 1 and 6 immediately imply that the
efficiency ratio of GMS increases as the interference range
increases. We note however that this result does not imply that
the capacity region of GMS increases with K. In fact, as K
increases, the optimal capacity region Λ decreases. Hence, the
result suggests that as K increases, the optimal capacity region
Λ decreases faster than the capacity region of GMS. Finally,
we note that the result of Proposition 6 is also consistent
with the result of [21], which shows that for a given network
graph, GMS can achieve the optimal capacity region if the
interference range K is sufficiently large.

We next state Theorem 1, which is a direct consequence of
Propositions 5 and 6.

Theorem 1: The worst-case efficiency ratio of GMS in geo-
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metric unit-diskgraphs under K-distance models is no smaller
than 1

6 , i.e., γ+(GK
g ) ≥ 1

6 for K ≥ 2.
How tight is this bound? We next present a network graph in
GK

g with a local-pooling factor of 1
3 .

Lemma 6: There exists a large number K0 such that for all
K > K0 and σ arbitrarily close to 1

3 , some geometric unit-
diskgraph G(V,E, I) ∈ GK

g has the local-pooling factor no
larger than σ, i.e., σ∗(G) ≤ σ.

It suffices to construct a graph such that there exists two
vectors ~µ, ~ν ∈ Co(ME) that satisfy σ~µ � ~ν. Due to lack of
space, we sketch the main idea in this paper. For the detailed
proof, we refer the readers to [27].

We construct a network graph G(V,E, I) ∈ GK
g as follows.

First, when K is very large, we can think of a link as a point
and its interference range as a circle with radius r because the
communication range is close to zero. Second, we form two
set of links L1 and L2. Suppose that |L1| and |L2| are finite but
very large, and |L1| = |L2|. Remember that we approximate
a link by a point. The links from L1 form a circle C1 with
radius R at origin O, and links from L2 form another circle
C2 with radius R+

√
3

2 r at the same origin O. In Fig. 5, we
show the small arcs from the two circles. Since the radius R is
very large, the two arcs can be approximated by two parallel
lines. Since |L1| and |L2| are very large, there exists a link at
almost every point of the two arcs.

We now find two maximal scheduling vectors ~µ, ~ν ∈
Co(ML1∪L2

). To form ~µ, take any maximal schedules of the
form in Fig. 5(a), where active points (i.e., links) are colored
in black. Since |L1| and |L2| are very large, there will be a
large number of such maximal schedules and we produce ~µ
by taking the convex combination with equal weights of these
schedules. Similarly, to form ~ν, we take maximal schedules
of the form in Fig. 5(b) and produce ~ν by taking the convex
combination with equal weights of them. Clearly, the maximal
schedules in Fig. 5(a) are more efficient than those in Fig. 5(b).
We next show that the ratio of ~µ, ~ν is close to 1

3 .
Assuming that points (i.e., links) are uniformly distributed

on C1 and C2, then the distance between activated links in
Fig. 5(a) is approximately 1

3 of the distances between activated
links in Fig. 5(b). Hence, the schedules that form ~µ serves 3
times more links than the schedules that form ~ν. We thus
obtain that 1

3~µ is approximately equal to ~ν. In [27], we show
this with a more formal proof and conclude that σ~µ � ~ν with
σ close to 1

3 .
Lemma 6 leads to the following corollary.
Corollary 1: There exists a geometric unit-disknetwork

graph G(V,E, I) ∈ GK
g with K ≥ 2, in which the efficiency

ratio of GMS is no more than 1
3 .

Proof: From Lemma 6, there exist a number K0 and
graphs G(V,E, I) ∈ GK

g for all K ≥ K0 such that σ∗(G) ≤
1
3 . By Proposition 6, we also have network graphs GK ∈ GK

g

for all K ≤ K0 such that σ(GK) ≤ σ(GK0
) ≤ 1

3 . Therefore,
we have σ+(GK

g ) ≤ 1
3 for all K ≥ 2.

From Theorem 1 and Corollary 1, we can bound the worst-
case efficiency ratio of GMS in arbitrary geometric unit-
disknetwork graphs under the K-distance model as

1

6
≤ γ+(GK

g ) ≤ 1

3
. (5)

r

r

C1

C2

(a) An instance of (dense)
maximal schedules ~Mi;
~µ ∈ Co({ ~Mi})

C1

C2

r

r

3r

(b) An instance of (sparse)
maximal schedules ~Mj ;
~ν ∈ Co({ ~Mj})

Fig. 5. A geometric unit-disknetwork graph G(V,E, I) ∈ GK
g and ~µ, ~ν ∈

Co(ME) such that 1

3
~µ � ~ν. With K → ∞, we assume that a link is a

point and its interference range is a circle with radius r. Figures illustrate an
instance of maximal schedules from ~µ and ~ν, respectively. Note that since
links are uniformly and closely placed on circles C1 and C2 (a small fraction
of them is shown in the figures), the interference range of active links in each
maximal schedule must cover C1 and C2. Let ~µ consist of dense maximal
schedules and let ~ν consist of sparse maximal schedules. From the uniform
placement of (finite) links on C1 and C2, the time required to serve all links
for a unit time is determined by the distance between two neighboring active
links in C1 (or C2). Since the distance is r in dense maximal schedules and
3r in sparse maximal schedules, we have 1

3
~µ � ~ν.

VII. CONCLUSION

In this paper, we have provided new analytical results on the
achievable performance of GMS for a large class of network
topologies under general K-hop interference models. We first
provide an equivalent characterization of the efficiency ratio
of GMS through the local-pooling factor of the underlying
graph. We then provide an iterative procedure to estimate the
local-pooling factor of arbitrary graphs. This new procedure
allows us to estimate the worst-case efficiency ratio of GMS
for a large set of network graphs and interference models. In
particular, we observe that GMS achieves the optimal capacity
region in tree networks under the K-hop interference model.
Further, in geometric unit-disknetwork topologies under the
K-distance interference model, we show that the worst-case
efficiency ratio of GMS increases with K, and is between 1

6
and 1

3 .
For future work, there remain many interesting open prob-

lems in these directions. For example, it has been empirically
shown in [2], [6] that GMS achieves the optimal performance
in a variety of network settings. This suggests that our bounds
on the worst-case efficiency ratio for unit-diskgraphs could be
further improved. Further, it would be an interesting question
whether these results can be extended to interference models
other than the geometric unit-diskmodel, e.g., SNR-based
interference model, and non-uniform disk model that incor-
porates the effects of varying power levels. Finally, we note
that there are efforts to develop high-performance scheduling
algorithms by ordering links or nodes [19], [31]. It is an
interesting direction to explore since, in a certain sense, GMS
introduces dynamic ordering of links based on the queue
lengths.

APPENDIX

A. Proof of Lemma 1

Assume that |E| is finite. Since for all L ⊂ E, the set of
maximal schedules ML has finite elements. Then its convex
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hull Co(ML) is bounded and closed, and thus, compact.
By definition of σ∗, for any k > 0, there must exist a

subset Lk, and two vectors ~µk, ~νk ∈ Co(MLk
) satisfying

(σ∗+ 1
k
)~µk � ~νk. Hence, we can obtain a sequence {(~µk, ~νk)}.

Since the number of subsets of E is finite, there must exists
a subsequence (~µkn

, ~νkn
) ∈ Co(ML)xCo(ML) for some

L ⊂ E, where x stands for the cartesian product of the sets.
Since Co(ML) is a compact set, Co(ML)xCo(ML) is com-
pact and hence, {(~µkn

, ~νkn
)} has a convergent subsequence

that converges to some element of Co(ML)xCo(ML). Let
(~µki

, ~νki
) denote the subsequence converging to (~µ∗, ~ν∗) ∈

Co(ML)xCo(ML). Hence, from (σ∗ + 1
ki

)~µki
� ~νki

for all
ki, we obtain ~µ∗, ~ν∗ ∈ Co(ML) and σ∗~µ∗ � ~ν∗.

B. Proof of Proposition 5

In this section, we prove Proposition 5. Since a geometric
unit-disknetwork graph G(V,E, I) ∈ G2

g has at least one left-
most link l∗ and G(V,E, I)\{l∗} ∈ G2

g, it suffices to show
that d(l∗) ≤ 6.

Our strategy is basically to count the number of nodes that
can transmit simultaneously in the interference area of l∗: i)
We first divide the scenario into cases based on the placement
of l∗, i.e., the angle between the link l∗ and the y-axis. ii) Then
we visit the cases in turn, and in each case, we appropriately
partition the interference area of l∗ to restrict the number of
transmitters in each partition area. iii) Finally, we show that
in each case, the total number of nodes that can transmit
simultaneously is no greater than 6, i.e., d(l∗) ≤ 6. To this
end, we first provide some definitions following two facts that
restrict the number of simultaneous transmitters in a small
area. We will use them extensively in the proof.

Fig. 6(a) illustrates the neighborhood of our left-most link
l∗. Let L and R denote the location of its left node and
right node, respectively. The left direction in the (Cartesian)
coordinate system is pointed out by a big gray arrow. The
interference area of l∗ is a union of two unit disks DL and
DR with radius r. We assume r = 1 for simplicity. Note that
the distance4 between L and R is less than 1, i.e., LR ≤ 1.
We divide each disk into 6 equal-size sectors as shown in
Fig. 6(a). The points A through J on the edge of the disks
denote the boundary of these sectors. Note that in the area
where the two disks intersect, some sectors also overlap, and
the intersections form triangles. We name these triangles and
remaining sectors as P1 through P10.

We define indenpendently interfering nodes or links as fol-
lows: Two nodes (or links) are said to independently interfere
with link l∗ if both nodes (or links) interfere with link l∗, but
do not interfere with each other. Then, we have the following
fact.

• Fact 1: If two independently interfering nodes are located
in the same disk, their angle at the center of the disk
should be larger than π

3 because their distance has to be
larger than 1.

Let us define the function f(·) as the number of indepen-
dently interfering nodes, i.e., if there exists an independently

4Let AB denote the distance between two points A and B.

interfering link li such that one of its end-point is in Pi, and
the other end point is NOT in ∪i−1

k=1Pk, then we let f(Pi) = 1.
Otherwise, if there exists no such link li, we let f(Pi) = 0.
Clearly, there is at most one such link li for each Pi from
Fact 1. If such a link li exists, we let Ni to denote the
end point in Pi, and N̄i to denote the other end point. We
also define f(·) with multiple arguments as the number of
independently interfering nodes in the union of the arguments,
i.e., f(Pi, Pj , Pk) := f(Pi ∪ Pj ∪ Pk) = f(Pi) + f(Pj\Pi) +
f(Pk\{Pi∪Pj}) for i < j < k. If the arguments are mutually
exclusive, i.e., for any two arguments X and Y satisfying
X ∩Y = ∅, we have f(Pi, Pj , Pk) = f(Pi)+ f(Pj)+ f(Pk).

In Fig. 6(a), since R is the position of the left-most right
node nR

V , which is chosen such that all right nodes should be
strictly inside the right half plane, we can draw two rays Y1 and
Y2 from R such that all other right nodes are located between
these two rays, and the angle ∠Y ∗

1 RY
∗
2 of two rays are less

than π, where Y ∗
1 and Y ∗

2 are the (infinite) end point of ray
Y1 and Y2, respectively. We measure an angle clockwise. Let
AR denote the area that other right nodes are located, which
is lightly shaded in Fig. 6(a). If an interfering link l = (N, N̄)
has N not in AR, the other node N̄ should be located in in
AR. In this case, from our choice of the left-most link l∗, N
should be a left node, N̄ should be a right node, and one of
them should be located in DL∪DR (for l to be an interfering
link of l∗). The following fact comes from our choice of l∗.

• Fact 2: All links interfering with l∗ have their right nodes
in AR.

From Fact 2, it is obvious that more (independently interfer-
ing) nodes can be located within two disks areas DL∪DR with
a larger ∠Y ∗

1 RY
∗
2 . In the sequel, we assume that ∠Y ∗

1 RY
∗
2

is very close to π in order to obtain the largest interference
degree. Finally, let φ denote the angle between Y ∗

1 and the
left-most link l∗ as shown in Fig. 6(a). In order to prove
Proposition 5, it suffices to show that d(l∗) ≤ 6 for 0 ≤ φ ≤ π

2
because of the symmetry.

1) Case 1: 0 ≤ φ ≤ π
6 .

Fig. 6(b) illustrates such a case, where a couple of dotted
lines indicates two bounds of φ. We will first show that
d(l∗) ≤ 7. From d(l∗) = f(P1, . . . , P10), we have d(l∗) =
f(P1, P2, P4, P5)+f(P3, P8)+f(P6, P7)+f(P9, f10). Since
it is clear that f(P1, P2, P4, P5) ≤ 4, we will show in turn
that

• f(P6, P7) ≤ 1,
• f(P9, P10) ≤ 1,
• f(P3, P8) ≤ 1.

Then we prove that d(l∗) < 7 by showing that all the equalities
cannot hold at the same time.

We begin with the following lemma and corollary, which
will clarify the constraints between independently interfering
links, in particularly when one of links has its right node
outside {DL ∪DR}.

Lemma 7: For a unit disk Do at the origin o (see Fig. 6(c)),
assume that there are two points a and b: point a is inside Do

and point b is on the positive x-axis. Consider two unit disks
Da and Db centered at a and b, respectively. If the distance
between a and b is less than 1, then the union of two disks
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Fig. 6. Neighborhood of the left-most link l∗, and diagrams of Case 1 and Lemma 7.

includes the shaded sector S of Fig. 6(c), which is the set of
points s ∈ Do such that −π

6 ≤ ∠sob ≤ π
6 .

Proof: If b is within Do, it is trivial. Hence, we assume
that the x-coordinate of b is greater than 1. Let a move on arc
of Do and b is located at the x-axis with distance 1 from a as
shown in Fig. 6(c). Clearly, this is the case that the overlap
of Da ∪Db with Do is the smallest. Let c denote the point in
Do satisfying ca = cb = 1, which is marked by an arrow in
Fig. 6(c).

We represent the coordinate of a by (cosψ, sinψ), where
ψ := ∠boa as shown in Fig. 6(c). Since ab = 1 and the
y-coordinate of b is 0, we can also represent b and c as b =
(2 cosψ, 0) and c := (cx, cy) = (2 cosψ−cos(π

3−ψ), sin(π
3−

ψ)). Hence, we obtain cy = 1√
3
cx. This implies that the point

c is on the boundary of S shown in Fig. 6(c). Let e denote the
point that line (o, c) meets Do. Clearly, line segment (o, c) is
included in Da. To conclude that S is included in Da∪Db, it
suffices to show that line segment (c, e) is included in Da∪Db.
Since c is already included, we only need to show e ∈ Da∪Db.
In the following, we prove by dividing it into three sub-cases.

Note that the coordinate of e = (cos π
6 , sin

π
6 ) = (

√
3

2 ,
1
2 ).

• If 0 ≤ ψ ≤ π
6 , we have ae ≤ 1 and thus e ∈ Da.

• If π
6 < ψ ≤ π

3 , we have 1 ≤ 2 cosψ <
√

3. Hence, we
obtain (eb)2 = (

√
3

2 − 2 cosψ)2 + 1
4 ≤ 1, which implies

that e ∈ Db.
• If ψ > π

3 , we have eb ≤ 1 and thus e ∈ Db.
Therefore, the line segment (c, e) is included in Da∪Db, and
so is S.

Corollary 2: Let p denote the point on the edge of Do

satisfying ∠aop = π
3 , and let q the point where the x-axis

meets the edge ofDo as shown in Fig. 6(c). Then, area (oeqap)
in Do is covered by the interference range from the link (a, b).

Proof: We divide the area into three sectors: sectors (oeq),
(oqa), and (oap). Sector (oeq) is covered by Da ∪ Db from
Lemma 7. Sector (oqa) is covered by Da if 0 ≤ ψ ≤ π

3 and
by Db if ψ > π

3 . Finally, sector (oap) is covered by Da.
We first show f(P6, P7) ≤ 1 by contradiction. We divide

AR into two mutually exclusive areas; ǍR := {DL∪DR}∩AR

and ÂR := {DL∪DR}c∩AR. Suppose that f(P6, P7) = 2. We
must have f(P7) = 1, and then N̄7 ∈ ÂR because N7 /∈ AR

and N̄7 /∈ ∪6
k=1Pk . Since ∠BRN̄7 ≤ π

6 , Corollary 2 (with

a = N7 and b = N̄7) immediately implies that sector P6

is covered by the interference range from link (N7, N̄7) as
shown in Fig. 6(b). Hence, there cannot be an independently
interfering node in P6, which contradicts our assumption that
f(P6) = 1. Similarly, we can show f(P9, P10) ≤ 1.

Next, we show f(P3, P8) ≤ 1. Again suppose that
f(P3, P8) = 2, we must have f(P8) = 1, and N̄8 ∈ ÂR.
Since N8N̄8 ≤ 1 and N̄8 ∈ ÂR, link l8 := (N8, N̄8) should
cross either line (L, I) or line (R, J). If the link crosses line
(L, I), Corollary 2 (with a = N8, b = N̄8, o = L) implies
that P3 is covered by the interference range from link l8. The
same conclusion can be drawn if link l8 crosses line (R, J) by
using Corollary 2 with o = R. Hence, we obtain f(P3) = 0,
which contradicts our assumption that f(P3) = 1.

Then we have
f(P1, . . . , P10) = f(P1, P2, P4, P5) + f(P3, P8)

+ f(P6, P7) + f(P9, P10) ≤ 7.

It remains to show that d(l∗) < 7. For notational conve-
nience, let Pi,j denote Pi ∪ Pj . If f(Pi,j) = 1, we denote
the interfering node in Pi,j and the other end-point of the
corresponding link by Ni,j and N̄i,j , respectively.

Suppose that d(l∗) = f(P1, P2, P3,8, P4, P5, P6,7, P9,10) =
7. Note that we must have f(P1) = f(P2) = f(P3,8) = · · · =
f(P9,10) = 1. We are going to prove that this is not possible
by showing ∠Y ∗

1 LB + ∠GRY ∗
2 > 2π.

∠Y ∗
1 LB + ∠GRY ∗

2

= (∠Y ∗
1 LN1 + ∠N1LI + ∠ILB)

+ (∠GRJ + ∠JRN5 + ∠N5RY
∗
2 )

= ∠Y ∗
1 LN1 + ∠N5RY

∗
2 + (∠N1LI + ∠JRN5) + 2π

3 .

Let us consider each term one by one.
1) We have ∠Y ∗

1 LN1 ≥ ∠N̄9,10LN1 > π
6 from

f(P9,10) = 1 and Lemma 7.
2) Similarly, we also have ∠N5RY

∗
2 ≥ ∠N5RN̄6,7 >

π
6

from f(P6,7) = 1 and Lemma 7.
3) From ∠N1LN2 >

π
3 , we have ∠N1LI+∠JRN5 >

π
3 +

(∠N2LI+∠JRN5). It is shown5 in [12] that (∠N2LI+

5If a virtual node N∗ is drawn in DR such that ∠N2LB = ∠N∗RB and
N2L = N∗R, then it has been proven that N∗N5 > 1. This implies that
∠N2LI + ∠JRN5 > 2π

3
. See [12] for the detailed proof.
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∠JRN5) >
2π
3 . Then, we have ∠N1LI+∠JRN5 > π.

We then have ∠Y ∗
1 LB + ∠GRY ∗

2 > 2π, which leads
to a contradiction because we should have ∠Y ∗

1 LB +
∠GRY ∗

2 < ∠Y ∗
1 RB + GRY ∗

2 = ∠GRB + ∠Y ∗
1 RY

∗
2 <

2π from ∠Y ∗
1 RY

∗
2 < π. Hence, we conclude that

f(P1, P2, P3,8, P4, P5, P6,7, P9,10) < 7.
2) Case 2: π

6 ≤ φ ≤ π
3 .

We illustrate this case in Fig. 7(a), where we divide DL ∪
DR into a different partition compared with Case 1. We first
describe the new partitions before proceeding with our proof.

Let J ′ denote the position where ray Y1 meets the edge
of disk DR. Other points A′, B′, C ′ and D′ are defined as
the points on the edge of disk DR such that ∠J ′RA′ =
∠A′RB′ = ∠B′RC ′ = ∠C ′RD′ = π

3 . Similarly, we set
H ′ as the point where Y1 meets the edge of disk DL, and
set other points E′, F ′, G′, I ′ on the edge of disk DL such
that ∠H ′LI ′ = ∠G′LH ′ = ∠F ′LG′ = ∠E′LF ′ = π

3 as
shown in Fig. 7(a). We also let K ′ denote the point where
the edges of DL and DR meet. Note that since LR ≤ 1, we
have ∠K ′LR = ∠LRK ′ > π

3 . Hence, two dotted lines, which
present the bounds of ∠φ, go below K ′.

We introduce two additional arcs in the figure. Arc (L,R)
corresponds to points x between L and R with K ′x = 1 and
arc (R,D′) corresponds to points x between R and D′ with
C ′x = 1. We name each area in DL ∪DR as follows:

• Q1: sector (H ′LI ′), • Q2: sector (J ′RA′),
• Q3: sector (A′RB′), • Q4: sector (B′RC ′),
• Q+

5 : the shaded area in (C ′RD′),
• Q+

6 : the shaded area in the middle including line (L,R),
• Q8: the shaded sector (F ′LG′), • Q9: sector (G′LH ′),
• Q+

7 : the remaining area in DL ∪ DR, i.e., area
(F ′LRD′E′), surrounded by shaded areas Q+

5 , Q
+
6 , Q8.

Note that Q1 and Q2 are the only two regions that overlap.
We define function f(·) and nodes Ni, N̄i as before using
Qi, i.e., f(Qi) = 1 implies that there exists an independently
interfering link such that one end-point Ni ∈ Qi and the other
end node N̄i /∈ ∪i−1

k=1Qk.
From d(l∗) = f(Q1, . . . , Q9), we will prove d(l∗) ≤ 6 by

showing
• f(Q3) ≤ 1,
• f(Q8, Q9) ≤ 1,
• f(Q1, Q2, Q

+
6 ) ≤ 2,

• f(Q4, Q
+
5 , Q

+
7 ) ≤ 2.

Since it is clear that f(Q3) ≤ 1, we focus on the rest.
We first show that f(Q8, Q9) ≤ 1. Specifically, we will

show that f(Q9) = 0 if f(Q8) = 1. To this end, we show that
if f(Q8) = 1, then ∠N̄8LH

′ ≤ π
6 . Then using Corollary 2

(with a = N8, b = N̄8, o = L), we can conclude that f(Q9) =
0. In the following, we prove that ∠N̄8LH

′ ≤ π
6 when φ ≤ π

3 .
Let us consider area Q9 in detail. Fig. 7(b) illustrates the

zoomed diagram. Let Z denote the point on Y1 satisfying
∠ZLH ′ = ∠G′LZ = π

6 . Clearly, if link (N8, N̄8) crosses
line segment (Z,H ′), we have ∠N̄8LH

′ ≤ π
6 . We are going

to show that G′ is the closest point in Q8 to Z, and that
G′Z ≥ 1. Then from N8N̄8 ≤ 1 and N8 ∈ Q8, link (N8, N̄8)
should cross line segment (Z,H ′).

Note that we have LR ≤ 1, LH ′ = 1, and H ′R ≥ 1,
which imply that ∠RH ′L ≤ π

3 . Then, from ∠LH ′G′ = π
3 ,

G′H ′ = 1, and the fact that lines (G′, H ′) and (L,Z) are
perpendicular, it follows that LZ ≥

√
3. Since ∠G′LZ = π

6 ,
we have LZ(cos∠G′LZ) > 1 = G′L, and conclude that G′

is the closest point in Q8 to Z. Hence, it suffices to show
G′Z ≥ 1.

Since ∠RH ′L ≤ π
3 , it follows ∠H ′ZL = ∠RH ′L −

∠ZLH ′ ≤ π
6 . From ∠H ′ZL ≤ π

6 = ∠ZLH ′, we obtain
H ′Z ≥ H ′L = 1. Therefore, we conclude G′Z = H ′Z ≥ 1,
which results in f(Q9) = 0 from Corollary 2, and we have
f(Q8, Q9) ≤ 1.

Next, we prove f(Q1, Q2, Q
+
6 ) ≤ 2 using the following

lemmas.
Lemma 8: If three nodes x, y, z satisfy that xz ≤ 1 and

yz ≤ 1, then all points t in triangle area (xyz) satisfy xt ≤ 1
or yt ≤ 1.
Lemma 8 is obvious and we omit the proof.

Lemma 9: If two nodes x and y satisfy xy ≤
√

3, and link
l = (a, b) with ab ≤ 1 intersects line segment (x, y), then the
link interferes with either x or y.
We also omit the proof of Lemma 9. It can be easily shown
by drawing two nodes x, y with xy ≤

√
3 and a link (a, b)

with ab ≤ 1. From ab ≤ 1 and xy ≤
√

3, we should have
ax ≤ 1, ay ≤ 1, bx ≤ 1, or by ≤ 1.

We prove f(Q1, Q2, Q
+
6 ) ≤ 2 by contradiction. Supposing

f(Q1, Q2, Q
+
6 ) = 3, we must have f(Q1) = f(Q2) =

f(Q+
6 ) = 1. Note that Q+

6 ∩ AR = ∅. Then, f(Q+
6 ) = 1

implies that there must exists N̄6 ∈ ÂR. Note that link
l6 := (N6, N̄6) will divide Q1 or Q2 (or both of them) into
two parts. If it divides Q1 (or Q2, correspondingly), from
Corollary 2 node N1 cannot be in the right part of Q1 (or
node N2 cannot be in the left part of Q2, correspondingly).
This implies that link l6 intersects either line segment (N1,K

′)
or (N2,K

′). Moreover, since N1K ′ ≤ 1 and N2K ′ ≤ 1, from
Lemma 8 nodeN6 cannot be in the triangle area of (N1N2K

′).
This immediately implies that N6 should be located below line
segment (N1, N2). Hence link l6 must intersect line segment
(N1, N2). Now we use Lemma 9 to prove that this is not
possible. In the following, we show that the distance between
any two points within Q1 ∪ Q2 is no greater than

√
3 (i.e.,

N1N2 ≤
√

3). Then, Lemma 9 implies that independently
interfering link l6 cannot exist, i.e., f(Q+

6 ) = 0.
It is easy to see that maxX∈Q1,Y ∈Q2

XY is equal6 to
max{1, H ′R,LA′, H ′A′}. We can show that each length is
no greater than

√
3. (Details are available in [27].) Note

that maxX∈Q1,Y ∈Q2
XY ≤

√
3 immediately implies that

N1N2 ≤
√

3. From Lemma 9, it leads to f(Q+
6 ) = 0, which

contradicts our assumption that f(Q1, Q2, Q
+
6 ) = 3 and we

conclude f(Q1, Q2, Q
+
6 ) ≤ 2.

Finally, we show f(Q4, Q
+
5 , Q

+
7 ) ≤ 2. To begin with, we

note that if f(Q+
7 ) ≥ 1, an interfering link must cross ray

Y2. The link cannot pass through Y1 to reach ǍR because

6For a point x ∈ Q1, let D1 and D2 denote two disks centered at x
with radius max{1, xR} and max{1, xA′} respectively. Then, clearly Q2 ⊂
D1∪D2, and thus xY ≤ max{1, xR, xA′} for all Y ∈ Q2. Similarly, for a
point y ∈ Q2, we have Xy ≤ max{1, Ly, H ′y} for all X ∈ Q1. Therefore,
we obtain maxX∈Q1,Y ∈Q2

XY = max{1, H′R,LA′,H′A′}.
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its distance would have been larger than 1. However, we can
show that at most one such link l7 := (N7, N̄7) can cross Y2

as shown in Fig. 7(c), which implies that f(Q+
7 ) ≤ 1 [27].

Fig. 7(c) illustrates a scenario with f(Q+
7 ) = 1. Let U

denote a point on the edge of DR with ∠URL = π
2 . Let the

coordinate of R be (0, 0), then the coordinate of U is (0,−1),
and clearly node N7 has its coordination (nx, ny) with nx ≤ 0
and ny ≥ −1. Let V denote the point on the extension of line
(R,C ′) satisfying UV = 1 and let W denote the point on the
edge of DR with UW = 1, as shown in the figure. Points
v with Uv = 1 are drawn as a dashed arc. The points V
and W are where the extended line (R,C ′) and the disk DR,
respectively, meet the dashed arc. Since N7 has nx ≤ 0 and
ny ≥ −1, its other end node N̄7 should be located in the area
i) above line (C ′, V ), ii) within the dashed arc centered at U ,
and iii) the exterior of DR. Let Q∗ denote this area as shown
in Fig. 7(c).

Now we prove f(Q4, Q
+
5 , Q

+
7 ) ≤ 2 by contradiction.

Suppose f(Q4, Q
+
5 , Q

+
7 ) = 3. Since each area can hold only

one independently interfering node, we must have f(Q4) =
1, f(Q+

5 ) = 1 and f(Q+
7 ) = 1. We prove that this is not

possible by showing f(Q+
5 ) = 0 when f(Q4) = 1 and

f(Q+
7 ) = 1.

Let us consider a scenario with f(Q4) = 1 and f(Q+
7 ) = 1

as shown in Fig. 7(c). Note that link l5 := (N5, N̄5) and l7
cannot intersect with each other from Lemma 9, and the in-
terference range from link l7 covers lower part of Q+

5 . Hence,
link l5 can only be placed above link l7. Link l5 also has to
go below N4 (i.e., cannot cross line segment (R,N4)) because
otherwise we should have f(Q4) = 0 from Corollary 2, which
contradicts our assumption that f(Q4) = 1. Also note that
N̄5 /∈ Q4 and N̄5 /∈ Q∗ due to the interference range from
N4 and N̄7 respectively, and N̄5 /∈ triangle area of (N4N̄7C

′)
from Lemma 8. These along with the facts that link l5 goes
below (R,N4) and above l7 imply that N̄5 cannot be located
to the left of line (N4, N̄7) and hence, link l5 must intersect
line segment (N4, N̄7).

It remains to show that XY ≤
√

3 for all X ∈ Q4 and Y ∈
Q∗, which implies that N4N̄7 ≤

√
3. Then from Lemma 9, any

link intersecting line segment (N4, N̄7) will interfere with ei-
ther N4 or N̄7, which will lead to f(Q+

5 ) = 0. From Fig. 7(c),
it is clear that maxX∈Q4,Y ∈Q∗ XY < max{RV ,B′V } when

2π
3 ≤ (∠V RL = π − φ) ≤ 5π

6 . From RU = 1, UV = 1 and
∠V RU ≥ π

6 , we have RV ≤
√

3. Moreover, from RB′ = 1,
∠B′RV = π

3 and RV ≤
√

3, we also have B′V <
√

3.
Hence, we conclude that maxX∈Q4,Y ∈Q∗ XY ≤

√
3, and

N4N̄7 ≤
√

3.
Summing up all results, we obtain d(l∗) ≤ f(Q3) +

f(Q8, Q9) + f(Q1, Q2, Q
+
6 ) + f(Q4, Q

+
5 , Q

+
7 ) ≤ 6.

3) Case 3: π
3 < φ ≤ φ1, where φ1 := ∠LRK ′ in Fig. 7(d).

Using the same partitioning approach and the techniques as
in Case 2, we can show the following.

• f(Q3) ≤ 1.
• f(Q8, Q9) ≤ 1: To prove this, we need ∠RH ′L ≤ π

3 ,
which comes from LR ≤ 1, LH ′ = 1, and H ′R ≥ 1.

• f(Q1, Q2, Q
+
6 ) ≤ 2: To prove this, we need to show that

H ′R ≤
√

3 and LA′ ≤
√

3, which can be proven using
a similar approach as in Case 2 [27].

• f(Q+
7 ) ≤ 1, and thus f(Q4, Q

+
5 , Q

+
7 ) ≤ 3.

Then we prove that d(l∗) ≤ 6 by showing that for the above
equations, the equalities cannot hold all at the same time.

Suppose that d(l∗) = 7. Clearly, we must have f(Q3) =
1, f(Q8, Q9) = 1, f(Q1, Q2, Q

+
6 ) = 2, f(Q4, Q

+
5 , Q

+
7 ) = 3.

Let l8,9 := (N8,9, N̄8,9) denote the independently interfering
link in Q8 ∪ Q9. Also let QL := Q1\DR and QR :=
{Q1 ∪Q2 ∪Q+

6 }\{Q2 ∪QL}, which are presented as dimly
and lightly shaded areas, respectively, in Fig. 7(d). The two
dotted lines are the bounds of φ. We can show that the
interference range from l8,9 covers QL. (We refer to [27] for
the detailed proof.) Once the interference range from link l8,9

includes QL, we must have f(Q2) = 1 and f(QR) = 1 from
f(Q1, Q2, Q

+
6 ) = 2, it follows f(QR, Q2, Q3, Q4, Q

+
5 ) = 5.

However, this leads to contradiction to Y ∗
1 RY

∗
2 < π. Let NR

denote the independently interfering node in QR, and let N̄R

denote the corresponding other end-point. Since NR /∈ AR,
we must have N̄R ∈ ÂR, and thus we obtain

∠Y ∗
1 RY

∗
2 ≥ ∠N̄RRN2 + ∠N2RN4 + ∠N4RN̄5

> π
6 + 2π

3 + π
6 = π,

from Lemma 7 and Fact 1. Then, we can conclude that d(l∗) ≤
6.

4) Case 4: φ1 < φ ≤ π
2 .

The procedure is similar as in Case 3. We partition the
interference area of l∗ such that the interference constraints
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lead to multiple inequalities, and show that all the equalities
cannot hold at the same time. Due to the limited space, we
refer readers to [27] for the detailed proof.

Considering all Cases 1 through 4, we conclude that d(l∗) ≤
6 for the left-most link l∗ in a geometric unit-disknetwork
graph under the 2-hop interference model.
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