
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X 1

An Optimization Based Approach for
QoS Routing in High-Bandwidth Networks

Xiaojun Lin, Member, IEEE and Ness B. Shroff, Senior Member, IEEE

Abstract— In this paper, we propose an optimization based
approach for Quality of Service routing in high-bandwidth
networks. We view a network that employs QoS routing as an
entity that distributively optimizes some global utility function.
By solving the optimization problem, the network is driven to
an efficient operating point. In earlier work, it has been shown
that when the capacity of the network is large, this optimization
takes on a simple form, and once the solution to this optimization
problem is found, simple proportional QoS routing schemes
will suffice. However, this optimization problem requires global
information. We develop a distributed and adaptive algorithm
that can efficiently solve the optimization online. Compared with
existing QoS routing schemes, the proposed optimization based
approach has the following advantages: (1) The computation
and communication overhead can be greatly reduced without
sacrificing performance; (2) The operating characteristics of
the network can be analytically studied; and (3) The desired
operating point can be tuned by choosing appropriate utility
functions.

Index Terms— QoS routing, high-bandwidth networks, opti-
mization based approach.

I. INTRODUCTION

Future telecommunication networks are expected to support
applications with diverse Quality of Service requirements.
Quality of Service (QoS) routing is an important component
of such networks and has received considerable attention over
the past decade (for a good survey, see [2] and the reference
therein). The objective of QoS routing is two-fold: to find a
feasible path for each incoming connection; and to optimize
the usage of the network by balancing the load.

In this paper, as in the majority of studies on QoS routing,
we assume a source routing model where routing decisions
are made at the point where connection requests originate.
In most of these studies, researchers take the following view
of the QoS routing problem: The links are “dumb” and they
advertise their status. The intelligence lies in the end-systems
(sources or edge routers) to compute paths based on the current
knowledge of the link states.

The above paradigm would have worked well if the link
states were stable. However, not all link state metrics are
stable. In particular, the available bandwidth metric of a link

Manuscript received xxxxxxxxx xx, 200x; revised xxxxxxxxx xx, 200x.
This work has been partially supported by the NSF grant ANI-0099137 and
the Indiana 21st Century Fund 651-1285-074. An earlier version of this paper
has been presented at IEEE INFOCOM 2004 [1].

The authors are with the Center for Wireless Systems and Ap-
plications (CWSA) and the School of Electrical and Computer En-
gineering, Purdue University, West Lafayette, IN 47907, USA (email:
{linx,shroff}@ecn.purdue.edu).

is inherently dynamic and changes frequently as connections
enter and leave the network. Therefore, the link state adver-
tisement and the QoS routing algorithm have to be executed
frequently in order to keep up with the changes in link
states. This leads to a significant amount of computation
and communication overhead. To reduce the computation and
communication burden, the frequency of the computation and
the link state updates then need to be contained. This could,
however, result in staleness of the link state information
and inaccuracy in the routing decisions. Hence, there is a
fundamental tradeoff between the amount of computation and
communication resources consumed and the quality of the
routing decisions. This tradeoff is usually difficult to analyze
and researchers have had to resort to simulation studies [3],
[4], [5], [6]. These studies reveal that the performance of
existing QoS routing schemes degrades when computation and
link state updates become infrequent. However, the extent to
which the performance degrades depends not only on how
infrequently the computation and link state updates are made,
but also on a large number of other factors that include: the
specifics of the path computation algorithm, the topology and
the demand pattern of the network, the cost metrics assigned
for each link, the link state update strategy, and the strategy
to handle routing failures, etc. In general, the exact level of
performance degradation is hard to predict.

In this paper, we take a different view of the QoS routing
problem. We view the network (including the end-systems
and the links) that employs QoS routing as an integral entity
that jointly optimizes some global utility function. Once the
solution to this optimization problem is found, the network
will be driven to an efficient operating point, and the routing
performance will be close to optimal. No further computation
and communication are needed as long as the prevailing
network condition remains essentially unchanged.∗

We refer to our proposed scheme as the optimization based
approach for QoS routing. When the capacity of the network is
large, this optimization takes on a simple form. Our proposal is
based on a known result: simple proportional routing schemes
can approach the performance of the optimal dynamic routing
schemes when the capacity of the network is large [7], [8],
[9]. In a proportional routing scheme, calls are routed to
alternate paths based on pre-determined probabilities. The
right routing probabilities can be derived from the solution

∗In practice, some computation and communication will still be required to
track changes in the network condition. However, a nice feature of our work
is that computation and communication intensive operations can be done at
very long time-scales, with a negligible impact on performance.

xxxxxxxx IEEE

2 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

Randomized
Routing

End−Systems

Links
Routing Decision

Implicit Cost
Path−Finding

Optimization

Fig. 1. Our Optimization Based Approach

of a simple optimization problem that depends only on the
average demand and capacity of the network.

We develop an online, distributed algorithm that can ef-
ficiently solve the optimization problem. Fig. 1 provides a
high-level view of the optimization based approach. Each
link in the network is associated with an implicit cost. The
implicit cost summarizes the congestion level at the link and
can be updated by the observed demand and capacity at the
link. Thus, we equip the link with only a minimal amount of
intelligence (i.e., to update the implicit cost). It turns out that
the implicit cost is the only information that the end-system
needs to solve the optimization problem. The end-system has
three components: a path-finding component that maintains a
set of alternate paths; an optimization component that solves
for the optimal routing probabilities; and a randomized routing
component that routes each incoming connection based on the
precomputed routing probabilities.

Compared with existing QoS routing schemes, our optimiza-
tion based approach has the following advantages:

(1) The computation and communication overhead can be
greatly reduced without sacrificing performance. Once the
optimal operating point is found, the same routing parameters
can be used by a large number of future arrivals, as long as
the average network condition remains unchanged. Infrequent
computation and link state updates will only affect the speed
of convergence of the distributed algorithm, but not the end-
result that the algorithm converges to.

In practical networks, the average network condition can
also change gradually over time (non-stationary behavior),
e.g., during the course of a day. Our distributed algorithm
will track the changes in the average network condition and
adjust the operating point accordingly. Note that in a control
system, there has always been the issue of the right time scale
of control. A nice feature of our proposed solution is that,
the control that needs to be done at a fast time scale, i.e.,
the randomized routing, is very simple; while the control that
requires a large amount of computation, i.e., the optimization
of routing probabilities and the search for new alternate paths,
can be carried out over a much slower time scale. Using the
right separation of control time scales, our optimization based
approach ensures near optimal performance even when the
computation and communication become infrequent.

(2) The operating characteristics of the network can be

analytically studied. Given the network model, we can eas-
ily predict the operating point by solving the optimization
problem. In contrast, due to the complexity of the system,
the analysis of existing QoS routing schemes appears to be
intractable, especially under inaccurate link state information
and infrequent computation.

(3) The desired operating point can be tuned by appropri-
ately choosing the utility functions. The optimization based
approach allow us not only to predict the operating point of
the network, but also to control it. By choosing different utility
functions for different classes and source-destination pairs,
we can achieve the desired balance among the service levels
offered to different groups of users. For example, when the
network becomes congested, connections with a larger number
of hops could suffer significantly more blocking than shorter
connections. In our optimization based approach, this can be
avoided by assigning longer connections a utility function that
has a higher marginal utility.

A. Related Work

The optimal control of loss networks has been studied
extensively in the past. Both off-line [10], [11], [12] and
simulation based schemes [13] have been proposed. Our
contribution is to propose an online solution for QoS routing.
Our online scheme exploits the fact that simplicities arise in
high-bandwidth networks, which we will discuss in more detail
in Section II. These results lead to a much simpler and easily
decomposable optimization problem.

Our proposed solution employs a proportional routing
scheme. The asymptotic optimality of the proportional routing
scheme in large systems has been known for some time
[7], [9]. However, a major criticism of proportional routing
schemes has been the following: if the demand is incorrectly
estimated, the computed routing probabilities could lead to
poor performance [13]. We solve this problem by using an
adaptive algorithm that does not rely on any prior knowledge
of the demand. The Adaptive Proportional Routing scheme
proposed in [14], [15] is also related to our work. In their
scheme, each class measures the amount of blocking along
each alternate paths, and uses the inverse Erlang formula
to estimate a “virtual capacity” grabbed by the class along
each path. Then each class locally optimizes the routing
probabilities based on the demand and these virtual capacities.
Compared with the Adaptive Proportional Routing scheme,
the advantage of our optimization based approach is that the
optimality of the resulting operating point and the convergence
of the algorithm can be rigorously shown. Further, the implicit
costs provide additional information for discovering new al-
ternate paths.

The mathematical structure of the optimization problem
studied in this paper is closely related to those found in
multi-path flow control problems [16], [17], [18], [19]. In
[16], two classes of solutions to flow control problems are
categorized, i.e., primal solutions and dual solutions. For
the single-path flow control problem, both the primal and
the dual solutions have been studied extensively (see [20]
for a good survey). On the other hand, the multi-path flow

LIN & SHROFF: AN OPTIMIZATION BASED APPROACH FOR QOS ROUTING IN HIGH-BANDWIDTH NETWORKS 3

control problem has received less attention. Primal solutions
to the multi-path flow control problem were developed in [16],
[18], [19]. These primal solutions are based on a penalty
function approach, i.e., they replace the capacity constraints
by a penalty function in the optimization objective. Primal
solutions tend to produce biased approximates of the optimal
operating point [16], [19], due to the fact that penalties will
only be incurred when the capacity constraints are violated.
(In contrast, the optimal operating point is defined to be one
that satisfies the capacity constraints.) Further, because the
penalty functions are nonlinear, an additional level of bias
occurs in the primal solutions in [16], [18], [19] when there
is noise in the measurements of the offered load at each
link. In our application setting of QoS routing, such biases
of primal solutions translate into suboptimal routing decisions
and unnecessary blocking of calls, which are undesirable in
practice†.

Our implicit cost based solution can be viewed as a dual
solution to the multi-path optimization problem. The advan-
tage of dual solutions is that they are designed to compute
the exact optimal operating point. In fact, even when there
is measurement noise, it is possible to show that our dual
solution converges to the exact optimal operating point when
the stepsizes are driven to zero in an appropriate fashion. The
algorithm proposed in [17] is also similar to our dual solution.
In [17], the authors state that their algorithm is one of the
Arrow-Hurwicz algorithms [22]. However, the convergence of
the Arrow-Hurwicz algorithm was established in [22] only for
the case when the objective function is strictly concave, which
is not true for the problem at hand. In this paper, we report a
new result that correctly characterizes the convergence.

Finally, our work exploits the largeness of the network
to simplify QoS routing. For other works that exploit the
largeness of the network, one can refer to [8], [23], [24] (on
pricing) and [25] (on network decomposition).

The rest of the paper is organized as follows: In Section II,
we present the asymptotic optimality of the proportional rout-
ing scheme. In Section III, we derive the distributed algorithm
for computing the optimal routing probabilities and obtain the
proposed QoS algorithm. We discuss implementation issues in
Section IV, present simulation results in Section V, and then
conclude.

II. SIMPLIFICATION OF QOS ROUTING IN LARGE
NETWORKS

A. The Model

We adopt a multi-class loss network model. There are L
links in the network. Each link l ∈ {1, ..., L} has capacity
Rl. There are I classes of users. Each class is associated with
one source-destination pair, and some given QoS requirements.
Flows of class i arrive to the network according to a Poisson
process with rate λi. Once admitted, a flow of class i will

†We note that for single-path flow control problems, Adaptive Virtual Queue
(AVQ) algorithms have been used to construct primal solutions that compute
the exact optimal operating point [21]. However, to the best of our knowledge,
the generalization of the AVQ algorithms to multi-path problems has not been
investigated and is beyond the scope of this paper.

hold ri amount of bandwidth. (For the moment we assume
that bandwidth is the only QoS metric. The extension to
multiple QoS metrics will be addressed in Section III-D.)
The service times within a class are i.i.d. and independent
of the arrival process. The service time distribution is general
with mean 1/µi. Each admitted flow of class i generates vi

amount of revenue per unit time. The objective of the network
is to maximize the revenue from all flows admitted into the
network.

Such a network model could represent the backbone of an
ISP serving applications with different QoS requirements. The
revenue vi could either be actual money, or simply an assigned
weight that represents the network’s preference for each class.
The bandwidth requirement ri could be some form of effective
bandwidth for flows of class i. There could be multiple classes
associated with each source-destination pair, differing in their
bandwidth requirement ri and revenue vi.

In this section, we assume that each class i has set up θ(i)
alternate paths using, for example, MPLS [26] (we will address
how these alternate paths can be found in Section III-C). The
alternate paths are represented by a matrix [H l

ij] such that
H l

ij = 1 if path j of class i uses link l, and H l
ij = 0 otherwise.

We denote the state of the system by a vector ~n = [nij , i =
1, ...I, j = 1, ..., θ(i)], where nij is the number of flows of
class i currently using path j. The bandwidth requirements
and the capacity constraints then determine the set of feasible
states Ωn = {~n :

∑I
i=1

∑θ(i)
j=1 nijriH

l
ij ≤ Rl for all l}.

We denote the routing decision (which can be time varying)
for class i by a vector ~pi = [pi1, pi2, ..., pi,θ(i)], where

pij = Pr{an incoming flow of class i is routed to path j}.

An incoming flow of class i will be admitted with probability
∑θ(i)

j=1 pij , and, if admitted, it will be routed to path j with
probability pij/

∑θ(i)
k=1 pik. Note that ~pi ∈ Ωi, where

Ωi , {pij ≥ 0,

θ(i)
∑

j=1

pij ≤ 1, for all j}.

Let ~p = [~p1, ..., ~pI].
A dynamic routing scheme is one where routing decisions

can adapt to the changing utilization level of the network.
For example, ~p(t) can be a function of the current state
of the network, i.e., ~p(t) = g(~n(t)). Note that this model
can characterize virtually any QoS routing proposals that
select paths based on the current snapshot of the network.
Alternatively, ~p(t) can be a function of some past history
of network states ~n(s), s ∈ [t − d, t], where d is the length
of the history information. The network can use the past
history to predict the future, and use prediction to improve
the routing decision. ~p(t) can also depend on the service time
T of the incoming connection, if this information is available.
The routing policy can then be written, in a most general form,
as

~p(t) = g(~n(s), s ∈ [t − d, t];T). (1)

It can be shown that the system under any policy g will always
converge to a stationary version, and the stationary version is
ergodic [8].

4 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

Each admitted flow of class i will generate vi amount
of revenue per unit time. The dynamic routing scheme that
maximizes the long term average revenue is then

J∗ , max
g

I
∑

i=1

θ(i)
∑

j=1

Eg [nij(t)] vi,

where Eg denotes the expectation taken with respect to the
stationary distribution under policy g.

Finally, in a static scheme, the routing policy is represented
by a time-invariant vector ~p. This corresponds to a proportional
routing scheme. The performance of the static scheme is:

J0 ,

I
∑

i=1

θ(i)
∑

j=1

λi

µi

pijvi[1 − PLoss,ij],

where PLoss,ij is the blocking probability experienced by
flows of class i routed to path j.

B. Asymptotic Optimality of Static Schemes

The drawback of dynamic schemes is that the optimal
schemes are difficult to find, and the implementation of these
dynamic schemes will consume a large amount of computation
and communication resources. It turns out that when the
capacity of the system is large, simple static schemes can
approach the performance of the optimal dynamic scheme.
This has been the central theme of our earlier work [8]. Here,
we rephrase the main result under the context of QoS routing.
We scale the capacity and the demand proportionally by c > 1,
i.e., in the c-scaled network, the capacity at each link l is
Rl,c = cRl, and the arrival rate of each class i is λc

i = cλi. In
the rest of paper, when we refer to “high bandwidth networks”
or “large-capacity networks,” we mean that c is large. In other
words, the link capacity is large compared to the bandwidth
requirement of each user. The following result shows that
when c is large‡, a simple static scheme will suffice. The static
scheme is constructed as follows:

Step 1: Solve the following optimization problem:

Jub = max
~p∈Ω

I
∑

i=1

λi

µi

θ(i)
∑

j=1

pijvi (2)

subject to
I

∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l,

where Ω =
⊗I

i=1 Ωi.
Step 2: Use the optimal point ~p in (2) as the static policy.

Let Js be its performance.
The following proposition shows that the normalized rev-

enue of the static scheme constructed above will approach that
of the optimal dynamic scheme when c → ∞.

Proposition 1: Let J∗,c and Jc
s be the revenue of the

optimal dynamic scheme and the revenue of the static scheme
constructed above, respectively, in the c-scaled system, then

lim
c→∞

Jc
s/c = lim

c→∞
J∗,c/c = Jub.

‡Note that here largeness does not imply over-provisioning.

Proposition 1 can be shown as in [8]. Here we sketch the
main ideas of the proof. Firstly, one can show that cJub is
an upper bound of J∗,c under any dynamic routing policy g
[7], [9]. Secondly, the static revenue J c

s differs from the upper
bound cJub only by the term (1 − PLoss,ij). Now since ~p
satisfies the constraint of (2), the traffic load at each link is no
greater than 1. Lemma 3 in [8] then ensures that the blocking
probability goes to zero as c → ∞. Finally, because J c

s ≤
J∗,c ≤ cJub, Proposition 1 then follows. The detailed proof is
provided in our online technical report [27]. Readers can refer
to [8] for a thorough treatment of the various simplicities that
arise in the control of large-bandwidth networks.

III. THE OPTIMIZATION BASED APPROACH TO QOS
ROUTING

There is a continuing trend to deploy routers with larger
and larger link capacities in the Internet. Therefore, the re-
sults in the last section offer important insights on the QoS
routing problem in the high-bandwidth networks of today
and the future. Firstly, by solving a simple upper bound,
we can obtain a simple time-invariant scheme that is close
to optimal. Once we precompute the routing probabilities
according to (2), the result can be used for a large number
of future arrivals. Thus, the computation overhead can be
greatly reduced. Secondly, the upper bound (2) replaces the
instantaneous capacity constraint

∑I
i=1

∑θ(i)
j=1 nijriH

l
ij ≤ Rl

by an average load constraint
∑I

i=1

∑θ(i)
j=1

λi

µi
ripijH

l
ij ≤ Rl.

Hence, the precomputation only needs to react to the average
congestion level in the network rather than the instantaneous
congestion level. The staleness of the link state information is
no longer a major issue!

Therefore, if we are able to solve the upper bound (2)
efficiently, we can obtain a QoS routing algorithm that is close
to optimal in large networks and that can tolerate infrequent
computation and infrequent link state updates. However, we
still need to consider the following issues.

• The upper bound is a global optimization problem. A
distributed solution is desired.

• Some parameters, such as λi and µi, could be unknown
a priori and changing gradually over time. A solution is
needed that can automatically adapt to these changes.

We next present an adaptive, distributed algorithm for
solving the upper bound. Before we proceed, we note that
in many scenarios, it is also desirable to modify the upper
bound to improve fairness. We can view the upper bound (2)
as a constrained optimization problem that maximizes some
aggregate utility functions:

max
~p∈Ω

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi (3)

subject to
I

∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l,

where the utility function Ui is linear: Ui(p) = p. A linear
utility function, however, does not possess good fairness prop-
erties: for example, connections with a larger number of hops

LIN & SHROFF: AN OPTIMIZATION BASED APPROACH FOR QOS ROUTING IN HIGH-BANDWIDTH NETWORKS 5

could be completely blocked to give way to connections with
fewer hops. To improve fairness, we can use a strictly concave
utility function Ui, as in flow control problems [28]. The
derivative U ′

i(
∑θ(i)

j=1 pij) represents the amount of marginal
utility lost if the overall admission probability for class i is
further reduced. The desired balance among different classes
can be achieved by tuning the revenue vi and the utility
function Ui. Proposition 1 can be generalized to the case
with concave utility functions [8], [27]. In this paper, we will
use utility functions that satisfy U ′

i(1) = 1. This choice of
the utility function ensures that the revenue vi is correctly
reflected by the marginal utility when all flows of class i can
be admitted, i.e., viU

′
i(

∑θ(i)
j=1 pij) = vi when

∑θ(i)
j=1 pij = 1.

As long as the utility function follows this rule, our simulation
results indicate that the revenue is usually not affected much
by changing the utility functions.

A. A Distributed Algorithm

Let ~p∗ be the maximizer of the modified upper bound (3).
Because the objective function is concave and the constraint
set is convex and compact, a maximizer always exists. How-
ever, it is generally not unique, since the objective function is
not strictly concave. (Note that even if Ui is strictly concave,
the overall problem is not, because of the linear operation
∑θ(i)

j=1 pij .)
The form of the upper bound motivates us to study its

dual. However, when the objective function of the primal
problem is not strictly concave, the dual problem may not
be differentiable. To circumvent this difficulty, we use ideas
from Proximal Optimization Algorithms [29, Chapter 3.4.3].
The idea is to add a quadratic term to the objective function.
We introduce an auxiliary variable yij for each pij . Let
~yi = [yij , j = 1, ..., θ(i)] and ~y = [~y1, .., ~yI]. The optimization
becomes:

max
~p∈Ω,~y∈Ω

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi

−

I
∑

i=1

θ(i)
∑

j=1

λi

µi

νi

2
(pij − yij)

2vi (4)

subject to
I

∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l,

where νi is some positive number chosen for each class i. For
a fixed ~y, the objective function in (4) is strictly concave. It
is easy to show that the optimal value of (4) coincides with
that of (3). In fact, if ~p = ~p∗ is the maximizer of (3), then
~p = ~p∗, ~y = ~p∗ is the maximizer of (4).

The standard Proximal Optimization Algorithm then pro-
ceeds as follows:

Algorithm P:
At the t-th iteration,

• P1) Fix ~y = ~y(t) and maximize the augmented objective

function with respect to ~p. To be precise, this step solves:

max
~p∈Ω

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi

−

I
∑

i=1

θ(i)
∑

j=1

λi

µi

νi

2
(pij − yij)

2vi (5)

subject to
I

∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l.

Since the objective function in (5) is now strictly concave,
the maximizer exists and is unique. Let ~p(t) be the
solution to this optimization.

• P2) Set ~y(t + 1) = ~p(t).
Step P1) can now be solved through its dual. Let ql, l =

1, ..., L be the Lagrange Multiplier for the constraints in (5).
Let ~q = [q1, ..., qL]. Define the Lagrangian as:

L(~p, ~q, ~y) =

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi

−

L
∑

l=1

ql(

I
∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij − Rl)

−
I

∑

i=1

θ(i)
∑

j=1

λi

µi

νi

2
(pij − yij)

2vi

=
I

∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pij

L
∑

l=1

H l
ijq

l

−

θ(i)
∑

j=1

νi

2
(pij − yij)

2vi

+
L

∑

l=1

qlRl. (6)

Let qij =
∑L

l=1 H l
ijq

l, ~qi = [qij , j = 1, ..., θ(i)]. The objective
function of the dual problem is then:

D(~q, ~y) = max
~p∈Ω

L(~p, ~q, ~y) =
I

∑

i=1

Bi(~qi, ~yi)
λi

µi

+
L

∑

l=1

qlRl, (7)

where

Bi(~qi, ~yi) = max
~pi∈Ωi

Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pijqij

−

θ(i)
∑

j=1

νi

2
(pij − yij)

2vi

. (8)

Note that in the definition of the dual objective function
D(~q, ~y) in (7), we have decomposed the original problem into
I separate subproblems. Given ~q, each class can solve the rout-
ing probabilities ~pi via its local subproblem (8) independently.
If we interpret ql as the implicit cost per unit bandwidth at link
l, then qij is the total cost per unit bandwidth for all links in
the path j of class i. Thus the qij captures all the information
each subproblem needs about the path class i traverses. We
note that an important feature of this decomposition is that

6 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

the subproblem (8) is independent of the parameters λi and
µi. This makes online implementation particularly easy.

The dual problem of (5), given ~y, is:

min
~q≥0

D(~q, ~y).

Since the objective function of the primal problem (5) is
strictly concave, the dual is always differentiable. The gradient
of D is

∂D

∂ql
= Rl −

I
∑

i=1

θ(i)
∑

j=1

λi

µi

p0
ijriH

l
ij , (9)

where p0
ij solves the local subproblem (8). Then step P1) can

be solved by using the gradient descent iteration on the dual
variable, i.e.,

ql(t + 1) =

ql(t) − αl(Rl −

I
∑

i=1

θ(i)
∑

j=1

λi

µi

p0
ijriH

l
ij)

+

, (10)

where [.]+ denotes the projection to [0,+∞).
The class of distributed algorithms we will use in this paper

can be summarized as follows:
Algorithm A:
• A1) Fix ~y(t) and use the gradient descent iteration (10)

on the dual variable ~q. Depending on the number of times
the descent iteration is executed, we will obtain a dual
variable ~q(t + 1) that either exactly or approximately
minimizes D(~q, ~y(t)) (and, equivalently, solves (5)). Let
K be the number of times the dual descent iteration is
executed.

• A2) Let ~p(t) be the primal variable that maximizes,
over all ~p ∈ Ω, the Lagrangian L(~p, ~q(t + 1), ~y(t))
corresponding to the new dual variable ~q(t + 1). Set
~y(t + 1) = ~p(t).

From now on, we will refer to (10) as the dual update, and
step A2) as the primal update.

A stationary point of algorithm A can be defined as a
primal-dual pair (~y∗, ~q∗) such that

~y∗ = argmax
~p∈Ω

L(~p, ~q∗, ~y∗),

ql,∗ ≥ 0 and
I

∑

i=1

θ(i)
∑

j=1

λi

µi

y∗
ijriH

l
ij ≤ Rl for all l, and

ql,∗

I
∑

i=1

θ(i)
∑

j=1

λi

µi

y∗
ijriH

l
ij − Rl

 = 0 for all l.

By standard duality theory, any stationary point (~y∗, ~q∗) of the
algorithm A solves the augmented problem (4). Hence ~p = ~y∗

solves the upper bound (3).
An important question is how large K (in step A1) needs

to be for algorithm A to converge to a stationary point.
The standard proximal optimization theory [29, Chapter 3.4.3]
requires K = ∞, i.e., at each iteration the optimization (5) has
to be solved exactly. This requirement essentially corresponds
to a time-scale separation between the time-scale of the primal
updates and that of the dual updates. When K < ∞, at best
an approximate solution to (5) is obtained at each iteration.

If the accuracy of the approximate solution can be controlled
appropriately (see [30]), one can still show the convergence of
algorithm A. However, in this case the number of dual updates
K has to depend on the required accuracy and usually needs
to be large.

For online implementation, one cannot carry out the dual
update infinitely many times for one iteration of algorithm
A. It is also difficult to distributively control the accuracy
of the approximate solution to (5). Hence, in this work we
use a different approach. The following result is new and
shows that, by appropriately choosing the stepsize αl, the
algorithm A converges for any choice of K ≥ 1. No time-
scale separation is needed! The proof is highly technical, and
due to space constraints, we only include a sketch of the proof
in Appendix B. Interested readers are referred to our technical
report [27]. The main idea of the proof has also been reported
in [31].

Proposition 2: Fix 1 ≤ K ≤ ∞. As long as the stepsize αl

is small enough, the algorithm A will converge to a stationary
point (~y∗, ~q∗) of the algorithm, and ~p∗ = ~y∗ solves the upper
bound (3). The sufficient condition for convergence is:

max
l

αl <

2
SL

mini
µiνivi

λir
2

i

if K = ∞
1

2SL
mini

µiνivi

λir
2

i

if K = 1
4

5K(K+1)SL
mini

µiνivi

λir
2

i

if K > 1

,

where L = max{
∑L

l=1 H l
ij , i = 1, ..., I, j = 1, ...θ(i)}

is the maximum number of hops for any path, and S =
max{

∑I
i=1

∑θ(i)
j=1 H l

ij , l = 1, ..., L} is the maximum number
of paths going through any link.

Remark: The sufficient condition for K = 1 differs from
that of K = ∞ only by a constant factor. For K > 1,
our result requires that the stepsizes decrease on the order
of O(1/k2). This is probably not the tightest possible result,
and we conjecture that stepsizes of order O(1) would work
for any K. However, we leave this for future work. Note also
that νi appears on the right hand side of the condition. Hence,
by making the objective function more concave, we also relax
the requirement on the stepsize αl. Finally, Proposition 2 does
not require the routing matrix [H l

ij] to be of full rank.

B. Distributed Implementation

Algorithm A lends naturally to online distributed imple-
mentation. The ingress router for each class is responsible for
determining the routing probabilities for this class. To do so,
the ingress router only needs to solve the local subproblem
(8) using the implicit costs ql at all core routers that class
i traverses. An efficient algorithm can solve (8) in at most
O[θ(i) log θ(i)] steps (see Appendix A). The core routers bear
the responsibility to update the implicit costs ql according to
the simple dual update rule (10). After every K dual updates,
the ingress router executes the primal update.

We have mentioned earlier that the solution of each local
subproblem (8) does not require knowledge of the demand
parameters λi and µi. Next, we show that the dual update can
also be carried out using online measurement at each link,
again without prior knowledge of the demand parameters of

LIN & SHROFF: AN OPTIMIZATION BASED APPROACH FOR QOS ROUTING IN HIGH-BANDWIDTH NETWORKS 7

each class. We then obtain an adaptive algorithm that can track
changes in the network conditions.

Note that in the dual gradient (9),
∑I

i=1

∑θ(i)
j=1

λi

µi
ripijH

l
ij

is the average load per unit time at link l. This motivates
us to estimate the gradient as follows: over a certain time
window W , each link l collects the information of flow
connection requests from all classes that arrive at the link.
Let w be the total number of flow arrivals during W . Let
rk, Tk, k = 1, ...w denote the bandwidth requirement and the
service time, respectively, of the k-th arrival. (This information
can be carried along with the connection requests.) Then we
can use

Gt = Rl −

∑w
k=1 rkTk

W
(11)

to estimate the gradient. The interpretation is immediate:
∑w

k=1 rkTk is the total amount of load brought to link l. One
can verify that this estimate is unbiased, i.e., E[Gt] = ∂D/∂ql.
We can then update the implicit costs by

ql(t + 1) =

[

ql(t) + αl

(∑w
k=1 rkTk

W
− Rl

)]+

(12)

When W is not large, the stepsize αl has to be small to
“average out” the noise in the estimate. This algorithm has the
flavor of stochastic approximation algorithms [32] that have
been used in many engineering problems. Our simulations
with this algorithm demonstrate good convergence properties
when a small fixed stepsize is used. That is, according to the
simulations, the stochastic approximation algorithm converges
to a small neighborhood of the solution to the upper bound.
Further, when the stepsize αl is away from zero, our algorithm
can track the nonstationary behavior of the network. As the
demand (i.e., λi, µi) changes, it is reflected in the gradient
estimate Gt. The network will then move towards the new
optimal operating point.

C. How to Generate Alternate Paths

The set of alternate paths, denoted by the matrix [H l
ij], could

potentially be the enumeration of all possible paths for each
class. In practice, however, a much smaller set of alternate
paths suffices. Maintaining this set of alternate paths is the
role of the path-finding component in Fig. 1. There are several
options to generate the candidate paths.

Option 1: Use paths that appear to be “heuristically good.”
For example, given a source-destination pair, we can use the
set of minimum-hop paths, or, paths whose number of hops
is no greater than h plus that of the minimum-hop path.
Obviously, h should be small to avoid an explosion in the
number of candidate paths.

Option 2: A better approach is to discover new paths
online. The implicit costs ql, which arise naturally as the
Lagrangian Multipliers of the dual problem, give us guide-
lines on discovering potentially better alternate paths. Given
a configuration of the alternate paths, we can easily verify
the following properties that characterize any stationary point
(~p∗, ~q∗) of algorithm A (for details, see [27]): (1) when the
utility functions are strictly concave, the admission probability
∑θ(i)

j=1 p∗ij for each class i can be uniquely determined; (2)

only paths that have the minimum cost see positive routing
probabilities. The cost of a path is the sum of the implicit
costs for all links along the path. Hence, if we let qi,0 denote
the minimum cost among all alternate paths for class i, i.e.,
qi,0 , minj

∑L
l=1 H l

ijq
l,∗, then for all j,

p∗ij > 0 ⇒ q∗ij = qi,0.

This is consistent with the concept of the minimum first
derivative path discussed in [29, p417]. Therefore, adding
paths whose costs are larger than the minimum cost will not
yield any gain.

We can use the above properties to iteratively generate
the candidate paths online. Starting from any initial set of
candidate paths, we execute the distributed algorithm A to
solve the upper bound. Then based on the implicit costs at
the (possibly approximate) stationary point, we can run any
minimal cost routing algorithm using the implicit costs as the
cost metric for each link. If the minimal cost is smaller than
the minimal cost among the current set of candidate paths
by a certain threshold, we add this new path into the set, and
continue. Otherwise, we can conclude that no further alternate
paths need to be added.

Option 3: Use historical data. This can be viewed as a
traffic engineering step. We first take measurements of typical
traffic demands at different times of the day. For each demand
pattern, we can use the above procedure in Option 2 offline
to find the optimal alternate paths. The union of the alternate
paths under all demand patterns can then be used as the set of
candidate paths. The role of the distributed algorithm A is to
shift the traffic load among these candidate paths automatically
as the network condition changes.

D. Extensions to Multiple QoS Constraints

So far we have assumed that the bandwidth constraint is
the only QoS constraint. We now address the extension to
multiple QoS metrics and constraints. We can argue that
link-state metrics other than the available bandwidth (e.g.,
delay and overflow probabilities, etc.) could be more stable
in future high-bandwidth networks. When the link capacity of
the network is large, the network can support a large number
of connections at the same time. Due to the complexity in
maintaining per-flow information, Quality of Service is likely
to be provisioned on an aggregate basis. Each node in the
network will provide a QoS guarantee on delay and/or packet
loss probabilities for all flows belonging to the same class,
rather than for each individual flow. Such guarantees will stay
unchanged as new flows arrive at or old flows depart from the
network.

Let each class be given some QoS requirements on both
the bandwidth constraint and some other constraints such as
delay or packet loss probabilities. We now assume that each
link will provision certain QoS guarantees on these other QoS
metrics. Such guarantees are constant over time and can be
advertised to the entire network. The alternate paths for each
class must now be constrained to those that satisfy these
other QoS requirements. Given a set of alternate paths, the
distributed algorithm in Section III-A can be used unchanged

8 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

to find the optimal routing probabilities. In order to generate
the alternate paths, we can use the options in Section III-C,
except that now we have to consider other constraints too. For
example, in Option 2, we can still use the implicit cost as the
cost metric for each link and execute any constrained minimal
cost QoS routing algorithm to search for new alternate paths.

It is important to note that the path-finding step does not
deal with the available bandwidth constraint directly. Instead, it
is based on the implicit cost, which is a more stable parameter
that depends on the average congestion level of the network.
Hence, the path-finding step can be carried out infrequently.
Note that the computation of optimal paths under multiple
QoS constraints is usually a NP-complete problem. Hence,
for any practical implementation of QoS routing solutions,
the computation overhead has always been a key issue. Our
optimization based approach does not directly reduce the
computational complexity. Rather, it reduces the frequency of
the computation. We emphasize that the optimal performance
is still preserved even though computation becomes infrequent.
This, as mentioned in the Introduction, is again due to the
separation of control time-scales: the set of candidate paths
needs to change only when the average demand and capacity
of the network changes significantly. Hence, the intensive
computations only need to be carried out infrequently.

IV. IMPLEMENTATIONAL ISSUES

In this section we address some implementational issues.

A. Communicating the Implicit Costs

The distributed algorithm requires communicating the im-
plicit costs back to the ingress routers. There are two alterna-
tives. One is to use the connection request packets sent by the
ingress router. Each link can insert its own implicit costs when
processing the connection request packets. When the response
is sent back to the ingress router, the implicit costs are piggy-
backed for free. The other approach is to periodically advertise
the implicit costs throughout the network. In the latter case,
even when the implicit costs are updated infrequently, while
the speed of convergence of the distributed algorithm will be
affected, the optimal routing probabilities that the algorithm
converges to will remain the same.

B. Gradient Estimates at the Link Algorithms

For the link algorithm, the gradient estimate in (11) requires
the information from all flow arrivals, including those that
could have been rejected by the upstream links. In some
network systems, once an intermediate link along the path
rejects a connection request, the request will not be passed
on to downstream links. Let P

B,l
i,j be the probability that a

connection request of class i routed to path j is rejected by
links that are upstream to link l. The true connection arrival
rate of class i at a link l will be λipij(1−P

B,l
i,j). In this case,

the gradient estimate constructed in (11), by counting only
actual arrivals, will be biased. However, when the system is
large, this error will be small. This is due to two factors: (1)
as long as the load at each link is less than or equal to 1, PB,l

i,j

will be close to zero (see Lemma 3 in [8]); (2) if some links
have load greater than 1, the implicit costs at these links will
be increased until the loads become less than or equal to 1.
Therefore, in the end P

B,l
i,j will be close to zero and will have

a minimal impact on the gradient estimate.
The gradient estimate in (11) needs knowledge of the

service time Tk of an incoming flow. When this information
is not known at the time of connection arrival, it can also
be replaced by the time average of the service time of past
flows. This time average can be calculated at the ingress
router by measuring the service time of the flows that have
completed service. The unbiasness of (11) is not affected by
such changes.

C. Adaptive Stepsizes

The transient behavior of the distributed algorithm is sen-
sitive to the choice of the stepsize αl. A smaller stepsize will
result in a smaller misadjustment (overshoot or undershoot)
around the optimal solution, but takes a longer time to con-
verge. A larger stepsize expedites the convergence at the cost
of larger misadjustment. This tradeoff between misadjustment
and speed of convergence is a fundamental one for stochastic
approximation algorithms with constant stepsizes. A better
approach is to use an adaptive stepsize scheme: a larger
stepsize is used initially (or when sudden changes occur)
to expedite convergence, followed by a smaller stepsize to
reduce the misadjustment. This idea of stepsize adaptation has
been used in many other applications, especially in adaptive
filtering. Here we illustrate one such approach, borrowed from
the idea in [33]:

Fix a link l. Let Gt be the estimate of the gradient at the t-
th iteration. Let Et be a weighted average of the past samples
of Gt, i.e., upon a new sample Gt, let

Et+1 = εlGt + (1 − εl)Et,

where εl is a small positive constant. Let αl
t denote the

stepsizes at the t-th iteration. We can update the stepsize based
on the correlation between Et and Gt, i.e.,

αl
t+1 = min{[αl

t + βlEtGt]
+, αmax}, (13)

where βl is a small positive constant, and αmax is a maximum
allowable stepsize chosen to ensure the stability of the system.
We will demonstrate in the simulation results in Section V
that the distributed algorithm with such an adaptive stepsize
scheme can swiftly track the changes in the network condition,
and it can also effectively reduce the misadjustment when the
network condition is stable.

V. SIMULATION RESULTS

In this section, we present simulation results that illustrate
our optimization based approach for QoS routing. We use
an event-driven flow-level simulator written in C++. Our
simulator can simulate different flow arrival patterns and
holding-time distributions. We can also simulate different
strategies for updating the information across the network,
e.g., changes in link implicit costs can either be updated at
the source nodes immediately (i.e., synchronous updates), or

LIN & SHROFF: AN OPTIMIZATION BASED APPROACH FOR QOS ROUTING IN HIGH-BANDWIDTH NETWORKS 9

S

32

4 6

D

1

5

1

2

3

4

6

5

8

9

10

11

12 14

16

17

15

13

0
7

A

B C

AB

BC

CA

ISP

Triangle Shortcut

Fig. 2. Network Topologies

they can be updated after an arbitrary delay (i.e., asynchronous
updates). We implement the distributed algorithm following
the online measurement based scheme in Section III-B. Note
that although the convergence of the algorithm is shown
assuming global synchronized updates, in our simulation the
local subproblem (8) is solved only when a new call arrives.
Hence, the algorithm is executed in an asynchronous fashion.

The topologies that we use are shown in Fig. 2. We first
demonstrate the convergence of the distributed algorithm using
the “triangle” network in Fig. 2. There are three classes of
flows (AB,BC,CA). For each class of flows, there are two
alternate paths, i.e., a direct one-link path, and an indirect two-
link path. The arrival rates for classes AB, BC, CA are 1, 1
and 3 flows per time unit, respectively. Each flow consumes
one bandwidth unit along the path(s) and holds the resources
for a time that is exponentially distributed with mean of 100
units. Let the capacity of all links be 100 bandwidth units.
For all classes the revenue vi is 1 and the utility function
is Ui(p) = ln p. Both the revenue and the implicit cost are
chosen to be unitless.

Fig. 3 demonstrates the evolution over time of the implicit
costs at all links and the evolution of the routing probabilities
of class CA. The x-axis corresponds to the total number of
arrivals simulated. Readers can verify that all quantities of
interest converge to a small neighborhood of the solution to
the upper bound. The parameters we use for the distributed
algorithm are: αl = 0.0001 per bandwidth unit, νi = 1, K =
1000 and W = 1 time unit.

Fig. 4 demonstrates the convergence of the implicit costs
when we use the adaptive stepsize scheme in Section IV. The
parameters we use are: εl = 0.001, αmax = 0.1 per bandwidth
unit, βl = 0.0001 per cubic bandwidth unit and αl

0 = 0.
The initial convergence is almost immediate: the implicit costs
quickly jump to a small neighborhood of the solution to the
upper bound, thanks to an increase in the stepsize initially.
The evolution of the routing probabilities (not shown) follows
the same trend. While the misadjustment takes time to die
out (as the stepsize becomes smaller), Fig. 5 shows that the
convergence of the revenue to its stationary value is achieved
must faster (note that the range on the x-axis is smaller). As

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

 Total # of Arrivals Simulated (x1000)

 Im
pl

ic
it

C
os

t

 Link AB
 Link BC
 Link CA

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

 Total # of Arrivals Simulated (x1000)

 R
ou

tin
g

P
ro

ba
bi

lit
ie

s Direct Path
 Two−Hop Path

Fig. 3. Evolution of the implicit costs (top) and the routing probabilities of
class CA (bottom) with respect to the number of arrivals simulated. The unit
of x-axis is 1000 arrivals. The solution to the upper bound is the following:
the implicit costs are 1.25, 1.25, and 2.5, respectively, for link AB, BC and
CA. The routing probability for class CA are 0.33 for the direct path and
0.067 for the two-hop path.

0 500 1000 1500 2000
0

1

2

3

4

 Total # of Arrivals Simulated (x1000)

 Im
pl

ic
it

C
os

t
 Link AB
 Link BC
 Link CA

Fig. 4. Evolution of the implicit costs when the adaptive stepsize
scheme is used.

0 50 100 150 200
20

22

24

26

28

 Total # of Arrivals Simulated (x1000)

 R
ev

en
ue

Fig. 5. Evolution of the average revenue when the adaptive stepsize
scheme is used.

far as the overall revenue is concerned, the fluctuations of the
implicit costs appear to cancel themselves out.

We have also simulated the case when the network condition
changes over time, i.e., when the system is non-stationary.
Fig. 6 and Fig. 7 demonstrate the evolution of the implicit
costs when the average inter-arrival time of class CA changes
according to a square wave and a triangle wave, respectively.
We observe that the distributed algorithm with adaptive step-
sizes can track the changes in the network condition swiftly.

We next simulate a larger network, i.e., the “ISP” topology
in Fig. 2, which is reconstructed from an ISP network and has

10 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

0 500 1000 1500 2000
0

1

2

3

4

5

 Total # of Arrivals Simulated (x1000)

 Im
pl

ic
it

C
os

t

 Link AB
 Link BC
 Link CA

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

 Total # of Arrivals Simulated (x1000)

 In
te

r−
ar

riv
al

 T
im

e

Fig. 6. Evolution of the implicit costs (top) when the average inter-arrival
time of class CA changes according to a square wave (bottom).

0 500 1000 1500 2000
0

1

2

3

4

 Total # of Arrivals Simulated (x1000)

 Im
pl

ic
it

C
os

t

 Link AB
 Link BC
 Link CA

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

 Total # of Arrivals Simulated (x1000)

 In
te

r−
ar

riv
al

 T
im

e

Fig. 7. Evolution of the implicit costs (top) when the average inter-arrival
time of class CA changes according to a triangle wave (bottom).

been used in many simulation studies [3], [4], [5], [6], [14].
It has 18 nodes and 30 links. We simulate the case with a
uniform demand matrix: flows arrive at each node according to
a Poisson process with rate λ, and the destinations are chosen
uniformly among all other nodes. The bandwidth requirement
of each connection is one bandwidth unit. Revenue vi is 1. We
use a Pareto service time distribution with shape parameter 2.5,
to capture the heavy-tailed characteristic of the traffics on the
Internet. The mean service time is 100 time units. The capacity
of each link is 1000 bandwidth units.

There are a total of 18× 17 = 306 source-destination pairs
(i.e., classes). When the simulation is initialized, the set of
alternate paths for each source-destination pair consists of all
minimum-hop paths. Once simulation starts, new paths can be
added following Option 2 in Section III-C. To simplify the
simulation, we adopt an upper limit of 10 on the number of
alternate paths for each source-destination pair: when a new
path is found, if there are already 10 alternate paths, the old

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

 λ

 R
ev

en
ue Upper Bound

 Distributed Algo.
 WSP
 WSP/Min−Hop

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

 λ

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

 Upper Bound
 Distributed Algo.
 WSP
 WSP/Min−Hop

Fig. 8. The revenue (top) and the blocking probability (bottom) of the
distributed algorithm compared with the upper bound and WSP.

path with the smallest routing probability will be replaced by
the new path.

We choose the utility function to be of the following form

Ui(p) = hi ln p − (hi − 1)p,

where hi is the minimal number of hops between source-
destination pair i. This utility function improves the admission
probability for flows that traverse a larger number of hops. (At
the same level of admission probability p < 1, the marginal
utility dUi

dp
= hi/p − (hi − 1) is larger for flows that traverse

a long path.)
We simulate the optimization based approach using the

distributed algorithm and compare, in Fig. 8, the revenue and
the total blocking probability over all classes against the values
determined by the upper bound. We vary the per-node flow
arrival rate λ from 1.0 to 10.0 flows per time unit. As we
can see from these figures, our distributed algorithm tracks
the upper bound consistently over all loads. With a network
of this size (each link can hold 1000 flows) the difference
between the upper bound and the simulation of our distributed
algorithm is already small.

We also compare the performance of the Widest-Shortest-
Path (WSP) algorithm. WSP has been used in many simulation
studies [3], [4], [14]. Among all feasible paths, the WSP
algorithm will first choose paths that have the smallest number
of hops. If there are multiple such paths, the WSP algorithm
will choose the one with the largest available bandwidth.
However, as shown in Fig. 8, the performance of a faithful
implementation of WSP starts to taper off at λ = 5.0 flows
per time unit. The performance degradation of WSP is due
to its selection of non-minimal hop paths, which could result
in sub-optimal configurations for the whole network. If we
constrain WSP to minimum-hop paths only, the performance

LIN & SHROFF: AN OPTIMIZATION BASED APPROACH FOR QOS ROUTING IN HIGH-BANDWIDTH NETWORKS 11

degradation will disappear in this example, as shown by
the curve labeled “WSP/Min-Hop.” However, from this, we
should not draw the conclusion that such a practice is always
better. By constraining WSP to minimum-hop paths, one also
reduces the capability of WSP to use other potentially less
congested paths. The end result depends on the topology of
the network and the demand pattern. For example, in the
“shortcut” topology in Fig. 2, assume that the capacities of
all links are the same. If flows from S to D is to only use
the minimum-hop path (S-1-6-D), once this path is full, no
more flows can be admitted. However, if the flows use the
non-minimum-hop paths S-1-2-3-D and S-4-5-6-D, twice as
many flows can be admitted. Hence it is not always better to
restrict on minimum-hop paths.

Our distributed algorithm, on the other hand, will always be
able to find the right balance by solving the upper bound. It
consistently tracks the upper bound under all load conditions.
This provable optimality is an attractive feature of our opti-
mization based approach as it ensures that the routing decision
will always be close to optimal.

The strength of the optimization based approach is even
more evident when the computation and link state updates
become infrequent. To show this, we pick λ = 6.0 flows per
time unit and simulate both the distributed algorithm and the
WSP (with minimum-hop path only) when we vary the inter-
val between link-state updates. To ensure a fair comparison
of the performance and the overhead of the two schemes,
we adopt the following settings for our simulation. For the
distributed algorithm, we choose to simulate the case where
the implicit costs are advertised with each link state update,
and computation is carried out after each link state update.
(That is, we are not simulating the “piggy-back” approach in
Section IV-A.) For WSP, in contrast to the suggestion given
in [5], we do not allow WSP to recompute paths when a
connection routed to a precomputed path is later rejected. The
reason is that one cannot reduce the computational overhead
too much if such recomputation is allowed: for example, when
the blocking probability is around 10%, on average 1 out of
10 arrivals will trigger recomputation! For a similar reason,
we also do not use the triggered link state update strategy
of [5] for WSP. When the triggered strategy is used, changes
in available bandwidth that exceed certain percentage of the
past advertised available bandwidth will trigger a new link
state update. When the network operates at a high utilization
level, the available bandwidth is small. Even small changes in
available bandwidth will trigger frequent updates. Hence, one
can not reduce the communication overhead too much using
a triggered update strategy.

Simulation results are presented in Fig. 9. The performance
of the distributed algorithm changes little as the link state
update interval becomes larger and larger, while the perfor-
mance of WSP decreases significantly. (The unit time on the
x-axis is the mean inter-arrival time of flows at each node.)
In the worst case, WSP blocks twice as many connections
compared to the case when it has perfect link states. We
have also simulated the case when the network condition
changes over time (i.e., when the system is non-stationary).
In Fig. 10, we change the average inter-arrival time at each

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

 Link State Update Interval

 B
lo

ck
in

g
P

ro
ba

bi
lit

y

 WSP
 Distributed Algo.

Fig. 9. The blocking probability as the link state update interval increases.
The unit on the x-axis is the mean inter-arrival time of flows at each node.
The arrival rate at each node is fixed at λ = 6.0 flows per unit time.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

 Link State Update Interval
 B

lo
ck

in
g

P
ro

ba
bi

lit
y

 WSP
 Distributed Algo.

(a)

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

 Total # of Arrivals Simulated (x1000)

 In
te

r−
ar

riv
al

 T
im

e

(b)
Fig. 10. The blocking probability versus the link state update interval (top)
when the average inter-arrival time at each node changes according to the
triangle wave (bottom). The unit on the x-axis of Figure (a) is the mean
inter-arrival time of flows at each node. The unit on the x-axis of Figure (b)
corresponds to 1000 total arrivals simulated. The average arrival rate at each
node is λ = 8.0 flows per unit time.

node according to the triangle wave in Fig. 10(b), and plot
the overall blocking probability in Fig. 10(a) when we vary
the interval between link-state updates. The performance of
the distributed algorithm is again insensitive to the link state
update interval, while the performance of WSP decreases
significantly as the link state update interval increases. Note
that the exact level of this performance degradation for WSP
is a complex function that depends on many factors, such
as the topology and the demand of the network, etc. Again,
the strength of the optimization based approach is that it
consistently achieves near optimal performance, even when the
computation and communication overhead are greatly reduced.

When our optimization based approach to QoS routing is
used, designers can predict the operating point of the network
by analytically solving the upper bound. This is shown in

12 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

 Solution

 S
im

ul
at

io
n

Fig. 11. The blocking probability predicted by the upper bound compared
with that collected from the simulation of the distributed algorithm. The arrival
rate at each node is fixed at λ = 6.0 flows per time unit.

Fig. 11 where each point represents the blocking probability
of one source-destination pair computed by the upper bound
(along the x-axis) and that collected from the simulation of
the distributed algorithm (along the y-axis). The points follow
the diagonal line, which indicates that the simulation matchs
the theory. In contrast, the analysis of dynamic QoS routing
schemes (such as WSP) appears to be an intractable problem,
especially when the computation becomes infrequent and the
link state information becomes inaccurate. One usually has to
resort to simulation to find out the operation of a QoS routing
algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed an optimization based approach
for Quality of Service routing in high-bandwidth networks.
We view a network that employs QoS routing as an entity
that carries out a distributed optimization. By solving the
optimization problem, the network is driven to an efficient
operating point. When the capacity of the network is large, this
optimization takes on a simple form. We develop a distributed
and adaptive algorithm that can efficiently solve the optimiza-
tion online. The proposed optimization based approach has
several advantages in reducing the computation and commu-
nication overhead, and in improving the predictability and
controllability of the operating characteristics of the network.

We now briefly outline directions for future work: (1) In this
paper we propose to update the implicit costs by measuring
the arrived load. Other methods are possible, for example,
by taking into account the utilization levels of the links. (2)
A deeper understanding of the transient behavior of the dis-
tributed algorithm is important. The adaptive stepsize scheme
in Section IV that improves the speed of the convergence is
of particular interest. (3) We assume that the capacity of the
network is uniformly large. If some part of the network is not
so large (for example, at the network edge), one then has to
study a finer level of dynamics in these parts of the network. It
would be interesting to study hybrid schemes that combine our
results with some further details of the dynamics of smaller
links. (4) In this paper we take a source routing model.
Adapting our result to the distributed routing or hierarchical
routing paradigms is also a possible direction for future work.
A related issue is how to deal with the case when routers do
not allow arbitrary splitting of traffic among multiple paths. (5)

Finally, from a theoretical viewpoint, it would be important to
prove the convergence of the distributed algorithm under more
general settings, such as with asynchronous computation.

APPENDIX

A. An Efficient Algorithm for Solving the Local Subprob-
lem (8)

Given the implicit costs ~q, each class i solves its local
subproblem (8) to obtain the routing probabilities. Recall that
the local subproblem is:

Bi(~qi, ~yi) = max
~pi∈Ωi

Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pijqij

−

θ(i)
∑

j=1

νi

2
(pij − yij)

2vi

, (14)

where

Ωi , {pij ≥ 0,

θ(i)
∑

j=1

pij ≤ 1, for all j}.

Let Lj be the Lagrangian multiplier for the constraint
pij ≥ 0, and let L0 be the Lagrangian multiplier for the
constraint

∑θ(i)
j=1 pij ≤ 1. Then, the Karush-Kuhn-Tucker

condition becomes:

L0 ≥ 0, Lj ≥ 0, j = 1, ..., θ(i),

pij ≥ 0,

θ(i)
∑

j=1

pij ≤ 1, j = 1, ..., θ(i),

Ljpij = 0, L0(

θ(i)
∑

j=1

pij − 1) = 0, j = 1, ..., θ(i),

U ′
i(

θ(i)
∑

j=1

pij)vi − riqij − νi(pij − yij)vi + Lj − L0 = 0.

Let Qij = νiyijvi − riqij . The last equation becomes:

U ′
i(

θ(i)
∑

j=1

pij)vi − νivipij + Qij + Lj − L0 = 0. (15)

Without loss of generality, assume that the alternate paths are
ordered such that Qi,1 ≥ Qi,2 ≥ ... ≥ Qi,θ(i). Then it is
easy to show that pi,1 ≥ pi,2 ≥ ... ≥ pi,θ(i) (see [27] for the
details). Therefore, there must exist an integer J such that:

pij > 0 for any j ≤ J , and pij = 0 for any j > J.

Note that this number J is important because once J is known,
the routing probabilities pij can be easily found. To see this,
sum (15) for all j ≤ J . Since Lj = 0 for all j ≤ J , we have,

JU ′
i(

θ(i)
∑

j=1

pij)vi − νivi

θ(i)
∑

j=1

pij +
J

∑

j=1

Qij − JL0 = 0.

Let f(x) = JU ′
i(x)vi − νivix. We first find the value of

∑θ(i)
j=1 pij , which is equivalent to solving x and L0 such that

f(x) +

J
∑

j=1

Qij − JL0 = 0, (16)

LIN & SHROFF: AN OPTIMIZATION BASED APPROACH FOR QOS ROUTING IN HIGH-BANDWIDTH NETWORKS 13

where either x = 1 and L0 ≥ 0, or L0 = 0 and 0 ≤ x ≤ 1.
Note that f(x) is decreasing in x due the concavity of Ui. If

f(1) +

J
∑

j=1

Qij < 0,

then the solution to (16) should be some x < 1 with L0 = 0,
in which case x is the solution of f(x) +

∑J
j=1 Qij = 0.

Otherwise, x should be equal to 1, and L0 =
f(1)+

∑

J
j=1

Qij

J
.

In both cases, we can find the values of x =
∑θ(i)

j=1 pij and L0

easily. Once these values are found, we can solve the routing
probabilities pij via (15), i.e.,

pij =

{

U ′

i(x)vi+Qij−L0

νivi
if j ≤ J

0 if j > J
. (17)

We have just shown that, once the number J is know, the
routing probabilities pij can be easily computed. It remains to
find the correct value of J . We use a linear search for finding
J . We start the search by assuming J = θ(i). We then verify
whether the current value of J is correct by solving pij via the
procedure described earlier. If the values of pij are all non-
negative, then J is correct. In fact, since the solution for pij

computed in (17) is decreasing in j, we only need to ensure
that pi,J is non-negative. On the other hand, if the verification
fails, we reduce J by 1, and verify again; until either a correct
value of J is found, or J = 0 and hence all pij should be zero.

We summarize below the algorithm for solving the subprob-
lem (8):

1) Sort the index j such that Qij is in decreasing order.
2) Let J = θ(i) and Q =

∑θ(i)
j=1 Qij .

3) If JU ′
i(1)vi − νivi + Q < 0, then solve

JU ′
i(x)vi − νivix + Q = 0

for x§ and let L0 = 0. Otherwise, let x = 1 and

L0 =
JU ′

i(1) − νivi + Q

J
.

4) Compute

pi,J =
U ′

i(x)vi + Qi,J − L0

νivi

.

a) If pi,J ≥ 0, then the correct value of J is found.
Compute pij as

pij =

{

U ′

i(x)vi+Qij−L0

νivi
if j ≤ J

0 if j > J
,

and the algorithm terminates.
b) Otherwise, let J ⇐ J−1 and let Q ⇐ Q−Qi,J+1.

If J ≥ 1, go to step 3. If J = 0, set pij = 0 for
all j and terminate.

We now summarize the complexity of the above algorithm.
All steps except Step 1 and Step 4(a) are O(1), and they may
need to be executed θ(i) times in the worst case. The Step 4(a)
is O(θ(1)) but it only needs to be executed once. Sorting Qi,j

in Step 1 can be executed in O(θ(i) log θ(i)) time using an
efficient sorting algorithm such as quicksort. Hence, the overall
complexity is at most O(θ(i) log θ(i)).

§With the choice of the utility function in Section V, the solution can be
written explicitly.

B. Sketch of Proof of Proposition 2

Here we provide a brief sketch of the proof of Proposition 2.
Interested readers can find the full proof in our technical report
[27]. The convergence for K = ∞ follows the standard results
on Proximal Optimization Algorithms [29]. Hence, we focus
on K = 1. Let ~x(t) = argmax~p∈Ω L(~p, ~q(t), ~y(t)). The dual
update is given by

ql(t + 1) =

ql(t) + αl

I
∑

i=1

θ(i)
∑

j=1

λi

µi

xij(t)riH
l
ij − Rl

+

.

Let (~y∗, ~q∗) be any stationary point of algorithm A. Let

V (t) =
L

∑

l=1

1

αl
(ql(t)− ql,∗)2 +

I
∑

i=1

θ(i)
∑

j=1

λi

µi

viνi(yij(t)− y∗
ij)

2.

We will show that V (t) is non-increasing. Using the property
of the projection mapping ([29, Proposition 3.2(b), p211], we
have,

(ql(t + 1) − ql,∗)
{

(ql(t + 1) −
[

ql(t)

+αl

I
∑

i=1

θ(i)
∑

j=1

λi

µi

xij(t)riH
l
ij − Rl

≤ 0.

Hence,

(ql(t + 1) − ql,∗)2

= (ql(t) − ql,∗)2 − (ql(t + 1) − ql(t))2

+2(ql(t + 1) − ql,∗)(ql(t + 1) − ql(t))

≤ (ql(t) − ql,∗)2 − (ql(t + 1) − ql(t))2

+2(ql(t + 1) − ql,∗)αl

I
∑

i=1

θ(i)
∑

j=1

λi

µi

riH
l
ij(xij(t) − y∗

ij).

Further, noting that ~y(t+1) = argmax~p∈Ω L(~p, ~q(t+1), ~y(t))
when K = 1, hence,

V (t + 1) − V (t) ≤ −
L

∑

l=1

1

αl
(ql(t + 1) − ql(t))2

+2

L
∑

l=1

(ql(t + 1) − ql,∗)

I
∑

i=1

θ(i)
∑

j=1

λi

µi

riH
l
ij(xij(t) − y∗

ij)

+

I
∑

i=1

θ(i)
∑

j=1

λi

µi

viνi[(yij(t + 1) − y∗
ij)

2 − (yij(t) − y∗
ij)

2].

When the stepsizes αl are small, ql(t + 1) and ql(t) are close
for all l. Hence, the difference between xij(t) and yij(t+1) is
also small. Using this fact and the concavity of Ui(·), we can
show that the sum of the second term and the third term on the
right hand side is no greater than

∑L
l=1 bl(ql(t + 1)− ql(t))2,

where the parameters bl depend on the stepsizes αl. Hence,
if bl ≤ 1/αl, V (t) is non-increasing and thus must have a
limit. From here it is not hard to show that ~q(t) and ~y(t)
will then converge to a stationary point of algorithm A. The
convergence proof for K > 1 follows a similar argument.

14 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

REFERENCES

[1] X. Lin and N. B. Shroff, “An Optimization Based Approach for Quality
of Service Routing in High-Bandwidth Networks,” in Proceedings of
IEEE INFOCOM, Hong Kong, China, March 2004.

[2] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing
for the Next Generation High-Speed Networks: Problems and Solutions,”
IEEE Network, Special Issue on Transmission and Distribution of Digital
Video, vol. 12, no. 6, pp. 64–79, November/December 1998.

[3] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, “Quality
of Service Based Routing: A Performance Perspective,” in Proceedings
of ACM SIGCOMM, Vancouver, Canada, September 1998, pp. 17–28.

[4] Q. Ma and P. Steenkiste, “On Path Selection for Traffic with Bandwidth
Guarantees,” in IEEE ICNP, 1997.

[5] A. Shaikh, J. Rexford, and K. Shin, “Efficient Precomputation of
Quality-of-Service Routes,” in Proceedings of Workshop on Network
and Operating Systems Support for Digital Audio and Video, Cambridge,
United Kingdom, July 1998.

[6] A. Shaikh, J. Rexford, and K. Shin, “Evaluating the Impact of Stale
Link State on Quality-of-Service Routing,” IEEE/ACM Transactions on
Networking, vol. 9, no. 2, pp. 162–176, April 2001.

[7] P. B. Key, “Optimal Control and Trunk Reservation in Loss Networks,”
Probability in the Engineering and Informational Sciences, vol. 4, pp.
203–242, 1990.

[8] X. Lin and N. B. Shroff, “Simplification of Network Dynamics in Large
Systems,” IEEE/ACM Transactions on Networking, vol. 13, no. 4, pp.
813–826, August 2005.

[9] R. J. McEliece and K. N. Sivarajan, “Maximizing Marginal Revenue in
Generalized Blocking Service Networks,” in Proc. 30th Annual Allerton
Conference on Communication, Control, and Computing, 1992, pp. 455–
464.

[10] F. P. Kelly, “Routing in Circuit Switched Networks: Optimization,
Shadow Prices and Decentralization,” Advances in Applied Probability,
vol. 20, pp. 112–144, 1988.

[11] F. P. Kelly, “Routing and Capacity Allocation in Networks with Trunk
Reservation,” Mathematics of Operations Research, vol. 15, no. 4, pp.
771–793, 1990.

[12] D. Mitra, J. A. Morrison, and K. G. Ramakrishnan, “ATM Net-
work Design and Optimization: a Multirate Loss Network Framework,”
IEEE/ACM Transactions on Networking, vol. 4, no. 4, pp. 531–543,
August 1996.

[13] P. Marbach, O. Mihatsch, and J. N. Tsitsiklis, “Call Admission Control
and Routing in Integrated Service Networks Using Neuro-Dynamic
Programming,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 2, pp. 197–208, February 2000.

[14] S. Nelakuditi, Z.-L. Zhang, R. P. Tsang, and D. H. C. Du, “Adaptive
Proportional Routing: a Localized QoS Routing Approach,” IEEE/ACM
Transactions on Networking, vol. 10, no. 6, pp. 790–804, December
2002.

[15] S. Nelakuditi, S. Varadarajan, and Z.-L. Zhang, “On Localized Control
in QoS Routing,” IEEE Transactions on Automatic Control, vol. 47, no.
6, pp. 1026–1032, June 2002.

[16] F. P. Kelly, A. Maulloo, and D. Tan, “Rate Control in Communication
Networks: Shadow Prices, Proportional Fairness and Stability,” Journal
of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[17] W. H. Wang, M. Palaniswami, and S. H. Low, “Optimal Flow Control
and Routing in Multi-Path Networks,” Performance Evaluation, vol. 52,
no. 2-3, pp. 119–132, April 2003.

[18] K. Kar, S. Sarkar, and L. Tassiulas, “Optimization Based Rate Control
for Multipath Sessions,” Technical Report No. 2001-1, Institute for
Systems Research, University of Maryland, 2001.

[19] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Overlay
TCP for Multi-Path Routing and Congestion Control,” Presented at the
ENS-INRIA ARC-TCP Workshop, Paris, France, Nov. 2003 and at the
IMA Workshop on Measurements and Modeling of the Internet, January
2004, available at http://tesla.csl.uiuc.edu/∼srikant/pub.html.

[20] S. H. Low and R. Srikant, “A Mathematical Framework for Designing
a Low-Loss Low-Delay Internet,” Network and Spatial Economics, vol.
4, no. 1, pp. 75–102, March 2004.

[21] S. Kunniyur and R. Srikant, “An Adaptive Virtual Queue (AVQ)
Algorithm for Active Queue Management,” IEEE/ACM Transactions
on Networking, vol. 12, no. 2, pp. 286–299, April 2004.

[22] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Nonlinear
Programming, Stanford University Press, Stanford, CA, 1958.

[23] I. Ch. Paschalidis and J. N. Tsitsiklis, “Congestion-Dependent Pricing
of Network Services,” IEEE/ACM Transactions on Networking, vol. 8,
no. 2, pp. 171–184, April 2000.

[24] I. Ch. Paschalidis and Y. Liu, “Pricing in Multiservice Loss Networks:
Static Pricing, Asymptotic Optimality, and Demand Substitution Ef-
fects,” IEEE/ACM Transactions on Networking, vol. 10, no. 3, pp. 425–
438, June 2002.

[25] D. Y. Eun and N. B. Shroff, “Simplification of Network Analysis in
Large-Bandwidth Systems,” in Proceedings of IEEE INFOCOM, San
Francisco, April 2003.

[26] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture,” RFC 3031, January 2001.

[27] X. Lin and N. B. Shroff, “ An Optimization Based Approach for Quality
of Service Routing in High-Bandwidth Networks,” Technical Report,
Purdue University, http://min.ecn.purdue.edu/∼linx/papers.html, 2003.

[28] S. H. Low and D. E. Lapsley, “Optimization Flow Control–I: Basic
Algorithm and Convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, December 1999.

[29] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, Prentice-Hall, New Jersey, 1989.

[30] R. T. Rockafellar, “Monotone Operators and the Proximal Point
Algorithm,” SIAM J. Control and Optimization, vol. 14, pp. 877–898,
August 1976.

[31] X. Lin and N. B. Shroff, “The Multi-path Utility Maximization
Problem,” in 41st Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, October 2003.

[32] H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and
Applications, Springer-Verlag, New York, 1997.

[33] H. J. Kushner and J. Yang, “Analysis of Adaptive Step-Size SA
Algorithms for Parameter Tracking,” IEEE Transactions on Automatic
Control, vol. 40, no. 8, pp. 1403–1410, August 1995.

Xiaojun Lin (S’02 / M’05) received his B.S. from
Zhongshan University, Guangzhou, China, in 1994,
and his M.S. and Ph.D. degrees from Purdue Uni-
versity, West Lafayette, Indiana, in 2000 and 2005,
respectively. He is currently an Assistant Professor
of Electrical and Computer Engineering at Purdue
University.
Dr. Lin’s research interests are resource allocation,
optimization, network pricing, routing, congestion
control, network as a large system, cross-layer de-
sign in wireless networks, mobile ad hoc and sensor

networks. He received the 2005 best paper of the year award from Journal
of Communications and Networks. His paper was also one of two runner-up
papers for the best-paper award at IEEE INFOCOM 2005.

Ness B. Shroff (S’91 / M’93 / SM’01) received
his Ph.D. degree from Columbia University, NY
in 1994. He has been at Purdue University since
1994, and is currently a Professor of Electrical and
Computer Engineering at Purdue.
Dr. Shroff’s research interests span the areas of wire-
less and wireline communication networks. He is
especially interested in fundamental problems in the
design, performance, control, security, and pricing
of these networks.
Dr. Shroff is an editor for the IEEE/ACM Trans. on

Networking and the Computer Networks Journal, and past editor of IEEE
Communications Letters. He was the Technical Program co-chair for IEEE
INFOCOM’03 (San Francisco, CA), the panel co-chair for ACM Mobicom’02
(Atlanta, GA), program co-chair for the symposium on high-speed networks,
Globecom 2001 (San Francisco, CA), and conference chair for the 14th
Annual IEEE Computer Communications Workshop (Estes Park, CO). He
was the co-organizer of the NSF Workshop on “Fundamental Research in
Networking” in April 2003. He has received numerous awards including the
NSF CAREER award in 1996, the Computer Network Journal’s best paper
award of 2003, and the 2005 best paper of the year award from Journal of
Communications and Networks.

