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Abstract— In this paper, we study cross-layer design for con-
gestion control in multihop wireless networks. In previous work,
we have developed an optimal cross-layer congestion control
scheme that jointly computes both the rate allocation and the
stabilizing schedule that controls the resources at the underlying
layers. However, the scheduling component in this optimal cross-
layer congestion control scheme has to solve a complex global
optimization problem at each time, and is hence too computation-
ally expensive for online implementation. In this paper, we study
how the performance of cross-layer congestion control will be im-
pacted if the network can only use an imperfect (and potentially
distributed) scheduling component that is easier to implement.
We study both the case when the number of users in the system
is fixed and the case with dynamic arrivals and departures of
the users, and we establish performance bounds of cross-layer
congestion control with imperfect scheduling. Compared with
a layered approach that does not design congestion control and
scheduling together, our cross-layer approach has provably better
performance bounds, and substantially outperforms the layered
approach. The insights drawn from our analyses also enable us
to design a fully distributed cross-layer congestion control and
scheduling algorithm for a restrictive interference model.

Index Terms— Cross-layer design, congestion control, multihop
wireless networks, stability, imperfect scheduling, mathematical
programming/optimization, stochastic processes/queueing theory.

I. INTRODUCTION

Cross-layer design is becoming increasingly important for
improving the performance of multihop wireless networks
(see, e.g., [1]–[14] and the reference therein). By simultane-
ously optimizing the control across multiple protocol layers,
cross-layer design can substantially increase the network ca-
pacity, reduce interference and power consumption.

In this paper, we study issues involved in the cross-layer
design of multihop wireless networks that employ congestion
control [9]–[14]. Congestion control is a key functionality
in modern communication networks. With proper congestion
control, each user regulates the rate at which it injects data into
the network, so that (a) the network capacity is fully utilized,
(b) excessive congestion inside the network is avoided, and (c)
some form of fairness (in terms of the amount of service that
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each user receives) is ensured. Although congestion control
has been studied extensively for wireline networks (see [15],
[16] for good references), these results cannot be applied
directly to multihop wireless networks. In wireline networks,
the capacity region (i.e., the set of feasible data rates) is of
a simple form, i.e., the sum of the data rates at each link
should be less than the link capacity, which is usually known
and fixed. In multihop wireless networks, the capacity of each
radio link depends on the signal and interference levels, and
thus depends on the power and transmission schedule at other
links. Hence, the capacity region is usually of a complex
form that critically depends on the way in which resources
at the underlying physical and MAC layers are scheduled.
One possible way to address this difficulty is to choose a rate
region within the capacity region, which has a simpler set of
constraints similar to that of wireline networks, and compute
the rate allocation within this simpler rate region [17]–[19].
This approach essentially attempts to make congestion control
oblivious of the dynamics of the underlying layers. Hence,
we will refer to this approach as the layered approach to
congestion control. However, it requires prior knowledge of
the capacity region in order to choose such a rate region. For
many network settings, even such a rate region is difficult to
find. Further, because the rate region reduces the set of feasible
rates that congestion control can utilize, the layered approach
results in a conservative rate allocation.

On the other hand, the cross-layer approach to congestion
control can allocate data rates without requiring precise prior
knowledge of the capacity region [9]–[14]. Here, by the “cross-
layer” approach to congestion control, we mean that the
network jointly optimizes both the data rates of the users and
the resource allocation at the underlying layers, which include
modulation, coding, power assignment and link schedules, etc.
(For the rest of the paper, we will use the term scheduling
to refer to the joint allocation of these resources at layers
under congestion control.) In our previous work [9], we have
presented an optimal cross-layer congestion control scheme
and we have shown that our scheme can fully utilize the
capacity of the network, maintain fairness, and improve the
quality of service to the users.

However, the scheduling component in the optimal cross-
layer congestion control scheme of [9] (and also in most of
the other related results in the literature) requires solving at
each iteration a global optimization problem that is usually
quite difficult. In some cases, the optimization problem does
not even have a polynomial-time solution. In this work, our
objective is to develop a framework for cross-layer congestion
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control that is suitable for online (and potentially distributed)
implementation. The complexity of the scheduling component
has become the main obstacle to developing such a solution.

To overcome this difficulty, in this paper we take a different
approach. We accept the possibility that only suboptimal
solutions to the scheduling problem may be computable, which
we will refer to as imperfect schedules. We then study the
impact of imperfect scheduling on the optimality of cross-layer
congestion control. In this paper, we have studied this impact
for a large class of imperfect scheduling policies, both for the
case when the number of users in the system is fixed, and for
the case when users dynamically arrive and leave the network.
When the number of users in the system is fixed, we are able
to obtain some desirable, but weak, results on the fairness
and convergence properties of cross-layer congestion control
with imperfect scheduling. Surprisingly, we are able to obtain
far stronger results on the performance of the system when
we consider dynamic arrivals and departures of the users. Our
numerical results suggest that, in many network configurations,
cross-layer congestion control with imperfect scheduling can
perform comparably to that with perfect scheduling, while sig-
nificantly reducing the computation overhead of the scheduling
component. Further, we find that our cross-layer approach
can substantially outperform the layered approach. Finally,
the insights drawn from our analysis allow us to develop a
fully distributed congestion control and scheduling scheme in
a more restrictive network setting.

The rest of the paper is structured as follows. The system
model is presented in Section II. We review results with
perfect scheduling in Section III, and study the impact of
imperfect scheduling in Sections IV and V. In Section VI,
we present a fully distributed cross-layer congestion control
algorithm. Simulation results are presented in Section VII,
and the conclusion is given in Section VIII. Due to space
constraints, some of the proofs are omitted and they are
provided in our technical report that is available online [20].

II. THE SYSTEM MODEL

We consider a multihop wireless network with N nodes. Let
L denote the set of node pairs (i, j) (i.e., links) such that direct
transmission from node i to node j is allowed. The links are
assumed to be directional. Due to the shared nature of the wire-
less media, the data rate rij of a link (i, j) depends not only
on its own modulation/coding scheme and power assignment
Pij , but also on the interference due to the power assignments
on other links. Let ~P = [Pij , (i, j) ∈ L] denote the vector
of global power assignments and let ~r = [rij , (i, j) ∈ L]

denote the vector of data rates. We assume that ~r = u( ~P ),
i.e., the data rates are completely determined by the global
power assignment1. The function u(·) is called the rate-power
function of the system. Note that the global power assignment
~P and the rate-power function u(·) summarize the cross-layer
control capability of the network at both the physical layer
and the MAC layer. Precisely, the global power assignment
determines the Signal-to-Interference-Ratio (SIR) at each link.

1Here we have assumed that the channel condition is time-invariant. The
extension to the case with channel variations is treated in Section V-B.

Given the SIR, each link can choose appropriate modulation
and coding schemes to achieve the data rate specified by
u(~P ). Finally, the network can schedule different sets of
links to be active (and to use different power assignments)
at different times to achieve maximum capacity [4], [5], [7].
There may be constraints on the feasible power assignment.
For example, if each node has a total power constraint Pi,max,
then

∑

j:(i,j)∈L Pij ≤ Pi,max. Let Π denote the set of feasible

power assignments, and let R = {u( ~P ), ~P ∈ Π}. We assume
that Co(R), the convex hull of R, is closed and bounded. We
assume that time is divided into slots and the power assignment
vector ~P (t) is fixed during each time slot t. We will refer to
~r(t) = u( ~P (t)) as the schedule at time slot t.

In the rest of the paper, it is usually more convenient to
index the links numerically (e.g., links 1, 2, ..., L) rather than
as node-pairs (e.g., link (i, j)). The power assignment vector
and the rate vector should then be written as ~P = [P1, ..., PL]
and ~r = [r1, ..., rL], respectively.

There are S users and each user s = 1, ..., S has one path
through the network2. Let H = [H l

s] denote the routing matrix,
i.e., H l

s = 1, if the path of user s uses link l, and H l
s =

0, otherwise. Let xs be the rate with which user s injects
data into the network. Each user is associated with a utility
function Us(xs), which reflects the level of “satisfaction” of
user s when its data rate is xs. As is typically assumed in the
congestion control literature, we assume that each user s has a
maximum data rate Ms and the utility function Us(·) is strictly
concave, non-decreasing and twice continuously differentiable
on (0,Ms].

III. CROSS-LAYER CONGESTION CONTROL WITH

PERFECT SCHEDULING

In this section, we review the optimal cross-layer congestion
control scheme that we presented in [9]. We first define
the capacity region of the system. We say that a system is
stable if the queue lengths at all links remain finite. We say
that a user rate vector ~x = [x1, ..., xs] is feasible if there
exists a scheduling policy that can stabilize the system under
user rates ~x. We define the capacity region to be the set of
feasible rates ~x. It has been shown in [4], [5], [7] that the
optimal capacity region Λ is a convex set and is given by

Λ =

{

~x

∣

∣

∣

∣

[
S
∑

s=1
H l

sxs] ∈ Co(R)

}

. The convex hull operator

Co(·) is due to a standard time-averaging argument [4], [5],
[7]. Λ is optimal in the sense that no vector ~x outside Λ is
feasible for any scheduling policy.

In [9], we have formulated and solved the following optimal
cross-layer congestion control problem.

The Cross-Layer Congestion Control Problem:

• Find the user rate vector ~x in Λ that maximizes the total

2Extensions to the case with multipath routing are also possible (see [9]).
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system utility, i.e.,

max
0≤xs≤Ms

S
∑

s=1

Us(xs) (1)

subject to
S
∑

s=1

H l
sxs ≤ rl for all l ∈ L (2)

and [rl] ∈ Co(R).

• Find the associated scheduling policy that stabilizes the
system.

Remark: Note that this problem is indeed a cross-layer opti-
mization problem. The first element of the problem determines
the rates with which users inject data into the network (i.e.,
the congestion control problem at the transport layer). The
second element determines when and at what rate each link in
the network should transmit (i.e., the scheduling problem at
the MAC/physical layer). Maximizing the total system utility
as in (1) has been shown to be equivalent to some fairness
objectives when the utility functions are appropriately chosen
[21]. For example, utility functions of the form

Us(xs) = ws log xs (3)

correspond to weighted proportional fairness, where ws, s =
1, ..., S are the weights. A more general form of utility
function is

Us(xs) = ws
x1−β

s

1 − β
, β > 0. (4)

Maximizing the total utility will correspond to maximizing
weighted throughput as β → 0, weighted proportional fairness
as β → 1, minimizing weighted potential delay as β → 2, and
max-min fainess as β → ∞ [22].

The solution to the optimal cross-layer congestion control
problem is of the following form [9]. We associate an implicit
cost ql for each link l. Let ~q = [q1, ..., qL].

The Optimal Cross-Layer Congestion Control Algo-
rithm:

At each iteration t:

• The data rates of the users are determined by

xs(t) = argmax
0≤xs≤Ms

[

Us(xs) −
L
∑

l=1

H l
sq

l(t)xs

]

. (5)

• The schedule is determined by

~r(t) = argmax
~r∈R

L
∑

l=1

ql(t)rl = argmax
~r=u(~P ), ~P∈Π

L
∑

l=1

ql(t)rl.

(6)
• The implicit costs are updated by

ql(t+1) =

[

ql(t) + αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (7)

Remark: This solution has an attractive decomposition prop-
erty: the congestion control component and the scheduling
component are decomposed by the implicit costs ~q. Given
~q, each user can determine its own data rate independently
according to (5). The scheduling component (6) also uses ~q to

compute the schedule independently of the data rates of the
users.

The implicit cost updates in (7) can be viewed as subgra-
dient descent iterations for the dual of problem (1). To be
precise, the implicit costs ql are the Lagrange multipliers for
the constraint (2). We can construct the Lagrangian as

L(~x,~r, ~q) =

S
∑

s=1

Us(xs) −
L
∑

l=1

ql

[

S
∑

s=1

H l
sxs − rl

]

.

The dual of problem (1) is then

min
~q≥0

D(~q), (8)

where

D(~q) = max
0≤xs≤Ms,s=1,..,S,~r∈Co(R)

L(~x,~r, ~q)

=

S
∑

s=1

Bs(~q) + V (~q),

Bs(~q) = max
0≤xs≤Ms

[

Us(xs) −
L
∑

l=1

H l
sq

lxs

]

, (9)

V (~q) = max
~r∈R

L
∑

l=1

qlrl. (10)

The following proposition from [9] shows that, when the
stepsizes αl are small, the user rates ~x(t) will converge within
a small neighborhood3 of the optimal rate allocation ~x∗.

Proposition 1: a) There is no duality gap, i.e., the min-
imal value of (8) coincides with the optimal value of
(1).

b) Let Φ be the set of ~q that minimizes D(~q). For any
~q ∈ Φ, let ~x solve (5), then ~x is the unique optimal
solution ~x∗ of (1).

c) Assume that αl = hα0
l . Let ||~q||A =

∑L
l=1

(ql)2

α0

l

and

d(~q,Φ) = min~p∈Φ

√

||~q − ~p||A. For any ε > 0, there
exists some h0 > 0 such that, for any h ≤ h0 and any
initial implicit costs ~q(0), there exists a time T0 such
that for all t ≥ T0,

d(~q(t),Φ) < ε and ||~x(t) − ~x∗|| < ε.
The proofs of part (a) and part (b) are quite standard

(see, for example, Theorem 3.2.8 in [23, p44]). Part (c) is
a consequence of Theorem 2.3 in [24, p26]. The details of the
proof are provided in [20]. We will also draw the connection
with Proposition 5 later in Section IV.

The optimal cross-layer congestion control algorithm (5)-
(7) not only computes the optimal rate allocation, but also
generates the stabilizing scheduling policy by solving (6) at
each time slot t. In fact, let Ql denote the queue size at link
l. Then Ql evolves approximately as4:

Ql(t + 1) ≈
[

Ql(t) +

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (11)

3If instead the stepsizes are time-varying and they are chosen such that
αl(t) = htα

0
l

, ht → 0 as t → ∞ and
∑+∞

t=1
ht = +∞, then d(~q(t), Φ) →

0 and ~x(t) → ~x∗ as t → ∞.
4Note, (11) is an approximation because not all links are active at the same

time. Hence, data injected to the network by each user at time t may take
several time slots to reach downstream links.
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Comparing (11) with (7), we can see that Ql(t) ≈ ql(t)/αl.
From here we can infer that Ql(t) is bounded, as formalized
in the following proposition.

Proposition 2: If the stepsizes αl are sufficiently small, then
using the schedules determined by solving (6) at each time
slot, along with an appropriate packet scheduling policy at
each link, we have,

sup
t

Ql(t) < +∞ for all l ∈ L.

We give the proof and the details of the packet scheduling
policy in [20]. From Propositions 1 and 2, we observe an
interesting tradeoff between optimality and the queue-length.
As we choose smaller stepsizes αl, we can obtain user rate
allocation ~x as close to ~x∗ as we want. However, the actual
queue length Ql ≈ ql/αl also increases. It is possible to
address this tradeoff by using “virtual queue” algorithms,
and significantly reduce the actual queue length with only a
minimum amount of reduction on the system throughput. For
the detail, please refer to [9].

IV. THE IMPACT OF IMPERFECT SCHEDULING ON

CROSS-LAYER CONGESTION CONTROL: THE STATIC CASE

In this paper, we are interested in developing cross-layer
congestion control solutions that are suitable for online imple-
mentation. The main difficulty in implementing the optimal
solution of Section III is the complexity of the scheduling
component. Depending on the rate-power function u(·), the
scheduling problem (6) is usually a difficult global optimiza-
tion problem. In some cases, this optimization problem does
not even have a polynomial-time solution. Hence, solving (6)
exactly at every time slot is too time-consuming.

As discussed in the Introduction, in this paper, we take a
different approach from that of finding optimal rate allocations.
We will study systems that can only compute imperfect
schedules, which are suboptimal solutions to the scheduling
problem (6). We will investigate how imperfect scheduling
impacts the optimality of cross-layer congestion control. Our
objective is to find some imperfect scheduling policies that
are easy to implement and that, when properly designed with
congestion control, result in good overall performance.

We will particularly be interested in the following class of
imperfect scheduling policies:

Imperfect Scheduling Policy Sγ :
Fix γ ∈ (0, 1]. At each time slot t, compute a schedule

~r(t) ∈ R that satisfies:

L
∑

l=1

rl(t)q
l(t) ≥ γ max

~r∈R

L
∑

l=1

rlq
l(t). (12)

The parameter γ in (12) can be viewed as a tuning parameter
indicating the degree of precision of the imperfect schedule.
The complexity of finding a schedule ~r(t) satisfying (12)
usually decreases as γ is reduced. The following proposition
shows that an imperfect scheduling policy Sγ at most reduces
the capacity region by a factor of γ. The proof is a straight-
forward extension of similar results in the switching literature
(see [25]) and is also provided in [20].

Proposition 3: Fix γ ∈ (0, 1]. If the user rates ~x lie strictly
inside γΛ (i.e., ~x lies in the interior of γΛ), then any imperfect
scheduling policy Sγ can stabilize the system.

With an imperfect scheduling policy Sγ , the dynamics of
cross-layer congestion control are summarized by the follow-
ing set of equations:

xs(t) = argmax
0≤xs≤Ms

[

Us(xs) −
L
∑

l=1

H l
sq

l(t)xs

]

, (13)

L
∑

l=1

rl(t)q
l(t) ≥ γ max

~r∈R

L
∑

l=1

rlq
l(t), ~r(t) ∈ Co(R), (14)

ql(t + 1) =

[

ql(t) + αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (15)

Note that when γ = 1, the dynamics (13)-(15) reduce to
the case with perfect scheduling (as in Section III). Let
~x ∗,0 denote the optimal solution to the original cross-layer
congestion control problem (1). The solution to the following
problem turns out to be a good reference point for studying
the dynamics (13)-(15) when γ < 1:

The γ-Reduced Problem:

max
0≤xs≤Ms

S
∑

s=1

Us(xs) (16)

subject to ~x ∈ γΛ.

Let ~x ∗,γ denote the solution to the γ-reduced problem. (Note
that ~x ∗,γ exists and is unique for any given γ > 0.) Motivated
by Proposition 3, we would expect that the rate allocation
computed by the dynamics (13)-(15) will be “no worse than”
~x ∗,γ . However, this assertion is not quite true. We find that
the interaction between cross-layer congestion control and
imperfect scheduling is much more complicated. As the data
rates of the users are reacting to the same implicit costs
as the scheduling component is, there is a possibility that
the system gets stuck into local sub-optimal areas. We can
construct examples where, for a subset of users, their data
rates determined by the dynamics (13)-(15) can be much
smaller than the corresponding rate allocation computed by
the γ-reduced problem. In fact, it is even possible to construct
examples where certain components of ~x ∗,0 (which is the
optimal rate allocation that the dynamics (13)-(15) converge to
when γ = 1) are smaller than the corresponding components
of ~x ∗,γ . (We provide detailed examples in our technical report
[20].) Nonetheless, we are able to show the following weak
but desirable results on the fairness and convergence properties
of cross-layer congestion control with imperfect scheduling.

Proposition 4: Assume that the utility function is loga-
rithmic (i.e., of the form in (3)). If the dynamics (13)-(15)
converge, i.e., ~x(t) → ~x ∗,I and ~q(t) → ~q ∗

I as t → ∞, then

~x ∗,I ∈ Λ and
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

≤
S
∑

s=1

ws. (17)

The proof is available in Appendix A. Proposition 4 can be
generalized to other forms of utility functions (as in (4)). This
result can be viewed as a weak fairness property of the likely
rate allocation under imperfect scheduling. It shows that, if the
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Fig. 1. The weak fairness property

dynamics (13)-(15) converge, the rate allocation of the users
will lie in a strip defined by (17) (see Fig. 1). Hence, the
rate of each user is unlikely to be arbitrarily different from
~x ∗,γ (thus the level of unfairness is bounded). In particular,
if ws = 1 for all s, then by (17), x∗,I

s will be no smaller than
x∗,γ

s /S.
We next study the question of convergence. Note that for

any given γ < 1, there are many schedules that can satisfy
the definition of Sγ policies. Hence, it is impossible for us
to establish the convergence of the dynamics (13)-(15) to a
particular point. Nonetheless, it is possible to find a “region
of attraction.” Using a duality approach analogous to that in
Section III, we can define the dual of the γ-reduced problem
as

Dγ(~q) =

S
∑

s=1

Bs(~q) + γV (~q),

where Bs(~q) and V (~q) are still defined as in (9) and (10),
respectively. Note that both D(~q) and Dγ(~q) are convex
functions and D(~q) ≥ Dγ(~q). Let ~q ∗,0 denote a minimizer
of D(~q) and ~q ∗,γ denote a minimizer of Dγ(~q). (Note that
~q ∗,0 corresponds to γ = 1.) The following proposition shows
that

Φγ , {~q : Dγ(~q) ≤ D(~q ∗,0)},
is a region of attraction for the dynamics (13)-(15).

Proposition 5: Assume that αl = hα0
l . Let ||~q||A =

∑L
l=1

(ql)2

α0

l

and d(~q,Φ) = min~p∈Φ

√

||~q − ~p||A. For any ε >

0, there exists some h0 > 0 such that, for any h ≤ h0 and any
initial implicit costs ~q(0), there exists a time T0 such that for
all t ≥ T0,

d(~q(t),Φ) < max
~p∈Φγ

d(~p,Φ) + ε. (18)

Remark: If γ = 1, we have Φγ = Φ and the right hand side
of (18) is equal to ε. We thus obtain part (c) of Proposition 1.

The proof of Proposition 5 is provided in Appendix B.
Proposition 5 shows that, if the stepsizes αl are sufficiently
small, the dynamics (13)-(15) will eventually enter a neigh-
borhood of the set Φγ . Note that both ~q ∗,0 and ~q ∗,γ belong to
the set Φγ (see Fig. 2). Hence, in a weak sense, the dynamics
of the system are moving in the right direction. However, in
general the set Φγ is quite large and does not provide much
further insights on the eventual rate allocation. In fact, we

Φγ

D(   )q

D (   )γ q

q *,0

q *,γ

Fig. 2. The set Φγ

can construct examples (see [20] for the details) where the
dynamics (13)-(15) may converge to any point that satisfies
(17), or may form loops and never converge at all.

To conclude this section, we have studied the impact of im-
perfect scheduling on the dynamics of cross-layer congestion
control when the number of users in the system is fixed. We
are able to show certain desirable, but weak, results on the
fairness and convergence properties of the system. In the next
section, we will turn to the case when users dynamically arrive
and depart the network, and surprisingly, we will be able to
show far stronger results on the performance of the system
there.

V. STABILITY REGION OF CROSS-LAYER CONGESTION

CONTROL

In this section, we turn to the case when the number
of users in the system is itself a stochastic process. The
motivation for studying the dynamic case stems from the fact
that, under the static setting in Section IV, we have been
unable to obtain satisfactory results on the performance of
cross-layer congestion control with imperfect scheduling. In
fact, it appears that no such results are possible since we
can construct examples where convergence does not hold or
where the rate allocation of some users can be quite unfair.
Thus, we are left with little knowledge about how well (or
badly) a system will behave even with a moderate level of
imprecision in the scheduling policy used. However, despite
the existence of these negative examples, we feel that they
may not be as pessimistic as they appear. In real networks,
the user population keeps changing. It is unclear yet whether
these unfavorable configurations are the ones that persist and
dominate, or whether they will self-correct as the users arrive
and leave the system.

These questions lead us to study the dynamic setting. Under
the dynamic setting, we are no longer interested in the rate-
allocation at each snapshot in time (since we know that there
are always time instants when the rate-allocations are unsat-
isfactory). Instead, we are interested in performance measures
that are more global, i.e., that summarize the system behavior
over an interval of time. In this paper, we will use the stability
region to quantify how imperfect scheduling impacts cross-
layer congestion control under the dynamic setting. Here, by
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stability, we mean that the number of users in the system and
the queue lengths at all links in the network remain finite.
The stability region of the system is the set of offered loads
under which the system is stable. We choose to study the
stability region because past results have indicated that both
fairness and convergence of congestion control are closely
connected with stability. Previous works for wireline networks
have shown that, by allocating data rates to the users fairly,
i.e., by choosing data rates that maximize the total system
utility in the forms of (3) or (4), the largest possible stability
region can be achieved [21], [26]–[28]. Conversely, examples
have been given in [21] that, if the rate allocation at each
snapshot is unfair, the stability region may be much less
than the optimal. These results are important as they tell us
that fairness is not just a static and aesthetic property, but it
actually has a strong global performance implication, i.e., in
achieving the largest possible stability region. In this section,
we will establish similar but stronger results for our cross-layer
congestion control scheme with imperfect scheduling.

To be precise, instead of using the notation s for user s,
we now use s to denote a class of users with the same utility
function and the same path. We assume that users of class s
arrive according to a Poisson process with rate λs and that each
user brings with it a file for transfer whose size is exponentially
distributed with mean 1/µs. The load brought by users of class
s is then ρs = λs/µs. Let ~ρ = [ρ1, ..., ρS ]. Let ns(t) denote
the number of users of class s that are in the system at time
t, and let ~n(t) = [n1(t), ..., nS(t)]. We assume that the rate
allocations for users of the same class are identical. Let xs(t)
denote the rate of each user of class s at time t. In the rate
assignment model that follows, the evolution of ~n(t) will be
governed by a Markov process. Its transition rates are given
by:

ns(t) → ns(t) + 1, with rate λs,

ns(t) → ns(t) − 1, with rate µsxs(t)ns(t)

if ns(t) > 0.

As in [29], we say that the above system is stable if

lim sup
t→∞

1

t

∫ t

0

1
{

S
∑

s=1

ns(t)+
L
∑

l=1

ql(t)>M}
dt → 0,

as M → ∞. This means that the fraction of time that the
amount of “unfinished work” in the system exceeds a certain
level M can be made arbitrarily small as M → ∞. The
stability region Θ of the system under a given congestion
control and scheduling policy is the set of offered loads ~ρ
such that the system is stable.

We next describe the rate assignment and implicit cost
update policy. We assume that time is divided into slots of
length T , and the schedules and implicit costs are only updated
at the end of each time slot. However, users may arrive
and depart in the middle of a time slot. Let ~q(kT ) denote
the implicit cost at time slot k. The data rates of the users
are determined by the current implicit costs as in (5). For
simplicity, we assume that the utility function is logarithmic
(the result can be readily generalized to utility functions of
other forms in (4)). Further, let Ms denote the maximum data

rate for users of class s. The rate of each user of class s is
then given by

xs(t) = xs(kT ) = min

{

ws
∑L

l=1 H l
sq

l(kT )
,Ms

}

(19)

for kT ≤ t < (k + 1)T . The schedule ~r(kT ) at time slot k
is computed according to an imperfect scheduling policy Sγ

based on the current implicit cost ~q(kT ). Finally, at the end
of each time slot, the implicit costs are updated as

ql((k + 1)T ) =
[

ql(kT )

+ αl

(

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(kT )dt − rl(kT )T

)]+

.

The following proposition shows that, using the above cross-
layer congestion control algorithm with imperfect scheduling
policy Sγ , the stability region of the system is no smaller than
γΛ.

Proposition 6: If

max
l∈L

αl ≤
1

T S̄L̄
min

s

ws

4ρsMs
, (20)

where S̄ = maxl∈L

S
∑

s=1
H l

s is the maximum number of classes

using any link, and L̄ = maxs

L
∑

l=1

H l
s is the maximum number

of links used by any class, then for any offered load ~ρ that
resides strictly inside γΛ, the system described by the Markov
process [~n(kT ), ~q(kT )] is stable.

Several remarks are in order: Firstly, Proposition 6 shows
that, when imperfect schedules are used, the stability region
of the system employing cross-layer congestion control is no
worse than the capacity region shown in Proposition 3 (and
used by the γ-reduced problem). This result is interesting
(and somewhat surprising) given the fact that, when the
number of users in the system is fixed, the dynamics of cross-
layer congestion control with imperfect scheduling can form
loops or get stuck into local sub-optimal regions. Nonetheless,
Proposition 6 shows that, as far as the overall stability region
of the system is concerned, these potential local sub-optimums
are inconsequential when the arrivals and departures of the
users are taken into account.

Secondly, we do not need the rates of any users to converge.
Previous results on the stability region of congestion control
typically adopt a time-scale separation assumption [21], [26]–
[28], which assumes that the rate allocation ~x(t) perfectly
solves (1) at each time instant t. Such an approach is of
little value for the model in this paper because the dynamics
(13)-(15) with imperfect scheduling do not even converge in
the first place! Further, the time-scale separation assumption
is rarely realistic in practice: as the number of users in the
system is constantly changing, the rate allocation may never
have the time to converge. In Proposition 6, we establish
the stability region of the system without requiring such a
time-scale separation assumption. This result is of independent
value. For the special case when γ = 1, it can be viewed as a
stronger version of previous results in the literature (including
those for wireline networks, e.g., Theorem 1 in [21]).
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Finally, a simple stepsize rule is provided in (20). Note that
when the number of users in the system is fixed, we typically
require the stepsizes to be driven to zero for convergence
to occur (see Proposition 1). However, in (20) the stepsizes
can be chosen bounded away from zero. In fact, as the set
γΛ is bounded, the stepsizes can be chosen independently
of the offered load. The simplicity in the stepsize rule is
another benefit we obtain by studying the dynamic arrivals
and departures of the users.

A. The Main Idea of the Proof of Proposition 6

We now sketch the main idea of the proof for Proposition 6
so that the reader can gain some insight on the dynamics of
the system. Define the following Lyapunov function,

V(~n, ~q) = Vn(~n) + Vq(~q),

where Vn(~n) =
S
∑

s=1

wsn2

s

2λs
, and Vq(~q) =

L
∑

l=1

(ql)2

2αl
. We shall

show below that V(~n, ~q) has a negative drift. As a crude first-
order approximation, assume that users arrive and depart only
at the end of each time slot. Thus, ns(t) = ns(kT ) during the
k-th time slot. We can show that (see [20] for the details),

E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤ T
S
∑

s=1

[

ws

xs(kT )

]

[ρs − ns(kT )xs(kT )] + E1(k),

where E1(k) is an error term that is roughly on the order of
|ρs − ns(kT )xs(kT )|. Since the rate allocation is determined
by (19), we have (ignoring the maximum data rate Ms),

E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤ T
S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT )

]

[ρs − ns(kT )xs(kT )]

+E1(k). (21)

We can also show that

E[Vq(~q((k + 1)T ) − Vq(~q(kT ))|~n(kT ), ~q(kT )]

≤ T

L
∑

l=1

ql(kT )

[

S
∑

s=1

H l
sns(kT )xs(kT ) − rl(kT )

]

+E2(k), (22)

where E2(k) is an error term that is roughly on the order

of

[

S
∑

s=1
H l

sns(kT )xs(kT ) − rl(kT )

]2

. Hence, by adding (21)

and (22), and by changing the order of the summation, we have

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ T

L
∑

l=1

ql(kT )

[

S
∑

s=1

H l
sρs − rl(kT )

]

+E1(k) + E2(k). (23)

By assumption, ~ρ lies strictly inside γΛ. Hence, there exists
some ε > 0 such that

[(1 + ε)

S
∑

s=1

H l
sρs] ∈ γCo(R).

By the definition of the imperfect scheduling policy Sγ ,

L
∑

l=1

ql(kT )rl(kT ) ≥ (1 + ε)
L
∑

l=1

ql(kT )
S
∑

s=1

H l
sρs.

Substituting into (23), we have,

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )] (24)

≤ −Tε

L
∑

l=1

ql(kT )

S
∑

s=1

H l
sρs + E1(k) + E2(k).

This shows that V(·, ·) would drift towards zero when ||~q(kT )||
is large and when the error terms E1(k) and E2(k) are
bounded. We would then apply Theorem 2 of [29] to establish
the stability of the system. The detailed proof is given in [20].

Remark: We may relax the definition of the imperfect
scheduling policy Sγ from (12) to:

L
∑

l=1

rl(t)q
l(t) ≥ γ max

~r∈R

L
∑

l=1

rlq
l(t) − Mγ (25)

for some positive constant Mγ . It is easy to see that the above
argument (and consequently Proposition 6) will hold even with
this new definition of the Sγ policy.

B. The Case with Channel Variations

Proposition 6 can be generalized to the case with channel
variations (e.g., due to fading and/or mobility of the nodes).
Assume that time is again divided into slots of length T .
Further, we assume that the channel condition is fixed within
each time-slot, and is chosen independently and identically
among a set K of states. Let κ(t) ∈ K denote the channel
condition at time-slot t, and let πκ, κ ∈ K denote the
probability that the channel condition at a particular time-slot
is κ. The rate-power function now also depends on the channel
condition, i.e., ~r = u( ~P , κ). Let Rκ = {u( ~P , κ), ~P ∈ Π}. We
assume again that Co(Rκ) is closed and bounded for each
κ ∈ K.

Our cross-layer congestion control algorithm can be virtu-
ally unchanged with this new channel model. Both the con-
gestion control component ((5) or (13)) and the implicit cost
update ((7) or (15)) can remain the same. The only component
that needs to be changed is the scheduling component ((6)
or (14)). The scheduling policy Sγ should now compute an
(imperfect) schedule based on the current channel condition
κ:

L
∑

l=1

rl(t)q
l(t) ≥ γ max

~r∈Rκ

L
∑

l=1

rlq
l(t). (26)

(The optimal schedule corresponds to γ = 1.) Note that
no prior knowledge of the stationary distribution π of the
channel condition is needed in our cross-layer congestion
control algorithm.

We now illustrate how the sketch of the proof in Section V-
A can be adapted to the case with channel variations. It has
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been shown in [4], [5], [7] that, with the above channel model,
the capacity region Λ is given by:

Λ =

{

~x

∣

∣

∣

∣

∣

[
S
∑

s=1

H l
sxs] ∈

∑

κ∈K

πκCo(Rκ)

}

. (27)

Following the argument in Section V-A, we can show that,

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ T

L
∑

l=1

ql(kT )

[

S
∑

s=1

H l
sρs − Eπ[rl(kT )]

]

+E1(k) + E2(k), (28)

where the expectation Eπ[·] is taken with respect to the
stationary distribution π of the channel condition κ. (This
inequality corresponds to Inequality (23) in Section V-A.)
Now, if ~ρ lies strictly inside γΛ, where Λ is given by (27),
then there exists some ε > 0 such that

[(1 + ε)

S
∑

s=1

H l
sρs] ∈ γ

∑

κ∈K

πκCo(Rκ).

Using (26), we then have,

L
∑

l=1

ql(kT )Eπ[rl(kT )] ≥ (1 + ε)

L
∑

l=1

ql(kT )

S
∑

s=1

H l
sρs.

Substituting into (28), we have (24) again. We have thus shown
that the stability region of the system employing cross-layer
congestion control and imperfect scheduling policy Sγ is no
worse than γΛ even when there are channel variations.

We now give two examples showing how efficient cross-
layer congestion control schemes can be constructed by ap-
plying Proposition 6 to different network settings.

C. The Node Exclusive Interference Model

Proposition 6 is most useful when an imperfect schedule
that satisfies (12) can be easily computed for some reasonable
value of γ. This is the case under the following node exclusive
interference model.

The Node Exclusive Interference Model:
• The data rate of each link is fixed at cl.
• Each node can only send to or receive from one other

node at any time.

This interference model has been used in earlier studies of
congestion control in multihop wireless networks [17], [18].
Under this model, the perfect schedule (according to (6))
at each time slot corresponds to the Maximum Weighted
Matching (MWM), where the weight of each link is qlcl.
(A matching is a subset of the links such that no two links
share the same node. The weight of a matching is the total
weight over all links belonging to the matching. A maximum-
weighted-matching (MWM) is the matching with the maximum
weight.) An O(N3)-complexity algorithm for MWM can be
found in [30], where N is the number of nodes. On the
other hand, the following much simpler Greedy Maximal
Matching (GMM) algorithm can be used to compute an

imperfect schedule with γ = 1/2. Start from an empty
schedule. From all possible links l ∈ L, pick the link with
the largest qlcl. Add this link to the schedule. Remove all
links that are incident with either the sending node or the
receiving node of link l. Pick the link with the largest qlcl

from the remaining links, and add to the schedule. Continue
until there are no links left. The GMM algorithm has only
O(L log L)-complexity (where L is the number of links), and
is much easier to implement than MWM. Using the technique
in Theorem 10 of [25], we can show that the weight of the
schedule computed by the GMM algorithm is at least 1/2 of
the weight of the maximum-weighted-matching. According to
Proposition 6, the stability region will be at least Λ/2 using
our cross-layer congestion control scheme with the GMM
scheduling policy.

For the node-exclusive interference model, a layered ap-
proach to congestion control is also possible, which considers
separately the dynamics of congestion control and scheduling
[17], [18]. It has been shown that the optimal capacity region
Λ in the node-exclusive interference model is bounded by
2
3Ψ0 ⊆ Λ ⊆ Ψ0, where

Ψ0 =







~x

∣

∣

∣

∣

∣

∣

∑

l:b(l)=i or e(l)=i

1

cl

S
∑

s=1

H l
sxs ≤ 1 for all i







,

(29)
and b(l) and e(l) are the sending node and the receiving node,
respectively, of link l. The layered approach then chooses the
lower bound 2

3Ψ0 as the rate region for computing the rate
allocation [17], [18]. On the other hand, when an imperfect
GMM scheduling policy is used, the capacity region can be
reduced by half in the worst case (according to Proposition 3).
Hence, the layered approach then needs to use Ψ0/3(⊆ Λ/2)
as the rate region. Note that for the layered approach with
GMM scheduling, Ψ0/3 is an upper bound for its stability
region, which is smaller than the lower bound of the stability
region of the corresponding cross-layer approach (which is
Λ/2 according to Proposition 6). Hence, due to its conserva-
tive nature, the layered approach always suffers from worst
case inefficiencies. In Section VII, we will use simulations to
show that our cross-layer congestion control scheme can in
practice substantially outperform the layered approach.

D. General Interference Models

Under general interference models, it may still be time-
consuming to compute a schedule that satisfies (12) for a given
value of γ. We now use Proposition 6 to develop a scheduling
policy that can cut down the frequency of such computation,
and hence effectively reduce the computation overhead. This
idea is motivated by the observation that implicit costs, being
updated by (15), cannot change abruptly. Hence, there is a
high chance that a schedule computed earlier can be reused
in subsequent time-slots. To see this, assume that we know a
schedule ~r 0 that satisfies (12) for an inefficiency factor γ0 > γ
when the implicit cost vector is ~q 0, i.e.,

L
∑

l=1

r0
l ql

0 ≥ γ0 max
~r∈R

L
∑

l=1

rlq
l
0. (30)
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Let the implicit cost vector at the current time slot be ~q, and let
~r ∗ denote the corresponding (but unknown) perfect schedule.
We can normalize ~q 0 and ~q to be of unit length since the
corresponding schedules will remain the same. We have,

L
∑

l=1

qlr∗l =

L
∑

l=1

(ql − ql
0)r

∗
l +

L
∑

l=1

ql
0r

∗
l

≤
L
∑

l=1

[ql − ql
0]

+rmax
l +

L
∑

l=1

ql
0r

0
l

γ0
,

where rmax
l is the maximum rate of link l. Hence, if

L
∑

l=1

qlr0
l ≥ γ



















L
∑

l=1

[ql − ql
0]

+rmax
l +

L
∑

l=1

ql
0r

0
l

γ0



















,

we can still use ~r 0 as the imperfect schedule for ~q. This ap-
proach is even more powerful when the network can remember
multiple schedules from the past. Let ~r k = [rk

1 , ..., rk
L] and

~q k = [q1
1 , ..., qL

k ], k = 1, ...,K. Assume that the schedules
~r 1, ~r 2, ..., ~r K correspond to ~q 1, ~q 2, ..., ~q K , respectively, and
each pair satisfies (30). Then, as long as

max
k=1,..,K

L
∑

l=1

qlrk
l (31)

≥ min
k=1,...,K

γ



















L
∑

l=1

[ql − ql
k]+rmax

l +

L
∑

l=1

ql
krk

l

γ0



















,

we do not need to compute a new schedule. Instead, we can
use the schedule that maximizes the left hand side of (31).
By Proposition 6, the stability region of the system using the
above scheduling policy is no smaller than γΛ. In Section VII,
we will use simulations to show that such a simple policy can
perform very well in practice.

VI. A FULLY DISTRIBUTED CROSS-LAYER CONGESTION

CONTROL AND SCHEDULING ALGORITHM

Proposition 6 opens a new avenue for studying cross-layer
design for congestion control in multihop wireless networks.
Instead of restricting our attention to the rate allocation at
each snapshot of the system (as we did in Section IV where
the results tend to be weaker), we can now study the entire
time horizon by focusing on the stability region of such a
cross-layer-designed system. Motivated by Proposition 6, we
now present a fully distributed cross-layer congestion control
and scheduling algorithm for the node-exclusive interference
model in Section V-C. (In contrast, the GMM algorithm in
Section V-C still requires centralized implementation.) This
new algorithm can be shown to achieve a stability region no
smaller than Λ/2.

The new algorithm uses Maximal Matching (MM) to
compute the schedule at each time [31]. A maximal matching
is a matching such that no more links can be added without

violating the node-exclusive interference constraint. To be
precise, let qij denote the implicit cost at link (i, j). (For
convenience, in this section we will index a link by a node pair
(i, j).) For each node i, let Ii = {(i, k) ∈ L} ∪ {(k, i) ∈ L}
denote the set of links incident to node i. A maximal matching
M is a subset of L such that qij ≥ 1 for all (i, j) ∈ M, and,
for each (i, j) ∈ L, one of the following holds:

qij < 1, or (32)

some link in Ii ∪ Ij is included in M.

Note that a maximal matching can be computed in a
distributed fashion as follows. When a link (i, j) is added to
the matching, we say that both node i and node j are matched.
For each node i, if it has already been matched, no further
action is required. Otherwise, node i scans its neighboring
nodes. If there exists a neighboring node j such that node
j has not been matched, node i sends a matching request to
node j. It is possible that a matching request conflicts with
other matching requests. In this case, the nodes involved in the
conflict can use some randomization and local coordination to
pick any non-conflicting subset of the matching requests. For
those nodes whose matching requests are declined, they can
repeat the above procedure until every node in the network is
either matched or has no neighbors that are not matched.

Let
Qi =

∑

j:(i,j)∈L

qij +
∑

j:(j,i)∈L

qji (33)

denote the total cost of the links that are incident to node i. Our
new cross-layer congestion control and scheduling algorithm
then proceeds as follows.
The Fully Distributed Cross-Layer Congestion Control
Algorithm:

At each time slot [kT, (k + 1)T ):

• A maximal matching M(kT ) is computed based on the
implicit costs ~q(kT ).

• The data rate of each user of class s is determined by

xs(t) = xs(kT )

= min







ws
∑

(i,j)∈L Hij
s

Qi(kT )+Qj(kT )
cij

,Ms







(34)

where cij is the capacity of link (i, j), and H ij
s is defined

as H l
s, i.e., Hij

s = 1, if users of class s use link (i, j);
and Hij

s = 0, otherwise.
• The implicit costs are updated by:

qij((k + 1)T ) = [qij(kT )

+α

(

S
∑

s=1

Hij
s

∫ (k+1)T

kT

ns(t)xs(kT )

cij
dt

−T1{(i,j)∈M(kT )}

)]+

. (35)

This new cross-layer congestion control and scheduling
algorithm is similar to the algorithms of Sections IV and V in
many aspects:
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• A user reacts to congestion by reducing its data rate when
the implicit costs along its path increase.

• The implicit cost at each link (i, j) is updated based on
the difference between the offered load and the schedule
of the link.

We can also show the following result on the stability region
of the system, which is comparable to Proposition 6.

Proposition 7: If the stepsize α is sufficiently small, then
for any offered load ~ρ that resides strictly inside Λ/2, the
system with the above fully distributed cross-layer congestion
control algorithm is stable.

Before we sketch the proof for Proposition 7, we note
that there is a critical difference between the results in this
section and those in Section V. When the maximal matching
is computed, we do not care about the precise value of the
implicit costs (see (32), where the maximal matching only
depends on whether the implicit costs qij are larger than
a chosen threshold). Hence, the maximal matching typically
does not satisfy the requirement of the imperfect scheduling
policy Sγ in (12), and thus Proposition 6 of Section V can not
be directly applied.

Despite this difficulty, we next show that Proposition 7 can
be derived from Proposition 6 through an appropriate mapping.
Note that under the node-exclusive interference model, the set
Ψ0 is an upper bound on the capacity region Λ (see (29)).
Imagine a fictitious system where the capacity constraints
are exactly as specified by Ψ0. Assuming logarithmic utility
functions, and assigning a Lagrange multiplier Qi to each
constraint in Ψ0, we can derive the “optimal” congestion
controller for this fictitious system as,

xs(t) = min







ws
∑

(i,j)∈L Hij
s

Qi(kT )+Qj(kT )
cij

,Ms







(36)

Qi(t + 1) =

[

Qi(t) + α

(

∑

l∈Ii

1

cl

S
∑

s=1

H l
sxs − r̃i(t)

)]+

,

(37)

where r̃i(t) = 1 for all t. These two equations correspond
to the congestion control component (5) and the implicit cost
update (7), respectively, in our optimal cross-layer congestion
control algorithm in Section III. The choice r̃i(t) = 1
corresponds to the perfect scheduling policy (i.e., (6)) for the
fictitious system, and it achieves a weighted-rate-sum of

N
∑

i=1

Qi(t)r̃i(t) =

N
∑

i=1

Qi(t). (38)

In order to apply Proposition 6 to the above fictitious
system, we now show that maximal matching is an S 1

2

policy
with respect to the weighted-rate-sum in (38). Using the
mapping (33), we can map the fully distributed algorithm in
(34-35) to the congestion controller (of the fictitious system)
in (36-37) by setting

r̃i(t) =
∑

j:(i,j)∈L

1{(i,j)∈M(t)} +
∑

j:(j,i)∈L

1{(j,i)∈M(t)}.

Note that now r̃i(t) ≤ 1, and it corresponds to an imperfect
scheduling policy. Further,

N
∑

i=1

Qi(t)r̃i(t)

=
N
∑

i=1





∑

j:(i,j)∈L

qij(t) +
∑

j:(j,i)∈L

qji(t)



 r̃i(t)

=
∑

(i,j)∈L

qij(t)





∑

l∈Ii∩Ij

1{l∈M(t)}



 .

By the definition of the maximal matching, either qij(t) < 1
or
∑

l∈Ii∩Ij
1{l∈M(t)} ≥ 1. Thus,

N
∑

i=1

Qi(t)r̃i(t) ≥
∑

(i,j)∈L

(qij(t) − 1) ≥ 1

2

N
∑

i=1

Qi(t) − L.

Hence, any maximal matching satisfies the relaxed defini-
tion (25) of policy S 1

2

with respect to the weighted-rate-

sum
∑N

i=1 Qir̃i. By Proposition 6, the stability region of
the system using the fully distributed cross-layer congestion
control algorithm is at least Ψ0/2. Since Λ ⊂ Ψ0, we obtain
Proposition 7. The details of the proof are available in [20].

VII. NUMERICAL RESULTS

We now use simulations to illustrate the results in this paper.
We use the network in Fig. 3. There are 5 classes of users,
whose paths are shown in Fig. 3. Their utility functions are
all given by Us(xs) = log xs. We first use the following
interference model. The path loss G(i, j) from a node i to
a node j is given by G(i, j) = d−4

ij where dij is the distance
from node i to node j (the positions of the nodes are also given
in Fig. 3). We assume that the data rate rij at link (i, j) ∈ L
is proportional to the SIR, i.e.,

rij = W
G(i, j)Pij

N0 +
∑

(k,h)∈L,(k,h)6=(i,j) G(k, j)Pk,h
,

where N0 is the background noise and W is the bandwidth of
the system. This assumption is suitable for CDMA systems
with a moderate processing gain [7]. Each node i has a
power constraint Pi,max, i.e., the power allocation must satisfy
∑

j:(i,j)∈L Pij ≤ Pi,max for all i.
We first simulate the case when there is one user for each

class. The top figure in Fig. 4 shows the evolution of the
data rates for all five users when the network computes the
perfect schedule according to (6) at every time slot. We have
chosen W = 10, N0 = 1.0, Pi,max = 1.0 for all nodes
i and αl = 0.1 for all links l. Note that the scheduling
subproblem (6) for this interference model is a complex non-
convex global optimization problem. In [9], we have given an
O(2N ) algorithm for solving the perfect schedule, where N
is the number of nodes. Executing such an algorithm at every
time-slot is extremely time-consuming.

We then simulate the imperfect scheduling policy outlined
in Section V-D for general interference models. Such an
imperfect scheduling policy attempts to reuse schedules that
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Fig. 4. The evolution of the data rates for all users with perfect scheduling
(top) and with imperfect scheduling (bottom, γ = 0.5).

have already been computed in the past. In our simulation,
we have chosen γ0 = 1.0 in (30), i.e., each of these past
schedules are perfect schedules. The computational complexity
could have been further reduced if we had chosen γ0 < 1.
However, we leave this for future work. Instead, in this paper
we focus on how the imperfect scheduling policy can reduce
the number of times that new perfect schedules have to be
computed. The system that we simulate can store at most 10
past schedules. If there are already 10 past schedules and a new
perfect schedule is computed, the new schedule will replace

the old one that has the smallest weighted-sum
L
∑

l=1

qlrl. In the

bottom figure of Fig. 4, we show the evolution of the data
rates when γ = 0.5. Note that the rate allocation eventually
converges to values close to that with perfect scheduling. (The
abrupt transitions in the bottom figure indicate times when new
schedules are computed.) We also record the number of times
that perfect schedules are computed. When γ = 0.5, perfect
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Fig. 5. The average number of users in the system versus load.

schedules are computed in only 7 iterations among the entire
2000 iterations of the simulation, and most of these perfect
schedules are computed at the initial stage of the simulation.
We have simulated other values of γ and find similar results.
In fact, by just reducing γ from 1.0 to 0.9, the number of times
that perfect schedules have to be computed is reduced to 34
(over 2000 iterations of simulation). These results indicate that
our cross-layer congestion control scheme with the imperfect
scheduling policy in Section V-D can substantially reduce the
computation overhead and still maintain good performance.

We then simulate the case when there are dynamic arrivals
and departures of the users as in Section V. Users of each
class arrive to the network according to a Poisson process
with rate λ. Each user brings with it a file to transfer whose
size is exponentially distributed with mean 1/µ = 100 unit.
We vary the arrival rate λ (and hence the load ρ = λ/µ) and
record in Fig. 5 the average number of users in the system
at any time for different choices of γ. Given γ, the average
number of users in the system will increase to infinity as the
offered load ρ approaches a certain limit. This limit can then
be viewed as the capacity of the system. From Fig. 5, we
observe that the capacity of the system is not significantly
affected when γ is reduced from 1.0 to 0.5. On the other hand,
the number of time-slots that new perfect schedules have to
be computed is reduced to less than 1% of the total number
of time-slots when γ = 0.9, and to less than 0.05% when γ =
0.5. These results confirm again the effectiveness of our cross-
layer congestion control scheme with the imperfect scheduling
policy in Section V-D, in reducing the computation overhead
and achieving good overall performance.

We next turn to the node-exclusive interference model in
Section V-C, where we can draw a comparison with the
layered approach to congestion control [17], [18]. We still use
the network topology in Fig. 3. The capacity of each link
is now fixed at 10 units. Due to space constraints, we only
report the result for the case when there are dynamic arrivals
and departures of the users. Fig. 6 demonstrates the average
number of users in the system versus load with different
congestion control and scheduling schemes. We label each
curve with the congestion control scheme (we use “Joint”
to denote the cross-layer congestion control scheme and use
“Layered” to denote the layered approach in [18]), followed by
the scheduling policy. (Note that the curve for the cross-layer
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Fig. 6. The average number of users in the system versus load: the node-
exclusive interference model

congestion control scheme with GMM scheduling, labeled
as “Joint-GMM,” in fact overlaps with the curve for the
optimal cross-layer congestion control scheme with perfect
MWM scheduling, which is the right most curve labeled as
“Joint-MWM.”) From Fig. 6, we observe that, regardless of
the scheduling policy used (either MWM, GMM, or MM),
the layered approach always performs much poorer than the
corresponding cross-layer approach. The performance gap
widens even more when an imperfect scheduling policy (such
as GMM) is used. In particular, the fully distributed cross-layer
congestion control and scheduling algorithm in Section VI
(with imperfect maximal matching scheduling, labeled “Joint-
MM”), actually performs even better than the layered ap-
proach with the perfect (and more complex) MWM scheduling
(labeled “Layered-MWM”). These results demonstrate that
the conservative nature of the layered approach indeed hurts
the overall performance of the system, and an appropriately
designed cross-layer congestion control scheme can perform
very well in practice even with imperfect scheduling.

VIII. CONCLUSION

In this paper, we study how the performance of cross-
layer congestion control will be impacted if the network can
only use an imperfect (and potentially distributed) scheduling
component. When the number of users in the system is fixed,
we are able to show some desirable, but weak, results on
the fairness and convergence properties of the system. We
then turn to the case with dynamic arrivals and departures of
the users, and establish stronger results bounding the stability
region of the system. Compared with a layered approach that
does not design congestion control and scheduling together,
the cross-layer approach has provably better performance
bounds, and usually substantially outperforms the layered
approach. Hence, the cross-layer approach is much more
robust to imperfect scheduling than the layered approach.
The insights drawn from our analyses also enable us to
design a fully distributed and high-performance cross-layer
congestion control and scheduling algorithm for the node-
exclusive interference model.

These results constitute an important step towards designing
fully distributed cross-layer congestion control schemes for
multihop wireless networks. Several directions for future work

are possible. For example, Proposition 6 may be combined
with a clustering scheme to design distributed cross-layer
congestion-control solutions for large networks. We can also
use similar techniques as in [9] to combine cross-layer con-
gestion control with multipath routing. Our result on the
fully distributed cross-layer congestion control and scheduling
algorithm in Section VI only applies to the node-exclusive
interference model. It would be interesting to study whether
similar type of simple distributed algorithms can be used,
and performance bounds established, for other more general
interference models. It would also be important to study the
impact of feedback delays, to address the effect of node
mobility, and to extend our results to hybrid wireless-wireline
networks.

APPENDIX

A. Proof of Proposition 4

Fix a positive number ε such that ε < minl:ql,∗
I

6=0 ql,∗
I . By

assumption, there exists a time slot T0 such that for all t ≥ T0

|xs(t) − x∗,I
s | ≤ ε, and |ql(t) − ql,∗

I | ≤ ε. (39)

We will first show that there exists a large enough T such that
for all l,

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t) ≤ ql,∗
I

S
∑

s=1

H l
sx

∗,I
s + O(ε), (40)

where we have used O(ε) to denote the class of functions f(ε)
such that f(ε) < cε for some positive constant c. Note that
Inequality (40) trivially holds if ql,∗

I = 0. If ql,∗
I > 0, then

(39) implies that ql(t) > 0 for all t ≥ T0. Hence,

αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)

= ql(t+1)−ql(t), for all t ≥ T0.

Summing over t = T0, T0 +1, ..., T0 +T and dividing by αlT ,
we obtain,

∣

∣

∣

∣

∣

1

T

T0+T
∑

t=T0

S
∑

s=1

H l
sxs(t) −

1

T

T0+T
∑

t=T0

rl(t)

∣

∣

∣

∣

∣

<
ql,∗
I + ε

αlT
.

We can thus pick T large enough such that (using (39) again),

1

T

T0+T
∑

t=T0

rl(t) ≤
S
∑

s=1

H l
sx

∗,I
s + O(ε).

Multiplying both sides by ql,∗
I , we obtain (40).

Next, since the utility function is logarithmic, we have,

x∗,I
s = min



















ws

L
∑

l=1

H l
sq

l,∗
I

,Ms



















, for all s.

Let J = {s : x∗,I
s = Ms}. We have,
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s =

S
∑

s=1

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I

=
∑

s/∈J

wsx
∗,γ
s

x∗,I
s

+
∑

s∈J

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I .
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Hence,
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

=
∑

s/∈J

wsx
∗,γ
s

x∗,I
s

+
∑

s∈J

wsx
∗,γ
s

Ms

=

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s −

∑

s∈J

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I

+
∑

s∈J

wsx
∗,γ
s

Ms
. (41)

Since ~x ∗,γ ∈ γΛ by definition, each rl(t) must satisfy

L
∑

l=1

ql(t)rl(t) ≥ γ

L
∑

l=1

ql(t)

S
∑

s=1
H l

sx
∗,γ
s

γ

=

L
∑

l=1

ql(t)

S
∑

s=1

H l
sx

∗,γ
s for all t.

Using (39) again, we obtain,
L
∑

l=1

ql,∗
I rl(t) ≥

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s − O(ε) for all t ≥ T0.

Hence, combining with (40), we have,
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s

≤
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s + O(ε)

=

S
∑

s=1

x∗,I
s (

L
∑

l=1

H l
sq

l,∗
I ) + O(ε)

≤
∑

s/∈J

ws +
∑

s∈J

Ms(

L
∑

l=1

H l
sq

l,∗
I ) + O(ε).

Substituting into (41), we have,
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

≤
∑

s/∈J

ws +
∑

s∈J

(Ms − x∗,γ
s )(

L
∑

l=1

H l
sq

l,∗
I )

+
∑

s∈J

wsx
∗,γ
s

Ms
+ O(ε)

≤
S
∑

s=1

ws + O(ε),

where in the last step we have used the fact that x∗,γ
s ≤ Ms

and
L
∑

l=1

H l
sq

l,∗
I ≤ ws/Ms when s ∈ J , Finally, letting ε → 0,

the result then follows.

B. Proof of Proposition 5

Let A denote the L×L diagonal matrix whose l-th diagonal
element is α0

l . Let H denote the L × S matrix whose (l, s)-
element is H l

s. Then ||~q||A = ~q trA−1~q, where [·] tr denotes
the transpose. For any ~q ∗,0 ∈ Φ, by (15), we have

||~q(t + 1) − ~q ∗,0||A
≤ ||~q(t) − ~q ∗,0||A + 2h[H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0]

+h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)], (42)

Note that

Dγ(~q(t)) =

S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t)

+γ max
~r∈Co(R)

~r tr~q(t)

≤
S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t) + ~r tr(t)~q(t),

and

D(~q ∗,0) = max
0≤xs≤Ms

{

S
∑

s=1

Us(xs) − (H tr~q ∗,0) tr~x

}

+ max
~r∈Co(R)

~r tr~q ∗,0

≥
S
∑

s=1

Us(xs(t)) − (H tr~q ∗,0) tr~x(t) + ~r tr(t)~q ∗,0.

Hence,

D(~q ∗,0) − Dγ(~q(t)) ≥ [H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0].

Substituting into (42), we have

||~q(t + 1) − ~q ∗,0||A
≤ ||~q(t) − ~q ∗,0||A + 2h[D(~q ∗,0) − Dγ(~q(t))]

+h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)].

Fix η > 0. Let

Φγ(η) = {~q|Dγ(~q) ≤ D(~q ∗,0) + η}. (43)

Since both ~x(t) and ~r(t) are bounded, there exists M < ∞
such that

max
0≤xs≤Ms,~r∈Co(R)

(H~x − ~r) trA(H~x − ~r) ≤ M.

If we pick h ≤ η/M, then as long as ~q(t) /∈ Φγ(η), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A − hη.

Hence, eventually, ~q(t) will enter the set Φγ(η). On the other
hand, if we pick h ≤ η/

√
M, then once ~q(t) ∈ Φγ(η), we

have
√

||~q(t + 1) − ~q ∗,0||A
≤

√

||~q(t) − ~q ∗,0||A +
√

||~q(t + 1) − ~q(t)||A
≤

√

||~q(t) − ~q ∗,0||A + η. (44)

Since the inequality (44) holds for any ~q ∗,0 ∈ Φ ⊂ Φγ(η), it
implies that

d(~q(t + 1),Φ) ≤ d(~q(t),Φ) + η.

Hence, if h ≤ min{η/M, η/
√

M}, then there exists time T0

such that

d(~q(t),Φ) ≤ max
~p∈Φγ(η)

d(~p,Φ) + η, for all t ≥ T0.

It is easy to show that the right hand side converges to
max~p∈Φγ

d(~p,Φ) as η → 0, the result then follows.
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