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Abstract— We show that when networks are large significant
simplicity can be achieved for pricing-based control. We first
consider a general loss network with Poisson arrivals and
arbitrary holding time distributions. In dynamic pricing schemes,
the network provider can charge different prices to the user
according to the current utilization level of the network and
also other factors. We show that when the system becomes
large the performance (in terms of expected revenue) of an
appropriately chosen static pricing scheme, whose price is in-
dependent of the current network utilization, will approach that
of the optimal dynamic pricing scheme. Further, we show that
under certain conditions, this static price is independent of the
route that the flows take. We then extend the result to the
case of dynamic routing, and show that the performance of
an appropriately chosen static pricing scheme with bifurcation
probability determined by average parameters can also approach
that of the optimal dynamic routing scheme when the system is
large. These results deepen our understanding of pricing-based
network control. In particular, they provide us with the insight
that, when the system is large, an appropriate pricing strategy
based on the average network conditions (hence, slowly changing)
can approach optimality.

Index Terms— Large systems, network pricing, routing, sim-
plicity.

I. INTRODUCTION

IN this work, we use pricing as the network control mech-
anism for achieving certain performance objectives. The

performance objectives can be modeled by some revenue- or
utility-functions. Such a framework has received significant
interest in the literature (e.g., see [3], [4], [5], [6], [7] and
the references therein) wherein price provides a good control
signal because it carries monetary incentives. The network can
use the current price of a resource as a feedback signal to
coerce the users into modifying their actions (e.g., changing
the rate or route).

In [8], Paschalidis and Tsitsiklis have shown that the per-
formance (in terms of expected revenue or welfare) of an
appropriately chosen static pricing scheme approaches the
performance of the optimal dynamic pricing scheme when the
number of users and the network capacity become very large.
Note that a dynamic pricing scheme is one where the network
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provider can charge different prices to the user according to
the varying levels of congestion in the network, while a static
pricing scheme is one where the price only depends on the
average levels of congestion in the network (and is hence
invariant to the instantaneous levels of congestion). The result
is obtained under the assumption of Poisson flow arrivals,
exponential flow holding times, and a single resource (single
link). This elegant result is an example of the type of simplicity
that one can obtain when the system becomes large. In this
paper, we find that simple static network control can also
approach the optimal dynamic network control under more
general assumptions and a variety of other network problems.

For simplicity of exposition, we structure the paper as fol-
lows. In Section II, we extend the result of [8] from the single-
link case to a general loss network with arbitrary holding
time distributions. (Independently of our work that was first
reported in [1], Paschalidis and Liu have also extended the
work in [8] from a single-link case to a network case [9].
However, their result still uses the exponential holding-time
assumption.) Our technical contributions in this paper are
three-fold:

1) We generalize the results of [8] and [9] to non-
exponential holding time distributions. Note that while the
assumption of Poisson arrivals for flows in the network is
usually considered reasonable, the assumption of exponential
holding time distribution is not. For example, much of the
traffic generated on the Internet is expected to occur from large
file transfers which do not conform to exponential modeling.
By weakening the exponential holding time assumption we
can extend our results to more realistic systems. We show
that a static pricing scheme is still asymptotically optimal,
and that the correct static price depends on the holding time
distribution only through its mean. A nice observation that
stems from this result is that under certain conditions, the static
price depends only on the price-elasticity of the user, and not
on the specific route or distance. This indicates, for example,
that the flat pricing scheme used in the domestic long distance
telephone service in the U.S. may be an economically good
pricing mechanism.

2) We also investigate whether more sophisticated schemes
can improve network performance (e.g., schemes that have
prior knowledge of the duration of individual flows, schemes
that predict future congestion levels, etc.). We find that the
performance gains using such schemes become increasingly
marginal as the system size grows.

3) We study two types of scaling to model large networks.
We study the original scaling in [8] and [9], which requires
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that the number of users between each source-destination pair
is scaled proportionally with the capacity of the network.
We also study a new type of scaling that is suitable for the
case when the capacity of the network is large but when the
number of users between each source-destination pair is small.
Our new scaling is more appropriate for modeling certain
Internet scenarios where the topology is complex and the
routing is diverse. We show that appropriate static schemes
are asymptotically optimal under both scaling models.

We then weaken the assumption on fixed routing and study
a dynamic routing model in Section III where flows can
choose among several alternative routes based on the current
network congestion level. We show that our invariance type
of result still holds in this more general model, i.e., when
the system is large, there still exists a static pricing scheme
whose performance can approach that of the optimal dynamic
scheme.

In networks of today and in the future, the capacity will
be very large, and the network will be able to support a large
number of users. The work reported in this paper demonstrates
under general assumptions and different network problem
settings that, when a network is large, significant simplicity
can be exploited for pricing based network control. Our result
also shows the importance of the average network condition
when the system is large, since the parameters of the static
schemes are determined by average conditions rather than
instantaneous conditions. These results will help us develop
more efficient and realistic algorithms for controlling large
networks.

Our work is also related to the work in [10], [11], and the
references therein. However, in their work, the price is set
a priori, and the focus is on how to admit and route each
flow. Our work (as well as [8], [9]) explicitly models the
users’ price-elasticity, and considers the problem of how to set
the price. The impact of large systems has also been studied
for flow control problems in [12], [13], however, these works
focus on the single-link case with a fixed number of flows.

Before we proceed with the details of our results, we would
like to comment on what “average network conditions” and
“static schemes” mean in real networks. In practice, over a
long enough period of time, the network condition is usually
non-stationary, and even the average network statistics could
vary. Hence, in real networks, when we say a “static scheme”,
it does not necessarily mean that the price is fixed over the
entire time. Rather, the “static scheme” should be interpreted
as prices being static over the time period for which the
network statistics do not change (which is typically still fairly
long in real networks) and the average network condition
should be interpreted as the average of the dominant network
condition over such a time period. Over longer time scales,
the prices should still adapt to the changes in the dominant
network condition, although relatively slowly.

II. PRICING IN A GENERAL MULTI-CLASS LOSS

NETWORK

A. Model

The basic model that we consider in this section is that of
a multi-class loss network with Poisson arrivals and arbitrary

service time distributions. There are L links in the network.
Each link l ∈ {1, ..., L} has capacity Rl. There are I classes
of users. We assume that flows generated by users from each
class have a fixed route through the network. The routes are
characterized by a matrix {C l

i , i = 1, ..., I, l = 1, ..., L}, where
Cl

i = 1 if the route of class i traverses link l, and C l
i = 0

otherwise. Let ~n = {n1, n2, ..., nI} denote the state of the
system, where ni is the number of flows of class i currently
in the network. We assume that each flow of class i requires
a fixed amount of bandwidth ri.

Flows of class i arrive to the network according to a Poisson
process with rate λi(ui). The rate λi(ui) is a function of
the price ui charged to users of class i. Here ui is defined
as the price per unit time of connection. Therefore λi(ui)
can be viewed as the “demand function” and it represents
the price-elasticity of class i. We assume that for each class
i, there is a “maximal price” umax,i such that λi(ui) = 0
when ui ≥ umax,i. Therefore by setting a high enough price
ui the network can prevent users of class i from entering
the network. We also assume that λi(ui) is a continuous
and strictly decreasing function for ui ∈ (0, umax,i). Once
admitted, a flow of class i will hold ri amount of resource
in the network and pay a cost of ui per unit time, until it
completes service, where ui is the price set by the network at
the time of the flow arrival. The service times1 are i.i.d. with
mean 1/µi. The service time distribution is general2.

The bandwidth requirement determines the set of feasible

states Ω = {~n :
I
∑

i=1

niriC
l
i ≤ Rl ∀l}. A flow will be blocked

if the system becomes infeasible after accommodating it. Other
than this feasibility constraint, the network provider can charge
a different price to each flow, and by doing so, the network
provider strives to maximize the revenue collected from the
users. The way in which price is determined can range
from the simplest static pricing schemes to more complicated
dynamic pricing schemes. In a dynamic pricing scheme, the
price at time t can depend on many factors at the moment
t, such as the current congestion level of the network, etc.
On the other hand, in a static pricing scheme, the price is
fixed over all time t, and does not depend on these factors.
Intuitively, the more factors a pricing scheme can be based on,
the more information it can exploit, and hence the higher the
performance (i.e., revenue) it can achieve.

The dynamic pricing scheme that we study in this section is
more sophisticated than the one in [8]. Firstly, we allow the
network provider to exploit the knowledge of the immediate
past history of states up to length d. Note that when the
exponential holding time assumption is removed, the system
is no longer Markovian. There will typically be correlations
between the past and the future given the current state. In
order to achieve a higher revenue, the network provider can
potentially exploit this correlation, i.e., it can use the past to
predict the future, and use such prediction to determine price.

1We use the notions of service time and holding time interchangeably.
2By assuming that the demand function λi(ui), the mean holding time

1/µi and the capacity Rl are fixed, we have assumed that the network
condition is stationary. We will comment in Section II-G how the results
of this paper should be interpreted when this assumption does not hold.
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Secondly, we allow the network provider to exploit prior
knowledge of the parameters of the incoming flows. In par-
ticular, the network provider knows the holding time of the
incoming flows, and can charge a different price accordingly.
In order to achieve a higher revenue, the network provider
can thus use pricing to control the composition of flows
entering the network, for example, short flows may be favored
under certain network conditions, while long flows are favored
under others. We assume that the price-elasticity of flows is
independent of their holding times.

For convenience of exposition, we restrict ourselves to the
case when the range of the service time can be partitioned into
a collection of disjoint segments, and the price is the same for
flows that are from the same class and whose service times
fall into the same segment. Specifically, let {ak}, k = 1, 2, ...
be an increasing sequence of positive numbers that approach
+∞ as k → +∞. Let a0 = 0. The service time of a flow
is a non-negative real number and hence must fall into one
of the segments [ak−1, ak), k = 1, 2, .... We assume that at
any time t, for all flows of class i whose service times Ti

fall into segment [ak−1, ak), we charge the same price uik(t),
i.e., we do not care about the exact value of Ti as long as
Ti ∈ [ak−1, ak).

The dynamic pricing scheme can thus be written as

ui(t, Ti) = uik(t) = gik(~n(s), s ∈ [t − d, t]), (1)

for Ti ∈ [ak−1, ak),

where ~n(s), s ∈ [t − d, t] reflects the immediate past history
of length d, Ti is the holding time of the incoming flow of
class i, and gik are functions from Ω

[−d,0] to the set of real
numbers R. By incorporating the past history in the functions
gik, we can study the effect of prediction on the performance
of the dynamic pricing scheme without specifying the details
of how to predict. Let ~g = {gik, i = 1, ..., I, k = 1, 2, ...}.

The system under such a dynamic pricing scheme can
be shown to be stationary and ergodic under very general
conditions. One such condition is stated in the following
proposition.

Proposition 1: Assume that for all classes i, the arrival rates
λi(u) are bounded from above by some constant λ0. Further,
for each class i, the holding times are i.i.d. with finite mean
and independent of the holding times of other classes and all
arrivals. If the price is only dependent on the current state
of the system, and/or a finite amount of past history (i.e.,
prediction based on past history), and/or the holding times
of the incoming flows, then the stochastic process ~n(t) (i.e.
the system state) is asymptotically stationary as t → ∞ and
the stationary version is ergodic.

Proposition 1 can be proved by using Borovkov’s Ergodic
Theorem [14]. We can construct a so-called “regenerative
event” for the system. Once such an event occurs, the system
will evolve independently from the past. By showing that such
an event occurs with positive probability, we can conclude that
any stochastic process that is only a function of the system
state is asymptotically stationary as t → ∞, and the stationary
version is ergodic. The details of the proof are omitted here
due to space constraints. They were reported in [1] and are
also available in our online technical report [15].

We are now ready to define the performance objective func-
tion. For each class i, let T̃ik be the mean service time for flows
of class i whose service time Ti falls into segment [ak−1, ak),
i.e., T̃ik = E {Ti|Ti ∈ [ak−1, ak)}. The expectation is taken
with respect to the service time distribution of class i. Let
pik = P{Ti ∈ [ak−1, ak)} be the probability that the service
time Ti of an incoming flow of class i falls into segment
[ak−1, ak). We can decompose the original arrivals of each
class into a spectrum of substreams. Substream k of class i
has service time in [ak−1, ak). Its arrival is thus Poisson with
rate λi(u)pik, since we assume that the price-elasticity of flows
is independent of Ti.

For any dynamic pricing scheme ~g, the expected revenue
achieved per unit time is given by

lim
ζ→∞

I
∑

i=1

1

ζ
E

[

∫ ζ

0

∞
∑

k=1

λi(uik(t))uik(t)T̃ikpik dt

]

=
I

∑

i=1

∞
∑

k=1

E

[

λi(uik(t))uik(t)T̃ikpik

]

,

where the expectation is taken with respect to the steady state
distribution. The limit on the left hand side as the time ζ → ∞
exists and equals to the right hand side due to stationarity and
ergodicity. Note that the right hand side is independent of t
(from stationarity). The performance of the optimal dynamic
policy is thus given by:

J∗ , max
~g

I
∑

i=1

∞
∑

k=1

E

[

λi(uik(t))uik(t)T̃ikpik

]

.

Finally, we construct the performance objective for static
pricing schemes. In a static pricing scheme, the price for each
class is fixed, i.e., it does not depend on the current state
of the network, nor does it depend on the individual holding
time of the flow. Let ui be the static price for class i. Let ~u =
[u1, ..., uI ]. Under this static pricing scheme ~u, the expected
revenue per unit time is:

J0 =

I
∑

i=1

λi(ui)ui
1

µi
(1 − Ploss,i[~u]),

where Ploss,i[~u] is the blocking probability for class i. There-
fore the performance of the optimal static policy is

Js , max
~u

I
∑

i=1

λi(ui)ui
1

µi
(1 − Ploss,i[~u]).

When the exponential holding time assumption is removed,
we can no longer use the MDP approach as in [8] to find
the optimal dynamic pricing scheme. We will instead study
the behavior of the optimal dynamic pricing scheme by
bounding its performance. These bounds will then help us
establish the main result that, when the network is large, an
appropriately chosen static pricing scheme can achieve almost
the same performance as that of the optimal dynamic scheme.
By definition, the performance of any static pricing scheme
becomes a lower bound for the performance of the optimal
dynamic pricing scheme. An upper bound is presented next.
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B. An Upper Bound

The upper bound is of a similar form to that in [8]. Let
λmax,i = λi(0) be the maximal value of λi. For convenience,
we write ui as a function of λi. Let Fi(λi) = λiui(λi),
λi ∈ [0, λmax,i]. Further, let Jub be the optimal value of the
following nonlinear programming problem:

max
λi,i=1,...,I

I
∑

i=1

Fi(λi)
1

µi
(2)

subject to
I

∑

i=1

λi

µi
riC

l
i ≤ Rl for all l,

where 1/µi, ri are the mean holding time and the bandwidth
requirement, respectively, for flows from class i, C l

i is the
routing matrix and Rl is the capacity of link l.

Proposition 2: If the function Fi is concave in (0, λmax,i)
for all i, then J∗ ≤ Jub.

Proof: Consider an optimal dynamic pricing policy. Let
nik(t) be the number of flows of substream k of class i in

the system at time t, hence ni(t) =
∞
∑

k=1

nik(t). Let λik(t) =

λi(uik(t)). From Little’s Law, we have

E[nik(t)] = E[λik(t)pik]T̃ik.

The expectation is taken with respect to the steady state
distribution.

Now let

λ∗
i =

∞
∑

k=1

E[λik(t)]pikT̃ik

∞
∑

k=1

pikT̃ik

.

Note that
∞
∑

k=1

pikT̃ik = 1/µi, therefore

λ∗
i

µi
=

∞
∑

k=1

E[λik(t)]pikT̃ik =
∞
∑

k=1

E[nik(t)] = E[ni(t)].

At any time t,
I
∑

i=1

ni(t)riC
l
i ≤ Rl for all l. Therefore

I
∑

i=1

λ∗
i

µi
riC

l
i ≤ Rl for all l .

Since the functions Fi are concave, using Jensen’s inequality,
we have,

Jub ≥
I

∑

i=1

Fi (λ∗
i )

1

µi

≥
I

∑

i=1

∞
∑

k=1

Fi

(

E[λik(t)]
)

pikT̃ik

≥
I

∑

i=1

∞
∑

k=1

E

[

Fi(λik(t))
]

pikT̃ik = J∗.

The upper bound (2) has a simple and intuitive form. Its
objective function can be viewed as an approximation of the

average revenue without taking into account blocking, while
the constraints simply keep the load at all links to be no greater

than 1 (where the load at a link l is defined by 1
Rl

I
∑

i=1

λi

µi
riC

l
i).

The maximizer [λ1, ..., λI ] of the upper bound (2) also induces
a set of optimal prices uub

i = ui(λi). It is interesting to note
that although the dynamic pricing scheme can use prediction
and exploit prior knowledge of the parameters of the incoming
flows, the upper bound (2) and its induced optimal prices are
indifferent to these additional mechanisms.

Remark: The concavity assumption on Fi is essential in the
proof of the upper bound and the result that follows. A linear
λi(ui), as used in many applications, guarantees that Fi is
concave. If Fi is not concave, some sort of “convexification”
procedure needs to be invoked. Readers can refer to [8] for
discussions on the implications of non-concave Fi.

C. Asymptotic Optimality of the Static Scheme

In this paper, we are interested in studying large systems,
i.e., when the capacity and the number of users in the network
are large. We will show that, as the network grows large, the
relative difference between the revenue of the optimal dynamic
scheme, the revenue of the optimal static scheme, and the
upper bound, will approach zero. We first study the following
scaling (S1), which is also used in [8], for modeling large
systems. A different scaling will be studied in Section II-F.

(S1) Let c ≥ 1 be a scaling factor. We consider a series of
systems scaled by c. All systems have the same topology. The
scaled system has capacity Rl,c = cRl at each link l, and the
arrivals of each class i has rate λc

i (u) = cλi(u). Let J∗,c,
Jc

s and Jc
ub be the optimal dynamic revenue, optimal static

revenue, and the upper bound, respectively, for the c-scaled
system.

We are interested in the performance difference of the
dynamic pricing schemes and the static pricing schemes when
c ↑ ∞. We first note that, under the scaling (S1), the
normalized upper bound Jc

ub/c is a constant independent of

c, because Jc
ub is obtained by maximizing

I
∑

i=1

cλiui(λi)/µi,

subject to the constraints
I
∑

i=1

cλiriC
l
i/µi ≤ cRl, for all l.

Therefore the optimal price induced by the upper bound is
also independent of c.

Fix a set of static prices ~u. Let Pc
loss,i[~u] denote the blocking

probability of class i in the c-scaled system. The following
lemma illustrates the behavior of P

c
loss,i[~u] as c → ∞ under

the scaling (S1). Recall that the load at a link l is defined by
1

Rl

I
∑

i=1

λi

µi
riC

l
i .

Lemma 3: Let λi be the arrival rate of flows from class i
at a given set of static prices ~u. Under the assumptions of
Poisson arrivals and general holding time distributions, if the
load at each resource is less than or equal to 1, i.e.,

I
∑

i=1

λi

µi
riC

l
i ≤ Rl for all l,
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then under scaling (S1), as c → ∞, the blocking probability
P

c
loss,i[~u] of each class i goes to 0, and the speed of con-

vergence is at least 1/
√

c, i.e., P
c
loss,i[~u] = O( 1√

c
). Further,

when the load at all links that class i traverses is strictly less
than 1, the speed of convergence is exponential, i.e.,

lim sup
c→∞

1

c
log P

c
loss,i[~u] ≤ max

l:Cl
i
=1

inf
w>0

Λl(w) < 0,

where

Λl(w) =

I
∑

j=1

λj

µj
(erjw − 1)Cl

j − wRl. (3)

The proof of this lemma can be found in the Appendix. We
now use this lemma to show the following main result:

Proposition 4: If the function Fi is concave in (0, λmax,i)
for all i, then under the scaling (S1),

lim
c→∞

1

c
Jc

s = lim
c→∞

1

c
J∗,c = lim

c→∞

1

c
Jc

ub = Jub.

Instead of proving Proposition 4, we will prove the follow-
ing stronger result that the static prices induced by the upper
bound are in fact asymptotically optimal.

Proposition 5: Let ~uub = [uub
1 , ..., uub

I ] denote the set of
static prices induced by the upper bound, i.e., let uub

i = ui(λi)
for all i, where [λi, i = 1, ..., I] is the maximizer of the upper
bound (2). Let J̃c

s be the revenue for the c-scaled system under
this static price. If the function Fi is concave in (0, λmax,i)
for all i, then under the scaling (S1),

lim
c→∞

1

c
J̃c

s = lim
c→∞

1

c
Jc

ub = Jub.

Proof: Since J̃c
s ≤ Jc

s ≤ J∗,c ≤ Jc
ub = cJub, in order to

prove the above two propositions, we only need to show that
lim

c→∞
J̃c

s/c = Jub.

For every static price ~u = [u1, ...uI ] falling into the
constraint of Jub, i.e.,

I
∑

i=1

cλi(ui)riC
l
i

µi
≤ cRl for all l, (4)

let Jc
0 denote the revenue under this static price. Since (4)

guarantees that the condition of Lemma 3 is met, we have
P

c
loss,i[~u] → 0, as c → ∞. Therefore

lim
c→∞

Jc
0

c
= lim

c→∞

I
∑

i=1

λi(ui)ui
1

µi
(1 − P

c
loss,i[~u])

=
I

∑

i=1

λi(ui)ui
1

µi
. (5)

If we take the static price uub
i induced by the upper bound as

our static price, then inequality (4) is satisfied. By definition,
Jc

0 = J̃c
s , and the right hand side of (5) is exactly the upper

bound. Therefore,

lim
c→∞

J̃c
s

c
= Jub,

and Propositions 4 and 5 then follow.
Proposition 2 and 4 are parallel to Theorem 6 and 7, respec-

tively, in [8]. In [8], they are shown under the assumption of
a single link and exponential holding time distribution. Propo-
sition 2 and 4 tell us that extending the results of [8] from a

single link to a network of links and from exponential holding
time distributions to arbitrary holding time distributions does
not change the invariance result. In other words, there still
exist static pricing schemes whose performance can approach
that of the optimal dynamic pricing scheme when the system
is large. Further, even though the dynamic pricing scheme can
use prediction and exploit prior knowledge of the parameters
of the incoming flows, the upper bound (2) turns out to be
indifferent to these additional mechanisms. Therefore, these
extra mechanisms only have a minimal effect on the long term
revenue when the system is large.

To see how fast the gap between the performance of
the optimal dynamic scheme and that of the static schemes
diminishes to zero as c → ∞, note that

J∗,c − Jc
s

J∗,c
≤ Jub − 1

cJc
0(~uub)

Jub

=

I
∑

i=1

λi(u
ub
i )uub

i
1
µi

P
c
loss,i[~u

ub]

I
∑

i=1

λi(uub
i )uub

i
1
µi

≤ max
i

P
c
loss,i[~u

ub].

Therefore, the speed of convergence of Propositions 4 and 5
can be determined by the P

c
loss,i[~u

ub] that has the slowest
speed of convergence to zero. If at the price uub

i induced by
the upper bound, the load of all links is strictly less than 1,
then the convergence of Propositions 4 and 5 is exponential:

lim sup
c→∞

1

c
log

J∗,c − Jc
s

J∗,c
≤ max

l
inf
w>0

Λl(w) < 0.

On the other hand, if at the price uub
i the load of some links

is equal to 1, then the convergence is 1/
√

c, i.e.,

J∗,c − Jc
s

J∗,c
= O(

1√
c
).

Our result is different from that of [8] and [9] in the
following aspects: Firstly, we remove the assumption on the
exponential holding time distributions. Secondly, we charac-
terize two different regions for the speed with which the
performance of the optimal static scheme approaches that of
the optimal dynamic scheme. When the load on some links
is equal to 1, the convergence is 1/

√
c. When the load of all

links is strictly less than 1, the convergence is exponential. In
[8] and [9], only the latter region is characterized.

Thirdly, and more importantly, we show in Proposition 5
that the static price induced by the upper bound is by itself
asymptotically optimal. Hence, this result permits us to use
the price induced by the upper bound directly in the static
schemes. In [8] and [9], although the authors show the
asymptotic optimality of the optimal static scheme, it is not
clear whether the price induced by the upper bound can serve
as a viable alternative, because with this price the load at some
links could be equal to 1, and the convergence in this region
is not characterized in their work.

D. Distance Neutral Pricing

When prices are congestion-dependent, two classes that
traverse different routes will typically be charged different
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Fig. 2. The static pricing policy compared with the upper bound: when the
capacity of link 3 is 5 bandwidth units. The dotted line is the upper bound.

prices, even if they have the same price-elasticity function.
A class that traverses a longer distance, or one that traverses
a more congested route, will likely be charged a higher price.

However, if the following condition is satisfied, this
distance-dependence can be eliminated when we adopt an
asymptotically optimal static pricing scheme: We say a net-
work has no significant constraint of resources if the uncon-

strained maximizer of
I
∑

i=1

Fi(λi) satisfies the constraint in (2).

If there is no significant constraint of resources, there exists
an asymptotically optimal static scheme whose prices depend
only on the price-elasticity of each class, and are independent
of their routes. To see this, we go back to the formulation of the

upper bound (2). If the unconstrained maximizer of
I
∑

i=1

Fi(λi)

satisfies the constraint, then it is also the maximizer of the
constrained problem. In this case, if we use the prices induced
by the upper bound as the asymptotically optimal static prices,
the static prices will depend only on the function Fi, which
represents the price-elasticity of the users.

This result suggests that the use of flat pricing, as in inter-
state long distance telephone service in the United States,
can also be economically near-optimal under appropriate con-
ditions. Assuming that there is no significant constraint of
resources in the domestic telephone network in the U.S.,
and all consumers have the same price-elasticity, then our
result indicates that a flat (i.e., independent of both time and
distance) pricing scheme will suffice, given that the capacity
of the network is very large.

TABLE I

TRAFFIC AND PRICE PARAMETERS OF 4 CLASSES

Class 1 Class 2 Class 3 Class 4
λmax,i 0.01 0.01 0.02 0.01
umax,i 10 10 20 20

Service Rate µi 0.002 0.001 0.002 0.001
Bandwidth ri 2 1 1 2

TABLE II

SOLUTION OF THE UPPER BOUND (2) WHEN THE CAPACITY OF LINK 3 IS 5

BANDWIDTH UNITS. THE UPPER BOUND IS Jub = 127.5

Class 1 Class 2 Class 3 Class 4
ui 9.00 5.00 12.00 10.00

λi(ui) 0.00100 0.00500 0.00800 0.00500
λi(ui)/µi 0.500 5.00 4.00 5.00

E. Numerical Results

We report a few numerical results here. Consider the net-
work in Fig. 1. There are 4 classes of flows. Their routes are
shown in the figure. Their arrivals are Poisson. The function
λi(u) for each class i is of the form

λi(u) =

[

λmax,i

(

1 − u

umax,i

)]+

,

i.e., λi(0) = λmax,i and λi(umax,i) = 0 for some constants
λmax,i and umax,i. The price-elasticity is then

−λ′
i(u)

λi(u)
=

1/umax,i

1 − u/umax,i
, for 0 < u < umax,i.

The function Fi is thus

Fi(λi) = λi(1 − λi

λmax,i
)umax,i,

which is concave in (0, λmax,i). The holding time is exponen-
tial with mean 1/µi. The parameters λmax,i, umax,i, service
rates µi, and bandwidth requirement ri for each class are given
in Table I.

We first consider a base system where the capacity of
the five links are 10, 10, 5, 15, and 15 bandwidth units,
respectively. The solution of the upper bound (2) is shown
in Table II. The upper bound is Jub = 127.5. We then
use simulations to verify how tight this upper bound is and
how close the performance of the static pricing policy can
approach this upper bound when the system is large. We use
the price induced by the upper bound calculated above as our
static price. We first simulate the case when the holding time
distributions are exponential. We simulate c-scaled versions
of the base network where c ranges from 1 to 1000. For
each scaled system, we simulate the static pricing scheme, and
report the revenue generated. In Fig. 2 we show the normalized
revenue J0/c as a function of c. As we can see, when the
system grows large, the difference in performance between
the static pricing scheme and the upper bound decreases.
Although we do not know what the optimal dynamic scheme
is, its normalized revenue J∗/c must lie somewhere between
that of the static scheme and the upper bound. Therefore the
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TABLE III

SOLUTION OF THE UPPER BOUND WHEN THE CAPACITY OF LINK 3 IS 15

BANDWIDTH UNITS. THE UPPER BOUND IS Jub = 137.5

Class 1 Class 2 Class 3 Class 4
ui 5.00 5.00 10.00 10.00

λi(ui) 0.00500 0.00500 0.0100 0.00500
λi(ui)/µi 2.50 5.00 5.00 5.00

difference in performance between the static pricing scheme
and the optimal dynamic scheme is further reduced. For
example, when c = 10, which corresponds to the case when
the link capacity can accommodate around 100 flows, the
performance gap between the static policy and the upper bound
is less than 7%. The gap decreases as 1/

√
c.

We next change the capacity of link 3 from 5 bandwidth
units to 15 bandwidth units. The solution of the upper bound is
shown in Table III. The upper bound is Jub = 137.5. Simula-
tion using the static prices induced by the upper bound shows
similar curves as in Fig. 2. This latter example also demon-
strates distance-neutral pricing. For example, classes 1 and 2,
and classes 3 and 4 have different routes but have the same
price (and price-elasticity). Readers can verify that, in this
example, if we lift the constraints in (2), and solve the upper
bound again, we will get the same maximizer. Thus there is no
significant constraint of resources, and hence the optimal price
will only depend on the price-elasticity of each class and not
on the specific route. Since class 1 has the same price-elasticity
as class 2, its price is also the same as that of class 2, even
though it traverses a longer route through the network.

We also simulate the case when the holding time distribution
is deterministic. The result is the same as that of the expo-
nential holding time distribution. The simulation result with
heavy-tail holding time distribution also shows the same trend
except that the sample path convergence (i.e., convergence
in time) becomes very slow, especially when the system is
large. For example, Fig. 3 is obtained when the holding time
distribution is Pareto, i.e., the cumulative distribution function
is 1−1/xa, with a = 1.5. We use the same set of parameters as
in Fig. 2, and let the Pareto distribution have the same mean as
that of the exponential distribution. Note that this distribution
has finite mean but infinite variance. This demonstrates that
our result is indeed invariant of the holding time distribution.

F. Scaling with Topological Changes

In Section II-C, we have studied a large network under
the scaling (S1), where the network topology is fixed and we
increase both the demand function λi(ui) and the capacity Rl

proportionally. Hence, when the network is large, the number
of users of each class i (i.e., between each source-destination
pair) is also assumed to be large. This scaling is suitable for a
large capacity network with a simple topology, e.g., network
backbones. In this section, we will consider large networks
where the number of users over each source-destination pair
is much smaller than the capacity of the network. Large net-
works of this type arise naturally when the network topology
becomes increasingly complex, for instance, when we include
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Fig. 3. The static pricing policy compared with the upper bound: when the
service time distribution is Pareto and the capacity of link 3 is 5 bandwidth
units.

the access links into the topology. To illustrate a real world
example, note that even though the links between Purdue
University, Indiana and Columbia University, New York could
have large capacities, the number of users communicating
between these two institutions at any time is usually quite low.
The high-capacity access link that connects Purdue University
to the Internet is to accommodate the large aggregate traffic
between Purdue University and all destinations on the Internet,
while the amount of traffic to any single destination is much
smaller.

The question we attempt to answer in this section is: will
similar simplicity results as in Section II-C hold in this type
of large networks? We will first present a different scaling
model that allows the topology of the network to become
more complex as we scale its capacity. We will then show
that, under some reasonable assumptions, the performance of
appropriately chosen static schemes will still approach that of
the optimal dynamic schemes, as long as the capacity of the
network is large.

We consider a series of networks indexed by the scaling
factor c. We use L(c), I(c), and C(c) to denote the number
of links, the number of classes, and the routing matrix,
respectively, in the c-th network. Note that in the scaling (S1)
in Section II-C, these quantities are assumed to be fixed for
all c. In this section, in order to accommodate topological
changes, we allow them to vary with c. We still use λc

i (u)
and Rl,c to denote the demand function for class i and the
capacity of link l, respectively, in the c-th system. However,
unlike the case for the scaling (S1), λc

i (u) and Rl,c do not
need to follow the linear scaling rule.

The scale of the c-th network is defined as

S(c) = min
l=1,...,L(c)

Rl,c

max
i:Cl

i
=1

rc
i

.

We will consider the scaling (S2) that satisfies the following
set of assumptions:
(A) S(c) → ∞, as c → ∞.
(B) For all networks, the maximum number of links on any

route is bounded from above by a number M .
The first assumption simply states that, with large c, the

capacity of each link in the network will be large compared to
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the bandwidth requirement of each flow that goes through the
link. The second assumption limits the maximum number of
hops each flow can traverse. This is a reasonable assumption:
for example, in TCP/IP, the TTL (time-to-live) field in the
IP header occupies only 8 bits. This effectively put an upper
bound of 255 on the number of hops a flow can traverse
within a network. Real Internet topology exhibits the small
world phenomenon [16], where the average number of hops
of a source-destination pair is typically small. Any series of
networks under scaling (S1) trivially satisfy scaling (S2).

Finally, let λc
max,i be the maximal value of λc

i (u). Let uc
i (λi)

be the inverse function of λc
i (ui). We assume that:

(C) The function F c
i (λi) = λiu

c
i (λi) is concave in

(0, λc
max,i) for all c and i.

Let J∗,c, Jc
s , and Jc

ub be the optimal dynamic revenue, the
optimal static revenue, and the upper bound, respectively, for
the c-th network. By Proposition 2, under Assumption C, the
optimal dynamic revenue J∗,c is no greater than Jc

ub for all
c. In general, Jc

ub does not follow the simple linear rule as in
scaling (S1). Hence, Proposition 4 will not hold under scaling
(S2). Instead, we can show the following:

Proposition 6: Under Scaling (S2) and Assumption C, as
c → ∞, the relative difference among the optimal dynamic
revenue J∗,c, the optimal static revenue Jc

s , and the upper
bound Jc

ub will converges to zero. That is,

lim
k→∞

Jc
ub − Jc

s

Jc
ub

= lim
k→∞

Jc
ub − J∗,c

Jc
ub

= 0.

The proof is provided in the Appendix. Proposition 6 tells
us that no matter how complex the topology of the network is,
as long as the capacity of the network is large, the performance
of the optimal static scheme will be close to that of the optimal
dynamic scheme. We defer relevant numerical results until
Section III. The definition of S(c) allows us to apply this result
to certain networks with heterogeneous capacity. The network
could have both large-capacity links and small-capacity links,
and both large-bandwidth flows and small-bandwidth flows.
As long as the capacity of each link is large compared to
the bandwidth requirement of the flows that traverse the link,
static schemes will suffice. On the other hand, there may exist
network scenarios where S(c) is not large, which means that
the capacity of some links can only accommodate a small
number of flows that go through them. Proposition 6 will not
hold in such scenarios.

It is easy to check that Proposition 4 and Proposition 6
are equivalent under scaling (S1). There is yet a difference
between the results we can obtain under the two different
types of scaling. Under scaling (S1), we can show that the
price ~uub induced by the upper bound suffices to be the
near-optimal static price (see Proposition 5). Such conclu-
sion cannot be drawn under scaling (S2). The difficulty is
that, under scaling (S2), we cannot show that the blocking
probability P

c
loss,i[~u

ub] at the static price ~uub goes to zero
as c → ∞ when the constraints in the upper bound (2) are
satisfied with equality. In spite of this technical difficulty, we
expect that in most cases the price induced by the upper bound
would still suffice under scaling (S2). We can argue as follows
using the familiar independent blocking assumption underlying

the Erlang Fixed Point approximation [17], i.e., we assume
that blocking occurs independently at each link. Under the
independent blocking assumption, the blocking probability B l

at each link l can be calculated as if the traffic offered to
the link l comprises independent Poisson streams with arrival
rates that are “thinned” by other links in the network. At the
price induced by the upper bound, the offered load at any link l
after “thinning” will be no greater than the offered load before
“thinning”, i.e.,

∑

i
λc

i

µi
ri, which is no greater than the capacity

Rl,c of the link l. Applying the techniques in the proof of
Lemma 3 to a single link, we can show that, if the independent
blocking assumption holds, the blocking probability at each
link will go to zero as S(c) → ∞, and the convergence is
uniform over all links. Since the number of hops each route
can traverse is upper bounded by M , we can then infer that the
blocking probability of all classes will go to zero uniformly
as S(c) → ∞. Therefore, using an argument similar to that
of Proposition 4, we can infer that the price induced by the
upper bound will suffice. The validity of the above argument
relies on the independent blocking assumptions. A rigorous
characterization of this convergence is an interesting problem
for future work.

G. Remarks on Non-stationary Scenarios

We have shown under two different types of scaling that the
performance of an appropriately chosen static pricing scheme
will approach that of the optimal dynamic pricing scheme
when the capacity of the network is large. We conclude this
section with some discussion on the assumption we have
made. In our model, we assume that the demand function
λi(ui), the mean service time 1/µi and the capacity Rl are
fixed. Hence, we have assumed that the network condition
is stationary. However, in practice the network condition is
usually non-stationary and even the average network statistics
can change over time. If we assume that the changes of these
average network conditions are at a much slower time scale
than that of the flow arrivals and departures, we can still use
the result in this section with the following interpretation: the
static scheme should be interpreted as prices being fixed over
a time period for which the network statistics do not change
(which is typically a fairly long time in real networks) and the
average network condition should be interpreted as the average
of the dominant network condition over such a time period.
Similarly, the invariance result regarding prediction should
also be interpreted under this context: if the dynamic pricing
scheme uses a prediction window (i.e., d in Equation (1))
that is smaller than the time scale of the changes of the
average network condition, then the dynamic scheme will not
significantly outperform the static pricing scheme. Over the
longer time scale, the prices should still adapt to the changes in
the dominant network condition and prediction on the changes
of the average network statistics will help.

III. DYNAMIC ROUTING

We next consider a system with dynamic routing. Many
results in the QoS routing literature focus on finding the “best”
route for each individual flow based on the instantaneous
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network conditions. When these QoS routing algorithms are
used for dynamic routing, the network is typically required to
first collect link states (such as available bandwidth, delay,
etc.) on a regular basis. Then, when a request for a new
flow arrives, the QoS routing algorithms are invoked to find a
route that can accommodate the flow. When there are multiple
routes that can satisfy the request, certain heuristics are used
to pick one of the routes. However, such “greedy” routing
policies may be sub-optimal system wide, because a greedy
selection may result in an unfavorable configuration such
that more future flows are blocked. Further, an obstacle to
the implementation of this type of routing policies is that
it consumes a significant amount of resources to propagate
link states throughout the network. Propagation delay and
stale information will also degrade the quality of the routing
decision.

In this section, we will formulate a dynamic routing problem
that directly optimizes the total system revenue. Although
our model is simplified, it reveals important insight on the
performance tradeoff among different types of routing policies.
We will first establish an upper bound on the performance of
all dynamic schemes, which are schemes that can compute
both the prices and the routing decisions based on the instan-
taneous congestion level of the network. We will then show
that the performance of an appropriate chosen static scheme,
which uses static prices and selects routes based on some
pre-determined probabilities, can approach the performance
of the optimal dynamic scheme when the system is large.
The static scheme only requires some average parameters. It
consumes less communication and computation resources, and
is insensitive to network delay. Thus the static scheme is an
attractive alternative for control of routing in large networks.

The network model is the same as in the last section, except
that now a user of class i has θ(i) alternative routes that are
represented by the matrix {H l

ij} such that H l
ij = 1, if route j

of class i uses resource l and H l
ij = 0, otherwise. The dynamic

schemes we consider have the following idealized properties:
the routes of existing flows can be changed during their
connection; and the traffic of a given flow can be transmitted
on multiple routes at the same time. Thus our model captures
the packet-level dynamic routing capability in the current
Internet. These idealized capabilities allow dynamic schemes
to “pack” more flows into the system. Yet, we will show that
an appropriately chosen static scheme will have comparable
performance to the optimal dynamic scheme.

Let ni be the number of flows of class i currently in the
network. Consider the k-th flow of class i, k = 1, ..., ni. Let
P k

ij denote the proportion of traffic of flow k assigned to route
j, j = 1, ...θ(i). Then, state ~n = {n1, ..., nI} is feasible if and
only if

There exists P k
ij such that

θ(i)
∑

j=1

P k
ij = 1,∀i, k,

and
I
∑

i=1

θ(i)
∑

j=1

riH
l
ij

ni
∑

k=1

P k
ij ≤ Rl for all l.

(6)

The set of feasible states is Ω = {~n such that (6) is satisfied}.
A dynamic scheme can charge prices based on the current

state of the network, or a finite amount of past history, i.e.,
prediction based on past history. (For simplicity we consider
pricing schemes that are insensitive to the individual holding
times.) An incoming flow will be admitted if the resulting
state is in Ω. Once the flow is admitted, its route (i.e., P k

ij)
is assigned based on (6), involving (in an idealized dynamic
scheme) possible rearrangement of routes of all existing flows.
We assume that such rearrangement can be carried out in-
stantaneously. Thus a dynamic scheme can be modeled by
ui(t) = gi(~n(s), s ∈ [t − d, t]), where gi is a function from
Ω

[−d,0] to R. Let ~g = {g1, ..., gI}.
The performance objective is again the expected revenue

per unit time generated by the incoming flows admitted into
the system. The performance of the optimal dynamic scheme
is given by:

J∗ , max
~g

E{
I

∑

i=1

λi(ui(t))ui(t)
1

µi
} (7)

subject to (6).

The expectation is taken with respect to the steady state
distribution. Note that (7) is independent of t because of
stationarity and ergodicity.

The set of dynamic schemes we have described may re-
quire complex capabilities (e.g., rearrangements of routes and
transmitting traffic of a single flow over multiple routes) and
hence may not be suitable for actual implementation. We make
clear here that we do not advocate implementing such schemes
but instead advocate implementing static schemes. In fact,
we will show that, as the system scales, our static scheme
will approach the performance of the optimal (and idealized)
dynamic scheme. The static schemes do not require the afore-
mentioned complex capabilities and could be an attractive
alternative for network routing.

Let ui = ui(λi) and Fi(λi) = ui(λi)λi. Analogous to
Proposition 2, we can derive the following upper bound on
the optimal revenue in (7). The proof is a natural extension of
that of Proposition 2 and are available online in [15].

Proposition 7: If the function Fi is concave in (0, λmax,i)
for all i, then J∗ ≤ Jub, where Jub is defined as the solution
for the following optimization problem:

Jub , max
λij

I
∑

i=1

Fi(

θ(i)
∑

j=1

λij)
1

µi
(8)

subject to
I

∑

i=1

θ(i)
∑

j=1

λij

µi
H l

ijri ≤ Rl ∀l.

We next construct our static scheme using probabilistic
routing as follows: The network charges a static price to
all incoming flows, and the incoming flows are directed to
alternative routes based on pre-determined probabilities. Note
that the static scheme does not have the idealized capabilities
prescribed for the dynamic schemes, i.e., all traffic of a flow
has to follow the same path, and rearrangement of routes
of existing flows is not allowed. Let {us

i , P
s
ij} denote such

a static scheme, where us
i is the price for class i, and P s

ij is
the bifurcation probability that an incoming flow from class i
is directed to route j. The performance of the optimal static



10 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

scheme is then given by:

Js , max

us
i
,P s

ij
,
θ(i)
P

j=1

P s
ij

=1

I
∑

i=1

θ(i)
∑

j=1

λi(u
s
i )u

s
i P

s
ij

1

µi
[1 − PLoss,ij ],

(9)
where PLoss,ij is the blocking probability experienced by
users of class i routed to j.

We consider a special static scheme derived from the
solution of the upper bound in Proposition 7. If λub

ij is the

maximal solution to the upper bound, we let us
i = ui(

θ(i)
∑

j=1

λub
ij ),

and P s
ij =

λub
ij

θ(i)
P

j=1

λub
ij

. The revenue with this static scheme differs

from the upper bound only by the term (1 − PLoss,ij), and
this revenue will be less than Js. However, under scaling (S1),
we can show that, as c → ∞, Ploss,ij → 0. Therefore, we
have our invariance result (stated next).

Proposition 8: In the dynamic routing model, if the func-
tion Fi is concave in (0, λmax,i) for all i, then under the scaling
(S1),

lim
c→∞

Jc
s/c = lim

c→∞
J∗,c/c = lim

c→∞
Jc

ub/c = Jub.

Proof: Analogous to that of Propositions 4 and 5. Details
are available online at [15].

A similar result under scaling (S2) can be stated analogous
to Proposition 6.

When the routing is fixed, by replacing λij with λi, and
H l

ij with Cl
i , we recover Propositions 2 and 4 from the results

in this section. When there are multiple alternate routes, the
upper bound in Proposition 7 is typically larger than that of
Proposition 2. Therefore one can indeed improve revenue by
employing dynamic routing. However, Proposition 8 shows
that, when the system is large, most of the performance gain
can also be obtained by simpler static schemes that routes
incoming flows based on pre-determined probabilities. Further,
what we learn is that for large systems the capability to
rearrange routes and to transmit traffic of a single flow on
multiple routes does not lead to significant performance gains.

Not only can the static schemes be asymptotically optimal,
they also have a very simple structure. Their parameters
are determined by average conditions rather than instanta-
neous conditions. Collecting average information introduces
less communication and processing overhead, and it is also
insensitive to network delay. Hence the static schemes are
much easier to implement in practice.

The asymptotically optimal static scheme also reveals the
macroscopic structure of the optimal dynamic scheme. For
example, the static price us

i shows the preference of some
classes than the others, and the static bifurcation probability
P s

ij reveals the preference on certain routes than the other.
While a “greedy” routing scheme tries to accommodate each
individual flow, the optimal static scheme may reveal that one
should indeed prevent some flows from entering the network,
or prevent some routes from being used. For our future work
we plan to study efficient distributed algorithms to derive these
optimal static parameters.

A

CB

λAB

λBC
λCA

Fig. 4. Dynamic Routing Problem: There are 3 classes of flows, AB, BC,
CA. For each class, there are two alternate routes. For example, for class
AB, the direct one-link path is A → B, while the indirect two-link path is
A → C → B.

We use the following examples to illustrate the results in
this section. We first consider a triangular network (Fig. 4).
There are three classes of flows, AB,BC,CA. There are two
possible routes for each class of calls, i.e., a direct one-link
path (route 1), and an indirect two-link path (route 2). Each
call consumes one bandwidth unit along the link(s) and holds
the link(s) for a mean time of 1 unit. Let the capacity of all
links be R.

Let ~λ = {λAB,1, λAB,2, λBC,1, λBC,2, λCA,1, λCA,2}. By
Proposition 7, we can formulate the upper bound as (based on
(8)):

Jub = max
~λ

∑

i=AB,BC,CA

λiui(λi) (10)

λi = λi,1 + λi,2, i = AB,BC,CA,

subject to the following resource constraints:

λAB,1 + λBC,2 + λCA,2 ≤ R

λBC,1 + λAB,2 + λCA,2 ≤ R

λCA,1 + λAB,2 + λBC,2 ≤ R

λi,j ≥ 0, i = AB,BC,CA, j = 1, 2.

Once the upper bound is solved, we can find the near-optimal
static scheme using the one induced by the upper bound, i.e.,
the price charged to class i, i = AB,BC,CA, is

us
i = ui(λi,1 + λi,2),

and the bifurcation probabilities are

P s
i,1 =

λi,1

λi,1 + λi,2

P s
i,2 =

λi,2

λi,1 + λi,2
.

Let R = 100. We consider the following examples:
1) When the price-elasticity function of all classes are

λAB(u) = λBC(u) = λCA(u) = 100(1 − u), the solution
of (10) gives λAB = λBC = λCA = 50, and the prices
for each class are us

AB = us
BC = us

CA = 0.5. It also
coincides with the solution of the unconstrained version of
(10). This corresponds to the case of light traffic load. The
price is only determined by the price-elasticity of each class.
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TABLE IV

SOLUTION OF THE UPPER BOUND IN THE DYNAMIC ROUTING PROBLEM:

WHEN THE PRICE-ELASTICITY OF CLASS AB IS λAB(u) = 500(1 − u)

Class AB Class BC Class CA
λi,1 100 40.91 40.91
λi,2 59.09 0 0
λi 159.09 40.91 40.91

Price us
i 0.682 0.591 0.591

P s
i,1 62.86% 100% 100%

P s
i,2 37.14% 0 0

There are multiple solutions for the bifurcation. One example
is λi,1 = 50, and λi,2 = 0, i = AB,BC,CA, i.e., all calls use
the direct link.

2) When we change the price-elasticity of class AB to
λAB(u) = 500(1 − u), the solution of (10) is shown in
Table IV. This corresponds to the case of heavy traffic load.
The price are raised from that of the unconstrained problem
in order to limit incoming traffic. All constraints are binding.
Note that here in order to maximize the revenue, class AB has
a higher arrival rate λi than that of class BC and CA, and
the network should allow flows from class AB to use indirect
two-link path, while flows from classes BC and CA should
not be allowed to use the indirect routes.

We next use a larger network example to demonstrate the
optimality of static schemes with probabilistic routing. We use
the BRITE topology generation tool [18] and the Barabasi-
Albert model [19] to generate a random network with 100
nodes and 197 links. The Barabasi-Albert topology model is
able to capture the power-law of node-connectivity in real In-
ternet topologies. There are a total of 9900 source-destination
(s-d) pairs. For each s-d pair, we use the set of minimum-hop
paths as the alternate paths. The demand function for each
source-destination pair is the same. We formulate the upper
bound for the randomly-generated network, and use standard
convex optimization methods to solve the static prices and the
bifurcation probabilities. We then use simulation to obtain the
static revenue under the prices and the bifurcation probabilities
induced by the upper bound.

We present the following result from a typical simulation.
The bandwidth for each link is 1000 units. The bandwidth
requirement of each flow is 1 unit and the mean holding
time is 1 unit. The demand function for each s-d pair is
λ(u) = 10(1−u). At this level of demand, around 22% of the
links experience congestion, i.e., their respective constraints in
(8) are binding. The upper bound is found to be 2.45 × 104,
while the static revenue obtained from the simulation is
2.40 × 104. The relative difference is just 2%. This validates
our result that the performance of static schemes is close to
that of the optimal dynamic scheme and the upper bound.
Among the 9900 s-d pairs, around 49% have multiple alternate
routes. However, among those with multiple routes, only 30%
actually use multiple routes. Hence, a large number of s-d pairs
does not benefit from multiple alternative paths. The average
number of routes between a s-d pair is 2.15. Finally, note
that in this example, the end-to-end demand of each source-
destination pair is at most 10(1 − 0)/1 = 10, which is much

smaller than the capacity of the links (1000 units). Hence,
this simulation serves to validate our result under scaling (S2)
where the number of users of each source-destination pair
is much smaller than the capacity of the network. In all of
our simulations, the prices induced by the upper bound turn
out to be near-optimal, even although we have not been able
to establish this optimality rigorously under scaling (S2). We
have also run simulations using other topology models and
find similar results.

IV. CONCLUSION, DISCUSSION, AND FUTURE WORK

In this work, we have studied pricing as a mechanism to
control large networks. We have shown under general settings
that the performance of an appropriately chosen static scheme
can approach that of the optimal dynamic scheme when the
system is large. These results have important implications for
the design and control of large-capacity networks. Compared
with the optimal dynamic scheme, the static scheme has
several desirable features. The static schemes are much easier
to obtain because of their simple structures. They are also
much easier to execute since they do not require the collection
of instantaneous load information. Instead, they only depend
on some average parameters, such as the average load. Hence,
they introduce less computation and communication overhead,
and they are less sensitive to feedback delay. These advantages
make the static scheme an attractive alternative for controlling
large networks.

However, one should keep in mind that static schemes also
have their disadvantage, namely, their lack of adaptivity. Static
schemes could be more sensitive to modeling errors than
dynamic schemes [20], [21]. If the parameters of the model
are estimated incorrectly, the resulting static scheme may lead
to bad performance. Further, as we discussed at the end of
Section II, the network condition may be non-stationary and
even the average network parameters may change over time.
The static prices that are good for one time may not be good
for the next moment. Therefore, we are not advocating that in
practice purely static schemes (i.e., prices being fixed for all
time) be used.

Nonetheless, we believe that the results in this paper can
be exploited to develop practical network control algorithms
that are both simple and adaptive. One direction is to develop
efficient algorithms that can compute the static prices based
on the current dominant network condition and allow the
prices to adaptively track the changes in the average network
parameters. Here we briefly discuss one possible approach.
Note that although the static prices are calculated by solving
a global optimization problem, i.e., the upper bound (2) or
(8), it is possible to develop a distributed solution. Indeed, we
can associate a non-negative Lagrange multiplier pl for the
constraint at each resource l. The Lagrange multiplier pl can
be viewed as the implicit cost that summarizes the congestion
information at link l. Given pl, in order to determine the price
for class i, one only needs to know the price-elasticity of class
i (i.e., the function Fi) and the sum of the implicit costs
along the path that flows of class i traverse. Therefore we
can decompose the global optimization problem into several
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subproblems for each class. We can have the core routers
update these implicit costs based on the congestion level at
each link and have the ingress router serve as “brokers” to
probe these implicit costs and determine the price offered
to users of each class i. The idea of this decomposition has
been used in [6] and [7] to develop distributed algorithms for
optimization flow control, and it is also mentioned in [8] for
computing the static prices in the single-link case.

The distributed algorithm described above can achieve adap-
tivity in several ways. Firstly, the edge router can use the
online measurement of flow arrivals at different price levels
to update its estimate of the demand function. Secondly, the
core router can use the online measurement of the congestion
level at each link to update the implicit costs. We have
recently developed such quasi-static adaptive schemes for QoS
routing [22].

It is instructive to compare such a quasi-static distributed
algorithm with typical dynamic and static schemes. Note that
since the distributed algorithm updates the implicit costs based
on online measurements of the congestion level at the link,
it can also be viewed as a dynamic scheme. However, the
distributed algorithm is based on the asymptotic optimality
of the static schemes. It attempts to solve for the static
prices according to the current dominant network condition.
Hence, we refer to the distributed algorithm as being quasi-
static. On one hand, the distributed algorithm exploits the
simplicity of the static scheme, thus has a simple form and is
easier to implement than the optimal dynamic scheme. When
the network condition is stationary, the prices computed by
the distributed algorithm will converge to that of the near-
optimal static scheme. On the other hand, the distributed
algorithm is by definition also dynamic in that, when the
network condition is non-stationary, the prices computed by
the distributed algorithm will track the long term changes.
Hence, the distributed algorithm is more robust than purely
static schemes.

As a final remark, we note that there are also possibilities
of extremal changes in network conditions, such as failures
of network components. When such situations occur, an ap-
propriate immediate response is usually more important than
an optimal but slower one. For such situations, other levels of
network control, such as failure detection and fault recovery,
are more appropriate than the pricing-based control studied in
this paper.

APPENDIX

A. Proof of Lemma 3

The key idea is to use an insensitivity result from [23]. In
[23], Burman et. al. investigate a blocking network model,
where a call instantaneously seizes channels along a route
between the originating and terminating node, holds the chan-
nels for a randomly distributed length of time, and frees them
instantaneously at the end of the call. If no channels are
available, the call is blocked. When the arrivals are Poisson
and the holding time distributions are general, the authors in
[23] show that the blocking probabilities are still in product
form, and are insensitive to the call holding-time distributions.

This means that they depend on the call duration only through
its mean.

When the static prices are given, our system is a special case
of [23]. Hence, we can reuse results for loss networks with
Poisson arrivals and exponential holding-times. If we assume
that the bandwidth requirements ri are integers with greatest
common divisor being 1, an upper bound on the blocking
probability for calls of class i is given by [24, Proposition
2.1]:

P
c
loss,i ≤ 2L

∑

l:Cl
i
=1

e−cIl(R
l)

√

2πcΓ2
l

1 − e−riyl

1 − e−yl

[

1 + O(
1√
c
)

]

,

(11)
where yl is the unique solution of

Rl =

I
∑

i=1

λi

µi
rie

−ylriCl
i , (12)

and

Γ2
l =

I
∑

i=1

λi

µi
r2
i e−ylriCl

i

Il(R
l) =

I
∑

i=1

λi

µi
(1 − e−ylri)Cl

i − ylR
l.

From (12), it is easy to verify that yl < 0 if
I
∑

i=1

λi

µi
riC

l
i < Rl,

and yl = 0 if
I
∑

i=1

λi

µi
riC

l
i = Rl. Note that −yl is also the

minimizer of Λl(w) in (3) over w ≥ 0, and thus

Il(R
l) = − inf

w>0
Λl(w).

Hence, if the load at each resource is less than or equal to 1,
i.e.,

I
∑

i=1

λi

µi
riC

l
i ≤ Rl for all l,

then yl ≤ 0 and Il(R
l) ≥ 0 for all l. We have,

P
c
loss,i ≤ 2L

∑

l:Cl
i
=1

1
√

2πcΓ2
l

1 − e−riyl

1 − e−yl

[

1 + O(
1√
c
)

]

,

i.e., P
c
loss,i = O( 1√

c
). On the other hand, when the load of

all the links that class i traverses is strictly less than 1, then
yl < 1 and Il(R

l) > 0 for all link l that class i traverses.
Hence, the exponential terms in (11) dominate. We thus have,

lim sup
c→∞

1

c
log P

c
loss,i ≤ max

l:Cl
i
=1

−Il(R
l)

= max
l:Cl

i
=1

inf
w>0

Λl(w) < 0.

The above techniques (and that of [24]) can easily be gen-
eralized to the case when the bandwidth requirements ri are
positive real numbers. For a more elementary proof that does
not use the result of [24], see our work in [1] and [15].
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B. Proof of Proposition 6

We first focus on the c-th network. To simplify notation, we
will drop the index c when there is no source of confusion. Let
λi, i = 1, ..., I denote the solution of the upper bound (2). Let
ε be a positive real number smaller than 1. Let λε

i = (1− ε)λi

and uε
i = ui(λ

ε
i) for all i. Then the static revenue at static

prices uε
i , i = 1, ..., I is

Jc,ε
s =

I
∑

i=1

ui(λ
ε
i)λ

ε
i

1

µi
(1 − P

ε
loss,i)

≥
I

∑

i=1

(1 − ε)ui(λi)λi
1

µi
(1 − P

ε
loss,i),

where P
ε
loss,i is the blocking probability of users of class i at

static price uε
i , i = 1, ..., I , and we have used the property that

ui(·) is decreasing. Thus the relative difference between J c,ε
s

and Jc
ub is

Jc
ub − Jc,ε

s

Jc
ub

≤ ε + max
i=1,...,I

P
ε
loss,i. (13)

Next we estimate P
ε
loss,i. Let nj be the random variable

that represents the number of flows of class j that are in
the system. We now consider another network with the same
topology and the same demand λε

i . However, each link in
the new network has infinite capacity. Let n∞

j be the random
variable that represents the number of flows of class j that are
in the infinite capacity system. By a sample path argument,
nj ≤ n∞

j . Therefore,

P
ε
loss,i = P{There exists l such that C l

i = 1

and
I

∑

j=1

njrjC
l
j ≥ Rl − ri}

≤
∑

l:Cl
i
=1

P{
I

∑

j=1

njrjC
l
j ≥ Rl − ri}

≤
∑

l:Cl
i
=1

P{
I

∑

j=1

n∞
j rjC

l
j ≥ Rl − ri}. (14)

In the new system with infinite capacity, n∞
j , j = 1, ..., I

are independent Poisson random variables (by well known
M/G/∞ results). We can calculate their moment generating
functions as

E[exp(θn∞
j )] = exp[

λε
j

µj
(eθ − 1)] for θ > 0 .

Fix i and l such that C l
i = 1. By invoking Markov Inequality,

we have,

P{
I

∑

j=1

n∞
j rjC

l
j ≥ Rl − ri} ≤

E[exp(
I
∑

j=1

θrjn
∞
j Cl

j)]

exp[θ(Rl − ri)]

= exp[

I
∑

j=1

λε
j

µj
Cl

j(e
θrj − 1) − θ(Rl − ri)]

≤ exp[

I
∑

j=1

λε
j

µj
rjC

l
j

S(c)

Rl
(eθRl/S(c) − 1) − θ(Rl − ri)]

≤ exp[(1 − ε)S(c)(e
θRl

S(c) − 1) − θRl

S(c)
(S(c) − 1)], (15)

where in the last two inequalities we have used the definition
of the scale S(c) such that, for all j with C l

j = 1, we have

rj ≤ Rl

S(c)
,

and thus,

eθrj − 1

rj
≤ eθRl/S(c) − 1

Rl/S(c)
;

and we have used the assumption that,

I
∑

j=1

λε
j

µj
rjC

l
j =

I
∑

j=1

(1 − ε)
λj

µj
rjC

l
j ≤ (1 − ε)Rl.

Taking infimum of (15) over all θ > 0, we have

P{
I

∑

j=1

n∞
j rjC

l
j ≥ Rl − ri} ≤ exp[f(S(c))], (16)

where

f(s) = inf
θ>0

[

(1 − ε)s(eθ − 1) − θ(s − 1)
]

. (17)

Note that the inequality (16) holds for all i and l such that
Cl

i = 1. Substituting (16) into (14), we have,

P
ε
loss,i ≤

∑

l:Cl
i
=1

exp[f(S(c))] ≤ M exp[f(S(c))], (18)

where M is the maximum number of hops for all routes by
Assumption B of scaling (S2). Note that the right hand side
is uniform for all class i. Substituting (18) into (13), we have,

Jc
ub − Jc,ε

s

Jc
ub

≤ ε + M exp[f(S(c))].

The function f(s) can be evaluated analytically. We can
easily show that

lim
s→+∞

f(s)

s
= ε + ln(1 − ε).

Since ε ∈ (0, 1), ε + ln(1 − ε) < 0. Hence, lims→∞ f(s) =
−∞. Now by Assumption A of scaling (S2), S(c) → ∞ as
c → ∞. Fix ε and let c → ∞, we have

lim
c→∞

Jc
ub − Jc,ε

s

Jc
ub

≤ lim
c→∞

{ε + M exp[f(S(c))]} = ε.

Note that Jc,ε
s is always no greater than the optimal static

revenue Jc
s . Hence,

lim
c→∞

Jc
ub − Jc

s

Jc
ub

≤ ε.

This holds for any ε ∈ (0, 1). Letting ε → 0 and noting that
Jc

s ≤ J∗,c ≤ Jc
ub, the result then follows.
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