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Low-Complexity and Distributed Energy
Minimization in Multi-hop Wireless Networks

Longbi Lin, Xiaojun Lin, Member, IEEE, and Ness B. Shroff,Fellow, IEEE

Abstract— In this work, we study the problem of minimizing
the total power consumption in a multi-hop wireless network
subject to a given offered load. It is well-known that the
total power consumption of multi-hop wireless networks can
be substantially reduced by jointly optimizing power control,
link scheduling, and routing. However, the known optimal cross-
layer solution to this problem is centralized, and with high
computational complexity. In this paper, we develop a low-
complexity and distributed algorithm that is provably power-
efficient. In particular, under the node exclusive interference
model and with suitable assumptions on the power-rate function,
we can show that the total power consumption of our algorithm
is at most (2+ ε)-times as large as the power consumption of the
optimal (but centralized and complex) algorithm, where ε is an
arbitrarily small positive constant. Our algorithm is not o nly the
first such distributed solution with provable performance bound,
but its power-efficiency ratio is also tighter than that of another
sub-optimal centralized algorithm in the literature.

Index Terms— Energy Aware Routing, Duality, Mathematical
Programming/Optimization, Cross-Layer Optimization.

I. I NTRODUCTION

There has been significant recent interest in developing
control protocols for multi-hop wireless networks. Many appli-
cations can benefit from the deployment of these networks. For
instance, sensors can form multi-hop wireless sensor networks
[2] for a variety of applications, such as habitat monitoring and
the management of sewer overflow events [3]. Vehicles can
form multi-hop wireless networks to exchange safety messages
and traffic information [4]. Wireless LAN devices can form
multi-hop mesh networks to provide wireless broadband access
[5].

A key issue in developing control protocols for multi-
hop wireless networks is to reduce the energy or power
consumption. This is obviously an important issue for battery-
powered networks since the power consumption often limits
the lifetime of the network. Even for networks with access to
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power sources, the transmission power of the communication
links may still need to be properly controlled, e.g., due to
health or regulatory concerns.

In this work, we are interested in the problem of minimizing
the total power consumption of a multi-hop wireless network,
subject to a given offered load. The authors of [6], [7] develop
general solutions to minimize the total power consumption
of the network by jointly optimizing power control, link
scheduling, and routing. Although the algorithms in [6], [7]
could be implemented in a distributed fashion when each link
has an orthogonal channel, in general the algorithms there
require centralized computation and high complexity when
links interfere with each other. In this paper, we propose a new
low-complexity and distributed solution to this problem under
a widely-used interference model, called the node-exclusive
interference model. Using this model, the work in [8] de-
veloped a centralized solution that yielded a3-approximation
ratio (i.e., the resultant power consumption is within a factor
of 3 from the optimal power consumption). In contrast, in this
paper, we will obtain a(2+ε)-approximation algorithm that is
fully distributed, whereε > 0 is an arbitrarily small constant.
In a more recent work [9], the authors also develop low-
complexity sub-optimal energy minimization algorithms with
provable efficiency ratios, under a more general model with
multi-receiver diversity. However, the solution in [9] appears
to achieve worse power-efficiency ratios than the solution in
this paper. (For example, its approximation-ratio increases
as the node-degree increases even under the node-exclusive
interference model.)

Our solution approach is inspired by the recent progress in
using imperfect scheduling algorithms to develop distributed
cross-layer congestion control and scheduling algorithmsin
multi-hop wireless networks [10]–[12]. We first formulate the
energy minimization problem into a special form that naturally
leads to a distributed solution. We then map the solution to
corresponding components of the cross-layer control protocol,
and rigorously establish the stability and power-efficiency of
the protocol.

Our work is also related to the study of energy-aware routing
protocols for minimizing energy consumption and extending
network lifetime [13]–[17]. These works assume that the
system capacity is battery-limited instead of interference-
limited and therefore do not consider scheduling constraints.
In contrast, our work explicitly considers scheduling, jointly
with power control and routing.

The intellectual contribution of this work is summarized as
follows:

• We develop a low-complexity and distributed joint rout-
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ing, power control, and scheduling algorithm for multi-
hop wireless networks with provable power-efficiency
ratio. Further, our algorithm can guarantee a better power-
efficiency level than some existing centralized algorithms.

• To the best of our knowledge, our solution cannot be
obtained by extending the known optimal solution in the
literature [6], [7]. Instead, we develop an optimization ap-
proach to the energy minimization problem that naturally
leads to distributed solutions1. We also develop rigorous
techniques for proving the stability and power-efficiency
of the resulted control protocol.

The rest of this paper is organized as follows: in Section II,
we present the system model and formulate the energy mini-
mization problem. We present the solution in Section III, and
discuss how to map the algorithm to different network protocol
components in Section IV. In Section V, we present our
main analytical results on the stability and power-efficiency
of the proposed protocol. Numerical results are provided in
Section VI. Then, we conclude in Section VII.

II. PROBLEM FORMULATION

We model a wireless multi-hop network by a directed graph
G(V, E), whereV is the set of vertices representing the nodes,
and E is the set of edges representing the communication
links. We useNo(v) andNi(v) to denote the sets of outgoing
and incoming links of nodev, respectively. Their unionN(v)
forms the set of all links incident on nodev.

The system is time-slotted. We adopt the following node-
exclusive interference model that is used to characterize FH-
CDMA and UWB system with perfect orthogonal spreading
codes and low power-spectrum density [11], [18]–[20]. Under
this model, a node can only receive from or transmit to
at most one node at any time-slotm. Further, each link is
power-controlled. That is, if the node-exclusive interference
constraint is satisfied, we assume that the possible data rate
Re of link e is a function of its own power assignmentpe.
We usepe = he(Re) to denote the power consumption for
supporting data rate ofRe on link e. For every linke, it is
assumed thathe(·) is a non-decreasing and convex function
on [0, ae] satisfyinghe(0) = 0, whereae is the maximum rate
supported on linke. An example ofhe(·) is the power-rate
relationship in an Additive White Gaussian Noise (AWGN)
channel.

Each packet may take multiple hops to be delivered from
source to destination. LetTvd denote the long-term average
data rate of the flow that needs to be supported from source
nodev to destination noded. We useD to denote the set of
destinations.

The joint energy minimization problem is now formulated
as follows:

1We note however that the solutions in [6], [7] are for more general system
models than the node-exclusive interference model studiedin this paper.

(*) min~f, ~R lim
M→∞

1

M

M
∑

m=1

∑

e∈E

he(Re(m)), (1)

subject to Re(m) ≤ ae for all e andm,

~R(m) satisfies the node-exclusive

constraint for all time-slotsm, (2)
∑

d∈D

fd
e = lim

M→∞

1

M

M
∑

m=1

Re(m),

for all links e, (3)
∑

e∈No(v)

fd
e −

∑

e∈Ni(v)

fd
e − Tvd ≥ 0,

for all d ∈ D and nodesv 6= d, (4)

whereRe(m), m = 1, 2, ... is the rate assigned to linke at
time slotm, ~R(m) = [Re(m)], ~f = [fd

e ] and the quantityfd
e

can be interpreted as the average data rate on linke allocated
for destinationd. The objective function in (1) corresponds
to the long-term average energy consumed by all links. The
constraints in (3) require that the long-term average data rate,
determined by the power allocation, should be able to support
the total average data rate (

∑

d∈D fd
e ) on each link. The

constraints in (4) require that the total outgoing flow of a
node should be able to support the total incoming flow plus
the locally-generated flow, for all destinations. In the rest of
the paper, we will refer to the above problem as Problem (∗).

III. SOLUTION METHODOLOGY

A. Approximating the Energy Minimization Problem

The optimal solutions developed in [6], [7] could be used
to solve Problem (∗). However, their solutions contain a
scheduling component with high computational complexity.In
order to compute at which power and at what time each linke
should be activated, these solutions need to solve a complex
global optimization problem in each time-slot.

In this paper, in order to obtain a low-complexity and
distributed solution, we take a different approach. We first
approximate (∗) by another optimization problem that is
easier to solve. The following Lemma [8] provides the first
step in this direction.

Lemma 1:There exists a power-optimal solution that
solves Problem (∗) such that for all time-slotsm when linke
is activated, the instantaneous data rateRe(m) is independent
of m.

Lemma 1 follows from the convexity of the functionhe(·)
[8]. According to this lemma, we only need to consider
those solutions for which there exists a single valueRe,
such thatRe(m) = Re holds for all time-slots m when
link e is activated.As a result,limM→∞

1
M

∑M
m=1 Re(m)

is equal to the product ofRe and the fraction of time that
link e is activated. Therefore, by (3), the objective function of
Problem (∗) can now be written as

∑

e∈E

∑

d∈D fd
e

Re
he(Re),
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where
∑

d∈D
fd

e

Re

is the fraction of time-slots that linke is
activated.

Further, using the results from low-complexity schedul-
ing [10]–[12], we have

• Fact 1: In the optimal solution to (∗), we must have

∑

e∈N(v)

∑

d∈D fd
e

Re
≤ 1, for all nodesv ∈ V .

• Fact 2: Under the node-exclusive interference model, if

∑

e∈N(v)

∑

d∈D fd
e

Re
≤

1

2
− η, for all nodesv ∈ V ,

where η > 0 is an arbitrarily small positive constant,
then a maximal schedule [10]–[12] can be computed such

that each link is activated for
∑

d∈D
fd

e

Re
fraction of time-

slots. We will discuss more about the role of maximal
scheduling in our solution in Section IV-B.

Based on these two facts, in the rest of the paper, we will
replace the scheduling constraints (2) by

∑

e∈N(v)

∑

d∈D fd
e

Re
≤ β, for all v ∈ V . (5)

Problem (∗) can then be approximated by the following
problem:

(A) min~f, ~R

∑

e∈E

∑

d∈D fd
e

Re
he(Re), (6)

subject to (4) and (5)

(~f, ~R) ∈ X,

where X = {(~f, ~R) : 0 ≤ Re ≤ ae, f
d
e ≥

0, for all links e and destinationsd}.
Not only is the above formulation (A) easier to solve, it

also produces natural bounds for proving the power efficiency
ratio of our solution. Indeed, solving (A) withβ = 1 provides a
lower bound on the minimum power of Problem (∗), whileβ =
1
2 −η, η > 0 provides an upper bound. Hence, if we can solve
Problem (A) withβ = 1

2 − η, we can then obtain a solution
with a provable power-efficiency ratio. This efficiency ratio
can be derived by assuming a second-order approximation of
the power-rate functionhe(·) as in [8]. Specifically, assume
that the data rateRe in an AWGN channel is given by

Re = W log2

[

1 +
σepe

N0W

]

,

whereW is the available bandwidth,σe is the channel gain
of link e, N0 is the noise spectral density, andpe is the
transmission power. The power-rate functionhe(Re) is then
given by

pe = he(Re) =
N0W

σe

(

2Re/W − 1
)

. (7)

Using a second-order approximation,

2Re/W ≈ 1 +
Re ln 2

W
+

1

2

R2
e ln2 2

W 2
,

the objective function in (6) can be approximated by

∑

e∈E

∑

d∈D fd
e

Re
he(Re)

≈
∑

e∈E

[

N0 ln 2

σe

∑

d∈D

fd
e +

N0 ln2 2

2Wσe
(
∑

d∈D

fd
e )Re

]

. (8)

Let (~f, ~R) be the optimal solution to Problem (A) withβ = 1.
It is evident that(~f, (2 + ε)~R), whereε = 1/(1

2 − η)− 2, is a
feasible solution to Problem (A) withβ = 1

2 − η. According
to (8), this feasible solution results in power consumptionthat
is (approximately) at most(2 + ε) times the optimal value
of Problem (A) with β = 1. Since the optimal value of
Problem (A) withβ = 1 is a lower bound on the minimum
power from Problem (∗), we conclude that, if we can solve
Problem (A) withβ = 1

2 −η, the power-efficiency ratio of the
resulting solution is upper-bounded by(2 + ε).

Remark: Problem formulation (A) also appears in [8].
However, our solution is different from this point on. As
mentioned earlier, their solution is a centralized one. Further,
because of some additional approximation steps, the power
efficiency ratio of the solution in [8] is3 (assuming the same
second-order approximation of the power-rate function as in
(8)). In contrast, in this paper we will convert Problem (A)
to a convex form, which allows us to develop a distributed
solution with a better power-efficiency ratio of2 + ε.

In the rest of the paper, we assume that Problem (A) is
strictly feasible for someβ = 1/2 − η, i.e., there exists
(~f, ~R) ∈ X such that the constraints (4) and (5) are satisfied
with strict inequality. Note that in practice this assumption can
easily be satisfied by picking the maximum data rateae to be
sufficiently large.

B. Handling the Non-Convexity

In Problem (A), the objective function and the constraint
(5) are non-convex. Problems of this type are considered to be
difficult in general. To overcome this difficulty, the following
change of variable is performed:

te =

∑

d∈D fd
e

Re
, for all links e ∈ E.

The parameterte can be interpreted as thefraction of time-slots
for which link e is activated. Due to the constraint (5), there is
no loss of optimality by assuming thatte ≤ 1 for each linke.
Later in Section IV-A, we will interprette also as theoffered
load on link e. The latter interpretation will become more
appropriate in Section IV-A when we deal withte(m) for each
time-slot in the dual solution. With this change of variable, we
can denote the long-term average power consumption of linke
as a function ofte and ~fe = [fd

e , d ∈ D], i.e., Θe(~fe, te) =

tehe(
∑

d∈D
fd

e

te
), for te > 0. To define the value of the function

Θe for te = 0, note that
∑

d∈D fd
e /te = Re ≤ ae. Hence, the

only feasible point whente = 0 is when
∑

d∈D fd
e is also

equal to0. Let

Ye = {(~fe, te) : fd
e ≥ 0, for all d ∈ D; 0 ≤ te ≤ 1;

∑

d∈D

fd
e ≤ aete}. (9)
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We can then define the functionΘe(~fe, te) on the domainYe

as

Θe(~fe, te) =

{

0, te = 0,

tehe(
∑

d∈D
fd

e

te

), 0 < te ≤ 1.
(10)

Note that this definition ensures that the functionΘe is
continuous on its domain.

Let ~t = [te, e ∈ E], and letY denote the Cartesian product
of Ye for all e, i.e.,

Y = {(~f,~t) : fd
e ≥ 0, for all edgese and destinationsd;

0 ≤ te ≤ 1,
∑

d∈D

fd
e ≤ aete, for all edgese}.

Using the above notation, Problem (A) can be transformed
into

(B) min
~f,~t

∑

e∈E

Θe(~fe, te), (11)

subject to
∑

e∈N(v)

te ≤ β, for all nodesv ∈ V , (12)

∑

e∈No(v)

fd
e −

∑

e∈Ni(v)

fd
e − Tvd ≥ 0,

for all d ∈ D and nodesv 6= d, (13)

(~f,~t) ∈ Y.

We emphasize that Problem (A) and Problem (B) are equiv-
alent. We now show that Problem (B) is a convex program.
We need the following lemma.

Lemma 2:Assume thath(r) is a convex function onr ≥ 0.
Let

θ(f, t) =

{

0, t = 0,

th(f
t ), t > 0.

(14)

Thenθ(f, t) is also convex on the domainC = {(f, t) : 0 ≤
f ≤ at, 0 ≤ t ≤ 1}.

The proof is available in our online technical report [21]
and is related to theperspectiveof the functionh(r) [22,
Chapter 3.2.6, p89]. From Lemma 2, each termΘe(~fe, te)
in the objective function of Problem (B) is convex, and hence
the entire problem is a convex program. We can then use the
following duality approach to solve the problem.

C. Distributed Algorithm Based on Lagrange Duality

To use the duality approach to solve Problem (B), we first
form the Lagrangian:

L(~f,~t, ~µ, ~q)

=
∑

e∈E

Θe(~fe, te) +
∑

v∈V

µv





∑

e∈N(v)

te − β





+
∑

v∈V

∑

d∈D

qd
v





∑

e∈Ni(v)

fd
e + Tvd −

∑

e∈No(v)

fd
e



 ,

where~µ = [µv, v ∈ V ] ≥ 0 and ~q = [qd
v , v ∈ V, d ∈ D] ≥

0 are the Lagrange multipliers for the constraints (12) and

(13), respectively. For ease of notation, we defineqd
d = 0, for

all d. By rearranging the order of the summations, the above
equation can be transformed into the following:

L(~f,~t, ~µ, ~q)

=
∑

e∈E

ce(~fe, te) − β
∑

v∈V

µv +
∑

v∈V

∑

d∈D

(qd
vTvd),

where

ce(~fe, te) = Θe(~fe, te) + (µx(e) + µr(e))te

−
∑

d∈D

(qd
x(e) − qd

r(e))f
d
e , (15)

and x(e) and r(e) are the transmitting node and receiving
node, respectively, of linke.

The dual objective function is then

D(~µ, ~q) = min
(~f,~t)∈Y

L(~f,~t, ~µ, ~q),

=
∑

e∈E

[

min
(~fe,te)∈Ye

ce(~fe, te)

]

−β
∑

v∈V

µv

+
∑

v∈V

∑

d∈D

(qd
vTvd), (16)

whereYe is given by (9). In other words, the minimization
of the Lagrangian can now be decomposed into minimization
subproblems for each link. Note that all the information
needed in minimizingce(~fe, te) is local to link e.

The dual optimization problem is

(C) max
~µ≥0,~q≥0

D(~µ, ~q). (17)

Let Θ∗ denote the optimal solution to Problem (B). Assum-
ing that the primal problem (B) is strictly feasible, the Slater
condition can be verified. We can then conclude that there is
no duality gap as in standard results [22, Chapter 5.2.3, p226].

Theorem 3:(Strong Duality)
Assume that Problem (B) is strictly feasible (and hence its

optimal valueΘ∗ is finite.) Then there is no duality gap, i.e.,
Θ∗ = max~µ≥0,~q≥0 D(~µ, ~q).

The next step is to solve the dual problem in a distributed
fashion. We can show thatD(~µ, ~q) is concave and a subgradi-
ent ofD(·, ·) at (~µ, ~q) is given by the following vector~g such
that the components of~g are given by

[~g]µv
=

∑

e∈N(v)

te − β,

[~g]qd
v

=
∑

e∈Ni(v)

fd
e + Tvd −

∑

e∈No(v)

fd
e ,

where ~f and ~t solve (16). We can then use the following
subgradient-ascent method to solve the dual problem.

Distributed Energy Minimization Algorithm
At each iterationm,
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1) At link e, the data rate~fe and the link assignmentte
are determined by:

(~fe(m), te(m)) = argmin
(~fe,te)∈Ye

ce(~fe, te, m)

= argmin
(~fe,te)∈Ye

[

Θe(~fe, te)

+ (µx(e)(m) + µr(e)(m))te

−
∑

d∈D

(qd
x(e)(m) − qd

r(e)(m))fd
e

]

. (18)

2) At nodev, the dual variables are updated by:

µv(m + 1) =







µv(m) + αm





∑

e∈N(v)

te(m) − β











+

(19)

qd
v(m + 1) =







qd
v(m) + αm





∑

e∈Ni(v)

fd
e (m) + Tvd

−
∑

e∈No(v)

fd
e (m)











+

, (20)

where{αm} is a sequence of positive stepsizes.

Remark:In the above algorithm, we use the same stepsize
for updating~µ and ~f at each iteration. This is simply for
ease of notation: the stepsizes can be different for each dual
variable.

The above exercise of using Lagrange duality is standard.
However, there are a number of questions that are not an-
swered by the above algorithm alone. First, how does the
algorithm translate to practical network protocol components?
Second, note that the primal problem is not strictly convex.
Specifically, the objective function of Problem (B) contains a
linear term (see (10)). Hence, the dual objective function is
not always differentiable. In practice, in order to dynamically
track the changes of the network condition (e.g., as the offered
loadT d

v changes), it is typical that a constant stepsize is used.
As a consequence of the lack of differentiability of the dual
objective function, the algorithm will not always be able to
converge to a single operating point. Rather, the dual variables
µv(m) andqd

v(m) could oscillate around their corresponding
optimal values. Further, even if the dual variables are close
to the optimal values, the primal variables~f(m) and ~t(m)
may not. Hence, it is not immediately clear what level of
performance this algorithm will be able to achieve. In the
next two sections, we will carefully address these questions
and quantify the performance levels of the resulting protocol.

IV. M APPING TONETWORK PROTOCOL COMPONENTS

In this section, we will map the Distributed Energy Min-
imization Algorithm to various protocol components. Recall
that in each iterationm the Distributed Energy Minimization
Algorithm updates the variables~f(m),~t(m), ~µ(m) and~q(m)
according to Equations (18)-(20). We will basically identify
iteration m with time-slot m, and use the values of these
variables as the control decision attime-slotm.

A. Routing, Power Control and Link Assignment

In Step 1 of the Distributed Energy Minimization Algo-
rithm, each link solves (18) by minimizingce(~fe, te, m). We
now investigate the structure of this minimization problem,
and we will show that this step corresponds to the routing,
power control and link-assignment protocol components. We
first introduce the following transformation:

fd
e (m) = Rd

e(m)te(m). (21)

Recall thatfd
e (m) is an estimate (at iterationm) of the average

data rate on linke allocated for destinationd, andte(m) is an
estimate (at iterationm) of the fraction of time-slots that linke
is activated. Thus,Rd

e(m) can be viewed as an estimate of the
instantaneous data rate allocated on linke for destinationd.
Substituting the above equation intoce(~fe, te, m), we have
(dropping the time indexm when there is no source of
confusion):

ce(~fe, te) = tele(~Re), (22)

where ~Re = [Rd
e , d ∈ D], and le(~Re) is defined as

le(~Re) = he(
∑

d∈D

Rd
e) + (µx(e) + µr(e))

−
∑

d∈D

[

(qd
x(e) − qd

r(e))R
d
e

]

. (23)

Since te ≥ 0, to minimize (22), we should first minimize
le(~Re) as a function of~Re over 0 ≤

∑

d∈D Rd
e ≤ ae. Note

that functionhe(·) takes as input parameter the sum of the
data rates allocated for all the destinations on this link. In
other words, from the viewpoint of power consumption, it is
indifferent to which destination the data rate is allocatedfor, as
long as the total data rate is the same. Further, we can interpret
qd
v(m) in (20) as thebacklogat nodev for destinationd (since

it captures the cumulative difference between the input rate and
output rate at nodev for destinationd). Then, the minimum
of le(~Re) is attained whenall the data rates are allocated to
the destination with the maximum positive backlog difference.
In other words, if we let

d̂ = argmax
d∈D

(qd
x(e) − qd

r(e)), (24)

then to find the optimal value of~Re, we should letRd
e = 0 for

all d 6= d̂. With this observation, the minimization ofle(~Re)
can be reduced to a minimization problem of a single-variable
function, i.e.,

min
0≤Re≤ae

le(Re) = he(Re) + (µx(e) + µr(e))

−

[

max
d∈D

(qd
x(e) − qd

r(e))

]

Re. (25)

Let Re(m) denote the optimal solution to (25). We can then
set Rd

e(m) = Re(m) if d = d̂, and Rd
e(m) = 0, otherwise.

For example, ifhe(x) = exp(x)−1, andmaxd∈D(qd
x(e)(m)−

qd
r(e)(m)) > 0, thenRd̂

e(m) = [log(qd̂
x(e)(m) − qd̂

r(e)(m))]+,

andRd
e(m) = 0 for all other destinationsd 6= d̂.

Now that ~Re has been chosen to minimizele(~Re) in (23),
the next step is to determine the value ofte over the interval
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[0, 1] to minimize ce(~fe, te) = tele(~Re). Clearly, the optimal
te value is

te(m) =

{

1, if le(Re(m)) ≤ 0,
0, if le(Re(m)) > 0.

(26)

Note that among the three terms ofle(Re) in (25), the
term he(Re) can be viewed as thepower costdue to power
consumption; the term(µx(e)(m)+µr(e)(m))te can be viewed
as the scheduling costdue to the constraint on the frac-
tion of the time each link can be scheduled; and the term
∑

d∈D(qd
x(e)(m) − qd

r(e)(m))fd
e can be viewed as theutility

of transporting data on linke. Hence, according to (26) we
will assign te(m) = 1 only when the utility of transporting
data to next hop is no smaller than the power cost plus the
scheduling cost. Substituting into (21), the values of~f(m)
can then be set asfd

e (m) = Re(m) if te(m) = 1 andd = d̂,
andfd

e (m) = 0, otherwise.
So far we have derived the values of~f(m) and ~t(m) at

iterationm according to (18). We now use the values of these
variables as the control of the various protocol componentsin
time-slot m. The minimization ofce(~fe, te, m) on each link
then naturally translates into the following protocol compo-
nents. At each time-slotm,

1) Routing: Choose only the flowd̂(m) with maximum
positive backlog difference (cf. (24)). This is the flow
that should receive service.

2) Power control:ChooseRe(m) to minimize le(Re(m))
in (25). Then,he(Re(m)) is the power assignment that
link e should use, andRe(m) is the corresponding data
rate assigned to linke when it is turned on.

3) Link assignment: Choose te(m) to minimize
te(m)le(Re(m)) in such a way thatte(m) takes
its maximum value1 if the optimal le(Re(m)) is less
than or equal to0; and 0 otherwise. This determines
the amount of time that linke should be on.

Therefore, when linke is turned on (by the scheduling
component to be discussed in Section IV-B), it will then
use the power levelhe(Re(m)) (and the corresponding data
rateRe(m)) to transfer packets for destination̂d(m) from its
transmitting node to its receiving node in the corresponding
time-slot. (Note that each link will carry packets for at-most
one destination at each time-slotm.) Once the decisions of
the above protocol components are determined based on the
dual variablesµv(m) and qd

v(m), these dual variables are
then updated according to (19) and (20). The only remaining
problem, however, is that not all links withte(m) = 1 can
be activated immediately because they may violate the node-
exclusive interference constraints. We next address this issue.

B. The Maximal-Matching Scheduling Component

As we have seen thus far, the duality approach exploits the
problem structure and decomposes the primal problem into
sub-problems that immediately translate to protocol compo-
nents. However, in the above discussions, although we have
considered the scheduling constraint in the form of (12), we
have not studied the actual schedule of activating the links. In
particular, the links that are assignedte(m) = 1 may in fact

interfere with each other, and hence cannot all be activated
immediately in time-slotm. A scheduling algorithm is then
needed to schedule (at least some of) these links for activation
at a later time. In particular, for each linke and each time-slot
m such thatte(m) = 1, define δe(m) ≥ m as the time-
slot when the scheduling algorithm can actually activate the
link e for this particular link-assignment instance. For obvious
reasons, we require a one-to-one mapping from each time-
slot m with te(m) = 1 to δe(m), and a natural ordering of
δe(m) such thatδe(m1) < δe(m2) for every m1 < m2 and
te(m1) = te(m2) = 1. Hence, the inverse mapping ofδe(m)
is well-defined, and we denote it byδ−1

e (m). For those time-
slotsm when link e is not activated, they do not correspond
to any time-slotm′ with te(m

′) = 1 and δe(m
′) = m. In

this case, we defineδ−1
e (m) = −1. Consider the following

equation,

Qd
v(m + 1) =

{

Qd
v(m) + αm

[

T d
v

+
∑

e∈Ni(v)

fd
e (δ−1

e (m)) −
∑

e∈No(v)

fd
e (δ−1

e (m))











+

. (27)

It is easy to see that whenαm = α andQd
v(0) = 0, Qd

v(m)/α
provides an upper bound on the real queue maintained at node
v for packets destined to noded. (It is an upper bound because
the actual number of incoming packets to nodev are less than
or equal to

∑

e∈Ni(v) fd
e (δ−1

e (m)).) Note that here we have
used the convention thatfd

e (−1) = 0 for all d and e, which
is consistent with the value offd

e (m) for those time-slots
when te(m) = 0. Thus, we need to design an algorithm for
determiningδe(m) such that: (i) the real queues are bounded;
and (ii) the energy consumption is close to the minimum value
of Problem (B).

We address this problem by mapping it to a scheduling
problem for stability (similar to those in [10], [11], [23]–[26])
as follows. Consider a virtual system with the same topology
as the original system, except that each linke has a unit
capacity. Wheneverte(m) = 1, we offer a virtual packet with
unit length to linke. Hence, the processte(m), m = 1, 2, ...
represents the virtual offered load to linke. We let each virtual
packet remember the time-slot that it arrives. Note that under
the node-exclusive interference model, at any time slot the
feasible schedule must be a matching. (A matching of a graph
is a subset of the links such that no two links share a common
node.) At each time-slotm, once a matching in the virtual
system is chosen, each matched linke will then serve one
virtual packet. In the original system, this service corresponds
to assigningδe(m

′) = m, wherem′ is the arrival time-slot
of the head-of-line virtual packet just served. In other words,
in the original system linke is activated at time-slotm, and
we use the value offd

e (m′) to serve packets on linke at this
time-slotm.

With this construction, the amount of backlog and the
delay in the virtual system then correspond to the number of
link-assignments pending to be scheduled and the scheduling
delay, respectively, in the original system. Intuitively,if we
can design a scheduling algorithm that can keep the backlog
and delay of the virtual system to be bounded, then the real
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queueQd
v(m) will be bounded as long as the dual variables

qd
v(m) are bounded. Further, such a bounded scheduling delay

will not alter the long-term average power consumption. (This
argument will be made precise in Section V-B.)

In this paper, we are interested in a simple scheduling algo-
rithm calledmaximal-matching. This algorithm will schedule
a matching with backlogged links such that no more links
can be added without violating the node-exclusive interference
constraint. More precisely, denote the virtual backlog at link
e as

νe(m) =

m−1
∑

s=1

1{te(s)=1} −

m−1
∑

s=1

1{δ−1

e (s) 6=−1}.

Clearly, νe(m) ≥ 0 for all m. Let ~ν(m) = [νe(m)]. Denote
M(m) as the actual set of links that are scheduled in the
virtual system at time-slotm. Then, for the maximal-matching
scheduling policy, at least one of the following statementsmust
be true. For any linke that has non-zero virtual backlog (i.e.,
νe(m) ≥ 1):

• eithere ∈ M(m);
• or l ∈ M(m) for some interfering linkl ∈ N(x(e));
• or l ∈ M(m) for some interfering linkl ∈ N(r(e));

wherex(e) and r(e) are the transmitting node and receiving
node, respectively, of linke. (Note that links with zero virtual
backlog are not scheduled.) The evolution of the virtual
backlogνe(m) is then given by

νe(m + 1) = νe(m) + te(m) − 1{e∈M(m)}. (28)

Let λe denote the average number of packets that arrive to link
e in the virtual system. It is well-known that, under the node-
exclusive interference model, when the offered load satisfies
∑

e∈N(v) λe < 1/2 for all nodesv, then maximal-matching is
guaranteed to produce a schedule such that the virtual backlog
at each link does not grow to infinity. In the Distributed Energy
Minimization Algorithm, if we chooseβ = 1/2− η for some
η > 0, then as long as the dual variableµv(m) is bounded, it
implies that the long-term offered-load to the virtual system
satisfies

∑

e∈N(v) λe ≤ β for all nodesv. Hence, the virtual
backlog of each link under the maximal matching policy will
be finite. As we will show in Section V, we will then obtain
a scheduling algorithm that both keeps the real queueQd

v(m)
bounded, and achieves power-efficiency close to the solution
of Problem (B).

The maximal-matching scheduling policy is easy to im-
plement. Essentially, if linke is backlogged (in the virtual
system) and its neighbors have not been scheduled, then linke
itself should be scheduled. The maximal-matching scheduling
policy can be implemented in a distributed fashion using the
algorithm in [27]. This algorithm proceeds in rounds, wherein
each round it computes a (not necessarily maximal) matching,
and then proceeds to the next round by removing those links
that either have been matched or that have a neighboring link
that is matched. The algorithm terminates when there are no
links left. Then, the union of the matchings found in all rounds
form a maximal matching. In each round, the algorithm only
requires each node to exchange a small amount of control
messages with neighboring nodes. The result of [27] shows

that the average number of rounds required to compute a
maximal matching isO(log |E|), where|E| is the total number
of links in the network. We refer the readers to [27], [28] for
more details on the distributed implementation of maximal
schedules.

By combining the Distributed Energy Minimization Algo-
rithm and the maximal matching scheduling policy, we then
obtain a cross-layer protocol for energy-minimization, which is
summarized as follows. In this protocol, we use the convention
that the computation at each linke is carried out at the
transmitting nodex(e). We also implement the virtual backlog
at link e as a FIFO queue.

Distributed Energy Minimization Protocol
At each time-slotm,

1) Each nodev exchanges the valueµv(m) andqd
v(m) with

its immediate neighbors (that share a common link).
2) Link e finds the flowd̂(m) with the maximum positive

backlog difference in (24).
3) Link e calculates the rate assignmentRe(m) that min-

imizes le(Re(m)) in (25). The corresponding power
assignment is thenhe(Re(m)).

4) A virtual packet with the information̂d(m) andRe(m)
is appended to the end of the virtual queue at linke.

5) The algorithm in [27] is used to compute a maximal
matching among those links with positive virtual back-
logs.

6) For each linke that is chosen in the maximal matching,
remove one virtual packet from the head of the virtual
queue at linke. Let m′ denote the time-slot that this
virtual packet arrived.

7) Link e then uses the valuêd(m′) and Re(m
′) as the

routing and power control decision at time-slotm.
8) Each nodev updates the dual variablesµv and qd

v

according to (19) and (20).

Note that to carry out the above control protocol, each
link only needs to know the dual-variables at its end-points.
Further, to update the dual variables, each node only needs to
know the control decisions at the links incident to it. Taking
into account the overhead of the distributed implementation of
maximal matching (discussed earlier), the number of messages
that each node needs to exchange with its immediate neighbors
in each iteration is of the orderO(ℵ̄ log |E|) where ℵ̄ is the
maximum node-degree. In the next section, we will carefully
quantify the stability and power-efficiency of the cross-layer
protocol proposed above.

V. PERFORMANCEANALYSIS

In this section, we will answer the following two questions.
First, can the protocol developed in Section IV support the of-
fered load given by[T d

v ]? Second, what is the power-efficiency
of the proposed cross-layer control protocol? We note that
these questions cannot be answered by standard results in
convex optimization and duality theory alone. The reason is
because the introduction of the maximal-matching scheduling
component in Section IV-B leads to some complication in
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analyzing the dynamics of the protocol. In particular, a link
with te(m) = 1 may need to be activated at a later time
δe(m). This delayed activation leads to a discrepancy between
the value ofqd

v(m) and that of the real queue. For ease of
exposition, in this section we will first ignore the maximal-
matching scheduling component, and study the properties of
the control variablesfd

e (m) andte(m) computed by (18)-(20)
under the assumption that all links withte(m) = 1 can be
activated immediately in time-slotm. We then remove this
unrealistic assumption, and relate the properties offd

e (m) and
te(m) to the actual performance of the protocol when the
maximal-matching scheduling component is used.

A. Properties offd
e (m) and te(m) with Constant Stepsizes

Since the algorithm in (18)-(20) is a standard subgradient-
ascent algorithm for the dual problem, we would expect that
the dual variables will converge to a neighborhood of some
optimal value. However, the primal variables(~f(m),~t(m))
will likely oscillate. For example,te(m) is either 0 or 1
according to Equation (26). A natural question to ask then is
the following: In what sense are the primal variablesfd

e (m)
and te(m) optimal?

The following theorem answers this question. Recall that
Θ∗ is the minimum value of Problem (B). Let

W̄ = 4|E|2 + |V | + 8

(

∑

e∈E

ae

)2

+ 2
∑

v∈V

∑

d∈D

T 2
vd. (29)

Theorem 4:Let the stepsizes in the Distributed Energy
Minimization Algorithm be equal to a constant, i.e.,αm = α,
for all time-slotsm. Let Φ be the set of(~µ, ~q) that maxi-
mizesD(~µ, ~q), and define the distance metricd((~µ, ~q), Φ) ,

min(~µ∗,~q∗)∈Φ ‖(~µ, ~q)−(~µ∗, ~q∗)‖. Given anyε > 0, there exists
someᾱ0 > 0 such that, for anyα ≤ ᾱ0 and any initial implicit
costs (~µ(0), ~q(0)), there exists a timeM0 such that for all
m > M0,

d((~µ(m), ~q(m)), Φ) < ε. (30)

Further, for anym ≥ 2V (~µ(0),~q(0))
α2W̄

, we have

1

m

m
∑

τ=1

∑

e∈E

Θe(~fe(τ), te(τ)) ≤ Θ∗ + αW̄ . (31)

The proof of Theorem 4 is provided in Appendix A. It shows
that, when stepsizes are small, the dual variables eventually
converge to within a small neighborhood of the optimal dual
solution. Note that under the assumption that all links with
te(m) = 1 can be activated immediately in time-slotm, the
boundness ofqd

v(m) immediately implies that the offered load
[T d

v ] are supported by the protocol. In other words, according
to (20),

m+τ1−1
∑

s=m







∑

e∈Ni(v)

fd
e (s) + T d

v −
∑

e∈No(v)

fd
e (s)







must be bounded for all time-slotsm and for all τ1 > 0.
Hence, the constraint in (4) is satisfied when we takefd

e in
(4) as the long-term average offd

e (m). Further, Theorem 4
shows that the power consumption determined by the primal

variablesfd
e (m) andte(m) is close to the minimal valueΘ∗ of

Problem (B). In other words, even though the primal variables
(~f(m),~t(m)) may not converge, by using(~f(m),~t(m)) for
each time-slotm, the long-term average of the resultant power
consumption is arbitrarily close toΘ∗. Finally, Theorem 4 re-
veals a tradeoff between power-efficiency and the convergence
speed (depending on the step-sizeα). A smallerα will drive
the average power-consumption closer toΘ∗, although it will
take a larger number of iterations before (31) holds.

B. Stability and Power-Efficiency with the Maximal-Matching
Scheduling Component

Theorem 4 establishes the stability and optimality of the
primal variablesfd

e (m) andte(m). However, as we discussed
at the beginning of this section, due to the delayed-activation
of the links, there is a discrepancy between the real queue and
the value ofqd

v(m). Hence, in order to ensure that the offered
load [T d

v ] is supported, we must prove that the real-queue is
stable. Further, we must show that the delayed-activation of
the links does not change the average energy consumption in
the system. Towards this end, we first show that the delay in
activating the links is bounded.

Lemma 5:Assume that the positive stepsizesαm are fixed,
i.e., αm = α for all time-slotsm, where0 < α < ᾱ0 and
ᾱ0 is given in Theorem 4. LetQ1 be the bound on the dual
variablesµv(m) for all nodesv and time-slotsm. (Note that
such a bound exists due to Theorem 4). Let

T̄0 =
16Q1

α(1/2 − β)3

∑

v∈V

|N(v)|2,

Then for any linke and anym with te(m) = 1, the delay in
activating the linke is no greater than̄T0, i.e.

δe(m) − m ≤ T̄0.
The proof is provided in Appendix B. To obtain the above

upper bound on the delay, we have assumed that, for each
link e with a positive virtual backlog, either linke or only one
of its neighboring links must be scheduled. As a result, the
delay bound in Lemma 5 increases to infinity asβ approaches
1/2. In practice, it is possible that maximal matching can pick
two neighboring links of linke at the same time. Hence, as
we observe in the simulation results in Section VI, the actual
delay is often much smaller than the above bound.

We can now state the main result of this section.
Theorem 6:Assume that the positive stepsizesαm are

fixed, i.e.,αm = α for all time-slotsm, where0 < α < ᾱ0

and ᾱ0 is given in Theorem 4. LetQ3 be the bound on the
dual variablesqd

v(m) for all v, d and m. (Note that such a
bound exists due to Theorem 4.) With the maximal-matching
scheduling policy stated earlier, the real queuesQd

v(m) at all
nodes must be bounded at all time-slots by

Qd
v(m) ≤ Q3 + αT̄0[2

∑

e∈No(v)

ae + T d
v ],

whereT̄0 is the maximum delay given in Lemma 5. Hence,
the offered-load[T d

v ] is supported by the cross-layer control
protocol. Further, the long-term average energy consumption
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TABLE I

THE TWO FLOWS SUPPORTED BY THE NETWORK

source destination data rate paths
flow 1 1 7 250 kbps 1-7, 1-2-7
flow 2 3 6 500 kbps 3-2-6, 3-4-5-6
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Fig. 1. Network topology

is no greater thanΘ∗ + αW̄ , whereΘ∗ is the minimal value
of Problem (B), andW̄ is the constant defined in Theorem 4.

The proof is in Appendix C. According to the discussion in
Section III-A, by takingβ = 1

2−η, we then obtain a distributed
solution whose power-efficiency ratio is upper-bounded by
(2 + ε), whereε = 1/(1

2 − η) − 2.

VI. N UMERICAL RESULTS

We first simulate a simple 7-node network (see top figure in
Figure 1). The rate-power function is of the following form:

Re = W log2

[

1 +
σepe

N0W

]

,

whereW = 1.0 MHz is the available bandwidth,σe = 1.6 ×
10−13 is the channel gain of linke, N0 = 1.6×10−18 mW/Hz
is the noise spectral density,pe is the transmission power, and
Re is the resultant instantaneous data rate of linke. The power-
rate functionhe(·) is then given by (7). This network supports
two flows, as shown in Table I.

The node-exclusive interference model is considered, and
we useβ = (0.5 − 10−4) in Problem (B). To show that
our proposed solution can adapt to variations in the input
parameters, we apply the following changes in the system
setting. At iterationt = 4000, the channel gainσ(1,7) of
the direct link between node1 and node7 is decreased from
1.6×10−13 to 0.4×10−13. At iterationt = 8000s, the data rate
of flow 2 (from node3 to node6) is reduced from500 kbps
to 250 kbps.
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Fig. 2. Power consumption from distributed algorithm and offline
computation.α = 0.1.
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Fig. 3. Power consumption from distributed algorithm as thevalue
of α varies from0.03 to 0.5.

For each setting, offline computation is carried out to find
the minimum valueΘ∗ of Problem (B), which is given by
the dashed line in Figure 2. The power consumption from
the proposed distributed algorithm is shown as the solid
line in the same figure, where we have chosenα = 0.1.
This simulation result shows that our proposed solution is
capable of achieving the near-optimal power-consumptionΘ∗

in a distributed manner, and automatically tracking the near-
optimal operating point once the system parameters change.

To illustrate the tradeoff between convergence speed and
power-efficiency as the stepsizeα varies, we also simulate the
distributed algorithm for different values ofα. As we can see
from Fig. 3, whenα increases from0.03 to 0.5, the algorithm
converges faster, although the power-consumption increases
slightly whenα is large. Nonetheless, for the range ofα that
we simulated, the power-consumption levels are all close to
the valueΘ∗.

We also plot the evolution of dual variables at selected
links when α = 0.03 and α = 0.1 (see Fig. 4 and Fig. 5,
respectively). We can observe a similar tradeoff between
convergence speed and accuracy for the dual variables.

As we discussed in Section V-A, in general the primal
variablesRd

e(m), te(m) andfd
e (m) do not converge. In Fig. 6-

Fig. 8, we plot their time-averaged values (over a moving
window of 200 iterations). We can infer the change in the
routing and scheduling decisions from Fig. 8:

• In the initial state, flow1 concentrates on the minimum
energy path, namely, link(1, 7) (see the solid line in
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Fig. 4. Dual variables produced by the distributed algorithm. α =

0.03.
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Fig. 5. Dual variables produced by the distributed algorithm. α = 0.1.
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Fig. 6. Instantaneous data rates (Rd
e ) for different flows on four links.α =

0.1

Fig 8).
• At iteration t = 4000, the channel gainσ(1,7) reduces

by 75%, and part of flow1 is shifted to path1 − 2 − 7
(the dotted line). Since the scheduling capacity of node2
is saturated, a larger percentage of flow2 is then routed
through path3 − 4 − 5 − 6 in the optimal solution (the
dash-dotted line).

• At iteration t = 8000, the traffic that the network has
to support between node3 and node6 reduces (flow2
is reduced to250 kbps). As a consequence, part of the
scheduling capacity of node2 is freed, and more of
flow 1 takes path1 − 2 − 7 to reduce the overall power
consumption (the dotted line).
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Fig. 7. Activation time (te) for four links. α = 0.1
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Fig. 8. Average data rates (fd
e ) for different flows on four links,

α = 0.1
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Fig. 9. Power consumption from distributed algorithm for a bigger network.
The value ofα varies from0.05 to 0.3.

We then simulate the distributed algorithm on a bigger
network (see the bottom topology in Fig. 1). The channel
gains and rate-power functions are chosen as before. There
are four flows from sourceSi to destinationDi, i = 1, 2, 3, 4,
respectively. The data rate of each flow is250kbps. In the
middle of the simulation, the noise density in the shaded
area is increased by four times. In Fig. 9, we plotted the
power-consumption for three values ofα. Again, the algorithm
converges close to the optimal operating point, and the power-
efficiency improves whenα is smaller.

Finally, in Fig. 10 we plot the sum of the virtual queues
νe(m) (for the bigger network) due to the maximal matching
scheduling component. We can see that the virtual queues are
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Fig. 10. The sum of the virtual queues over all links of the bigger network.

in fact very small (the sum is around 30) even thoughβ =
1/2 − 10−4 is close to1/2. The average scheduling delay
(not plotted) is less than5 time-slots over all links, with the
maximum scheduling delay less than25 time-slots during the
entire simulation. Hence, we observe that the scheduling delay
due to the maximal matching scheduling component tends to
be much smaller than the bound given in Lemma 5.

VII. C ONCLUSION

In this paper, we propose a joint power control, link
scheduling, and routing algorithm to minimize the power con-
sumption in multi-hop wireless networks. The known cross-
layer solution to this problem is centralized, and with high
computational complexity. In contrast, our algorithm is dis-
tributed, and with low computational complexity. We establish
the power-efficiency ratio of our solution, and show that the
performance bound of our solution, achieved in a distributed
manner, is provably tighter than a centralized solution in the
literature.

As in related works on cross-layer control and optimization
of wireless networks [12], our solution borrows extensively
the techniques from convex optimization and duality theory.
However, we often observe that straightforward applications
of optimization theory may not produce a control protocol
that is directly usable in real systems. For example, for the
problem that we studied in this paper, duality theory leads
to a solution in (18)-(20) where the interference constraints
could in fact be violated. Hence, additional modification of
the solution is needed. One of the main contributions of the
paper is to design an easy-to-implement scheduling component
that accounts for the interference constraints, and to carefully
quantify the stability and power-efficiency of the resulting
protocol. Our simulation results verify that the proposed
distributed solution can compute and track the near-optimal
operating point whenever the system parameters change. For
future work, we plan to extend the results to more general
interference models, e.g., the bi-directional equal-power model
used in [23]–[26].
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APPENDIX

A. Proof of Theorem 4

The proof technique here is similar to [7]. First, note that the
subgradient of the dual objective function is bounded because
0 ≤ te(m) ≤ 1 and fd

e (m) ≤ aete(m) ≤ ae. Given any
ε > 0, define the setΦε/2 = {(~µ, ~q)|d((~µ, ~q), Φ) < ε/2}.
Using the results of [29, Lemma 8.2.1 and Proposition 8.2.2,
p471-473], if the stepsizeα is sufficiently small, whenever the
vector of dual variables(~µ(m), ~q(m)) is outside the setΦε/2,
it will move closer toΦ, and hence will eventually enter the
set Φε/2. Further, once the vector of dual variables is in the
set Φε/2, at the next iteration it can move away fromΦε/2

by at most a distance proportional toα. Hence, by (possibly)
further decreasing the stepsizeα, we can ensure that the dual
variables will never leave the setΦε. This proves the first
part of the Theorem. Note that it implies that the sequence
{(~µ(m), ~q(m))}m is bounded.

To show (31), we consider the following Lyapunov function:

V (~µ(m), ~q(m)) =
1

2

∑

v∈V

∑

d∈D

[qd
v(m)]2 +

1

2

∑

v∈V

µ2
v(m).

The subgradient ofD(~µ, ~q) at time-slotm can be written as

∆µv(m) =
∑

e∈N(v)

te(m) − β,

∆qd
v(m) =

∑

e∈Ni(v)

fd
e (m) + Tvd −

∑

e∈No(v)

fd
e (m).

Using the above notation along with (19) and (20), the
one-step drift of the Lyapunov function can be calculated as
follows:

V (~µ(m + 1), ~q(m + 1)) − V (~µ(m), ~q(m))

≤
1

2

∑

v∈V

{

[µv(m) + α∆µv(m)]
2
− µ2

v(m)
}

+
1

2

∑

v∈V

∑

d∈D

{

[

qd
v(m) + α∆qd

v (m)
]2

−
[

qd
v(m)

]2
}

≤ α
∑

v∈V

µv(m)∆µv(m) + α
∑

v∈V

∑

d∈D

qd
v(m)∆qd

v(m)

+
α2

2
W (m), (32)

where

W (m) =
∑

v∈V

(∆µv(m))2 +
∑

v∈V

∑

d∈D

(∆qd
v(m))2.

Sincete(m) is bounded by1, and
∑

d∈D fd
e (m) is bounded

by ae, we can boundW (m) by

W (m)

≤

(

∑

v∈V

|N(v)|

)2

+ |V | + 2





∑

v∈V

∑

e∈N(v)

∑

d∈D

fd
e (m)





2

+2
∑

v∈V

∑

d∈D

T 2
vd

≤ 4|E|2 + |V | + 8

(

∑

e∈E

ae

)2

+ 2
∑

v∈V

∑

d∈D

T 2
vd , W̄ .
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Adding α
∑

e∈E Θe(~fe(m), te(m)) to both sides of (32), we
have,

V (~µ(m + 1), ~q(m + 1)) − V (~µ(m), ~q(m))

+α
∑

e∈E

Θe(~fe(m), te(m))

≤ α

[

∑

e∈E

Θe(~fe(m), te(m)) +
∑

v∈V

µv(m)∆µv(m)

+
∑

v∈V

∑

d∈D

qd
v(m)∆qd

v (m)

]

+ α2W̄/2

= αD(~µ(m), ~q(m)) + α2W̄/2

(from (16) and (18))

≤ αΘ∗ + α2W̄/2,

where in the last step we have used Theorem 3.
Summing the above inequality overm = 0, 1, 2, . . . , M ,

and dividing both sides byM , we have

V (~µ(M + 1), ~q(M + 1)) − V (~µ(0), ~q(0))

M

+
α

M

M
∑

m=1

∑

e∈E

Θe(~fe(m), te(m))

≤ αΘ∗ + α2W̄/2. (33)

Let

M1(α) =
2V (~µ(0), ~q(0))

α2W̄
.

Then for allM ≥ M1(α), we will have

1

M

M
∑

m=1

∑

e∈E

Θe(~fe(m), te(m)) ≤ Θ∗ + αW̄ .

The result of Theorem 4 then follows.

B. Proof of Lemma 5

We first show thatνe(m) in (28) is bounded for alle and
m. From Theorem 4, we know thatµv(m) is bounded for all
nodesv and all time-slotsm. Let this bound beQ1. Using
(19), we then have, for anyτ1,

Q1

α
≥

µv(m + τ1) − µv(m)

α

≥

m+τ1−1
∑

s=m





∑

e∈N(v)

te(s) − β



 .

Hence,

1

τ1

m+τ1−1
∑

s=m

∑

e∈N(v)

te(s) ≤ β +
Q1

ατ1
.

Let ε = 1
2 − β. Sinceβ < 1/2, by choosingτ1 ≥ 2Q1

αε , we
can have

1

τ1

m+τ1−1
∑

s=m

∑

e∈N(v)

te(s) ≤
1

2
(1 − ε) (34)

for all time-slotm.

Next, define the Lyapunov function

U(~ν(m)) =
1

2

∑

v∈V





∑

e∈N(v)

νe(m)





2

.

Note that this Lyapunov function is standard in proving the
stability of maximal-matching [10]. Let∆νe(m) = νe(m +
1) − νe(m). According to Equation (28) that governs the
evolution of~ν, we can compute theτ1-step drift ofU(·) as

U(~ν(m + τ1)) − U(~ν(m))

≤
∑

e∈E

νe(m)

m+τ1−1
∑

s=m





∑

l∈N(x(e))

tl(s) +
∑

l∈N(r(e))

tl(s)

−
∑

l∈N(x(e))

1{l∈M(s)} −
∑

l∈N(r(e))

1{l∈M(s)}



+ M1(m),

where

M1(m) ≤
1

2

∑

v∈V





τ1−1
∑

k=0

∑

e∈N(v)

|∆νe(m + k)|





2

≤
τ1

2

2

∑

v∈V

|N(v)|2 , M̄1.

Note that for any linke with νe(m) ≥ τ1 + 1, we must have
νe(s) ≥ 1 for s = m, m + 1, ..., m + τ1. Hence, according to
the definition of maximal-matching,

∑

l∈N(x(e))

1{l∈M(s)} +
∑

l∈N(r(e))

1{l∈M(s)} ≥ 1, (35)

for s = m, m + 1, ...m + τ1. Therefore, by lettingM2(m) =
M1(m) + τ1

∑

e∈E νe(m)1{νe(m)≤τ1}, we have

U(~ν(m + τ1)) − U(~ν(m))

≤
∑

e∈E

νe(m)

m+τ1−1
∑

s=m





∑

l∈N(x(e))

tl(s) +
∑

l∈N(r(e))

tl(s) − 1





+M2(m),

≤ −ετ1

∑

e∈E

νe(m) + M2(m),

where in the last step we have used (34). Note thatM2(m)
is bounded by

M2(m) ≤ M̄1 + τ1
2|E| ≤ τ1

2
∑

v∈V

|N(v)|2 , M̄2.

In other words, whenever
∑

e∈E νe(m) is greater than
2M̄2/(ετ1), the value ofU(~ν(m)) must decrease inτ1 steps.
This implies thatU(~ν(m)) must be bounded for allm, and
hence allνe(m) must also be bounded for all linkse and all
time-slotsm. Specifically, we have,

∑

l∈N(x(e))

νl(m) +
∑

l∈N(r(e))

νl(m) ≤
4M̄2

ετ1
, Q̄2

for all e andm.
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Finally, let K be the smallest integer that is greater than or
equal toQ̄2/(ετ1). Supposeδe(m) − m > Kτ1 for somee
andm. We must then have

νe(s) ≥ 1, for s = m, m + 1, ..., m + Kτ1. (36)

According to the definition of maximal-matching, it implies
that (35) holds for allm ≤ s ≤ m + Kτ1. Using (34) again,
we can show that, becauseεKτ1 ≥ Q̄2, in Kτ1 time-slots the
virtual queues at linke and at all links next toe will be empty.
This contradicts to (36). Hence, the delayδe(m) − m must
be bounded byKτ1 for all e andm. Letting T̄0 = Kτ1, the
result of the lemma then follows with

T̄0 = Kτ1 ≤

(

Q̄2

ετ1
+ 1

)

τ1 ≤
16Q1

αε3

∑

v∈V

|N(v)|2.

C. Proof of Theorem 6

We first show that the real queues are bounded. By
Lemma 5, the delay in activating the links is bounded by
a numberT̄0. Consider Equation (27). Recall thatQd

v(m)/α
provides an upper bound on the real queue maintained at node
v for packets destined to noded. Hence, it suffices to show
that Qd

v(m) is bounded for all nodesv, destinationsd and
time-slotsm. For any time-slotm, assumingQd

v(0) = 0 for
all v andd, we then have

Qd
v(m)

α
≤ sup

0≤τ2≤m

m−1
∑

s=m−τ2



T d
v +

∑

e∈Ni(v)

fd
e (δ−1

e (s))

−
∑

e∈No(v)

fd
e (δ−1

e (s))



 . (37)

Sinceδe(m) − m ≤ T̄0, we have, for all0 ≤ τ2 ≤ m,

m−1
∑

s=m−τ2

∑

e∈Ni(v)

fd
e (δ−1

e (s))

≤
m−1
∑

s=m−τ2−T̄0

∑

e∈Ni(v)

fd
e (s),

where we have adopted the convention thatfd
e (m) = 0 for all

m < 0. Similarly, we have, for all0 ≤ τ2 ≤ m,

m−1
∑

s=m−τ2

∑

e∈No(v)

fd
e (δ−1

e (s))

≥

m−T̄0−1
∑

s=m−τ2

∑

e∈No(v)

fd
e (s)

≥
m−1
∑

s=m−τ2−T̄0

∑

e∈No(v)

fd
e (s)−M3(m),

whereM3(m) ≤ 2T̄0

∑

e∈No(v) ae , M̄3. We then have, for
all 0 ≤ τ2 ≤ m,

m−1
∑

s=m−τ2



T d
v +

∑

e∈Ni(v)

fd
e (δ−1

e (s)) −
∑

e∈No(v)

fd
e (δ−1

e (s))





≤

m−1
∑

s=m−τ2−T̄0



T d
v +

∑

e∈Ni(v)

fd
e (s)

−
∑

e∈No(v)

fd
e (s)



+ M̄3 + T d
v T̄0.

From the proof of Theorem 4, we know thatqd
v(m) is bounded

for all v, d and m. Let this bound byQ3. Then, using (20),
we must have, for anyτ3 ≥ 0,

Q3

α
≥

qd
v(m + τ3) − qd

v(m)

α

≥

m+τ3−1
∑

s=m



T d
v +

∑

e∈Ni(v)

fd
e (s) −

∑

e∈No(v)

fd
e (s)



 .

Substituting into (37), we must have

Qd
v(m)

α
≤ sup

0≤τ2≤m

m−1
∑

s=m−τ2



T d
v +

∑

e∈Ni(v)

fd
e (δ−1

e (s))

−
∑

e∈No(v)

fd
e (δ−1

e (s))





≤ sup
0≤τ2≤m

m−1
∑

s=m−τ2−T̄0



T d
v +

∑

e∈Ni(v)

fd
e (s)

−
∑

e∈No(v)

fd
e (s)



 + M̄3 + T d
v T̄0

≤
Q3

α
+ M̄3 + T d

v T̄0.

The first part of the theorem then follows. Further, since link
activations are delayed, the true energy consumption in any
interval [1, m] is bounded from above by

m
∑

τ=1

∑

e∈E

Θe(~fe(τ), te(τ)).

Hence, the second part of Theorem 6 follows from the second
part of Theorem 4.
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