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ABSTRACT

Lin, Xiaojun. Ph.D., Purdue University, August, 2005. Simplification of Network
Dynamics in Large Systems. Major Professor: Ness B. Shroff.

Controlling today’s communication networks is a challenging task due to the

tremendous growth both in terms of the network capacity and in the number of

elements (e.g., end-users, routers and hosts) that the network supports. As the

size of the network grows, the network dynamics also become increasingly complex.

Solutions that once work well for small networks may no longer be appropriate for

large-scale and high-bandwidth networks.

In this dissertation, we have taken two orthogonal approaches to simplify the

network dynamics in large communication systems. In the first approach, we seek

simplicity through exploiting the largeness of the network. We first study the pricing-

based control problem and the Quality-of-Service routing problem in large-capacity

wire-line networks. We show that simple static control policies can approach the per-

formance of the optimal (but complex) dynamic control policy when the capacity of

the system is large. We develop simple and distributed control algorithms based on

these static control policies. Our control solution can significantly reduce the com-

putation complexity and communication overhead without sacrificing the network

performance. We then turn to wireless networks and investigate the fundamental

tradeoff between the capacity and the delay in large mobile wireless networks. By

exploiting the largeness in the number of nodes in these networks, we obtain simple

scaling laws that determine the optimal achievable capacity given delay constraints.

In the second approach, we seek simplicity by designing an appropriate control

architecture such that complex interactions within the system can be structured into

layers that are only weakly dependent on each other through a judiciously chosen set
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of control parameters. In particular, we investigate the cross-layer congestion control

and scheduling problem in multi-hop wireless networks. We develop a loose-coupling

approach to this problem, where the cross-layer solution only requires a minimal

amount of interaction between the layers, and is robust to imperfect decisions at each

layer. This result allows us to use imperfect, but simpler and potentially distributed,

algorithms for cross-layer control of large wireless networks. We have successfully

developed such a fully distributed cross-layer control solution for certain interference

model.
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1. INTRODUCTION

Today’s communication networks have seen tremendous growth both in terms of the

network capacity and in the number of elements (e.g., end-users, routers and hosts)

that the network supports. Fiber-optic links in the Internet backbone can now

operate at multi-Gigabits-per-second speeds, and can support thousands of users

simultaneously. For the wireless domain, it is expected that multihop wireless net-

works will consist of hundreds of nodes (e.g., sensor networks or mesh networks).

As the size of the networks continues to grow, it is becoming increasingly difficult

to efficiently control the network resources and to satisfy the diverse service require-

ments of the various users. Solutions that once worked well for small networks may

no longer be appropriate for large-scale and high-bandwidth networks. For example,

while the optimal control problem for a small system can be formulated and solved

via Dynamic Programming techniques for Markov Decision Processes (MDP) [1], it

is common wisdom that the complexity of such an approach will grow exponentially

as the size of the problem increases. Due to this “state explosion” problem, MDP

approaches are generally viewed as computationally infeasible for large systems.

Given the sheer size of these communication networks and the infeasibility of

traditional control solutions, there is a pressing need to carefully understand how to

design and control these large-scale systems effectively. In this dissertation, our main

objective is to understand how to model these large networks and to develop simple,

efficient and scalable control solutions. Towards this end, we adopt two orthogonal

approaches to simplify the network dynamics in large systems. In the first approach,

we show that while largeness is a source of complexity, it can also be exploited to

simplify network control. In the second approach, we show that simple and efficient

control solutions can also be obtained by carefully designing the control architecture,
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such that complex interactions within the system can be structured into layers that

are only weakly dependent on each other through a judiciously chosen set of control

parameters. Next, we will give an overview of both of these two approaches.

1.1 Exploiting the Largeness of the System to Simplify Control

The idea that largeness can also become a source of simplicity is not new. In

fact, we use this idea frequently in our daily lives. Imagine that one needs to pack

several pieces of luggage into the trunk of a car before driving for a long trip. A

careful choice of the position and direction of each bag is often required to fill the

car trunk with the maximum number of bags. Note that the number of bags that

the car trunk can hold is usually not very large. Now imagine that the size of the

car trunk grows very large, while the size of each piece of luggage remains the same.

Then, compared with the huge car trunk, each piece of luggage looks like a sand

particle compared with a jar. The packing problem suddenly becomes equivalent to

filling a jar with sand. For the latter problem, we could simply pour the sand into

the jar, without worrying about how to optimally adjust the position and direction

of each sand particle. Our intuition tells us that even if an optimal positioning of

each sand particle exists, the additional gain would be minimal. As we have seen,

the largeness of the system has allowed us to use simple methods to easily achieve

acceptable performance.

To a certain extent, results such as the Law of Large Numbers and the Central

Limit Theorem, which all deal with aspects of largeness, have been the corner-stones

of probability theory and engineering science. In the past, largeness has also been

exploited extensively in network analysis. For example, in analyzing the buffer occu-

pancy distribution of a single queue, researchers have used Large Deviation theory

to obtain simple approximations when either the buffer length goes to infinity or

when the capacity of the queue, the demand, and the buffer length are all increased

proportionally to infinity (see [2–5] and the reference therein). A different approach
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is to invoke the Central Limit Theorem and to approximate the aggregate traffic

arrivals of a large number of connections as Gaussian. Simple and accurate approx-

imations for the buffer overflow probability have been derived [6–9]. Although these

approximations are obtained under the assumption that the number of connections

is large, in practice they have been shown to be accurate even for moderate sys-

tems. Further, when one attempts to analyze the end-to-end Quality of Service for

a network of queues, it has been shown that the traffic of a particular flow remains

essentially unchanged when it traverses a node in which a large number of traffic

flows are multiplexed [10, 11]. Hence, when the capacity of certain nodes is large,

as long as their utilization is less than one, they may be ignored from the analysis

and their “deletion” does not appreciably affect the overall accuracy of the analysis.

Thus a network of queues can be decomposed and analyzed in isolation, a much

simpler task than analyzing the entire network.

In this dissertation, we will focus on the network control problem, and we will

show in Chapters 2-5 how largeness can be exploited to simplify the control mech-

anism in large communication networks. Note that the control problem is different

from the analysis problem we just mentioned due to its closed-loop nature. Along

this line, we will investigate a number of networking problems in both wire-line and

wireless systems, including pricing-based network control, Quality-of-Service (QoS)

routing, and the capacity-delay tradeoff in mobile wireless networks.

1.1.1 Pricing-Based Network Control

We first focus on wire-line networks where the capacity of the network is typically

very large. To illustrate the type of simplicity that arises in large-capacity networks,

we model the network control problem as a pricing problem. The price affects the

users’ interest to join the network (e.g., the arrival rate of the user is a function of

the price). The network’s objective is to maximize some overall revenue or utility by

appropriately choosing the price. Such a framework has received significant interest
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in the literature (e.g., see [12–16] and the references therein) wherein price provides a

good control signal because it carries monetary incentives. The network can then use

the current price of a resource as a feedback signal to coerce the users into modifying

their actions (e.g., changing the rate or route).

In order to maximize the performance of the system, a network provider can

choose between a dynamic pricing scheme and a static pricing scheme. A dynamic

pricing scheme is one where the network provider can charge different prices to the

user according to varying levels of congestion in the network. For example, the

network provider can charge a higher price when the network is more congested, and

charge a lower price (to attract new customers) when the network is less congested.

A dynamic pricing scheme can be made more efficient (and complex) by taking into

account the past history and the parameters of the individual user. For example, the

network can use the past history to predict future congestion levels up to a certain

time window, and use the prediction to make pricing decisions. Similarly, if the

network provider has prior information about the parameters of individual users (for

example, the duration that each user is going to stay in the network), it can charge

an appropriate price, favoring one type of user over the other.

Clearly, the more information a dynamic pricing scheme can depend on, the

higher the performance it can potentially achieve. However, this performance im-

provement comes at a cost. The optimal dynamic pricing scheme is usually very

difficult, if not impossible, to obtain. Under Markovian assumption, one may use

Dynamic Programming [1] to find the optimal pricing scheme. The complexity of

Dynamic Programming will grow exponentially as the size of the problem increases

(commonly referred to as the “curse of dimensionality”). Without Markovian as-

sumptions, there are few techniques to solve the optimal pricing scheme for large-size

problems.

A dynamic pricing scheme is also difficult to implement in practice. The dynamic

scheme requires information about each instantaneous state. This not only incurs

significant communication overhead (in order to collect each state information con-
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tinuously), but also becomes infeasible due to the presense of network delay. When

the dynamics of the system evolve faster than network delay, the information that

a dynamic scheme could be based on is usually outdated. Hence the optimality of a

dynamic pricing scheme could be compromised.

Interestingly1, it turns out that when the capacity of the network is large, simple

static pricing schemes, where the price is constant or changes relatively slowly over

time, can asymptotically achieve the same revenue as the optimal dynamic pricing

scheme. Further, the near-optimal static price can be determined by solving a simple

non-linear programming problem that only depends on the average statistics of the

network. In Chapter 2, we will establish these types of results under general network

settings, first for a non-Markovian network with fixed topology and routing, then

in the case when the network supports dynamic routing, and also in the case where

the topology of the network becomes increasingly complex as its capacity grows. To

illustrate how well simple static pricing schemes can typically perform, consider the

following special case. Let the capacity of the network and the demand be scaled

proportionally by a factor of c, and let J ∗,c, J c
0 be the performance of the optimal

dynamic scheme and the appropriate static scheme, respectively, in the c-scaled

system. We will show in Chapter 2 that, as c → ∞,

lim
c→∞

J∗,c − J c
0

J∗,c = 0. (1.1)

The above result suggests that we can use simple static schemes to control large

communication networks [18–20]. Note that these static schemes can be much easier

to compute and implement than dynamic schemes. These static schemes compute

prices based on the average levels of congestion in the network (and hence do not

require information about the current instantaneous levels of congestion). They have

lower computation and communication overhead, and are insensitive to network

delay. Hence, the above result indicates that significant simplicity in control can

indeed be achieved in large networks.

1First pointed out by Paschalidis and Tsitsiklis [17]
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1.1.2 Distributed Algorithms and Quality-of-Service Routing

For large networks, it is also imperative that the control algorithms that are devel-

oped can be implemented on-line and in a distributive fashion. Although the result

we just stated indicates that some form of simple control suffices for large networks,

it still requires solving a global optimization problem in order to obtain the control

parameters (such as the static price). In Chapters 3 and 4, we will investigate how

to develop distributed control algorithms for practical networking problems based

on simple static controls. In particular, we will develop such distributed algorithms

for the Quality-of-Service (QoS) routing problem in high-capacity networks. We will

first show that simple proportional routing schemes (that are similar in spirit to the

static pricing schemes in Chapter 2) are asymptotically optimal when the capac-

ity of the network is large. We will then develop a fully-distributed algorithm for

computing the parameters of the proportional routing scheme, rigorously establish

the convergence of the algorithm to the optimal control parameters, and provide

guidelines on how to choose the parameters of the algorithm to ensure efficient con-

trol. As a result, our proposed algorithm can not only achieve near-optimal routing

performance, but also substantially alleviate the computation and communication

overhead of QoS routing without sacrificing the performance [21]. Finally, this class

of algorithms can not only be used for QoS routing, but can also be applied to a

number of other networking problems, including network pricing and multi-path flow

control [22].

1.1.3 Capacity-Delay Tradeoff in Large Mobile Wireless Networks

In the first two parts of the dissertation (i.e., Chapters 2-4), we have focused on

largeness in terms of the network capacity. This type of largeness is typical in wire-

line networks. In the third part of the dissertation, we turn to simplicity in large

wireless networks. However, the capacity of a wireless network is typically not very

large. Hence, the approaches in Chapters 2 and 3 do not directly apply. Instead, we
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can exploit other dimensions of largeness. Note, that in wireless ad hoc and sensor

networks, the number of nodes can be quite large. In Chapter 5, we will study how

this type of largeness can also lead to simple and critical insights in control. In

particular, we will exploit this type of largeness to obtain simple relationships that

characterize the fundamental tradeoff between the capacity and the delay in large

mobile wireless networks. Note that although it is well known that mobility can im-

prove network capacity [23], the questions that we attempt to answer in Chapter 5

are: What is the maximum capacity under a given delay constraint, and how can

we design control solutions to achieve this maximum capacity. Finding the exact

relationship for this tradeoff is difficult due to the complex interactions within the

system. However, much simpler asymptotic relationships can be obtained in the

asymptotic limit when the number of nodes is large. Although these asymptotic re-

lationships are in the form of scaling laws (e.g., Θ(1/
√

n)) and they are only accurate

up to the order, they still provide critical insights regarding the inherent performance

limits of the system, and how to achieve the optimal performance. In Chapter 5, we

will develop a systematic methodology both for finding the optimal capacity-delay

tradeoff and for designing the capacity-achieving scheme. Our methodology can be

applied to a number of mobility models, such as the i.i.d. mobility model, the ran-

dom way-point mobility model, and the Brownian motion mobility model [24–27].

In each case, we have identified the limitations of existing works, obtained sharper

results under more general settings, and provided new insights on the fundamental

capacity-delay tradeoffs. In particular, under the i.i.d. mobility model, our study

allows us to develop a scheme that can exploit mobility and achieve a provably larger

per-node capacity than that of the static networks even with delay that does not grow

with the number of nodes. This is the first such result of its kind in the literature.

Our methodology can also be extended to incorporate additional scheduling con-

straints in the system, and be used to find optimal scheduling schemes in a variety

of network settings.
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1.2 Designing Appropriate System Architecture to Simplify Control

In Chapters 2-5, we show how one can obtain simple and efficient control solutions

for large networks by exploiting the largeness of the system. The accuracy of such

an approach varies according to the particular problem. For example, for wire-line

networks where the capacity is large, we can obtain simple control solutions that are

asymptotically exact in the sense that the gap between the simple solution and the

optimal solution goes to zero as the scale of the system increases to infinity (see (1.1)).

However, for wireless networks where the number of nodes is large, our approach

that exploits largeness only allows us to obtain results that are order-accurate (e.g.,

Θ(1/n) versus Θ(1/n2), see Chapter 5). Due to the scarcity of network resources in

wireless systems, the constants before the order terms are often important in many

scenarios (e.g., 1/n versus 10/n). Thus, other approaches are required. In the fourth

part of the dissertation, we will demonstrate that simplification of network control

can also be obtained through appropriately designing the control architecture.

Traditionally, communication networks have been engineered according to the

layered architecture [28]. The functionality of the network is divided into layers.

For example, the OSI reference model has seven layers: the physical layer, the data

link layer, the network layer, the transport layer, the session layer, the presentation

layer, and the application layer. The layering concept essentially treats each layer as

a black box : the higher layer only needs to know the interface to the lower layer, but

not the details of how the interface is implemented. Clearly, the layered architecture

provides modularity, which contributes to simplicity and scalability of the entire

system. Thus, the layered architecture has been a key contributing factor to the

success of many network systems, including the Internet.

While such a layered approach has been very successful for wire-line networks,

it has turned out to be increasingly inadequate for wireless networks. In wireless

networks, there exists a natural coupling between different layers. For example, the

choice of the transmission scheme at the physical and MAC layer will affect the
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capacity of each link, which in turn will affect the congestion control decision at the

transport layer. Due to such coupling, it has become increasingly clear that merely

optimizing within layers is insufficient to obtain the orders-of-magnitude performance

gains necessary to fuel major growth in next-generation wireless services. To achieve

these performance gains, it is imperative that network protocols and designs are

engineered by optimizing across the layers (cross-layer design). The idea is that

by jointly optimizing the control over two or more layers, cross-layer solutions can

yield significantly improved performance by exploiting the tight coupling between

the layers.

However, the Achilles heel of cross-layer design is its potential to destroy mod-

ularity. In cross-layer solutions, although the performance of the system can be

optimized, the tight interaction between the layers could make the overall system

highly sensitive to changes in each layer. Thus, there is a fundamental tradeoff be-

tween efficiency and modularity that needs to be carefully taken into account in any

cross-layer solution.

In Chapter 6, we propose a loose-coupling approach to cross-layer design in wire-

less networks. By loose-coupling, we mean that the cross-layer solution should only

require a minimal amount of interaction across layers and should be robust to im-

perfect information or imperfect actions taken at various layers. In other words, the

complex cross-layer interactions in the system will then be structured into layers that

are only weakly dependent on each other through a judiciously chosen set of control

parameters. Clearly, such a loose-coupling approach allows us to have both efficiency

and modularity. In Chapter 6, we will demonstrate how such a loose-coupling solu-

tion can be obtained for the cross-layer congestion control and scheduling problem

in multihop wireless networks. We will formulate in Chapter 6 a cross-layer con-

trol problem that jointly allocates the end-to-end data rate to each user (i.e., the

congestion-control problem) and computes the schedule and power/rate assignment

for each link (which we will referred to as the scheduling problem). We will show

that, in the optimal solution, the congestion-control component and the scheduling
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component can be decomposed: they both act independently on the queue lengths

of the system. The two components are then coupled by the update of the queue

length at each link. Further, if one replaces the scheduling component by an imper-

fect scheduling policy that only computes suboptimal schedules at each time, we can

still quantify the impact on the overall system performance fairly easily for a large

class of imperfect scheduling policies. Our cross-layer solution results in provably

better performance than a layered approach, even when imperfect scheduling is used.

These results provide us with a framework to design simple and efficient cross-

layer control solutions for multihop wireless networks [29,30]. One may even be able

to develop fully distributed cross-layer solutions that can be implemented in large

networks. In fact, we have successfully developed such a fully distributed cross-layer

congestion control and scheduling algorithm under a particular interference model.

The rest of the dissertation is organized as follows: In Chapter 2, we study the

pricing problems and derive asymptotic optimality of static pricing schemes when

the capacity of the system is large. In Chapter 3, we turn our attention to the

problems of Quality of Service routing, and study how static scheme can reduce the

computation and communication costs inherent in many QoS routing problems. We

will present here a distributed algorithm that can be used to derive the parameters of

the static scheme in an adaptive fashion based on on-line measurements. We study

the convergence properties of this algorithm in Chapter 4. In Chapter 5, we study a

different type of largeness, i.e., when the number of nodes in the system is large, and

we establish the fundamental capacity-delay tradeoff of mobile wireless networks. In

Chapter 6, we turn to simplicity that can be obtained from appropriately designing

the control architecture, and we propose a loose-coupling approach to cross-layer

design in multihop wireless networks. We then conclude in Chapter 7.
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2. SIMPLIFICATION OF PRICING-BASED CONTROL

IN LARGE NETWORKS

2.1 Introduction

In this chapter, we study the simplification of pricing-based control in large-

capacity networks. We use pricing as the network control mechanism for achieving

certain performance objectives, and the performance objectives can be modeled by

some revenue- or utility-functions. Such a framework has received significant interest

in the literature (e.g., see [12–16] and the references therein). Prices are good control

signals because they are simple and effective. Prices carry clear monetary incentives

that users can easily appreciate. The network can use the current price of a resource

as a feedback signal to coerce the users into modifying their actions (e.g., changing

the rate or route). Through utility functions, we can model the cost-sensitivity

of a variety of users, some of which are more cost-conscious than others. Prices

also provide clear incentive for the network (i.e., service provider) to optimize its

efficiency. Finally, in a real system “prices” do not have to represent real money.

A generic control signal where all users agree upon can also take the place of the

“price.” Hence, our results in this chapter can be generalized to those scenarios as

well.

In [17], Paschalidis and Tsitsiklis have shown that when the number of users

and the network capacity become very large, the performance (in terms of expected

revenue or welfare) of an appropriately chosen static pricing scheme approaches

the performance of the optimal dynamic pricing scheme. This elegant result is an

example of the type of simplicity that one can obtain when the system becomes large.

Note that a dynamic pricing scheme is one where the network provider can charge
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different prices to the user according to varying levels of congestion in the network,

while a static pricing scheme is one where the price only depends on the average levels

of congestion in the network (and is hence invariant to the instantaneous levels of

congestion). Static schemes are usually much easier to compute and implement than

dynamic schemes. The result in [17] is obtained under the assumption of Poisson

flow arrivals, exponential flow holding times, and a single resource (single link). In

this chapter, we will show that simple static network control can also approach the

optimal dynamic network control under more general assumptions and a variety of

other network problems.

2.1.1 Summary of Contributions

For simplicity of exposition, we structure this chapter as follows. In Section 2.2,

we extend the result of [17] from the single-link case to a general loss network with

arbitrary holding time distributions1. Our technical contributions are three-fold:

1) We generalize the results of [17] and [31] to non-exponential holding time

distributions. Note that while the assumption of Poisson arrivals for flows in the

network is usually considered reasonable, the assumption of exponential holding

time distribution is not. For example, much of the traffic generated on the Internet

is expected to occur from large file transfers which do not conform to exponential

modeling. By weakening the exponential holding time assumption we can extend

our results to more realistic systems. We show that a static pricing scheme is still

asymptotically optimal, and that the correct static price depends on the holding time

distribution only through its mean. A nice observation that stems from this result

is that under certain conditions, the static price depends only on the price-elasticity

of the user, and not on the specific route or distance. This indicates, for example,

1Independently of our work that was first reported in [18], Paschalidis and Liu have also extended
the work in [17] from a single-link case to a network case [31]. However, their result still uses the
exponential holding-time assumption.
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that the flat pricing scheme used in the domestic long distance telephone service in

the U.S. may be an economically good pricing mechanism.

2) We also investigate whether more sophisticated schemes can improve network

performance (e.g., schemes that have prior knowledge of the duration of individual

flows, schemes that predict future congestion levels, etc.). We find that the perfor-

mance gains using such schemes become increasingly marginal as the system size

grows.

3) We study two types of scaling to model large networks. We study the original

scaling in [17] and [31], which requires that the number of users between each source-

destination pair is scaled proportionally with the capacity of the network. We also

study a more general type of scaling that is suitable even when the capacity of the

network is large but when the number of users between each source-destination pair

is small. Our new scaling is more appropriate for modeling certain Internet scenarios

where the topology is complex and the routing is diverse. We show that appropriate

static schemes are asymptotically optimal under both scaling models.

We then weaken the assumption on fixed routing and study a dynamic routing

model in Section 2.3 where flows can choose among several alternative routes based

on the current network congestion level. We show that our invariance type of result

still holds in this more general model, i.e., when the system is large, there still exists

a static pricing scheme whose performance can approach that of the optimal dynamic

scheme. We can also weaken the assumption on fixed bandwidth requirement and

allow flows to change their rate based on the current price. We investigate this

problem in Section 2.4.

In networks of today and in the future, the capacity will be very large, and the

network will be able to support a large number of users. The work reported in this

chapter demonstrates under general assumptions and different network problem set-

tings that, when a network is large, significant simplicity can be exploited for pricing

based network control. Our result also shows the importance of the average network

condition when the system is large, since the parameters of the static schemes are
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determined by average conditions rather than instantaneous conditions. These re-

sults will help us develop more efficient and realistic algorithms for controlling large

networks.

2.1.2 Related Works

Our work is also related to the work in [32,33], and the references therein. How-

ever, in their work, the price is set a priori, and the focus is on how to admit and

route each flow. Our work (as well as [17, 31]) explicitly models the users’ price-

elasticity, and considers the problem of how to set the price. The impact of large

systems has also been studied for flow control problems in [34–36], however, these

works focus on the single-link case with a fixed number of flows.

2.1.3 Additional Comments

Before we proceed with the details of our results, we would like to comment

on what “average network conditions” and “static schemes” mean in real networks.

In practice, over a long enough period of time, the network condition is usually

non-stationary, and even the average network statistics could vary. Hence, in real

networks, when we say a “static scheme”, it does not necessarily mean that the

price is fixed over the entire time. Rather, the “static scheme” should be interpreted

as prices being static over the time period for which the network statistics do not

change (which is typically still fairly long in real networks) and the average network

condition should be interpreted as the average over such a time period. Over longer

time scales, the prices should still adapt to the changes in the dominant network

condition, although relatively slowly.
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2.2 Pricing in a General Multi-class Loss Network

2.2.1 Model

The basic model that we consider in this section is that of a multi-class loss

network with Poisson arrivals and arbitrary service time distributions. There are L

links in the network. Each link l ∈ {1, ..., L} has capacity Rl. There are I classes of

users. We assume that flows generated by users from each class have a fixed route

through the network. The routes are characterized by a matrix {C l
i , i = 1, ..., I, l =

1, ..., L}, where C l
i = 1 if the route of class i traverses link l, and C l

i = 0 otherwise.

Let ~n = {n1, n2, ..., nI} denote the state of the system, where ni is the number of

flows of class i currently in the network. We assume that each flow of class i requires

a fixed amount of bandwidth ri. The fixed routing and fixed bandwidth assumption

will be weakened in Sections 2.3 and 2.4, respectively.

Flows of class i arrive to the network according to a Poisson process with rate

λi(ui). The rate λi(ui) is a function of the price ui charged to users of class i. Here

ui is defined as the price per unit time of connection. Therefore λi(ui) can be viewed

as the “demand function” and it represents the price-elasticity of class i. We assume

that for each class i, there is a “maximal price” umax,i such that λi(ui) = 0 when

ui ≥ umax,i. Therefore by setting a high enough price ui the network can prevent

users of class i from entering the network. We also assume that λi(ui) is a continuous

and strictly decreasing function for ui ∈ (0, umax,i). Once admitted, a flow of class i

will hold ri amount of resource in the network and pay a cost of ui per unit time,

until it completes service, where ui is the price set by the network at the time of

the flow arrival. The service times2 are i.i.d. with mean 1/µi. The service time

distribution is general3.

2We use the notions of service time and holding time interchangeably.
3By assuming that the demand function λi(ui), the mean holding time 1/µi and the capacity Rl are
fixed, we have assumed that the network condition is stationary. We will comment in Section 2.2.7
how the results in this chapter should be interpreted when this assumption does not hold.
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The bandwidth requirement determines the set of feasible states Ω = {~n :
I
∑

i=1

niriC
l
i ≤ Rl ∀l}. A flow will be blocked if the system becomes infeasible af-

ter accommodating it. Other than this feasibility constraint, the network provider

can charge a different price to each flow, and by doing so, the network provider

strives to maximize the revenue collected from the users. The way in which price is

determined can range from the simplest static pricing schemes to more complicated

dynamic pricing schemes. In a dynamic pricing scheme, the price at time t can

depend on many factors at the moment t, such as the current congestion level of

the network, etc. On the other hand, in a static pricing scheme, the price is fixed

over all time t, and does not depend on these factors. Intuitively, the more factors a

pricing scheme can be based on, the more information it can exploit, and hence the

higher the performance (i.e., revenue) it can achieve.

The dynamic pricing scheme that we study in this section is more sophisticated

than the one in [17]. Firstly, we allow the network provider to exploit the knowledge

of the immediate past history of states up to length d. Note that when the exponen-

tial holding time assumption is removed, the system is no longer Markovian. There

will typically be correlations between the past and the future given the current state.

In order to achieve a higher revenue, the network provider can potentially exploit

this correlation, i.e., it can use the past to predict the future, and use such prediction

to determine price.

Secondly, we allow the network provider to exploit prior knowledge of the param-

eters of the incoming flows. In particular, the network provider knows the holding

time of the incoming flows, and can charge a different price accordingly. In order to

achieve a higher revenue, the network provider can thus use pricing to control the

composition of flows entering the network, for example, short flows may be favored

under certain network conditions, while long flows are favored under others. We

assume that the price-elasticity of flows is independent of their holding times.

For convenience of exposition, we restrict ourselves to the case when the range

of the service time can be partitioned into a collection of disjoint segments, and the
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price is the same for flows that are from the same class and whose service times fall

into the same segment. Specifically, let {ak, k = 1, 2, ...} be an increasing sequence

of positive numbers that approach +∞ as k → +∞. Let a0 = 0. The service time

of a flow is a non-negative real number and hence must fall into one of the segments

[ak−1, ak), k = 1, 2, .... We assume that at any time t, for all flows of class i whose

service times Ti fall into segment [ak−1, ak), we charge the same price uik(t), i.e., we

do not care about the exact value of Ti as long as Ti ∈ [ak−1, ak).

The dynamic pricing scheme can thus be written as

ui(t, Ti) = uik(t) = gik(~n(s), s ∈ [t − d, t]), (2.1)

for Ti ∈ [ak−1, ak),

where ~n(s), s ∈ [t − d, t] reflects the immediate past history of length d, Ti is the

holding time of the incoming flow of class i, and gik are functions from Ω[−d,0] to

the set of real numbers R. By incorporating the past history in the functions gik, we

can study the effect of prediction on the performance of the dynamic pricing scheme

without specifying the details of how to predict. Let ~g = {gik, i = 1, ..., I, k = 1, 2, ...}.
The system under such a dynamic pricing scheme can be shown to be stationary

and ergodic under very general conditions. One such condition is stated in the

following proposition. Readers can refer to Appendix A.1 for the proof.

Proposition 2.2.1 Assume that for all classes i, the arrival rates λi(u) are bounded

from above by some constant λ0. Further, for each class i, the holding times are

i.i.d. with finite mean and independent of the holding times of other classes. If the

price is only dependent on the current state of the system, and/or a finite amount

of past history (i.e., prediction based on past history), and/or the holding times

of the incoming flows, then the stochastic process ~n(t) (i.e. the system state) is

asymptotically stationary as t → ∞ and the stationary version is ergodic.

We are now ready to define the performance objective function. For each class i,

let T̃ik be the mean service time for flows of class i whose service time Ti falls into
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segment [ak−1, ak), i.e., T̃ik = E {Ti|Ti ∈ [ak−1, ak)}. The expectation is taken with

respect to the service time distribution of class i. Let pik = P{Ti ∈ [ak−1, ak)} be the

probability that the service time Ti of an incoming flow of class i falls into segment

[ak−1, ak). We can decompose the original arrivals of each class into a spectrum

of substreams. Substream k of class i has service time in [ak−1, ak). Its arrival is

thus Poisson with rate λi(u)pik, since we assume that the price-elasticity of flows is

independent of Ti.

For any dynamic pricing scheme ~g, the expected revenue achieved per unit time

is given by

lim
ζ→∞

I
∑

i=1

1

ζ
E

[

∫ ζ

0

∞
∑

k=1

λi(uik(t))uik(t)T̃ikpik dt

]

=
I
∑

i=1

∞
∑

k=1

E
[

λi(uik(t))uik(t)T̃ikpik

]

,

where the expectation is taken with respect to the steady state distribution. The

limit on the left hand side as the time ζ → ∞ exists and equals to the right hand side

due to stationarity and ergodicity. Note that the right hand side is independent of

t (from stationarity). The performance of the optimal dynamic policy is thus given

by:

J∗ , max
~g

I
∑

i=1

∞
∑

k=1

E
[

λi(uik(t))uik(t)T̃ikpik

]

.

Finally, we construct the performance objective for static pricing schemes. In a

static pricing scheme, the price for each class is fixed, i.e., it does not depend on the

current state of the network, nor does it depend on the individual holding time of

the flow. Let ui be the static price for class i. Let ~u = [u1, ..., uI ]. Under this static

pricing scheme ~u, the expected revenue per unit time is:

J0 =
I
∑

i=1

λi(ui)ui
1

µi

(1 − Ploss,i[~u]),
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where Ploss,i[~u] is the blocking probability for class i. Therefore the performance of

the optimal static policy is

Js , max
~u

I
∑

i=1

λi(ui)ui
1

µi

(1 − Ploss,i[~u]).

When the exponential holding time assumption is removed, we can no longer use

the Dynamic Programming approach as in [17] to find the optimal dynamic pricing

scheme. We will instead study the behavior of the optimal dynamic pricing scheme

by bounding its performance. These bounds will then help us establish the main

result that, when the network is large, an appropriately chosen static pricing scheme

can achieve almost the same performance as that of the optimal dynamic scheme.

By definition, the performance of any static pricing scheme becomes a lower bound

for the performance of the optimal dynamic pricing scheme. An upper bound is

presented next.

2.2.2 An Upper Bound

The upper bound is of a similar form to that in [17]. Let λmax,i = λi(0) be

the maximal value of λi. For convenience, we write ui as a function of λi. Let

Fi(λi) = λiui(λi), λi ∈ [0, λmax,i]. Further, let Jub be the optimal value of the

following nonlinear programming problem:

max
λi,i=1,...,I

I
∑

i=1

Fi(λi)
1

µi

(2.2)

subject to
I
∑

i=1

λi

µi

riC
l
i ≤ Rl for all l,

where 1/µi, ri are the mean holding time and the bandwidth requirement, respec-

tively, for flows from class i, C l
i is the routing matrix and Rl is the capacity of

link l.

Proposition 2.2.2 If the function Fi is concave in (0, λmax,i) for all i, then J∗ ≤
Jub.
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Proof Consider an optimal dynamic pricing policy. Let nik(t) be the number of

flows of substream k of class i in the system at time t, hence ni(t) =
∞
∑

k=1

nik(t). Let

λik(t) = λi(uik(t)). From Little’s Law, we have

E[nik(t)] = E[λik(t)pik]T̃ik.

The expectation is taken with respect to the steady state distribution.

Now let

λ∗
i =

∞
∑

k=1

E[λik(t)]pikT̃ik

∞
∑

k=1

pikT̃ik

.

Note that
∞
∑

k=1

pikT̃ik = 1/µi, therefore

λ∗
i

µi

=
∞
∑

k=1

E[λik(t)]pikT̃ik =
∞
∑

k=1

E[nik(t)] = E[ni(t)].

At any time t,
I
∑

i=1

ni(t)riC
l
i ≤ Rl for all l. Therefore

I
∑

i=1

λ∗
i

µi

riC
l
i ≤ Rl for all l .

Since the functions Fi are concave, using Jensen’s inequality, we have,

Jub ≥
I
∑

i=1

Fi (λ
∗
i )

1

µi

≥
I
∑

i=1

∞
∑

k=1

Fi

(

E[λik(t)]
)

pikT̃ik

≥
I
∑

i=1

∞
∑

k=1

E
[

Fi(λik(t))
]

pikT̃ik = J∗.

The upper bound (2.2) has a simple and intuitive form. Its objective function can

be viewed as an approximation of the average revenue without taking into account

blocking, while the constraints simply keep the load at all links to be no greater than 1
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(where the load at a link l is defined by 1
Rl

I
∑

i=1

λi

µi
riC

l
i). The maximizer [λ1, ..., λI ] of the

upper bound (2.2) also induces a set of optimal prices uub
i = ui(λi). It is interesting

to note that although the dynamic pricing scheme can use prediction and exploit

prior knowledge of the parameters of the incoming flows, the upper bound (2.2) and

its induced optimal prices are indifferent to these additional mechanisms.

Remark: The concavity assumption on Fi is essential in the proof of the upper

bound and the result that follows. A linear λi(ui), as used in many applications,

guarantees that Fi is concave. If Fi is not concave, some sort of “convexification”

procedure needs to be invoked. Readers can refer to [17] for discussions on the

implications of non-concave Fi.

2.2.3 Asymptotic Optimality of the Static Scheme

In this chapter, we are interested in studying large systems, i.e., when the capacity

and the number of users in the network are large. We will show that, as the network

grows large, the relative difference between the revenue of the optimal dynamic

scheme, the revenue of the optimal static scheme, and the upper bound, will approach

zero. We first study the following scaling (S1), which is also used in [17], for modeling

large systems. A different scaling will be studied in Section 2.2.6.

(S1) Let c ≥ 1 be a scaling factor. We consider a series of systems scaled by c.

All systems have the same topology. The scaled system has capacity Rl,c = cRl at

each link l, and the arrival rate of each class i is λc
i(u) = cλi(u). Let J∗,c, J c

s and

J c
ub be the optimal dynamic revenue, optimal static revenue, and the upper bound,

respectively, for the c-scaled system.

We are interested in the performance difference of the dynamic pricing schemes

and the static pricing schemes when c ↑ ∞. We first note that, under the scal-

ing (S1), the normalized upper bound J c
ub/c is a constant independent of c, be-

cause J c
ub is obtained by maximizing

I
∑

i=1

cλiui(λi)/µi, subject to the constraints
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I
∑

i=1

cλiriC
l
i/µi ≤ cRl, for all l. Therefore the optimal price induced by the upper

bound is also independent of c.

Fix a set of static prices ~u. Let Pc
loss,i[~u] denote the blocking probability of class

i in the c-scaled system. The following lemma illustrates the behavior of Pc
loss,i[~u]

as c → ∞ under the scaling (S1). Recall that the load at a link l is defined by

1
Rl

I
∑

i=1

λi

µi
riC

l
i .

Lemma 2.2.1 Let λi be the arrival rate of flows from class i at a given set of

static prices ~u. Under the assumptions of Poisson arrivals and general holding time

distributions, if the load at each resource is less than or equal to 1, i.e.,

I
∑

i=1

λi

µi

riC
l
i ≤ Rl for all l,

then under scaling (S1), as c → ∞, the blocking probability Pc
loss,i[~u] of each class

i goes to 0, and the speed of convergence is at least 1/
√

c, i.e., Pc
loss,i[~u] = O( 1√

c
).

Further, when the load at all links that class i traverses is strictly less than 1, the

speed of convergence is exponential, i.e.,

lim sup
c→∞

1

c
log Pc

loss,i[~u] ≤ max
l:Cl

i=1
inf
w>0

Λl(w) < 0,

where

Λl(w) =
I
∑

j=1

λj

µj

(erjw − 1)C l
j − wRl. (2.3)

The proof of this lemma can be found in Appendix A.2. We now use this lemma

to show the following main result:

Proposition 2.2.3 If the function Fi is concave in (0, λmax,i) for all i, then under

the scaling (S1),

lim
c→∞

1

c
J c

s = lim
c→∞

1

c
J∗,c = lim

c→∞

1

c
J c

ub = Jub.

Instead of proving Proposition 2.2.3, we will prove the following stronger result

that the static prices induced by the upper bound are in fact asymptotically optimal.
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Proposition 2.2.4 Let ~uub = [uub
1 , ..., uub

I ] denote the set of static prices induced by

the upper bound, i.e., let uub
i = ui(λi) for all i, where [λi, i = 1, ..., I] is the maximizer

of the upper bound (2.2). Let J̃ c
s be the revenue for the c-scaled system under this

static price. If the function Fi is concave in (0, λmax,i) for all i, then under the scaling

(S1),

lim
c→∞

1

c
J̃ c

s = lim
c→∞

1

c
J c

ub = Jub.

Proof Since J̃ c
s ≤ J c

s ≤ J∗,c ≤ J c
ub = cJub, in order to prove the above two proposi-

tions, we only need to show that lim
c→∞

J̃ c
s/c = Jub.

For every static price ~u = [u1, ...uI ] falling into the constraint of Jub, i.e.,

I
∑

i=1

cλi(ui)riC
l
i

µi

≤ cRl for all l, (2.4)

let J c
0 denote the revenue under this static price. Since (2.4) guarantees that the

condition of Lemma 2.2.1 is met, we have Pc
loss,i[~u] → 0, as c → ∞. Therefore

lim
c→∞

J c
0

c
= lim

c→∞

I
∑

i=1

λi(ui)ui
1

µi

(1 − Pc
loss,i[~u])

=
I
∑

i=1

λi(ui)ui
1

µi

. (2.5)

If we take the static price uub
i induced by the upper bound as our static price,

then inequality (2.4) is satisfied. By definition, J c
0 = J̃ c

s , and the right hand side of

(2.5) is exactly the upper bound. Therefore,

lim
c→∞

J̃ c
s

c
= Jub,

and Propositions 2.2.3 and 2.2.4 then follow.

Propositions 2.2.2 and 2.2.3 are parallel to Theorems 6 and 7, respectively, in [17].

In [17], they are shown under the assumption of a single link and exponential holding

time distribution. Propositions 2.2.2 and 2.2.3 tell us that extending the results

of [17] from a single link to a network of links and from exponential holding time
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distributions to arbitrary holding time distributions does not change the invariance

result. In other words, there still exist static pricing schemes whose performance

can approach that of the optimal dynamic pricing scheme when the system is large.

Further, even though the dynamic pricing scheme can use prediction and exploit

prior knowledge of the parameters of the incoming flows, the upper bound (2.2)

turns out to be indifferent to these additional mechanisms. Therefore, these extra

mechanisms only have a minimal effect on the long term revenue when the system

is large.

To see how fast the gap between the performance of the optimal dynamic scheme

and that of the static schemes diminishes to zero as c → ∞, note that

J∗,c − J c
s

J∗,c ≤ Jub − 1
c
J c

0(~u
ub)

Jub

=

I
∑

i=1

λi(u
ub
i )uub

i
1
µi

Pc
loss,i[~u

ub]

I
∑

i=1

λi(uub
i )uub

i
1
µi

≤ max
i

Pc
loss,i[~u

ub].

Therefore, the speed of convergence of Propositions 2.2.3 and 2.2.4 can be determined

by the Pc
loss,i[~u

ub] that has the slowest speed of convergence to zero. If at the price

uub
i induced by the upper bound, the load of all links is strictly less than 1, then the

convergence of Propositions 2.2.3 and 2.2.4 is exponential:

lim sup
c→∞

1

c
log

J∗,c − J c
s

J∗,c ≤ max
l

inf
w>0

Λl(w) < 0.

On the other hand, if at the price uub
i the load of some links is equal to 1, then the

convergence is 1/
√

c, i.e.,
J∗,c − J c

s

J∗,c = O(
1√
c
).

Our result is different from that of [17] and [31] in the following aspects: Firstly,

we remove the assumption on the exponential holding time distributions. Secondly,

we characterize two different regions for the speed with which the performance of

the optimal static scheme approaches that of the optimal dynamic scheme. When

the load on some links is equal to 1, the convergence is 1/
√

c. When the load of all
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links is strictly less than 1, the convergence is exponential. In [17] and [31], only the

latter region is characterized.

Thirdly, and more importantly, we show in Proposition 2.2.4 that the static price

induced by the upper bound is by itself asymptotically optimal. Hence, this result

permits us to use the price induced by the upper bound directly in the static schemes.

In [17] and [31], although the authors show the asymptotic optimality of the optimal

static scheme, it is not clear whether the price induced by the upper bound can serve

as a viable alternative, because with this price the load at some links could be equal

to 1, and the convergence in this region is not characterized in their work.

2.2.4 Distance Neutral Pricing

When prices are congestion-dependent, two classes that traverse different routes

will typically be charged different prices, even if they have the same price-elasticity

function. A class that traverses a longer distance, or one that traverses a more

congested route, will likely be charged a higher price.

However, if the following condition is satisfied, this distance-dependence can be

eliminated when we adopt an asymptotically optimal static pricing scheme: We say

a network has no significant constraint of resources if the unconstrained maximizer

of
I
∑

i=1

Fi(λi) satisfies the constraint in (2.2). If there is no significant constraint of

resources, there exists an asymptotically optimal static scheme whose prices depend

only on the price-elasticity of each class, and are independent of their routes. To see

this, we go back to the formulation of the upper bound (2.2). If the unconstrained

maximizer of
I
∑

i=1

Fi(λi) satisfies the constraint, then it is also the maximizer of the

constrained problem. In this case, if we use the prices induced by the upper bound

as the asymptotically optimal static prices, the static prices will depend only on the

function Fi, which represents the price-elasticity of the users.

This result suggests that the use of flat pricing, as in inter-state long distance

telephone service in the United States, can also be economically near-optimal under
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Fig. 2.2. The static pricing policy compared with the upper bound:
when the capacity of link 3 is 5 bandwidth units. The dotted line is
the upper bound.

appropriate conditions. Assuming that there is no significant constraint of resources

in the domestic telephone network in the U.S., and all consumers have the same

price-elasticity, then our result indicates that a flat (i.e., independent of both time

and distance) pricing scheme will suffice, given that the capacity of the network is

very large.
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Table 2.1
Traffic and price parameters of 4 classes

Class 1 Class 2 Class 3 Class 4

λmax,i 0.01 0.01 0.02 0.01

umax,i 10 10 20 20

Service Rate µi 0.002 0.001 0.002 0.001

Bandwidth ri 2 1 1 2

2.2.5 Numerical Results

We report a few numerical results here. Consider the network in Fig. 2.1. There

are 4 classes of flows. Their routes are shown in the figure. Their arrivals are Poisson.

The function λi(u) for each class i is of the form

λi(u) =

[

λmax,i

(

1 − u

umax,i

)]+

,

i.e., λi(0) = λmax,i and λi(umax,i) = 0 for some constants λmax,i and umax,i. The

price-elasticity is then

−λ′
i(u)

λi(u)
=

1/umax,i

1 − u/umax,i

, for 0 < u < umax,i.

The function Fi is thus

Fi(λi) = λi(1 − λi

λmax,i

)umax,i,

which is concave in (0, λmax,i). The holding time is exponential with mean 1/µi.

The parameters λmax,i, umax,i, service rate µi, and bandwidth requirement ri for each

class are given in Table 2.1.

We first consider a base system where the capacity of the five links are 10, 10,

5, 15, and 15 bandwidth units, respectively. The solution of the upper bound (2.2)

is shown in Table 2.2. The upper bound is Jub = 127.5. We then use simulations

to verify how tight this upper bound is and how close the performance of the static
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Table 2.2
Solution of the upper bound (2.2) when the capacity of Link 3 is 5
bandwidth units. The upper bound is Jub = 127.5

Class 1 Class 2 Class 3 Class 4

ui 9.00 5.00 12.00 10.00

λi(ui) 0.00100 0.00500 0.00800 0.00500

λi(ui)/µi 0.500 5.00 4.00 5.00
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Table 2.3
Solution of the upper bound when the capacity of Link 3 is 15 band-
width units. The upper bound is Jub = 137.5

Class 1 Class 2 Class 3 Class 4

ui 5.00 5.00 10.00 10.00

λi(ui) 0.00500 0.00500 0.0100 0.00500

λi(ui)/µi 2.50 5.00 5.00 5.00

pricing policy can approach this upper bound when the system is large. We use

the price induced by the upper bound calculated above as our static price. We first

simulate the case when the holding time distributions are exponential. We simulate

c-scaled versions of the base network where c ranges from 1 to 1000. For each scaled

system, we simulate the static pricing scheme, and report the revenue generated.

In Fig. 2.2 we show the normalized revenue J0/c as a function of c. As we can

see, when the system grows large, the difference in performance between the static

pricing scheme and the upper bound decreases. Although we do not know what

the optimal dynamic scheme is, its normalized revenue J ∗/c must lie somewhere

between that of the static scheme and the upper bound. Therefore the difference in

performance between the static pricing scheme and the optimal dynamic scheme is

further reduced. For example, when c = 10, which corresponds to the case when the

link capacity can accommodate around 100 flows, the performance gap between the

static policy and the upper bound is less than 7%. The gap decreases as 1/
√

c.

We next change the capacity of link 3 from 5 bandwidth units to 15 bandwidth

units. The solution of the upper bound is shown in Table 2.3. The upper bound is

Jub = 137.5. Simulation using the static prices induced by the upper bound shows

similar curves as in Fig. 2.2. This latter example also demonstrates distance-neutral

pricing. For example, classes 1 and 2, and classes 3 and 4 have different routes but

have the same price (and price-elasticity). Readers can verify that, in this example,
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Fig. 2.3. The static pricing policy compared with the upper bound:
when the service time distribution is Pareto and the capacity of link
3 is 5 bandwidth units.

if we lift the constraints in (2.2), and solve the upper bound again, we will get the

same maximizer. Thus there is no significant constraint of resources, and hence the

optimal price will only depend on the price-elasticity of each class and not on the

specific route. Since class 1 has the same price-elasticity as class 2, its price is also

the same as that of class 2, even though it traverses a longer route through the

network.

We also simulate the case when the holding time distribution is deterministic.

The result is the same as that of the exponential holding time distribution. The

simulation result with heavy-tail holding time distribution also shows the same trend

except that the sample path convergence (i.e., convergence in time) becomes very

slow, especially when the system is large. For example, Fig. 2.3 is obtained when

the holding time distribution is Pareto, i.e., the cumulative distribution function is

1 − 1/xa, with a = 1.5. We use the same set of parameters as in Fig. 2.2, and let

the Pareto distribution have the same mean as that of the exponential distribution.

Note that this distribution has finite mean but infinite variance. This demonstrates

that our result is indeed invariant of the holding time distribution.
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2.2.6 Scaling with Topological Changes

In Section 2.2.3, we have studied a large network under the scaling (S1), where

the network topology is fixed and we increase both the demand function λi(ui) and

the capacity Rl proportionally. Hence, when the network is large, the number of

users of each class i (i.e., between each source-destination pair) is also assumed to be

large. This scaling is suitable for a large capacity network with a simple topology,

e.g., network backbones. In this section, we will consider large networks where the

number of users over each source-destination pair is much smaller than the capacity of

the network. Large networks of this type arise naturally when the network topology

becomes increasingly complex, for instance, when we include the access links into

the topology. To illustrate a real world example, note that even though the links

between Purdue University, Indiana and Columbia University, New York could have

large capacities, the number of users communicating between these two institutions

at any time is usually quite low. The high-capacity access link that connects Purdue

University to the Internet is to accommodate the large aggregate traffic between

Purdue University and all destinations on the Internet, while the amount of traffic

to any single destination is much smaller.

The question we attempt to answer in this section is: will similar simplicity results

as in Section 2.2.3 hold in this type of large networks? We will first present a different

scaling model that allows the topology of the network to become more complex as

we scale its capacity. We will then show that, under some reasonable assumptions,

the performance of appropriately chosen static schemes will still approach that of

the optimal dynamic schemes, as long as the capacity of the network is large.

We consider a series of networks indexed by the scaling factor c. We use L(c),

I(c), and C(c) to denote the number of links, the number of classes, and the routing

matrix, respectively, in the c-th network. Note that in the scaling (S1) in Sec-

tion 2.2.3, these quantities are assumed to be fixed for all c. In this section, in order

to accommodate topological changes, we allow them to vary with c. We still use
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λc
i(u) and Rl,c to denote the demand function for class i and the capacity of link l,

respectively, in the c-th system. However, unlike the case for the scaling (S1), λc
i(u)

and Rl,c do not need to follow the linear scaling rule.

The scale of the c-th network is defined as

S(c) = min
l=1,...,L(c)

Rl,c

max
i:Cl

i=1
rc
i

.

We will consider the scaling (S2) that satisfies the following set of assumptions:

(A) S(c) → ∞, as c → ∞.

(B) For all networks, the maximum number of links on any route is bounded from

above by a number M .

The first assumption simply states that, with large c, the capacity of each link in

the network will be large compared to the bandwidth requirement of each flow that

goes through the link. The second assumption limits the maximum number of hops

each flow can traverse. This is a reasonable assumption: for example, in TCP/IP, the

TTL (time-to-live) field in the IP header occupies only 8 bits. This effectively put an

upper bound of 255 on the number of hops a flow can traverse within a network. Real

Internet topology exhibits the small world phenomenon [37, 38], where the average

number of hops of a source-destination pair is typically small. Any series of networks

under scaling (S1) trivially satisfy scaling (S2).

Finally, let λc
max,i be the maximal value of λc

i(u). Let uc
i(λi) be the inverse function

of λc
i(ui). We assume that:

(C) The function F c
i (λi) = λiu

c
i(λi) is concave in (0, λc

max,i) for all c and i.

Let J∗,c, J c
s , and J c

ub be the optimal dynamic revenue, the optimal static revenue,

and the upper bound, respectively, for the c-th network. By Proposition 2.2.2,

under Assumption C, the optimal dynamic revenue J ∗,c is no greater than J c
ub for

all c. In general, J c
ub does not follow the simple linear rule as in scaling (S1).

Hence, Proposition 2.2.3 will not hold under scaling (S2). Instead, we can show the

following:
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Proposition 2.2.5 Under Scaling (S2) and Assumption C, as c → ∞, the relative

difference among the optimal dynamic revenue J ∗,c, the optimal static revenue J c
s ,

and the upper bound J c
ub will converges to zero. That is,

lim
k→∞

J c
ub − J c

s

J c
ub

= lim
k→∞

J c
ub − J∗,c

J c
ub

= 0.

The proof is provided in Appendix A.3. Proposition 2.2.5 tells us that no matter

how complex the topology of the network is, as long as the capacity of the network

is large, the performance of the optimal static scheme will be close to that of the

optimal dynamic scheme. We defer relevant numerical results until Section 2.3. The

definition of S(c) allows us to apply this result to certain networks with heterogeneous

capacity. The network could have both large-capacity links and small-capacity links,

and both large-bandwidth flows and small-bandwidth flows. As long as the capacity

of each link is large compared to the bandwidth requirement of the flows that traverse

the link, static schemes will suffice. On the other hand, there may exist network

scenarios where S(c) is not large, which means that the capacity of some links can

only accommodate a small number of flows that go through them. Proposition 2.2.5

will not hold in such scenarios.

It is easy to check that Proposition 2.2.3 and Proposition 2.2.5 are equivalent

under scaling (S1). There is yet a difference between the results we can obtain

under the two different types of scaling. Under scaling (S1), we can show that the

price ~uub induced by the upper bound suffices to be the near-optimal static price

(see Proposition 2.2.4). Such conclusion cannot be drawn under scaling (S2). The

difficulty is that, under scaling (S2), we cannot show that the blocking probability

Pc
loss,i[~u

ub] at the static price ~uub goes to zero as c → ∞ when the constraints in the

upper bound (2.2) are satisfied with equality. In spite of this technical difficulty, we

expect that in most cases the price induced by the upper bound would still suffice

under scaling (S2). We can argue as follows using the familiar independent blocking

assumption underlying the Erlang Fixed Point approximation [39], i.e., we assume

that blocking occurs independently at each link. Under the independent blocking

assumption, the blocking probability B l at each link l can be calculated as if the
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traffic offered to the link l comprises independent Poisson streams with arrival rates

that are “thinned” by other links in the network. At the price induced by the upper

bound, the offered load at any link l after “thinning” will be no greater than the

offered load before “thinning”, i.e.,
∑

i
λc

i

µi
ri, which is no greater than the capacity Rl,c

of the link l. Applying the techniques in the proof of Lemma 2.2.1 to a single link, we

can show that, if the independent blocking assumption holds, the blocking probability

at each link will go to zero as S(c) → ∞, and the convergence is uniform over all

links. Since the number of hops each route can traverse is upper bounded by M , we

can then infer that the blocking probability of all classes will go to zero uniformly

as S(c) → ∞. Therefore, using an argument similar to that of Proposition 2.2.3,

we can infer that the price induced by the upper bound will suffice. The validity

of the above argument relies on the independent blocking assumptions. A rigorous

characterization of this convergence is an interesting problem for future work.

2.2.7 Remarks on Non-stationary Scenarios

We have shown under two different types of scaling that the performance of an

appropriately chosen static pricing scheme will approach that of the optimal dynamic

pricing scheme when the capacity of the network is large. We conclude this section

with some discussion on the assumption we have made. In our model, we assume

that the demand function λi(ui), the mean service time 1/µi and the capacity Rl are

fixed. Hence, we have assumed that the network condition is stationary. However,

in practice the network condition is usually non-stationary and even the average

network statistics can change over time. If we assume that the changes of these

average network conditions are at a much slower time scale than that of the flow

arrivals and departures, we can still use the result in this section with the following

interpretation: the static scheme should be interpreted as prices being fixed over

a time period for which the network statistics do not change (which is typically

a fairly long time in real networks) and the average network condition should be
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interpreted as the average of the dominant network condition over such a time period.

Similarly, the invariance result regarding prediction should also be interpreted under

this context: if the dynamic pricing scheme uses a prediction window (i.e., d in

Equation (2.1)) that is smaller than the time scale of the changes of the average

network condition, then the dynamic scheme will not significantly outperform the

static pricing scheme. Over the longer time scale, the prices should still adapt to

the changes in the dominant network condition and prediction on the changes of the

average network statistics will help.

2.3 Dynamic Routing

Our analyses in Section 2.2 have focused on systems where routing is fixed. We

next consider systems with dynamic routing. Many results in the Quality-of-Service

(QoS) routing literature focus on finding the “best” route for each individual flow

based on the instantaneous network conditions. When these QoS routing algorithms

are used for dynamic routing, the network is typically required to first collect link

states (such as available bandwidth, delay, etc.) on a regular basis. Then, when

a request for a new flow arrives, the QoS routing algorithms are invoked to find

a route that can accommodate the flow. When there are multiple routes that can

satisfy the request, certain heuristics are used to pick one of the routes. However,

such “greedy” routing policies may be sub-optimal system wide, because a greedy

selection may result in an unfavorable configuration such that more future flows

are blocked. Further, an obstacle to the implementation of this type of routing

policies is that it consumes a significant amount of resources to propagate link states

throughout the network. Propagation delay and stale information will also degrade

the quality of the routing decision.

In this section, we will formulate a dynamic routing problem that directly opti-

mizes the total system revenue. Although our model is simplified, it reveals impor-

tant insight on the performance tradeoff among different types of routing policies.
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We will first establish an upper bound on the performance of all dynamic schemes,

which are schemes that can compute both the prices and the routing decisions based

on the instantaneous congestion level of the network. We will then show that the

performance of an appropriate chosen static scheme, which uses static prices and

selects routes based on some pre-determined probabilities, can approach the perfor-

mance of the optimal dynamic scheme when the system is large. The static scheme

only requires some average parameters. It consumes less communication and com-

putation resources, and is insensitive to network delay. Thus the static scheme is an

attractive alternative for control of routing in large networks.

The network model is similar to that of Section 2.2, except that now a user of

class i has θ(i) alternative routes that are represented by the matrix {H l
ij} such

that H l
ij = 1, if route j of class i uses resource l and H l

ij = 0, otherwise. The

dynamic schemes we consider have the following idealized properties: The routes of

existing flows can be changed during their connection; and the traffic of a given flow

can be transmitted on multiple routes at the same time. Thus our model captures

the packet-level dynamic routing capability in the current Internet. These idealized

capabilities allow dynamic schemes to “pack” more flows into the system. Yet, we will

show that an appropriately chosen static scheme will have comparable performance

to the optimal dynamic scheme.

Let ni be the number of flows of class i currently in the network. Consider the

k-th flow of class i, k = 1, ..., ni. Let P k
ij denote the proportion of traffic of flow k

assigned to route j, j = 1, ...θ(i). Then, state ~n = {n1, ..., nI} is feasible if and only

if

There exists P k
ij such that

θ(i)
∑

j=1

P k
ij = 1,∀i, k,

and
I
∑

i=1

θ(i)
∑

j=1

riH
l
ij

ni
∑

k=1

P k
ij ≤ Rl for all l.

(2.6)

The set of feasible states is Ω = {~n such that (2.6) is satisfied}.
A dynamic scheme can charge prices based on the current state of the network, or

a finite amount of past history, i.e., prediction based on past history. (For simplicity
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we consider pricing schemes that are insensitive to the individual holding times.)

An incoming flow will be admitted if the resulting state is in Ω. Once the flow is

admitted, its route (i.e., P k
ij) is assigned based on (2.6), involving (in an idealized

dynamic scheme) possible rearrangement of routes of all existing flows. We assume

that such rearrangement can be carried out instantaneously. Thus a dynamic scheme

can be modeled by ui(t) = gi(~n(s), s ∈ [t − d, t]), where gi is a function from Ω[−d,0]

to R. Let ~g = {g1, ..., gI}.
The performance objective is again the expected revenue per unit time generated

by the incoming flows admitted into the system. The performance of the optimal

dynamic scheme is given by:

J∗ , max
~g

E{
I
∑

i=1

λi(ui(t))ui(t)
1

µi

} (2.7)

subject to (2.6).

The expectation is taken with respect to the steady state distribution. Note that

(2.7) is independent of t because of stationarity and ergodicity.

The set of dynamic schemes we have described may require complex capabilities

(e.g., rearrangements of routes and transmitting traffic of a single flow over mul-

tiple routes) and hence may not be suitable for actual implementation. We make

clear here that we do not advocate implementing such schemes but instead advocate

implementing static schemes. In fact, we will show that, as the system scales, our

static scheme will approach the performance of the optimal (and idealized) dynamic

scheme. The static schemes do not require the afore-mentioned complex capabilities

and could be an attractive alternative for network routing.

Let ui = ui(λi) and Fi(λi) = ui(λi)λi. Analogous to Proposition 2.2.2, we can

derive the following upper bound on the optimal revenue in (2.7). The proof is a

natural extension of that of Proposition 2.2.2.
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Proposition 2.3.1 If the function Fi is concave in (0, λmax,i) for all i, then J∗ ≤
Jub, where Jub is defined as the solution for the following optimization problem:

Jub , max
λij

I
∑

i=1

Fi(

θ(i)
∑

j=1

λij)
1

µi

(2.8)

subject to
I
∑

i=1

θ(i)
∑

j=1

λij

µi

H l
ijri ≤ Rl ∀l.

Proof Assuming that we have already obtained an optimal dynamic policy ~g(.),

let u∗
i (t) and P k∗

ij (t) be the price and routing proportions under such an optimal

policy, let λi(t) = λi(u
∗
i (t)) be the corresponding arrival rates, and let n∗

i (t) be the

evolution of the number of calls in the system. Let P ∗
ij(t) =

∑n∗
i (t)

k=1 P k∗
ij (t)/n∗

i (t). We

can treat these as random variables. Let n∗
i , P ∗

ij, and λ∗
i represent random variables

with their corresponding stationary distribution, and let λij = E{n∗
i P

∗
ij}µi. Since

I
∑

i=1

θ(i)
∑

j=1

n∗
i (t)P

∗
ij(t)H

l
ijri ≤ Rl, for all l, we have

I
∑

i=1

θ(i)
∑

j=1

λij

µi

H l
ijri ≤ Rl, for all l.

Therefore λij satisfies (2.9).

From Little’s Law, we have

E{λ∗
i }/µi = E{n∗

i ] =

θ(i)
∑

j=1

E{n∗
i P

∗
ij} =

θ(i)
∑

j=1

λij/µi.

Now if the functions Fi are concave, we have

J∗ = E{
I
∑

i=1

Fi(λ
∗
i )

1

µi

} ≤
I
∑

i=1

Fi(E{λ∗
i })

1

µi

=
I
∑

i=1

Fi(

θ(i)
∑

j=1

λij)
1

µi

≤ Jub,

by Jensen’s Inequality.

We next construct our static scheme using probablistic routing as follows: The

network charges a static price to all incoming flows, and the incoming flows are di-

rected to alternative routes based on pre-determined probabilities. Note that the
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static scheme does not have the idealized capabilities prescribed for the dynamic

schemes, i.e., all traffic of a flow has to follow the same path, and rearrangement

of routes of existing flows is not allowed. Let {us
i , P

s
ij} denote such a static scheme,

where us
i is the price for class i, and P s

ij is the bifurcation probability that an incom-

ing flow from class i is directed to route j. The performance of the optimal static

scheme is then given by:

Js , max

us
i ,P s

ij ,
θ(i)
P

j=1
P s

ij=1

I
∑

i=1

θ(i)
∑

j=1

λi(u
s
i )u

s
iP

s
ij

1

µi

[1 − PLoss,ij ], (2.9)

where PLoss,ij is the blocking probability experienced by users of class i routed to j.

We consider a special static scheme derived from the solution of the upper bound

in Proposition 2.3.1. If λub
ij is the maximal solution to the upper bound, we let

us
i = ui(

θ(i)
∑

j=1

λub
ij ), and P s

ij =
λub

ij

θ(i)
P

j=1
λub

ij

. The revenue with this static scheme differs from

the upper bound only by the term (1−PLoss,ij), and this revenue will be less than Js.

However, under scaling (S1), we can show that, as c → ∞, Ploss,ij → 0. Therefore,

we have our invariance result (stated next).

Proposition 2.3.2 In the dynamic routing model, if the function Fi is concave in

(0, λmax,i) for all i, then under the scaling (S1),

lim
c→∞

J c
s/c = lim

c→∞
J∗,c/c = lim

c→∞
J c

ub/c = Jub.

Proof First we notice again that the normalized upper bound J c
ub/c is fixed over

all c. Therefore the optimal price induced by the upper bound is also independent

of c. Since J c
s ≤ J∗,c ≤ J c

ub = cJub, we only need to show that limc→∞
Jc

s

c
≥ Jub.

Now consider J c
s . When we use the static price and routing probabilities induced

by the upper bound, i.e., us
i = ui(

θ(i)
∑

j=1

λub
ij ) and P s

ij =
λub

ij

θ(i)
P

j=1
λub

ij

, then λub
ij = λi(u

s
i )P

s
ij is

exactly the arrival rate to path j from flows of class i. Hence, the constraint of Jub

will be satisfied, i.e.,
I
∑

i=1

θ(i)
∑

j=1

λub
ij

µi

H l
ijri ≤ Rl ∀l. (2.10)
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Let J c
0 denote the revenue under this static price. Since (2.10) guarantees that the

condition of Lemma 2.2.1 is met, we have Ploss,ij → 0, as c → ∞. Therefore

lim
c→∞

J c
0

c
= lim

c→∞

I
∑

i=1

θ(i)
∑

j=1

λi(u
s
i )u

s
i

1

µi

P s
ij(1 − Ploss,ij)

=
I
∑

i=1

λi(u
s
i )u

s
i

1

µi

= Jub. (2.11)

Therefore,

lim
c→∞

J c
s

c
≥ lim

c→∞

J c
0

c
≥ Jub

and the result follows.

A similar result under scaling (S2) can be stated analogous to Proposition 2.2.5.

When the routing is fixed, by replacing λij with λi, and H l
ij with C l

i , we recover

Propositions 2.2.2 and 2.2.3 from the results in this section. When there are multiple

alternate routes, the upper bound in Proposition 2.3.1 is typically larger than that of

Proposition 2.2.2. Therefore one can indeed improve revenue by employing dynamic

routing. However, Proposition 2.3.2 shows that, when the system is large, most of

the performance gain can also be obtained by simpler static schemes that routes

incoming flows based on pre-determined probabilities. Further, what we learn is

that for large systems the capability to rearrange routes and to transmit traffic of a

single flow on multiple routes does not lead to significant performance gains.

Not only can the static schemes be asymptotically optimal, they also have a very

simple structure. Their parameters are determined by average conditions rather than

instantaneous conditions. Collecting average information introduces less communi-

cation and processing overhead, and it is also insensitive to network delay. Hence

the static schemes are much easier to implement in practice.

The asymptotically optimal static scheme also reveals the macroscopic structure

of the optimal dynamic scheme. For example, the static price us
i shows the preference

of some classes than the others, and the static bifurcation probability P s
ij reveals the

preference on certain routes than the other. While a “greedy” routing scheme tries
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A

CB

λAB

λBC
λCA

Fig. 2.4. The dynamic routing problem: There are 3 classes of flows,
AB, BC, CA. For each class, there are two alternate routes. For
example, for class AB, the direct one-link path is A → B, while the
indirect two-link path is A → C → B.

to accommodate each individual flow, the optimal static scheme may reveal that one

should indeed prevent some flows from entering the network, or prevent some routes

from being used.

We use the following examples to illustrate the results in this section. We

first consider a triangular network (Fig. 2.4). There are three classes of flows,

AB,BC,CA. There are two possible routes for each class of calls, i.e., a direct one-

link path (route 1), and an indirect two-link path (route 2). Each call consumes one

bandwidth unit along the link(s) and holds the link(s) for a mean time of 1 unit.

Let the capacity of all links be R.

Let ~λ = {λAB,1, λAB,2, λBC,1, λBC,2, λCA,1, λCA,2}. By Proposition 2.3.1, we can

formulate the upper bound as (based on (2.8)):

Jub = max
~λ

∑

i=AB,BC,CA

λiui(λi) (2.12)

λi = λi,1 + λi,2, i = AB,BC,CA,

subject to the following resource constraints:

λAB,1 + λBC,2 + λCA,2 ≤ R

λBC,1 + λAB,2 + λCA,2 ≤ R
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λCA,1 + λAB,2 + λBC,2 ≤ R

λi,j ≥ 0, i = AB,BC,CA, j = 1, 2.

Once the upper bound is solved, we can find the near-optimal static scheme using the

one induced by the upper bound, i.e., the price charged to class i, i = AB,BC,CA,

is

us
i = ui(λi,1 + λi,2),

and the bifurcation probabilities are

P s
i,1 =

λi,1

λi,1 + λi,2

P s
i,2 =

λi,2

λi,1 + λi,2

.

Let R = 100. We consider the following examples:

1) When the price-elasticity function of all classes are λAB(u) = λBC(u) =

λCA(u) = 100(1 − u), the solution of (2.12) gives λAB = λBC = λCA = 50, and

the prices for each class are us
AB = us

BC = us
CA = 0.5. It also coincides with the

solution of the unconstrained version of (2.12). This corresponds to the case of

light traffic load. The price is only determined by the price-elasticity of each class.

There are multiple solutions for the bifurcation. One example is λi,1 = 50, and

λi,2 = 0, i = AB,BC,CA, i.e., all calls use the direct link.

2) When we change the price-elasticity of class AB to λAB(u) = 500(1 − u), the

solution of (2.12) is shown in Table 2.4. This corresponds to the case of heavy traffic

load. The price are raised from that of the unconstrained problem in order to limit

incoming traffic. All constraints are binding. Note that here in order to maximize

the revenue, class AB has a higher arrival rate λi than that of class BC and CA, and

the network should allow flows from class AB to use indirect two-link path, while

flows from classes BC and CA should not be allowed to use the indirect routes.

We next use a larger network example to demonstrate the optimality of static

schemes with probablistic routing. We use the BRITE topology generation tool [40]

and the Barabasi-Albert model [38] to generate a random network with 100 nodes
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Table 2.4
Solution of the upper bound in the dynamic routing problem: when
the price-elasticity of class AB is λAB(u) = 500(1 − u)

Class AB Class BC Class CA

λi,1 100 40.91 40.91

λi,2 59.09 0 0

λi 159.09 40.91 40.91

Price us
i 0.682 0.591 0.591

P s
i,1 62.86% 100% 100%

P s
i,2 37.14% 0 0
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and 197 links. The Barabasi-Albert topology model is able to capture the power-law

of node-connectivity in real Internet topologies. There are a total of 9900 source-

destination (s-d) pairs. For each s-d pair, we use the set of minimum-hop paths as

the alternate paths. The demand function for each source-destination pair is the

same. We formulate the upper bound for the randomly-generated network, and use

standard convex optimization methods to solve the static prices and the bifurcation

probabilities. We then use simulation to obtain the static revenue under the prices

and the bifurcation probabilities induced by the upper bound.

We present the following result from a typical simulation. The bandwidth for each

link is 1000 units. The bandwidth requirement of each flow is 1 unit and the mean

holding time is 1 unit. The demand function for each s-d pair is λ(u) = 10(1 − u).

At this level of demand, around 22% of the links experience congestion, i.e., their

respective constraints in (2.8) are binding. The upper bound is found to be 2.45×104,

while the static revenue obtained from the simulation is 2.40 × 104. The relative

difference is just 2%. This validates our result that the performance of static schemes

is close to that of the optimal dynamic scheme and the upper bound. Among the

9900 s-d pairs, around 49% have multiple alternate routes. However, among those

with multiple routes, only 30% actually use multiple routes. Hence, a large number

of s-d pairs does not benefit from multiple alternative paths. The average number

of routes between a s-d pair is 2.15. Finally, note that in this example, the end-

to-end demand of each source-destination pair is at most 10(1 − 0)/1 = 10, which

is much smaller than the capacity of the links (1000 units). Hence, this simulation

serves to validate our result under scaling (S2) where the number of users of each

source-destination pair is much smaller than the capacity of the network. In all of

our simulations, the prices induced by the upper bound turn out to be near-optimal,

even although we have not been able to establish this optimality rigorously under

scaling (S2). We have also run simulations using other topology models and find

similar results.
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2.4 Elastic Flows

In previous sections we have restricted ourselves to the case when the bandwidth

requirements of flows are fixed. In this section we will study an alternate model where

users can change their bandwidth requirements according to the current congestion

level of the network. For ease of exposition we assume that there is only one route for

each class i. The routes are again represented by the matrix {C l
i} as in Section 2.2.

Flows of class i enter the network according to a Poisson process with rate λi.

The service times of flows of class i are i.i.d. with mean 1/µi. The service time

distribution is general. Let Ui(xi) be the utility function for each class i, where xi

is the amount of resource assigned to a class i flow along its route. We assume that

Ui is a continuous differentiable and strictly concave function of xi, and Ui(0) = 0.

This model is appropriate for real-time streaming applications that can change the

transmission rate according to the network congestion level. For example, the utility

function Ui(xi) can be taken as the index of reception quality when the real-time

stream is transmitting at rate xi.

The network tries to allocate resources to the flows so that the total utility

of all flows supported by the network is maximized. For each flow, the resource

allocation may vary over time. In this section, we will first establish the optimal

dynamic scheme. We will then show, as before, that there exists a static scheme

whose performance will approach that of the optimal dynamic scheme when the

system is large. Surprisingly, this near-optimal solution is in a “fixed-bandwidth”

and “loss-network” form as in Section 2.2.
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2.4.1 The Optimal Dynamic Scheme

Let ni(t) be the number of flows from class i that are in the network at time t.

Let ~n(t) = {n1(t), n2(t), ..., nI(t)}. The optimal resource assignment is then given

by the solution to the following problem:

J∗(~n(t)) , max
x1,...,xI

I
∑

i=1

ni(t)Ui(xi) (2.13)

subject to
I
∑

i=1

ni(t)xiC
l
i ≤ Rl,

where J∗(~n(t)) can be interpreted as the maximal total utility achieved by the system

at time t. For each t we can solve (2.13) and obtain the optimal assignment xi(t).

Over time, this policy will optimize the total utility.

Remark: In the optimal assignment (2.13), each flow of class i will consume the

same amount of resource xi. This is a consequence of the concavity of Ui.

In the past (e.g., [14–16, 41]) this model has been used to study the behavior of

TCP congestion control when the number of flows in the system is fixed. It has been

shown that there exist distributed algorithms that can drive the flows to the optimal

resource assignment. The notion of “price” arises naturally as Lagrange multipliers

for the constraints. Some examples of such distributed algorithms resemble the

control of TCP in the Internet. Therefore, TCP congestion control can be seen to

maximize the total utility of a group of users with concave utility functions. Our

model is different from theirs because we consider the dynamics caused by the arrivals

and departures of flows. We are interested in finding alternative forms of resource

assignment schemes that can also achieve near optimal total utility when the system

is large. These schemes can then be used in cases when TCP does not work as well.
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2.4.2 An Upper Bound

Let E[ni] be the stationary mean of ni(t), i.e., E[ni] = λi/µi. We formulate

another optimization problem:

Jub , max
x1,...,xI

I
∑

i=1

E[ni]Ui(xi) (2.14)

subject to
I
∑

i=1

E[ni]xiC
l
i ≤ Rl.

Proposition 2.4.1 The expected total utility of the optimal dynamic scheme is up-

per bounded by Jub, i.e. E[J∗] ≤ Jub, where the expectation is taken with respect to

the steady state distribution of ni(t).

Proof Note that J∗ is a function of ~n(t) = {ni(t), i = 1, ...I}. Then Jub = J∗(E[~n]).

To show that E[J∗(~n)] ≤ J∗(E[~n]) = Jub, it is sufficient to show that J∗(~n) is

a concave function of ~n,i.e., for any ~n1 = [n1
1, n

1
2, ..., n

1
I ], ~n2 = [n2

1, n
2
2, ..., n

2
I ] and

0 ≤ a ≤ 1, let ni = an1
i + (1 − a)n2

i , ~n = [ni], we need

J∗(~n) ≥ aJ∗(~n1) + (1 − a)J∗(~n2).

In order to show this, let x1
i , x

2
i be the optimal assignment leading to J∗(~n1) and

J∗(~n2) respectively. Let

xi =
an1

i x
1
i + (1 − a)n2

i x
2
i

an1
i + (1 − a)n2

i

,

then
I
∑

i=1

(

an1
i + (1 − a)n2

i

)

xiC
l
i ≤ Rl.

Since Ui is concave, we have

Ui(xi) ≥
an1

i Ui(x
1
i ) + (1 − a)n2

i Ui(x
2
i )

an1
i + (1 − a)n2

i

.

Hence,

J∗(~n) ≥
I
∑

i=1

(an1
i + (1 − a)n2

i )Ui(xi)

≥
I
∑

i=1

(

an1
i Ui(x

1
i ) + (1 − a)n2

i Ui(x
2
i )
)

= aJ∗(~n1) + (1 − a)J∗(~n2),
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and the result follows.

2.4.3 Static Policy

Let x0 = {x0
1, x

0
2, ..., x

0
I} be the maximizer of (2.14). Now consider the following

control algorithm with a static rate assignment: when a new flow from class i arrives

to the network, it will be assigned a rate x0
i if there is enough capacity available

along its route, otherwise it will either be blocked, or, equivalently, be assigned a

rate 0. Therefore, the flow is still elastic except that the rate is chosen according

to the average condition as in (2.14) rather than the instantaneous condition as in

(2.13). The flow will hold the same amount of resource x0
i until it leaves the system.

In such a system, the expected total utility will be

Js ,

I
∑

i=1

λi

µi

Ui(x
0
i )(1 − Ploss,i),

where Ploss,i is the blocking probability of class i. Under scaling (S), we have the

following proposition.

Proposition 2.4.2 In the elastic flow model,

lim
c→∞

1

c
J c

s = lim
c→∞

1

c
E[J∗,c] = lim

c→∞

1

c
J c

ub = Jub.

Proof Since
∑I

i=1
λi

µi
x0

i C
l
i =

∑I
i=1 E[ni]x

0
i C

l
i ≤ Rl, as c → ∞, we have Ploss,i → 0.

Therefore

J c
s/c =

I
∑

i=1

λi

µi

Ui(x
0
i )(1 − Ploss,i)

→
I
∑

i=1

E[ni]Ui(x
0
i ) = J c

ub/c.

Now J c
s/c ≤ E[J∗,c]/c ≤ J c

ub/c, then the result follows.

An application of this result is on the rate control of real-time flows (e.g. audio

and video streaming) on the Internet. A central question in congestion control of
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streaming traffic is its fairness with respect to TCP. When real-time flows and TCP

flows coexist in the same network, they should consume comparable bandwidth, and

neither flows should be starved by the other. Among the existing congestion control

schemes for real-time flows, some use the same AIMD (Additive Increase Multiplica-

tive Decrease) idea as TCP [42]. They are usually fair with TCP if timeouts occur

infrequently. However, these schemes typically produce a TCP-like saw-tooth type

of trajectory, which leads to rapid changes in reception quality. Such rapid changes

in quality are disconcerting for the viewer of multimedia flows [43]. Equation-based

congestion control does not use AIMD and produces smoother rates at small time-

scales. However, simulation results show that at time-scales around 10 seconds, the

fluctuation is still quite significant [44]. There are yet other schemes, such as some

binomial algorithms [45], which change the rate slower than TCP. However they are

also slower in adapting to changing network conditions.

Note that fairness objectives are very closely related to the utility maximization

objectives. For example, proportional fairness is equivalent to maximizing the total

utility of a group of users with log-utility functions. If we adopt utility maximization

as a substitute for the fairness requirement, we can use the result in this section to

obtain a new class of congestion-control algorithms for real-time traffic. For example,

consider the special case when α portion of the flows are real-time flows, and the

rest are TCP flows. To be precise, let nRT
i (t) and nTCP

i (t) denote the number of

real-time flows and TCP flows, respectively, at time t. Then their stationary means

are E[nRT
i ] = αE[ni] and E[nTCP

i ] = (1− α)E[ni]. Let us assign to real-time flows of

class i the fixed bandwidth x0
i that is the maximizer of (2.14), and allow the real-time

flows to use the same amount of bandwidth throughout the connection. Such fixed

bandwidth allocation is beneficial to streaming applications because it ensures a

stable reception quality for the viewer. Therefore the expected total utility achieved

by real-time flows is given by

JRT = E[nRT
i ]Ui(x

0
i )(1 − PRT

loss,i) = αJub(1 − PRT
loss,i),
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where PRT
loss,i is the blocking probability experienced by the real-time flows. The

total utility achieved by TCP flows at time t is given by the following optimization

problem:

JTCP , max
x1,...,xI

I
∑

i=1

nTCP
i (t)Ui(xi), (2.15)

subject to
I
∑

i=1

nTCP
i (t)xiC

l
i ≤ Rl −

I
∑

i=1

nRT
i (t)xiC

l
i .

The expected total utility achieved by both the real-time flows and the TCP flows,

JRT+E[JTCP], is bounded from above by Jub and bounded from below by Js. There-

fore, by Proposition 2.4.2,

lim
c→∞

JRT,c + E[JTCP,c]

c
= lim

c→∞

J c
ub

c
= Jub,

where JRT,c, JTCP,c and J c
ub are the respective utility when the system is scaled by

c. Now by Lemma 2.2.1,

lim
c→∞

PRT
loss,i = 0.

Therefore

lim
c→∞

JRT,c

c
= αJub,

and we conclude that

lim
c→∞

E[JTCP,c]

c
= (1 − α)Jub.

Note that by Proposition 2.4.2, (1−α)Jub is also the limit of the normalized expected

total utility achieved by the TCP flows as c → ∞, when the remaining portion α

of the flows are also TCP flows. This shows that when the same utility functions

are used for both the real-time flows and TCP flows, assigning the fixed bandwidth

x0
i to real-time flows does not degrade the performance of the TCP flows when the

system is large.

It is interesting to compare existing congestion-control schemes with our scheme

above. In existing schemes, flows start from an arbitrary initial condition, and con-

gestion control is exercised during the connection. In our scheme, congestion control
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is exercised at the beginning of the connection. The congestion controller reacts to

changing network condition by choosing the correct initial bandwidth assignment for

incoming flows. Although our scheme does not modify the bandwidth assignment

for on-going flows, the difference between the total utility of our scheme and the

optimal utility is minimal (when the system is large). Therefore, in the long run,

the real-time flows and TCP flows will receive fair share of the bandwidth. In future

work we plan to investigate the problem of efficiently distributing our congestion

controller over the network.

2.5 Conclusion, Discussion, and Future Work

In this chapter, we have studied the simplification of pricing-based network con-

trol in large-capacity communication networks. We have shown under general set-

tings that the performance of an appropriately chosen static scheme can approach

that of the optimal dynamic scheme when the capacity of the network is large. These

results have important implications for the design and control of large-capacity net-

works. Compared with the optimal dynamic scheme, the static scheme has several

desirable features. The static schemes are much easier to obtain because of their

simple structures. They are also much easier to execute since they do not require

the collection of instantaneous load information. Instead, they only depend on some

average parameters, such as the average load. Hence, they introduce less compu-

tation and communication overhead, and they are less sensitive to feedback delay.

These advantages make the static scheme an attractive alternative for controlling

large networks.

However, one should keep in mind that static schemes also have their disad-

vantage, namely, their lack of adaptivity. Static schemes could be more sensitive

to modeling errors than dynamic schemes [46, 47]. If the parameters of the model

are estimated incorrectly, the resulting static scheme may lead to bad performance.

Further, as we discussed at the end of Section 2.2, the network condition may be
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non-stationary and even the average network parameters may change over time.

The static prices that are good for one time may not be good for the next moment.

Therefore, we are not advocating that in practice purely static schemes (i.e., prices

being fixed for all time) be used.

Nonetheless, we believe that the results in this chapter can be exploited to de-

velop practical network control algorithms that are both simple and adaptive. One

direction is to develop efficient algorithms that can compute the static prices based

on the current dominant network condition and allow the prices to adaptively track

the changes in the average network parameters. Here we briefly discuss one possible

approach. Note that although the static prices are calculated by solving a global

optimization problem, i.e., the upper bound (2.2) or (2.8), it is possible to develop

a distributed solution. Indeed, we can associate a non-negative Lagrange multiplier

pl for the constraint at each resource l. The Lagrange multiplier pl can be viewed as

the implicit cost that summarizes the congestion information at link l. Given pl, in

order to determine the price for class i, one only needs to know the price-elasticity

of class i (i.e., the function Fi) and the sum of the implicit costs along the path that

flows of class i traverse. Therefore we can decompose the global optimization problem

into several subproblems for each class. We can have the core routers update these

implicit costs based on the congestion level at each link and have the ingress router

serve as “brokers” to probe these implicit costs and determine the price offered to

users of each class i. The idea of this decomposition has been used in [15] and [16] to

develop distributed algorithms for optimization flow control, and it is also mentioned

in [17] for computing the static prices in the single-link case.

The distributed algorithm described above can achieve adaptivity in several ways.

Firstly, the edge router can use the online measurement of flow arrivals at different

price levels to update its estimate of the demand function. Secondly, the core router

can use the online measurement of the congestion level at each link to update the

implicit costs.
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It is instructive to compare such a quasi-static distributed algorithm with typical

dynamic and static schemes. Note that since the distributed algorithm updates the

implicit costs based on online measurements of the congestion level at the link, it can

also be viewed as a dynamic scheme. However, the distributed algorithm is based on

the asymptotic optimality of the static schemes. It attempts to solve for the static

prices according to the current dominant network condition. Hence, we refer to the

distributed algorithm as being quasi-static. On one hand, the distributed algorithm

exploits the simplicity of the static scheme, thus has a simple form and is easier

to implement than the optimal dynamic scheme. When the network condition is

stationary, the prices computed by the distributed algorithm will converge to that

of the near-optimal static scheme. On the other hand, the distributed algorithm is

by definition also dynamic in that, when the network condition is non-stationary,

the prices computed by the distributed algorithm will track the long term changes.

Hence, the distributed algorithm is more robust than purely static schemes.

In Chapter 3, we will turn to the simplification of Quality-of-Service routing in

high-bandwidth networks. Although there is no notion of “price” in the QoS routing

problem in Chapter 3, simplicity results similar to those in this chapter still hold.

Further, we will develop in Chapter 3 a quasi-static adaptive scheme similar to the

one we just described. We will show that such a scheme can significantly reduce the

computation and communication overhead of QoS routing without sacrificing the

routing performance.

As a final remark of this chapter, we note that there are also possibilities of

extremal changes in network conditions, such as failures of network components.

When such situations occur, an appropriate immediate response is usually more

important than an optimal but slower one. For such situations, other levels of

network control, such as failure detection and fault recovery, are more appropriate

than the pricing-based control studied in this chapter.



54

3. SIMPLIFICATION OF QUALITY-OF-SERVICE

ROUTING IN HIGH-BANDWIDTH NETWORKS

3.1 Introduction

In Chapter 2, we have modeled the network control problem as a pricing problem,

and we have shown that significant simplicity can arise in pricing-based network con-

trol when the capacity of the system is large. In particular, we have shown that simple

static pricing schemes can approach the performance of the optimal dynamic scheme

in large-capacity networks. Static schemes have a number of attractive features.

The near-optimal static prices can easily be derived from the solution of a simple

non-linear programming problem. The static schemes are also easy to implement

because they do not require the collection of each instantaneous state information

of the network. Rather, they only depend on some average statistics such as the

average offered load. Therefore, static schemes introduce less communication and

computation overhead and they are insensitive to feedback delays. These features

make static schemes attractive alternatives for the control of large networks.

Having said that, we note that there are still two factors that may prevent us

from using static schemes as practical control mechanisms for real networks. Firstly,

to obtain the parameters of the static scheme, one typically needs to solve a global

optimization problem. A centralized approach for solving this optimization problem

is usually impractical in real systems due to scalability and reliability concerns.

Secondly, in real systems the average network condition may also change over time.

Purely static schemes lack the adaptivity that is required to track the non-stationary

behavior in real networks. Therefore, in order to exploit the simplicity results in
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Chapter 2, it is imperative that we are able to develop distributed and adaptive

solutions based on simple static control schemes.

In this chapter, we will study how to develop such distributed and adaptive solu-

tions. In order to highlight the practical significance of these types of solutions, we

will derive our result in the context of the Quality-of-Service (QoS) routing problem

in high-bandwidth networks. Nonetheless, the algorithms that we developed will

also apply to other control problems, including the pricing problem in Chapter 2. In

this chapter, we will focus on demonstrating the benefits of the proposed solution,

and we will show how the largeness of the system can be exploited to develop an

optimization-based approach to QoS routing, which significantly reduces the compu-

tation and communication overhead of QoS routing without sacrificing the routing

performance. We will defer to Chapter 4 the rigorous study of the convergence

properties of the proposed distributed algorithms.

3.1.1 Quality-of-Service Routing

Future telecommunication networks are expected to support applications with

diverse Quality-of-Service requirements. Quality-of-Service (QoS) routing is an im-

portant component of such networks and has received considerable attention over

the past decade (for a good survey, see [48] and the reference therein). The objective

of QoS routing is two-fold: to find a feasible path for each incoming connection; and

to optimize the usage of the network by balancing the load.

In this chapter, as in the majority of studies on QoS routing, we assume a source

routing model where routing decisions are made at the point where connection re-

quests originate. In most of these studies, researchers take the following view of the

QoS routing problem: The links are “dumb” and they advertise their status. The

intelligence lies in the end-systems (sources or edge routers) to compute paths based

on the current knowledge of the link states.
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The above paradigm would have worked well if the link states were stable. How-

ever, not all link state metrics are stable. In particular, the available bandwidth

metric of a link is inherently dynamic and changes frequently as connections enter

and leave the network. Therefore, the link state advertisement and the QoS routing

algorithm have to be executed frequently in order to keep up with the changes in the

link states. This leads to a significant amount of computation and communication

overhead. To reduce the computation and communication burden, the frequency

of the computation and the link state updates then need to be contained. This

could, however, result in staleness of the link state information and inaccuracy in

the routing decisions. Hence, there is a fundamental tradeoff between the amount of

computation and communication resources consumed and the quality of the routing

decisions. This tradeoff is usually difficult to analyze and researchers have had to

resort to simulation studies [49–52]. These studies reveal that the performance of

existing QoS routing schemes degrades when computation and link state updates

become infrequent. However, the extent to which the performance degrades depends

not only on how infrequently the computation and link state updates are made, but

also on a large number of other factors that include: the specifics of the path com-

putation algorithm, the topology and the demand pattern of the network, the cost

metrics assigned for each link, the link state update strategy, and the strategy to

handle routing failures, etc. In general, the exact level of performance degradation

is hard to predict.

3.1.2 Summary of Contributions

In this chapter, we take a different view of the QoS routing problem. We view

the network (including the end-systems and the links) that employs QoS routing

as an integral entity that jointly optimizes some global utility function. Once the

solution to this optimization problem is found, the network will be driven to an

efficient operating point, and the routing performance will be close to optimal. No
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further computation and communication are needed as long as the prevailing network

condition remains essentially unchanged.1

We refer to our proposed scheme as the optimization based approach for QoS

routing. In high-bandwidth networks, such an optimization based approach is advan-

tageous due to a known simplicity result, which is similar in spirit to the results that

we have developed in Chapter 2 for simplification of network pricing in large-capacity

networks. In particular, one can show that simple proportional routing schemes can

approach the performance of the optimal dynamic routing schemes when the capac-

ity of the network is large [20, 32, 33]. In a proportional routing scheme, calls are

routed to alternate paths based on pre-determined probabilities. The right routing

probabilities can be derived from the solution of a simple optimization problem that

depends only on the average demand and capacity of the network.

We will develop an online, distributed algorithm that can efficiently solve the

optimization problem and compute the right routing probabilities. Fig. 3.1 provides

a high-level view of the optimization based approach. Each link in the network

is associated with an implicit cost. The implicit cost summarizes the congestion

level at the link and can be updated by the observed demand and capacity at the

link. Thus, we equip the link with only a minimal amount of intelligence (i.e., to

update the implicit cost). It turns out that the implicit cost is the only information

that the end-system needs to solve the optimization problem. The end-system has

three components: a path-finding component that maintains a set of alternate paths;

an optimization component that solves for the optimal routing probabilities; and a

randomized routing component that routes each incoming connection based on the

precomputed routing probabilities.

Compared with existing QoS routing schemes, our optimization based approach

has the following advantages:

1In practice, some computation and communication will still be required to track changes in the
network condition. However, a nice feature of our work is that computation and communication
intensive operations can be done at very long time-scales, with a negligible impact on performance.
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Fig. 3.1. Our optimization based approach
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(1) The computation and communication overhead can be greatly reduced with-

out sacrificing performance. Once the optimal operating point is found, the same

routing parameters can be used by a large number of future arrivals, as long as

the average network condition remains unchanged. Infrequent computation and link

state updates will only affect the speed of convergence of the distributed algorithm,

but not the end-result that the algorithm converges to.

In practical networks, the average network condition can also change gradually

over time (non-stationary behavior), e.g., during the course of a day. Our distributed

algorithm will track the changes in the average network condition and adjust the

operating point accordingly. Note that in a control system, there has always been

the issue of the right time-scale of control. A nice feature of our proposed solution

is that, the control that needs to be done at a fast time scale, i.e., the randomized

routing, is very simple; while the control that requires a large amount of computation,

i.e., the optimization of routing probabilities and the search for new alternate paths,

can be carried out over a much slower time scale. Using the right separation of control

time scales, our optimization based approach ensures near optimal performance even

when the computation and communication become infrequent.

(2) The operating characteristics of the network can be analytically studied.

Given the network model, we can easily predict the operating point by solving the

optimization problem. In contrast, due to the complexity of the system, the analysis

of existing QoS routing schemes appears to be intractable, especially under inaccu-

rate link state information and infrequent computation.

(3) The desired operating point can be tuned by appropriately choosing the

utility functions. The optimization based approach allow us not only to predict

the operating point of the network, but also to control it. By choosing different

utility functions for different classes and source-destination pairs, we can achieve the

desired balance among the service levels offered to different groups of users. For

example, when the network becomes congested, connections with a larger number

of hops could suffer significantly more blocking than shorter connections. In our
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optimization based approach, this can be avoided by assigning longer connections a

utility function that has a higher marginal utility.

3.1.3 Related Work

The optimal control of loss networks has been studied extensively in the past.

Both off-line [53–55] and simulation based schemes [46] have been proposed. Our

contribution is to propose an online solution for QoS routing. Our online scheme

exploits the fact that simplicities arise in high-bandwidth networks, which we have

seen in Chapter 2 and we will discuss in more detail in Section 3.2. These results

lead to a much simpler and easily decomposable optimization problem.

Our proposed solution employs a proportional routing scheme. The asymptotic

optimality of the proportional routing scheme in large systems has been known for

some time [32, 33]. However, a major criticism of proportional routing schemes has

been the following: if the demand is incorrectly estimated, the computed routing

probabilities could lead to poor performance [46,47]. We solve this problem by using

an adaptive algorithm that does not rely on any prior knowledge of the demand.

The Adaptive Proportional Routing scheme proposed in [56, 57] is also related to

our work. In their scheme, each class measures the amount of blocking along each

alternate paths, and uses the inverse Erlang formula to estimate a “virtual capacity”

grabbed by the class along each path. Then each class locally optimizes the routing

probabilities based on the demand and these virtual capacities. Compared with the

Adaptive Proportional Routing scheme, the advantage of our optimization based ap-

proach is that the optimality of the resulting operating point and the convergence of

the algorithm can be rigorously shown. Further, the implicit costs provide additional

information for discovering new alternate paths.

The mathematical structure of the optimization problem studied in this chapter is

closely related to those found in multi-path flow control problems [14,58–60]. In [14],

two classes of solutions to flow control problems are categorized, i.e., primal solutions
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and dual solutions. For the single-path flow control problem, both the primal and

the dual solutions have been studied extensively (see [61] for a good survey). On

the other hand, the multi-path flow control problem has received less attention.

Our implicit cost based solution can be viewed as a dual solution to this problem.

A similar algorithm was proposed in [58]. In [58], the authors claim that their

algorithm is one of the Arrow-Hurwicz algorithms [62]. However, the convergence

of the Arrow-Hurwicz algorithm was established in [62] only for the case when the

objective function is strictly concave, which is not true for the problem at hand.

In this chapter, we report a new result that characterizes the convergence correctly.

Primal solutions to the multi-path flow control problem were developed in [59,60].

The rest of the chapter is organized as follows: In Section 3.2, we present the

asymptotic optimality of the proportional routing scheme. In Section 3.3, we derive

the distributed algorithm for computing the optimal routing probabilities and ob-

tain the proposed QoS algorithm. We discuss implementation issues in Section 3.4,

present simulation results in Section 3.5, and then conclude.

3.2 Simplification of QoS Routing in Large Networks

3.2.1 The Model

We adopt a multi-class loss network model. There are L links in the network.

Each link l ∈ {1, ..., L} has capacity Rl. There are I classes of users. Each class

is associated with one source-destination pair, and some given QoS requirements.

Flows of class i arrive to the network according to a Poisson process with rate λi.

Once admitted, a flow of class i will hold ri amount of bandwidth. (For the moment

we assume that bandwidth is the only QoS metric. The extension to multiple QoS

metrics will be addressed in Section 3.3.4.) The service times within a class are i.i.d.

and independent of the arrival process. The service time distribution is general

with mean 1/µi. Each admitted flow of class i generates vi amount of revenue per
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unit time. The objective of the network is to maximize the revenue from all flows

admitted into the network.

Such a network model could represent the backbone of an ISP serving applications

with different QoS requirements. The revenue vi could either be actual money, or

simply an assigned weight that represents the network’s preference for each class.

The bandwidth requirement ri could be some form of effective bandwidth for flows

of class i. There could be multiple classes associated with each source-destination

pair, differing in their bandwidth requirement ri and revenue vi.

In this section, we assume that each class i has set up θ(i) alternate paths using,

for example, MPLS [63] (we will address how these alternate paths can be found

in Section 3.3.3). The alternate paths are represented by a matrix [H l
ij] such that

H l
ij = 1 if path j of class i uses link l, and H l

ij = 0 otherwise. We denote the

state of the system by a vector ~n = [nij, i = 1, ...I, j = 1, ..., θ(i)], where nij is

the number of flows of class i currently using path j. The bandwidth requirements

and the capacity constraints then determine the set of feasible states Ωn = {~n :
I
∑

i=1

θ(i)
∑

j=1

nijriH
l
ij ≤ Rl for all l}.

We denote the routing decision (which can be time varying) for class i by a vector

~pi = [pi1, pi2, ..., pi,θ(i)],

where

pij = Pr{an incoming flow of class i is routed to path j}.

Thus

~pi ∈ Ωi , {pij ≥ 0,

θ(i)
∑

j=1

pij ≤ 1, for all j}.

An incoming flow of class i will be admitted with probability
θ(i)
∑

j=1

pij, and, if admitted,

it will be routed to path j with probability pij/
∑θ(i)

k=1 pik. Let ~p = [~p1, ..., ~pI ].

A dynamic routing scheme is one where routing decisions can adapt to the chang-

ing utilization level of the network. For example, ~p(t) can be a function of the current
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state of the network, i.e., ~p(t) = g(~n(t)). Note that this model can characterize vir-

tually any QoS routing proposals that select paths based on the current snapshot of

the network. Alternatively, ~p(t) can be a function of some past history of network

states ~n(s), s ∈ [t − d, t], where d is the length of the history information. The net-

work can use the past history to predict the future, and use prediction to improve

the routing decision. ~p(t) can also depend on the service time T of the incoming

connection, if this information is available. The routing policy can then be written,

in a most general form, as

~p(t) = g(~n(s), s ∈ [t − d, t]; T ). (3.1)

As in Proposition 2.2.1 of Chapter 2, it can be shown that the system under any

policy g will always converge to a stationary version, and the stationary version is

ergodic.

Each admitted flow of class i will generate vi amount of revenue per unit time.

The dynamic routing scheme that maximizes the long term average revenue is then

J∗ , max
g

I
∑

i=1

θ(i)
∑

j=1

Eg [nij(t)] vi,

where Eg denotes the expectation taken with respect to the stationary distribution

under policy g.

Finally, in a static scheme, the routing policy is represented by a time-invariant

vector ~p. This corresponds to a proportional routing scheme. The performance of

the static scheme is:

J0 ,

I
∑

i=1

θ(i)
∑

j=1

λi

µi

pijvi[1 − PLoss,ij ],

where PLoss,ij is the blocking probability experienced by flows of class i routed to

path j.

3.2.2 Asymptotic Optimality of Static Schemes

The drawback of dynamic schemes is that the optimal schemes are difficult to

find, and the implementation of these dynamic schemes will consume a large amount
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of computation and communication resources. It turns out that when the capacity

of the system is large, simple static schemes can approach the performance of the

optimal dynamic scheme. This has been the central theme of our results in Chapter 2.

Here, we rephrase the main result under the context of QoS routing. We scale the

capacity and the demand proportionally by c > 1, i.e., in the c-scaled network, the

capacity at each link l is Rl,c = cRl, and the arrival rate of each class i is λc
i = cλi.

The following result shows that when c is large2, a simple static scheme will suffice.

The static scheme is constructed as follows:

Step 1: Solve the following optimization problem:

Jub = max
~p∈Ω

I
∑

i=1

λi

µi

θ(i)
∑

j=1

pijvi (3.2)

subject to
I
∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l,

where Ω =
⊗I

i=1 Ωi.

Step 2: Use the optimal point ~p in (3.2) as the static policy. Let Js be its

performance.

The following proposition shows that the normalized revenue of the static scheme

constructed above will approach that of the optimal dynamic scheme when c → ∞.

Proposition 3.2.1 Let J∗,c and J c
s be the revenue of the optimal dynamic scheme

and the revenue of the static scheme constructed above, respectively, in the c-scaled

system, then

lim
c→∞

J c
s/c = lim

c→∞
J∗,c/c = Jub.

Proposition 3.2.1 can be shown as in Proposition 2.2.3 of Chapter 2. Precisely,

we can first show that cJub is an upper bound of J∗,c under any dynamic routing

policy g [32, 33]. Note that the static revenue J c
s differs from the upper bound cJub

only by the term (1−PLoss,ij). Now since ~p satisfies the constraint of (3.2), the traffic

load at each link is no greater than 1. Lemma 2.2.1 in Chapter 2 then ensures that

2Note that here largeness does not imply over-provisioning.
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the blocking probability goes to zero as c → ∞. Finally, because J c
s ≤ J∗,c ≤ cJub,

Proposition 3.2.1 then follows.

3.3 The Optimization Based Approach to QoS Routing

There is a continuing trend to deploy routers with larger and larger link capacities

in the Internet. Therefore, the results in the last section offer important insights on

the QoS routing problem in the high-bandwidth networks of today and the future.

Firstly, by solving a simple upper bound, we can obtain a simple time-invariant

scheme that is close to optimal. Once we precompute the routing probabilities ac-

cording to (3.2), the result can be used for a large number of future arrivals. Thus,

the computation overhead can be greatly reduced. Secondly, the upper bound (3.2)

replaces the instantaneous capacity constraint
I
∑

i=1

θ(i)
∑

j=1

nijriH
l
ij ≤ Rl by an average

load constraint
I
∑

i=1

θ(i)
∑

j=1

λi

µi
ripijH

l
ij ≤ Rl. Hence, the precomputation only needs to

react to the average congestion level in the network rather than the instantaneous

congestion level. The staleness of the link state information is no longer a major

issue!

Therefore, if we are able to solve the upper bound (3.2) efficiently, we can obtain

a QoS routing algorithm that is close to optimal in large networks and that can

tolerate infrequent computation and infrequent link state updates. However, we still

need to consider the following issues.

• The upper bound is a global optimization problem. A distributed solution is

desired.

• Some parameters, such as λi and µi, could be unknown a priori and changing

gradually over time. A solution is needed that can automatically adapt to

these changes.

We next present an adaptive, distributed algorithm for solving the upper bound.

Before we proceed, we note that in many scenarios, it is also desirable to modify
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the upper bound to improve fairness. We can view the upper bound (3.2) as a

constrained optimization problem that maximizes some aggregate utility functions:

max
~p∈Ω

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi (3.3)

subject to
I
∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l,

where the utility function Ui is linear: Ui(p) = p. A linear utility function, however,

does not possess good fairness properties: for example, connections with a larger

number of hops could be completely blocked to give way to connections with fewer

hops. To improve fairness, we can use a strictly concave utility function Ui, as in

flow control problems [14–16,41]. The derivative U ′
i(

θ(i)
∑

j=1

pij) represents the amount of

marginal utility lost if the overall admission probability for class i is further reduced.

The desired balance among different classes can be achieved by tuning the revenue

vi and the utility function Ui. Proposition 3.2.1 can be generalized to the case with

concave utility functions as in Chapter 2 (see Appendix B.1). In this chapter, we

will use utility functions that satisfy U ′
i(1) = 1. This choice of the utility function

ensures that the revenue vi is correctly reflected by the marginal utility when all

flows of class i can be admitted, i.e., viU
′
i(

θ(i)
∑

j=1

pij) = vi when
θ(i)
∑

j=1

pij = 1. As long as

the utility function follows this rule, our simulation results indicate that the revenue

is usually not affected much by changing the utility functions.

3.3.1 A Distributed Algorithm

Let ~p∗ be the maximizer of the modified upper bound (3.3). Because the objective

function is concave and the constraint set is convex and compact, a maximizer always

exists. However, it is generally not unique, since the objective function is not strictly

concave. (Note that even if Ui is strictly concave, the overall problem is not, because

of the linear operation
θ(i)
∑

j=1

pij.)
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The form of the upper bound motivates us to study its dual. However, when the

objective function of the primal problem is not strictly concave, the dual problem

may not be differentiable. To circumvent this difficulty, we use ideas from Proximal

Optimization Algorithms [64, Chapter 3.4.3]. The idea is to add a quadratic term

to the objective function. We introduce an auxiliary variable yij for each pij. Let

~yi = [yij, j = 1, ..., θ(i)] and ~y = [~y1, .., ~yI ]. The optimization becomes:

max
~p∈Ω,~y∈Ω

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi

−
I
∑

i=1

θ(i)
∑

j=1

λi

µi

νi

2
(pij − yij)

2vi (3.4)

subject to
I
∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l,

where νi is some positive number chosen for each class i. For a fixed ~y, the objective

function in (3.4) is strictly concave. It is easy to show that the optimal value of

(3.4) coincides with that of (3.3). In fact, if ~p = ~p∗ is the maximizer of (3.3), then

~p = ~p∗, ~y = ~p∗ is the maximizer of (3.4).

The standard Proximal Optimization Algorithm then proceeds as follows:

Algorithm P :

At the t-th iteration,

P1) Fix ~y = ~y(t) and maximize the augmented objective function with respect

to ~p. To be precise, this step solves:

max
~p∈Ω

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi

−
I
∑

i=1

θ(i)
∑

j=1

λi

µi

νi

2
(pij − yij)

2vi (3.5)

subject to
I
∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l.

Since the objective function in (3.5) is now strictly concave, the maximizer

exists and is unique. Let ~p(t) be the solution to this optimization.
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P2) Set ~y(t + 1) = ~p(t).

Step P1) can now be solved through its dual. Let ql, l = 1, ..., L be the Lagrange

Multiplier for the constraints in (3.5). Let ~q = [q1, ..., qL]. Define the Lagrangian as:

L(~p, ~q, ~y) =
I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi

−
L
∑

l=1

ql(
I
∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij − Rl)

−
I
∑

i=1

θ(i)
∑

j=1

λi

µi

νi

2
(pij − yij)

2vi

=
I
∑

i=1

λi

µi







Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pij

L
∑

l=1

H l
ijq

l

−
θ(i)
∑

j=1

νi

2
(pij − yij)

2vi







+
L
∑

l=1

qlRl. (3.6)

Let qij =
L
∑

l=1

H l
ijq

l, ~qi = [qij, j = 1, ..., θ(i)]. The objective function of the dual

problem is then:

D(~q, ~y) = max
~p∈Ω

L(~p, ~q, ~y) =
I
∑

i=1

Bi(~qi, ~yi)
λi

µi

+
L
∑

l=1

qlRl, (3.7)

where

Bi(~qi, ~yi) = max
~pi∈Ωi







Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pijqij

−
θ(i)
∑

j=1

νi

2
(pij − yij)

2vi







. (3.8)

Note that in the definition of the dual objective function D(~q, ~y) in (3.7), we have

decomposed the original problem into I separate subproblems. Given ~q, each class

can solve the routing probabilities ~pi via its local subproblem (3.8) independently.

If we interpret ql as the implicit cost per unit bandwidth at link l, then qij is the

total cost per unit bandwidth for all links in the path j of class i. Thus the qij
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captures all the information each subproblem needs about the path class i traverses.

We note that an important feature of this decomposition is that the subproblem

(3.8) is independent of the parameters λi and µi. This makes online implementation

particularly easy.

The dual problem of (3.5), given ~y, is:

min
~q≥0

D(~q, ~y).

Since the objective function of the primal problem (3.5) is strictly concave, the dual

is always differentiable. The gradient of D is

∂D

∂ql
= Rl −

I
∑

i=1

θ(i)
∑

j=1

λi

µi

p0
ijriH

l
ij, (3.9)

where p0
ij solves the local subproblem (3.8). Then step P1) can be solved by using

the gradient descent iteration on the dual variable, i.e.,

ql(t + 1) =



ql(t) − αl(Rl −
I
∑

i=1

θ(i)
∑

j=1

λi

µi

p0
ijriH

l
ij)





+

, (3.10)

where [.]+ denotes the projection to [0, +∞).

The class of distributed algorithms we will use in this chapter can be summarized

as follows:

Algorithm A:

At the t-th iteration:

A1) Fix ~y(t) and use the gradient descent iteration (3.10) on the dual variable

~q. Depending on the number of times the descent iteration is executed, we will

obtain a dual variable ~q(t + 1) that either exactly or approximately minimizes

D(~q, ~y(t)) (and, equivalently, solves (3.5)). Let K be the number of times the

dual descent iteration is executed.

A2) Let ~p(t) be the primal variable that maximizes, over all ~p ∈ Ω, the La-

grangian L(~p, ~q(t + 1), ~y(t)) corresponding to the new dual variable ~q(t + 1).

Set ~y(t + 1) = ~p(t).
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From now on, we will refer to (3.10) as the dual update, and step A2) as the primal

update.

A stationary point of algorithm A can be defined as a primal-dual pair ( ~y∗, ~q∗)

such that

~y∗ = argmax
~p∈Ω

L(~p, ~q∗, ~y∗),

ql,∗ ≥ 0 and
I
∑

i=1

θ(i)
∑

j=1

λi

µi

y∗
ijriH

l
ij ≤ Rl for all l, and

ql,∗





I
∑

i=1

θ(i)
∑

j=1

λi

µi

y∗
ijriH

l
ij − Rl



 = 0 for all l.

By standard duality theory, any stationary point ( ~y∗, ~q∗) of the algorithm A solves

the augmented problem (3.4). Hence ~p = ~y∗ solves the upper bound (3.3).

An important question is how large K (in step A1) needs to be for algorithm A
to converge to a stationary point. The standard proximal optimization theory [64,

Chapter 3.4.3] requires K = ∞, i.e., at each iteration the optimization (3.5) has to be

solved exactly. This requirement essentially corresponds to a time-scale separation

between the time-scale of the primal updates and that of the dual updates. When

K < ∞, at best an approximate solution to (3.5) is obtained at each iteration. If

the accuracy of the approximate solution can be controlled appropriately (see [65]),

one can still show the convergence of algorithm A. However, in this case the number

of dual updates K has to depend on the required accuracy and usually needs to be

large.

For online implementation, one cannot carry out the dual update infinitely many

times for one iteration of algorithm A. It is also difficult to distributively control the

accuracy of the approximate solution to (3.5). Hence, in this work we use a different

approach. The following result is new and shows that, by appropriately choosing

the stepsize αl, the algorithm A converges for any choice of K ≥ 1. No time-scale

separation is needed! The proof is highly technical, and since this convergence result
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has independent interest even for problems other than QoS routing, we will dedicate

a separate chapter (Chapter 4) to the study of the convergence of Algorithm A.

Proposition 3.3.1 Fix 1 ≤ K ≤ ∞. As long as the stepsize αl is small enough, the

algorithm A will converge to a stationary point ( ~y∗, ~q∗) of the algorithm, and ~p∗ = ~y∗

solves the upper bound (3.3). The sufficient condition for convergence is:

max
l

αl <



















2
SL mini

µiνivi

λir2
i

if K = ∞
1

2SL mini
µiνivi

λir2
i

if K = 1

4
5K(K+1)SL mini

µiνivi

λir2
i

if K > 1

,

where L = max{
L
∑

l=1

H l
ij, i = 1, ..., I, j = 1, ...θ(i)} is the maximum number of hops

for any path, and S = max{
I
∑

i=1

θ(i)
∑

j=1

H l
ij, l = 1, ..., L} is the maximum number of paths

going through any link.

Remark: The sufficient condition for K = 1 differs from that of K = ∞ only by

a constant factor. For K > 1, our result requires that the stepsizes decrease on the

order of O(1/k2). This is probably not the tightest possible result, and we conjecture

that stepsizes of order O(1) would work for any K. However, we leave this for future

work. Note also that νi appears on the right hand side of the condition. Hence, by

making the objective function more concave, we also relax the requirement on the

stepsize αl. Finally, Proposition 3.3.1 does not require the routing matrix [H l
ij] to

be of full rank.

3.3.2 Distributed Implementation

Algorithm A lends naturally to online distributed implementation. The ingress

router for each class is responsible for determining the routing probabilities for this

class. To do so, the ingress router only needs to solve the local subproblem (3.8) using

the implicit costs ql at all core routers that class i traverses. An efficient algorithm

can solve (3.8) in at most O[θ(i) log θ(i)] steps (see Appendix B.2). The core routers
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bear the responsibility to update the implicit costs ql according to the simple dual

update rule (3.10). After every K dual updates, the ingress router executes the

primal update.

We have mentioned earlier that the solution of each local subproblem (3.8) does

not require knowledge of the demand parameters λi and µi. Next, we show that the

dual update can also be carried out using online measurement at each link, again

without prior knowledge of the demand parameters of each class. We then obtain

an adaptive algorithm that can track changes in the network conditions.

Note that in the dual gradient (3.9),
I
∑

i=1

θ(i)
∑

j=1

λi

µi
ripijH

l
ij is the average load per unit

time at link l. This motivates us to estimate the gradient as follows: over a certain

time window W , each link l collects the information of flow connection requests from

all classes that arrive at the link. Let w be the total number of flow arrivals during

W . Let rk, Tk, k = 1, ...w denote the bandwidth requirement and the service time,

respectively, of the k-th arrival. (This information can be carried along with the

connection requests.) Then we can use

Gt = Rl −
∑w

k=1 rkTk

W
(3.11)

to estimate the gradient. The interpretation is immediate:
∑w

k=1 rkTk is the total

amount of load brought to link l. One can verify that this estimate is unbiased, i.e.,

E[Gt] = ∂D/∂ql. We can then update the implicit costs by

ql(t + 1) =

[

ql(t) + αl

(∑w
k=1 rkTk

W
− Rl

)]+

. (3.12)

When W is not large, the stepsize αl has to be small to “average out” the noise in

the estimate. This algorithm has the flavor of stochastic approximation algorithms

[66] that have been used in many engineering problems. Our simulations with this

algorithm demonstrate good convergence properties when a small fixed stepsize is

used. That is, according to the simulations, the stochastic approximation algorithm

converges to a small neighborhood of the solution to the upper bound. Further, when

the stepsize αl is away from zero, our algorithm can track the nonstationary behavior
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of the network. As the demand (i.e., λi, µi) changes, it is reflected in the gradient

estimate Gt. The network will then move towards the new optimal operating point.

3.3.3 How to Generate Alternate Paths

The set of alternate paths, denoted by the matrix [H l
ij], could potentially be the

enumeration of all possible paths for each class. In practice, however, a much smaller

set of alternate paths suffices. Maintaining this set of alternate paths is the role of

the path-finding component in Fig. 3.1. There are several options to generate the

candidate paths.

Option 1: Use paths that appear to be “heuristically good.” For example, given

a source-destination pair, we can use the set of minimum-hop paths, or, paths whose

number of hops is no greater than h plus that of the minimum-hop path. Obviously,

h should be small to avoid an explosion in the number of candidate paths.

Option 2: A better approach is to discover new paths online. The implicit costs

ql, which arise naturally as the Lagrangian Multipliers of the dual problem, give us

guidelines on discovering potentially better alternate paths. Given a configuration

of the alternate paths, we can easily verify the following properties that characterize

any stationary point (~p∗, ~q∗) of algorithm A (see Appendix B.3).

Properties of the Stationary Points:

1. When the utility functions are strictly concave, the admission probability
θ(i)
∑

j=1

p∗ij

for each class i can be uniquely determined;

2. Only paths that have the minimum cost see positive routing probabilities. The

cost of a path is the sum of the implicit costs for all links along the path.

Hence, if we let qi,0 denote the minimum cost among all alternate paths for

class i, i.e., qi,0 , minj

L
∑

l=1

H l
ijq

l,∗, then for all j,

p∗ij > 0 ⇒ q∗ij = qi,0.
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The above properties are consistent with the concept of the minimum first deriva-

tive path discussed in [64, p417]. Therefore, adding paths whose costs are larger than

the minimum cost will not yield any gain. We can thus use the above properties

to iteratively generate the candidate paths online. Starting from any initial set of

candidate paths, we execute the distributed algorithm A to solve the upper bound.

Then based on the implicit costs at the (possibly approximate) stationary point,

we can run any minimal cost routing algorithm using the implicit costs as the cost

metric for each link. If the minimal cost is smaller than the minimal cost among the

current set of candidate paths by a certain threshold, we add this new path into the

set, and continue. Otherwise, we can conclude that no further alternate paths need

to be added.

Option 3: Use historical data. This can be viewed as a traffic engineering step.

We first take measurements of typical traffic demands at different times of the day.

For each demand pattern, we can use the above procedure in Option 2 offline to

find the optimal alternate paths. The union of the alternate paths under all demand

patterns can then be used as the set of candidate paths. The role of the distributed

algorithm A is to shift the traffic load among these candidate paths automatically

as the network condition changes.

3.3.4 Extensions to Multiple QoS Constraints

So far we have assumed that the bandwidth constraint is the only QoS constraint.

We now address the extension to multiple QoS metrics and constraints. We can argue

that link-state metrics other than the available bandwidth (e.g., delay and overflow

probabilities, etc.) could be more stable in future high-bandwidth networks. When

the link capacity of the network is large, the network can support a large number

of connections at the same time. Due to the complexity in maintaining per-flow

information, Quality of Service is likely to be provisioned on an aggregate basis.

Each node in the network will provide a QoS guarantee on delay and/or packet loss
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probabilities for all flows belonging to the same class, rather than for each individual

flow. Such guarantees will stay unchanged as new flows arrive at or old flows depart

from the network.

Let each class be given some QoS requirements on both the bandwidth constraint

and some other constraints such as delay or packet loss probabilities. We now assume

that each link will provision certain QoS guarantees on these other QoS metrics. Such

guarantees are constant over time and can be advertised to the entire network. The

alternate paths for each class must now be constrained to those that satisfy these

other QoS requirements. Given a set of alternate paths, the distributed algorithm

in Section 3.3.1 can be used unchanged to find the optimal routing probabilities. In

order to generate the alternate paths, we can use the options in Section 3.3.3, except

that now we have to consider other constraints too. For example, in Option 2, we can

still use the implicit cost as the cost metric for each link and execute any constrained

minimal cost QoS routing algorithm to search for new alternate paths.

It is important to note that the path-finding step does not deal with the available

bandwidth constraint directly. Instead, it is based on the implicit cost, which is a

more stable parameter that depends on the average congestion level of the network.

Hence, the path-finding step can be carried out infrequently. Note that the com-

putation of optimal paths under multiple QoS constraints is usually a NP-complete

problem. Hence, for any practical implementation of QoS routing solutions, the

computation overhead has always been a key issue. Our optimization based ap-

proach does not directly reduce the computational complexity. Rather, it reduces

the frequency of the computation. We emphasize that the optimal performance is

still preserved even though computation becomes infrequent. This, as mentioned in

the Introduction, is again due to the separation of control time-scales: the set of

candidate paths needs to change only when the average demand and capacity of the

network changes significantly. Hence, the intensive computations only need to be

carried out infrequently.
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3.4 Implementational Issues

In this section we address some implementational issues.

3.4.1 Communicating the Implicit Costs

The distributed algorithm requires communicating the implicit costs back to the

ingress routers. There are two alternatives. One is to use the connection request

packets sent by the ingress router. Each link can insert its own implicit costs when

processing the connection request packets. When the response is sent back to the

ingress router, the implicit costs are piggy-backed for free. The other approach is to

periodically advertise the implicit costs throughout the network. In the latter case,

even when the implicit costs are updated infrequently, while the speed of convergence

of the distributed algorithm will be affected, the optimal routing probabilities that

the algorithm converges to will remain the same.

3.4.2 Gradient Estimates at the Link Algorithms

For the link algorithm, the gradient estimate in (3.11) requires the information

from all flow arrivals, including those that could have been rejected by the upstream

links. In some network systems, once an intermediate link along the path rejects a

connection request, the request will not be passed on to downstream links. Let PB,l
i,j

be the probability that a connection request of class i routed to path j is rejected by

links that are upstream to link l. The true connection arrival rate of class i at a link

l will be λipij(1−PB,l
i,j ). In this case, the gradient estimate constructed in (3.11), by

counting only actual arrivals, will be biased. However, when the system is large, this

error will be small. This is due to two factors: Firstly, as long as the load at each link

is less than or equal to 1, PB,l
i,j will be close to zero (see Lemma 2.2.1 in Chapter 2);

Secondly, if some links have load greater than 1, the implicit costs at these links will
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be increased until the loads become less than or equal to 1. Therefore, in the end

PB,l
i,j will be close to zero and will have a minimal impact on the gradient estimate.

The gradient estimate in (3.11) needs knowledge of the service time Tk of an

incoming flow. When this information is not known at the time of connection arrival,

it can also be replaced by the time average of the service time of past flows. This

time average can be calculated at the ingress router by measuring the service time

of the flows that have completed service. The unbiasness of (3.11) is not affected by

such changes.

3.4.3 Adaptive Stepsizes

The transient behavior of the distributed algorithm is sensitive to the choice of

the stepsize αl. A smaller stepsize will result in a smaller misadjustment (overshoot

or undershoot) around the optimal solution, but takes a longer time to converge. A

larger stepsize expedites the convergence at the cost of larger misadjustment. This

tradeoff between misadjustment and speed of convergence is a fundamental one for

stochastic approximation algorithms with constant stepsizes. A better approach is to

use an adaptive stepsize scheme: a larger stepsize is used initially (or when sudden

changes occur) to expedite convergence, followed by a smaller stepsize to reduce

the misadjustment. This idea of stepsize adaptation has been used in many other

applications, especially in adaptive filtering. Here we illustrate one such approach,

borrowed from the idea in [67]:

Fix a link l. Let Gt be the estimate of the gradient at the t-th iteration. Let Et

be a weighted average of the past samples of Gt, i.e., upon a new sample Gt, let

Et+1 = εlGt + (1 − εl)Et,

where εl is a small positive constant. Let αl
t denote the stepsizes at the t-th iteration.

We can update the stepsize based on the correlation between Et and Gt, i.e.,

αl
t+1 = min{[αl

t + βlEtGt]
+, αmax}, (3.13)
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where βl is a small positive constant, and αmax is a maximum allowable stepsize

chosen to ensure the stability of the system. We will demonstrate in the simulation

results in Section 3.5 that the distributed algorithm with such an adaptive step-

size scheme can swiftly track the changes in the network condition, and it can also

effectively reduce the misadjustment when the network condition is stable.

3.5 Simulation Results

In this section, we present simulation results that illustrate our optimization

based approach for QoS routing. We implement the distributed algorithm follow-

ing the online measurement based scheme in Section 3.3.2. The topologies we use

are shown in Fig. 3.2. We first demonstrate the convergence of the distributed al-

gorithm using the “triangle” network in Fig. 3.2. There are three classes of flows

(AB,BC,CA). For each class of flows, there are two alternate paths, i.e., a direct

one-link path, and an indirect two-link path. The arrival rates for classes AB, BC,

CA are 1, 1 and 3 flows per time unit, respectively. Each flow consumes one band-

width unit along the path(s) and holds the resources for a time that is exponentially

distributed with mean of 100 units. Let the capacity of all links be 100 bandwidth

units. For all classes the revenue vi is 1 and the utility function is Ui(p) = ln p. Both

the revenue and the implicit cost are chosen to be unitless.

Fig. 3.3 demonstrates the evolution over time of the implicit costs at all links

and the evolution of the routing probabilities of class CA. The x-axis corresponds

to the total number of arrivals simulated. Readers can verify that all quantities of

interest converge to a small neighborhood of the solution to the upper bound. The

parameters we use for the distributed algorithm are: αl = 0.0001 per bandwidth unit,

νi = 1, K = 1000 and W = 1 time unit.

Fig. 3.4 demonstrates the convergence of the implicit costs when we use the

adaptive stepsize scheme in Section 3.4. The parameters we use are: εl = 0.001,

αmax = 0.1 per bandwidth unit, β l = 0.0001 per cubic bandwidth unit and αl
0 = 0.
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Fig. 3.3. Evolution of the implicit costs (top) and the routing prob-
abilities of class CA (bottom) with respect to the number of arrivals
simulated. The unit of x-axis is 1000 arrivals. The solution to the
upper bound is the following: the implicit costs are 1.25, 1.25, and
2.5, respectively, for link AB, BC and CA. The routing probability
for class CA are 0.33 for the direct path and 0.067 for the two-hop
path.
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Fig. 3.4. Evolution of the implicit costs when the adaptive stepsize
scheme is used.

The initial convergence is almost immediate: the implicit costs quickly jump to a

small neighborhood of the solution to the upper bound, thanks to an increase in the

stepsize initially. The evolution of the routing probabilities (not shown) follows the

same trend. While the misadjustment takes time to die out (as the stepsize becomes

smaller), Fig. 3.5 shows that the convergence of the revenue to its stationary value

is achieved must faster (note that the range on the x-axis is smaller). As far as the

overall revenue is concerned, the fluctuations of the implicit costs appear to cancel

themselves out.

We have also simulated the case when the network condition changes over time,

i.e., when the system is non-stationary. Fig. 3.6 and Fig. 3.7 demonstrate the evo-

lution of the implicit costs when the average inter-arrival time of class CA changes

according to a square wave and a triangle wave, respectively. We observe that the

distributed algorithm with adaptive stepsizes can track the changes in the network

condition swiftly.

We next simulate a larger network, i.e., the “ISP” topology in Fig. 3.2, which is

reconstructed from an ISP network and has been used in many simulation studies

[49–52, 56]. It has 18 nodes and 30 links. We simulate the case with a uniform
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Fig. 3.7. Evolution of the implicit costs (top) when the average
inter-arrival time of class CA changes according to a triangle wave
(bottom).
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demand matrix: flows arrive at each node according to a Poisson process with rate

λ, and the destinations are chosen uniformly among all other nodes. The bandwidth

requirement of each connection is one bandwidth unit. Revenue vi is 1. We use a

Pareto service time distribution with shape parameter 2.5, to capture the heavy-

tailed characteristic of the traffics on the Internet. The mean service time is 100

time units. The capacity of each link is 1000 bandwidth units.

There are a total of 18 × 17 = 306 source-destination pairs (i.e., classes). When

the simulation is initialized, the set of alternate paths for each source-destination

pair consists of all minimum-hop paths. Once simulation starts, new paths can be

added following Option 2 in Section 3.3.3. To simplify the simulation, we adopt an

upper limit of 10 on the number of alternate paths for each source-destination pair:

when a new path is found, if there are already 10 alternate paths, the old path with

the smallest routing probability will be replaced by the new path.

We choose the utility function to be of the following form

Ui(p) = hi ln p − (hi − 1)p,

where hi is the minimal number of hops between source-destination pair i. This

utility function improves the admission probability for flows that traverse a larger

number of hops. (At the same level of admission probability p < 1, the marginal

utility dUi

dp
= hi/p − (hi − 1) is larger for flows that traverse a long path.)

We simulate the optimization based approach using the distributed algorithm

and compare, in Fig. 3.8, the revenue and the total blocking probability over all

classes against the values determined by the upper bound. We vary the per-node

flow arrival rate λ from 1.0 to 10.0 flows per time unit. As we can see from these

figures, our distributed algorithm tracks the upper bound consistently over all loads.

With a network of this size (each link can hold 1000 flows) the difference between

the upper bound and the simulation of our distributed algorithm is already small.

We also compare the performance of the Widest-Shortest-Path (WSP) algorithm.

WSP has been used in many simulation studies [49,50,56]. Among all feasible paths,

the WSP algorithm will first choose paths that have the smallest number of hops.
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If there are multiple such paths, the WSP algorithm will choose the one with the

largest available bandwidth. However, as shown in Fig. 3.8, the performance of a

faithful implementation of WSP starts to taper off at λ = 5.0 flows per time unit.

The performance degradation of WSP is due to its selection of non-minimal hop

paths, which could result in sub-optimal configurations for the whole network. If

we constrain WSP to minimum-hop paths only, the performance degradation will

disappear in this example, as shown by the curve labeled “WSP/Min-Hop.” However,

from this, we should not draw the conclusion that such a practice is always better.

By constraining WSP to minimum-hop paths, one also reduces the capability of

WSP to use other potentially less congested paths. The end result depends on the

topology of the network and the demand pattern. For example, in the “shortcut”

topology in Fig. 3.2, assume that the capacities of all links are the same. If flows

from S to D is to only use the minimum-hop path (S-1-6-D), once this path is full,

no more flows can be admitted. However, if the flows use the non-minimum-hop

paths S-1-2-3-D and S-4-5-6-D, twice as many flows can be admitted. Hence it is

not always better to restrict on minimum-hop paths.

Our distributed algorithm, on the other hand, will always be able to find the

right balance by solving the upper bound. It consistently tracks the upper bound

under all load conditions. This provable optimality is an attractive feature of our

optimization based approach as it ensures that the routing decision will always be

close to optimal.

The strength of the optimization based approach is even more evident when the

computation and link state updates become infrequent. To show this, we pick λ = 6.0

flows per time unit and simulate both the distributed algorithm and the WSP (with

minimum-hop path only) when we vary the interval between link-state updates. To

ensure a fair comparison of the performance and the overhead of the two schemes,

we adopt the following settings for our simulation. For the distributed algorithm,

we choose to simulate the case where the implicit costs are advertised with each link

state update, and computation is carried out after each link state update. (That
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is, we are not simulating the “piggy-back” approach in Section 3.4.1.) For WSP, in

contrast to the suggestion given in [51], we do not allow WSP to recompute paths

when a connection routed to a precomputed path is later rejected. The reason is

that one cannot reduce the computational overhead too much if such recomputation

is allowed: for example, when the blocking probability is around 10%, on average 1

out of 10 arrivals will trigger recomputation! For a similar reason, we also do not

use the triggered link state update strategy of [51] for WSP. When the triggered

strategy is used, changes in available bandwidth that exceed certain percentage of

the past advertised available bandwidth will trigger a new link state update. When

the network operates at a high utilization level, the available bandwidth is small.

Even small changes in available bandwidth will trigger frequent updates. Hence,

one can not reduce the communication overhead too much using a triggered update

strategy.

Simulation results are presented in Fig. 3.9. The performance of the distributed

algorithm changes little as the link state update interval becomes larger and larger,

while the performance of WSP decreases significantly. (The unit time on the x-axis

is the mean inter-arrival time of flows at each node.) In the worst case, WSP blocks

twice as many connections compared to the case when it has perfect link states. We

have also simulated the case when the network condition changes over time (i.e.,

when the system is non-stationary). In Fig. 3.10, we change the average inter-arrival

time at each node according to the triangle wave in Fig. 3.10(b), and plot the overall

blocking probability in Fig. 3.10(a) when we vary the interval between link-state

updates. The performance of the distributed algorithm is again insensitive to the

link state update interval, while the performance of WSP decreases significantly as

the link state update interval increases. Note that the exact level of this performance

degradation for WSP is a complex function that depends on many factors, such as the

topology and the demand of the network, etc. Again, the strength of the optimization

based approach is that it consistently achieves near optimal performance, even when

the computation and communication overhead are greatly reduced.
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Fig. 3.9. The blocking probability as the link state update interval
increases. The unit on the x-axis is the mean inter-arrival time of
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Fig. 3.10. The blocking probability versus the link state update in-
terval (top) when the average inter-arrival time at each node changes
according to the triangle wave (bottom). The unit on the x-axis of
Figure (a) is the mean inter-arrival time of flows at each node. The
unit on the x-axis of Figure (b) corresponds to 1000 total arrivals
simulated. The average arrival rate at each node is λ = 8.0 flows per
unit time.
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Fig. 3.11. The blocking probability predicted by the upper bound
compared with that collected from the simulation of the distributed
algorithm. The arrival rate at each node is fixed at λ = 6.0 flows per
time unit.

When our optimization based approach to QoS routing is used, designers can

predict the operating point of the network by analytically solving the upper bound.

This is shown in Fig. 3.11 where each point represents the blocking probability of

one source-destination pair computed by the upper bound (along the x-axis) and

that collected from the simulation of the distributed algorithm (along the y-axis).

The points follow the diagonal line, which indicates that the simulation matchs the

theory. In contrast, the analysis of dynamic QoS routing schemes (such as WSP)

appears to be an intractable problem, especially when the computation becomes

infrequent and the link state information becomes inaccurate. One usually has to

resort to simulation to find out the operation of a QoS routing algorithm.

3.6 Conclusion and Future Work

In this chapter, we developed an optimization based approach for Quality of Ser-

vice routing in high-bandwidth networks. We view a network that employs QoS

routing as an entity that carries out a distributed optimization. By solving the op-
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timization problem, the network is driven to an efficient operating point. When the

capacity of the network is large, this optimization takes on a simple form. We develop

a distributed and adaptive algorithm that can efficiently solve the optimization on-

line. The proposed optimization based approach has several advantages in reducing

the computation and communication overhead, and in improving the predictability

and controllability of the operating characteristics of the network.

We now briefly outline directions for future work: (1) In this chapter we propose

to update the implicit costs by measuring the arrived load. Other methods are

possible, for example, by taking into account the utilization levels of the links. (2)

A deeper understanding of the transient behavior of the distributed algorithm is

important. The adaptive stepsize scheme in Section 3.4 that improves the speed of

the convergence is of particular interest. (3) We assume that the capacity of the

network is uniformly large. If some part of the network is not so large (for example,

at the network edge), one then has to study a finer level of dynamics in these parts

of the network. It would be interesting to study hybrid schemes that combine our

results with some further details of the dynamics of smaller links. (4) In this chapter

we take a source routing model. Adapting our result to the distributed routing or

hierarchical routing paradigms is also a possible direction for future work. A related

issue is how to deal with the case when routers do not allow arbitrary splitting of

traffic among multiple paths. (5) Finally, from a theoretical viewpoint, it would be

important to prove the convergence of the distributed algorithm under more general

settings, such as with asynchronous computation.
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4. CONVERGENCE PROPERTIES OF ALGORITHM A

FOR SOLVING THE MULTI-PATH UTILITY

MAXIMIZATION PROBLEM

4.1 Introduction

This chapter is dedicated to the study of the convergence properties of Algorithm

A that was proposed in Chapter 3. Since these results will also be of interest to

problems other than QoS routing, we will carry out our analyses for the following

problem with a more general form:

max

xij≥0,mi≤
θ(i)
P

j=1
xij≤Mi,i=1,...,I

I
∑

i=1

fi(

θ(i)
∑

j=1

xij) (4.1)

subject to
I
∑

i=1

θ(i)
∑

j=1

El
ijxij ≤ Rl for all l = 1, ..., L. (4.2)

Optimization problems of this form appear in several resource allocation problems

in communication networks, when each user or (class of users) can have multiple

alternative paths through the network [22]. Generically, problem (4.1) amounts

to allocating resources R1, ..., RL from network components l = 1, 2, ..., L to users

i = 1, 2, ..., I such that the total system “utility” is maximized. The “utility” function

fi(·) represents the performance, or level of “satisfaction,” of user i when a certain

amount of resource is allocated to it. In practice, this performance measure can

be in terms of revenue, welfare, or admission probability, etc., depending on the

problem setting. We assume throughout that fi(·) is concave. Each user i can

have θ(i) alternative paths (a path consists of a subset of the network components).

Let xij denote the amount of resources allocated to user i on path j. Then the
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utility fi(
θ(i)
∑

j=1

xij), subject to mi ≤
θ(i)
∑

j=1

xij ≤ Mi, is a function of the sum of the

resources allocated to user i on all paths. Hence, the resources on alternative paths

are considered equivalent and interchangeable for user i. The constants E l
ij represent

the routing structure of the network: each unit of resource allocated to user i on path

j will consume E l
ij units of resource on network component l. (E l

ij = 0 for network

components that are not on path j of user i.) The inequalities in (4.2) represent

the resource constraints at the network components (hence Rl can be viewed as the

capacity of network component l, and
I
∑

i=1

θ(i)
∑

j=1

El
ijxij is the total amount of resources

consumed at network component l summed over all users and all alternative paths).

We assume that Rl > 0, El
ij ≥ 0, mi ≥ 0 and Mi > 0 (Mi could possibly be +∞).

Remark: Note that for the model in Chapter 3, xij corresponds to the routing

probability pij, El
ij = λi

µi
riH

l
ij, and fi(·) = λi

µi
viUi(·).

We will refer to problem (4.1) as the multi-path utility maximization problem [22].

In this chapter, we are interested in solutions to this problem that are amenable to

online implementation. There exist several resource allocation problems in com-

munication networks that can be modeled as (4.1), including the optimal pricing

problem in Chapter 2, the optimal QoS routing problem in Chapter 3, and the

multi-path flow control problem [14, 58–60]. Essentially, once the network can sup-

port multi-path routing, the resource allocation problem changes from a single-path

utility maximization problem to a multi-path utility maximization problem. As we

will soon see, the multi-path nature of the problem leads to several difficulties in

constructing solutions suitable for online implementation. One of the main difficul-

ties is that, once some users have multiple alternative paths, the objective function

of problem (4.1) is no longer strictly concave, and hence the dual of the problem

may not be differentiable at every point. Note that this lack of strict concavity is

mainly due to the linearity
θ(i)
∑

j=1

xij. (The objective function in (4.1) is still not strictly

concave even if the utility functions fi are strictly concave.) On the other hand, the

requirement that the solutions must be implementable online also imposes a number
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of important restrictions on our design space, some of which were already discussed

in Chapter 3. We outline these restrictions below:

• The solution has to be distributed because these communication networks can

be very large and centralized solutions are not scalable.

• In order to lower the communication overhead, the solution has to limit the

amount of information exchanged between the users and different network com-

ponents. For example, a solution that can adjust resource allocation based on

online measurements is preferable to one that requires explicit signaling mech-

anisms to communicate information.

• It is also important that the solution does not require the network components

to store and maintain per-user information (or per-flow information, as it is

referred to in some of the networking literature). Since the number of users

sharing a network component can be large, solutions that require maintaining

per-user information will be costly and will not scale to large networks.

• In the case where the solution uses online measurements to adjust the resource

allocation, the solution should also be resilient to measurement noise due to

estimation errors.

In this chapter, we first re-derive the corresponding form of Algorithm A as a

distributed solution for the multi-path utility maximization problem (4.1). We will

then show that our distributed solution has the aforementioned attributes desirable

for online implementation. Our main technical contributions are as follows:

1) We provide a rigorous analysis of the convergence of our distributed algorithm.

This analysis is done without requiring the two-level convergence structure that is

typical in standard techniques in the convex programming literature for dealing with

the lack of strict concavity of the problem. Note that algorithms based on these

standard techniques are required to have an outer level of iterations where each outer

iteration consists of an inner level of iterations. For the convergence of this class
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of algorithms to hold, the inner level of iterations must converge before each outer

iteration can proceed. Such a two-level convergence structure may be acceptable for

off-line computation, but not suitable for online implementation because in practice

it is difficult for the network to decide in a distributive fashion when the inner level of

iterations can stop. A main contribution of this work is to establish the convergence

of our distributed algorithm without requiring such a two-level convergence structure.

2) By proving convergence, we are able to provide easy-to-verify bounds on the

parameters (i.e., step-sizes) of our algorithm to ensure convergence. Note that when

distributed algorithms based on our solution are implemented online, a practically

important question is how to choose the parameters of the algorithm to ensure effi-

cient network control. Roughly speaking, the step-sizes used in the algorithm should

be small enough to ensure stability and convergence, but not so small such that the

convergence becomes unnecessarily slow. The main part of this work addresses the

question of parameter selection by providing a rigorous analysis of the convergence

of the distributed algorithm.

3) We also study the convergence of the algorithm in the presense of measurement

noise and provide guidelines on how to choose the step-sizes to reduce the disturbance

in the resource allocation due to noise.

4) Our studies reveal how the inherent multi-path nature of the problem can

potentially lead to such difficulties as instability and oscillation, and how these dif-

ficulties should be addressed by the selection of the parameters in the distributed

algorithm.

We believe that these results and insights are important for network designers who

face these types of resource allocation problems. The rest of the chapter are organized

as follows. After discussing related work in Section 4.1.1, we will first re-derive

our distributed solution (i.e., Algorithm A) in Section 4.2. The convergence of the

distributed algorithm will be studied in Sections 4.3 when there is no measurement

noise in the system, and in Section 4.4 when there is measurement noise. Simulation

results are presented in Section 4.5. Then we conclude.
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4.1.1 Related Work

The single-path utility maximization problem, i.e., when each user (or class) has

only one path, has been extensively studied in the past, mainly in the context of

Internet flow control (see, for example, [14–16, 41, 61] and the reference therein).

However, the multi-path utility maximization problem has received less attention in

the literature [14,58–60]. In [14], after studying the single-path utility maximization

problem, the authors briefly discuss the extension to the multi-path case. They cate-

gorize the solutions into primal algorithms and dual algorithms. Global convergence

of the primal algorithms is studied in [14] for the case when feedback delays are neg-

ligible. (On the other hand, the dual algorithms there have an oscillation problem

as we will discuss soon). Local stability of primal algorithms with feedback delays

is further studied in [60]. Since [14] and [60] use a penalty-function approach, in

general the algorithms there can only produce approximate solutions to the original

problem (4.1).

The method in [59] can be viewed as an extension of the primal algorithms

in [14] for computing exact solutions to problem (4.1). It employs a (discontinuous)

binary feedback mechanism from the network components to the users: each network

component will send a feedback signal of 1 when the total amount of resources

consumed at the network component is greater than its capacity, and it sends a

feedback signal of 0 otherwise. The authors of [59] show that, if each network

component can measure the total amount of consumed resources precisely, their

algorithm will converge to the exact optimal solution of problem (4.1). However,

their algorithm will not work properly in the presence of measurement noise: if the

network component can only estimate the amount of consumed resources with some

random error (we will see in Section 4.2.1 how such situations arise), it could send

a feedback signal of 1 erroneously even if the true amount of resources consumed is

less than its capacity (or, a feedback signal of 0 even if the true amount of resources

consumed exceeds its capacity). Therefore, the algorithm in [59] cannot produce
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the exact optimal solution when there is measurement noise. The AVQ algorithm

[41, 68] is also worth mentioning as an extension of the primal algorithms in [14]

for computing exact solutions. However, the literature on the AVQ algorithm has

focused on the single-path case. The extension to the multi-path case has not been

rigorously studied.

Dual algorithms that can produce exact solutions are developed in [15] for the

single-path case. When extended to the multi-path case, both this algorithm and the

dual algorithm in [14] share the same oscillation problem. That is, although the dual

variables in their algorithms may converge, the more meaningful primal variables

(i.e., the resource allocation xij) will not converge. (We will illustrate this problem

further in Section 4.2.) This difficulty arises mainly because the objective function

of problem (4.1) is not strictly concave in the primal variables xij once some users

have multiple paths. The authors in [58] attempt to address the oscillation problem

by adding a quadratic term onto the objective function. Their approach bears some

similarities to the idea that we use in this chapter. However, they do not provide

rigorous proofs of convergence for their algorithms.

Another method that is standard in convex programming for dealing with the lack

of strict concavity is the Alternate Direction Method of Multipliers (ADMM) [64,

p249, P253]. It has known convergence property (when there is no measurement

noise) and can also be implemented in a distributed fashion. However, when imple-

mented in a network setting, the ADMM algorithm requires substantial communica-

tion overhead. At each iteration, the ADMM algorithm requires that each network

component divides the amount of unallocated capacity equally among all users shar-

ing the network component and communicates the share back to each user. Each

user not only needs to know the cost of each path (as in the distributed algorithm

we will propose in this chapter), but also needs to know its share of unallocated

capacity at each network component. Further, in a practical network scenario where

the set of active users in the system keep changing, unless the network has a reliable

signaling mechanism, even keeping track of the current number of active users in the



99

system requires maintaining per-user information. It is also unclear how the ADMM

algorithm would behave in the presence of measurement noise. In this chapter, we

will study new solutions that are specifically designed for online implementation,

and that do not require each network component to store and maintain per-user

information.

4.2 The Distributed Algorithm

Similar to what we found in Chapter 3, one of the main difficulties in solving (4.1)

is that, once some users have multiple alternative paths, the objective function of

(4.1) is not strictly concave. As we go into the details of the analysis, we will see the

manifestation of this difficulty in different aspects. At a high level, since the primal

problem is not strictly concave, the dual problem may not be differentiable at every

point. In this chapter, we would still like to use a duality based approach (parallel to

the approach in Chapter 3), because the dual problem usually has simpler constraints

and is easily decomposable. Again, to circumvent the difficulty due to the lack of

strict concavity, we use ideas from Proximal Optimization Algorithms [64, p232]. The

idea is to add a quadratic term to the objective function. Let ~xi = [xij, j = 1, ..., θ(i)]

and

Ci = {~xi|xij ≥ 0 for all j and

θ(i)
∑

j=1

xij ∈ [mi,Mi]}, i = 1, ..., I. (4.3)

Let ~x = [~x1, ..., ~xI ]
T and let C denote the Cartesian product of Ci, i.e., C =

⊗I
i=1 Ci.

We now introduce an auxiliary variable yij for each xij. Let ~yi = [yij, j = 1, ..., θ(i)]

and ~y = [~y1, .., ~yI ]
T . The optimization then becomes:

max
~x∈C,~y∈C

I
∑

i=1

fi(

θ(i)
∑

j=1

xij) −
I
∑

i=1

θ(i)
∑

j=1

ci

2
(xij − yij)

2 (4.4)

subject to
I
∑

i=1

θ(i)
∑

j=1

El
ijxij ≤ Rl for all l,

where ci is a positive number chosen for each i. It is easy to show that the optimal

value of (4.4) coincides with that of (4.1). In fact, Let ~x∗ denote the maximizer of
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(4.1), then ~x = ~x∗, ~y = ~x∗ is the maximizer of (4.4). Note that although a maximizer

of (4.1) always exists, it is usually not unique since the objective function is not

strictly concave.

The standard Proximal Optimization Algorithm then proceeds as follows:

Algorithm P :

At the t-th iteration,

P1) Fix ~y = ~y(t) and maximize the augmented objective function with respect

to ~x. To be precise, this step solves:

max
~x∈C

I
∑

i=1

fi(

θ(i)
∑

j=1

xij) −
I
∑

i=1

θ(i)
∑

j=1

ci

2
(xij − yij)

2 (4.5)

subject to
I
∑

i=1

θ(i)
∑

j=1

El
ijxij ≤ Rl for all l.

Note that the maximization is taken over ~x only. With the addition of the

quadratic term
θ(i)
∑

j=1

ci

2
(xij − yij)

2, for any fixed ~y, the primal objective function

is now strictly concave with respect to ~x. Hence, the maximizer of (4.5) exists

and is unique. Let ~x(t) be the solution to this optimization.

P2) Set ~y(t + 1) = ~x(t).

It is easy to show that such iterations will converge to the optimal solution of problem

(4.1) as t → ∞ [64, p233].

Step P1 still needs to solve a global non-linear programming problem at each

iteration. Since the objective function in (4.5) is now strictly concave, we can use

standard duality techniques. Let ql, l = 1, ..., L be the Lagrange Multipliers for the

constraints in (4.5). Let ~q = [q1, ..., qL]T . Define the Lagrangian as:

L(~x, ~q, ~y) =
I
∑

i=1

fi(

θ(i)
∑

j=1

xij) −
L
∑

l=1

ql(
I
∑

i=1

θ(i)
∑

j=1

El
ijxij − Rl) −

I
∑

i=1

θ(i)
∑

j=1

ci

2
(xij − yij)

2

=
I
∑

i=1







fi(

θ(i)
∑

j=1

xij) −
θ(i)
∑

j=1

xij

L
∑

l=1

El
ijq

l −
θ(i)
∑

j=1

ci

2
(xij − yij)

2







+
L
∑

l=1

qlRl.

(4.6)
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Let qij =
L
∑

l=1

El
ijq

l, ~qi = [qij, j = 1, ..., θ(i)]. The objective function of the dual

problem is then:

D(~q, ~y) = max
~x∈C

L(~x, ~q, ~y) =
I
∑

i=1

Bi(~qi, ~yi) +
L
∑

l=1

qlRl, (4.7)

where

Bi(~qi, ~yi) = max
~xi∈Ci







fi(

θ(i)
∑

j=1

xij) −
θ(i)
∑

j=1

xijqij −
θ(i)
∑

j=1

ci

2
(xij − yij)

2







. (4.8)

The dual problem of (4.5), given ~y, then corresponds to minimizing D over the dual

variables ~q, i.e.,

min
~q≥0

D(~q, ~y).

Since the objective function of the primal problem (4.5) is strictly concave, the dual

is always differentiable. Let ~q = ~q(t′). The gradient of D is

∂D

∂ql
= Rl −

I
∑

i=1

θ(i)
∑

j=1

El
ijx

0
ij(t

′),

where x0
ij(t

′) solves (4.8) for ~q = ~q(t′). The step P1 can then be solved by gradient

descent iterations on the dual variables ~q, i.e.,

ql(t′ + 1) =



ql(t′) + αl(
I
∑

i=1

θ(i)
∑

j=1

El
ijx

0
ij(t

′) − Rl)





+

, (4.9)

where [·]+ denotes the projection to [0, +∞). It is again easy to show that, given ~y,

the dual update (4.9) will converge to the minimizer of D(~q, ~y) as t′ → ∞, provided

that the step-sizes αl are sufficiently small [64, p214].

Remark (The Oscillation Problem Addressed): From (4.8) we can observe the

potential oscillation problem caused by the multi-path nature of problem (4.1), and

the crucial role played by the additional quadratic term in dampening this oscillation.

Assume that there is no additional quadratic term, i.e., ci = 0. Readers can verify

that, when (4.8) is solved for any user i that has multiple alternative paths, only

paths that have the least qij will have positive xij. That is, qij > mink qik ⇒ xij = 0.
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This property can easily lead to oscillation of xij when the dual variables ~q are being

updated. To see this, assume that a user i has two alternative paths, and the sum of

the dual variables on these two paths, qi,1 =
L
∑

l=1

El
i,1q

l and qi,2 =
L
∑

l=1

El
i,2q

l, are close

to each other. At one time instant qi,1 could be greater than qi,2, in which case the

maximum point of (4.8) satisfies xi,1 = 0 and xi,2 > 0. At the next time instant, since

more resources are consumed on network components on path 2, the dual variables

~q could be updated such that qi,2 > qi,1 (see the update equation (4.9)). In this case,

the maximum point of (4.8) will require that xi,1 > 0 and xi,2 = 0, i.e., the resource

allocation will move entirely from path 2 over to path 1. This kind of flip-floping can

continue forever and is detrimental to network control. When ci > 0, however, the

maximum point ~xi of (4.8) is continuous in ~qi (shown later in Lemma 4.3.1). Hence,

the quadratic term serves a crucial role to dampen the oscillation and stablize the

system.

4.2.1 Towards Constructing Online Solutions

The algorithm P that we have constructed requires the two-level convergence

structure typical in proximal optimization algorithms. The algorithm P consists of

an outer level of iterations, i.e., iterations P1 and P2, where each outer iteration P1

consists of an inner level of iterations (4.9). For the convergence of algorithm P to

hold, the inner level of iterations (4.9) must converge before each outer iteration can

proceed from step P1 to P2. Such a two-level convergence structure is unsuitable for

online implementation because in practice, it is difficult for the network elements to

decide in a distributive fashion when the inner level of iterations should stop.

Despite this difficulty, the main building blocks (4.8) and (4.9) of algorithm P
have several attractive attributes desirable for online implementation. In particular,

all computation can be carried out based on local information, and hence can be

easily distributed. More precisely, in the definition of the dual objective function

D(~q, ~y) in (4.7), we have decomposed the original problem into I separate subprob-
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lems for each user i = 1, ..., I. Given ~q, each subproblem Bi (4.8) can now be solved

independently1. If we interpret ql as the implicit cost per unit resource on network

component l, then qij is the cost per unit resource on path j of user i. We can call

qij the cost of path j of user i. Thus the costs qij, j = 1, ..., θ(i), capture all the infor-

mation that each user i needs to know in order to determine its resource allocation

xij. Further, according to (4.9), the implicit cost ql can be updated at each network

component l based on the difference between the capacity Rl and the aggregate load
I
∑

i=1

θ(i)
∑

j=1

El
ijx

0
ij(t

′). In many applications, this aggregate load can be measured by each

network component directly. For example, in a multi-path flow control problem

where xij represents the data rate of user (flow) i on path j [22], the aggregate load
I
∑

i=1

θ(i)
∑

j=1

El
ijxij is simply the aggregate data rate going through link l, which can be

estimated by counting the total amount of data forwarded on the link over a certain

time window. Hence, no per-user information needs to be stored or maintained. In

some applications, there is yet another reason why the measurement-based approach

is advantageous. That is, by measuring the aggregate load directly, the algorithm

does not need to rely on prior knowledge of the parameters of the system, and hence

can automatically adapt to the changes of these parameters. For example, in the

optimal routing problem in Chapter 3, each link l needs to estimate the aggregate

load
I
∑

i=1

θ(i)
∑

j=1

λi

µi
ripijH

l
ij. Since the probability that a user of class i is routed to path

j is pij, the arrival process of users of class i on link l is a Poisson process with rate

λipij. Assume that neither the mean arrival rate λi nor the mean service time 1/µi

are known a priori, but each user knows its own service time in advance. Each link

can then estimate the aggregate load as follows2: over a certain time window W ,

each link l collects the information of the arriving users from all classes to link l.

Let w be the total number of arrivals during W . Let rk, Tk, k = 1, ...w denote the

bandwidth requirement and the service time, respectively, of the k-th arrival. (This

1Note that an efficient algorithm can solve each subproblem Bi (4.8) in at most O[θ(i) log θ(i)]
steps (see Appendix B.2).
2This is precisely the procedure we proposed in Section 3.3.2.
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information can be carried along with the connection setup message when the user

arrives.) Let

θ =

∑w
k=1 rkTk

W
.

Then, it is easy to check that

E[θ] =
I
∑

i=1

θ(i)
∑

j=1

λi

µi

ripijH
l
ij,

i.e., θ is an unbiased estimate of the aggregate load. Note that no prior knowledge on

the demand parameters λi and µi is needed in the estimator. Hence, the algorithm

can automatically track the changes in the arrival rates and service times of the

users [21].

4.2.2 The Algorithm A

In the rest of the chapter, we will study the following algorithm that generalizes

algorithm P . (This is precisely the Algorithm A that we used in Chapter 3.)

Algorithm A:

Fix K ≥ 1. At the t-th iteration:

A1) Fix ~y = ~y(t) and use gradient descent iteration (4.9) on the dual variable

~q for K times. To be precise, let ~q(t, 0) = ~q(t). Repeat the following procedure

for each k = 0, 1, ...K − 1:

Let ~x(t, k) be the primal variable that solves (4.8) given the dual variable

~q(t, k), i.e., ~x(t, k) = argmax
~x∈C

L(~x, ~q(t, k), ~y(t)). Update the dual variables by

ql(t, k + 1) =



ql(t, k) + αl(
I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t, k) − Rl)





+

, for all l. (4.10)

A2) Let ~q(t + 1) = ~q(t,K). Let ~z(t) be the primal variable that solves (4.8)

given the new dual variable ~q(t+1), i.e., ~z(t) = argmax
~x∈C

L(~x, ~q(t+1), ~y(t)). Set

yij(t + 1) = yij(t) + βi(zij(t) − yij(t)), for all i, j, (4.11)
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where 0 < βi ≤ 1 for each i.

As discussed in Section 4.2.1, in certain applications the aggregate load
I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t, k) is estimated through online measurement with non-negligible

noises. The update (4.10) should then be replaced by:

ql(t, k + 1) =



ql(t, k) + αl(
I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t, k) − Rl + nl(t, k))





+

, (4.12)

where nl(t, k) represents the measurement noise at link l.

From now on, we will refer to (4.10) or (4.12) as the dual update, and (4.11) as the

primal update. A stationary point of the algorithm A is defined to be a primal-dual

pair (~y∗, ~q∗) such that

~y∗ = argmax
~x∈C

L(~x, ~q∗, ~y∗),
I
∑

i=1

θ(i)
∑

j=1

El
ijy

∗
ij ≤ Rl for all l, (4.13)

ql,∗ ≥ 0, and ql,∗(
I
∑

i=1

θ(i)
∑

j=1

El
ijy

∗
ij − Rl) = 0 for all l.

These are precisely the complementary slackness conditions for the problem (4.1).

By standard duality theory, for any stationary point ( ~y∗, ~q∗) of the algorithm A,

~x = ~y∗ solves the problem (4.1).

The main components of algorithm A (i.e., the primal and dual updates) are

essentially the same as that of the standard proximal optimization algorithm P .

Therefore, our new algorithm A inherits from algorithm P those attributes desirable

for online implementation. However, the main difference is that, in algorithm A, only

K number of dual updates are executed at each iteration of step A1. If K = ∞,

then algorithm A and algorithm P will be equivalent, i.e., at each iteration of step

A1 the optimization (4.5) is solved exactly. As we discussed earlier, such a two-level

convergence structure is inappropriate for online implementation because it would

be impractical to carry out an algorithm in phases where each phase consists of an

infinite number of dual updates. Further, because each phase only serves to solve

the augmented problem (4.5), such a two-level convergence structure is also likely to
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slow the convergence of the entire algorithm as too many dual updates are wasted

at each phase.

On the other hand, when K < ∞, at best an approximate solution to (4.5) is

obtained at each iteration of step A1. If the accuracy of the approximate solution can

be controlled appropriately (see [65]), one can still show convergence of algorithm A.

However, in this case the number of dual updates K in step A1 has to depend on the

required accuracy and usually needs to be large. Further, for online implementation,

it is also difficult to control the accuracy of the approximate solution to (4.5) in a

distributed fashion.

In this work, we take an entirely different approach. We do not require a two-level

convergence structure and we allow an arbitrary choice of K ≥ 1. Hence, our ap-

proach does not impose any requirement on the accuracy of the approximate solution

to (4.5). As we just discussed, relaxing the algorithm in such a way is a crucial step

in making the algorithm amenable to online distributed implementation. Somewhat

surprisingly, we will show in the next section that algorithm A will converge for any

K ≥ 1.

4.3 Convergence without Measurement Noise

In this section, we study the convergence of algorithm A when there is no mea-

surement noise, i.e., when the dynamics of the system are described by (4.10) and

(4.11). The convergence of algorithm A can be most easily understood by looking

at its continuous-time approximation as follows:

Algorithm AC:

A1-C) dual update:

d

dt
ql(t) =











α̂l(
I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t) − Rl) if ql(t) > 0 or

I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t) ≥ Rl

0 otherwise

,

(4.14)

where ~x(t) = argmax
~x∈C

L(~x, ~q(t), ~y(t)).
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A2-C) primal update:

d

dt
yij(t) = β̂i(xij(t) − yij(t)). (4.15)

Note that α̂l dt and β̂i dt would correspond to the step-sizes αl and βi in the

discrete-time algorithm A. The continuous-time algorithm AC can be view as the

functional limit of the discrete-time algorithm by driving the step-sizes αl and βi to

zero and by appropriately rescaling time (see Section 4.4 and Appendix C.3).

For the sake of brevity, we will use the following vector notation for the rest of

the chapter. Let E denote the matrix with L rows and
∑I

i=1 θ(i) columns such

that the (l,
∑i−1

k=1 θ(k) + j) element is E l
ij. Let R = [R1, R2, ...Rl]T . Then the

constraint of problem (4.1) can be written as E~x ≤ R. Let V and B̂ be
∑I

i=1 θ(i)×
∑I

i=1 θ(i) diagonal matrices, where the (
∑i−1

k=1 θ(k)+1)-th to (
∑i

k=1 θ(k))-th diagonal

elements are ci and β̂i, respectively (i.e., each ci or β̂i is repeated θ(i) times). Let

Â be the L × L diagonal matrix whose l-th diagonal element is α̂l. It will also be

convenient to view the objective function in (4.1) as a concave function of ~x, i.e,

f(~x) =
∑I

i=1 fi(
∑θ(i)

j=1 xij). Further, we can incorporate the constraint ~x ∈ C into

the definition of the function f by setting f(~x) = −∞ if ~x /∈ C. Then the function f

is still concave, and the problem (4.1) can be simply rephrased as maximizing f(~x)

subject to E~x ≤ R. The Lagrangian (4.6) also becomes:

L(~x, ~q, ~y) = f(~x) − ~xT ET~q − 1

2
(~x − ~y)T V (~x − ~y) + ~qT R. (4.16)

The continuous time algorithm AC can then be viewed as the projected forward

iteration for solving the zeros of the following monotone mapping [69]:

T : [~y, ~q] → [~u,~v], (4.17)

with

~u(~y, ~q) = −V ( ~x0(~y, ~q) − ~y), ~v(~y, ~q) = −(E ~x0(~y, ~q) − R),

where ~x0(~y, ~q) = argmax~x L(~x, ~q, ~y). Define the inner product

〈 [~y, ~q], [~u,~v] 〉 = ~yT~u + ~qT~v, (4.18)
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and the following norms:

||~q||Â = ~qT Â−1~q, ||~y||V = ~yT V ~y, ||~y||B̂V = ~yT B̂−1V ~y. (4.19)

Part 3 of the following Lemma shows that the mapping T is monotone [69]. Note

that a mapping T is monotone if

〈 X1 − X2, T X1 − T X2 〉 ≥ 0 for any X1 and X2. (4.20)

Lemma 4.3.1 Fix ~y = ~y(t). Let ~q1, ~q2 be two implicit cost vectors, and let ~x1, ~x2 be

the corresponding maximizers of the Lagrangian (4.16), i.e.,

~x1 = argmax~x L(~x, ~q1, ~y(t)) and ~x2 = argmax~x L(~x, ~q2, ~y(t)). Then,

1. (~q2 − ~q1)
T E(~x2 − ~x1) ≤ −(~x2 − ~x1)

T V (~x2 − ~x1).

2. (~x2 − ~x1)
T V (~x2 − ~x1) ≤ (~q2 − ~q1)

T EV −1ET (~q2 − ~q1), and

3. 〈 [~y1 − ~y2, ~q1 − ~q2], T [~y1, ~q1] − T [~y2, ~q2] 〉 ≥ 0 for any (~y1, ~q1) and (~y2, ~q2).

Remark: Part 2 of Lemma 4.3.1 also shows that, given ~y, the mapping from ~q to ~x

is continuous.

Proof We start with some additional notation. For ~x0 = argmax~x L(~x, ~q, ~y), by

taking subgradients (see [65]) of the Lagrangian (4.16) with respect to ~x, we can

conclude that there must exist a subgradient ∇f( ~x0) of f at ~x0 such that

∇f( ~x0)|~y,~q − ET~q − V ( ~x0 − ~y) = 0. (4.21)

Note that ∇f( ~x0)|~y,~q defined above depends not only on the function f and the vector

~x0, but also on ~y and ~q. However, in the derivation that follows, the dependence on ~y

and ~q is easy to identify. Hence, for the sake of brevity, we will drop the subscripts and

write ∇f( ~x0) when there is no ambiguity. Similarly, let ( ~y∗, ~q∗) denote a stationary

point of algorithm A. Then ~y∗ = argmax~x L(~x, ~q∗, ~y∗), and we can define ∇f(~y∗) as

the subgradient of f at ~y∗ such that

∇f(~y∗) − ET ~q∗ = 0. (4.22)
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Applying (4.21) for ~q1 and ~q2, and taking difference, we have,

ET (~q2 − ~q1) = [∇f(~x2) −∇f(~x1)] − V (~x2 − ~x1).

The concavity of f dictates that, for any ~x1, ~x2 and ∇f(~x1), ∇f(~x2),

[∇f(~x2) −∇f(~x1)]
T (~x2 − ~x1) ≤ 0. (4.23)

Hence,

(~q2 − ~q1)
T E(~x2 − ~x1) = [∇f(~x2) −∇f(~x1)]

T (~x2 − ~x1) − (~x2 − ~x1)
T V (~x2 − ~x1)

≤ −(~x2 − ~x1)
T V (~x2 − ~x1).

Part 2 of the Lemma can be shown analogously. To show Part 3, let

~x
′

2 = argmax~x≥0 L(~x, ~q2, ~y2). Applying (4.21) for ~q1, ~y1 and ~q2, ~y2, and taking dif-

ference, we have

ET (~q2 − ~q1) =
[

∇f(~x
′

2) −∇f(~x1)
]

− V (~x
′

2 − ~x1) + V (~y2 − ~y1).

Hence, using (4.23) again, we have,

〈 [~y1 − ~y2, ~q1 − ~q2], T [~y1, ~q1] − T [~y2, ~q2] 〉

= −(~y1 − ~y2)
T V (~x1 − ~x

′

2 − (~y1 − ~y2)) − (~q1 − ~q2)
T E(~x

′

2 − ~x1)

≥ ||~y1 − ~y2||2V − 2(~x1 − ~x
′

2)
T V (~y1 − ~y2) + ||~x1 − ~x

′

2 ||2V ≥ 0. (4.24)

We can now prove the following result.

Proposition 4.3.1 The continuous-time algorithm AC will converge to a stationary

point (~y∗, ~q∗) of the algorithm A for any choice of α̂l > 0 and β̂i > 0.

Proof We can prove Proposition 4.3.1 using the following Lyapunov function. Let

V(~y, ~q) = ||~q − ~q∗||Â + ||~y − ~y∗||B̂V , (4.25)
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where the norms are defined in (4.19). We will first show that, if (~y(t), ~q(t)) is

governed by the algorithm AC, V(~y(t), ~q(t)) is non-increasing in t. To see this, note

that,

d

dt
V(~y(t), ~q(t)) = 2(~q(t) − ~q∗)T Â−1 d

dt
~q(t) + 2(~y(t) − ~y∗)T B̂−1V

d

dt
~y(t). (4.26)

By (4.14), we have for all l,

2(ql(t) − ql,∗)
d

dt
ql(t) ≤ 2αl(ql(t) − ql,∗)(

I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t) − Rl)

= 2αl(ql(t) − ql,∗)
I
∑

i=1

θ(i)
∑

j=1

El
ij(xij(t) − y∗

ij)

+2αl(ql(t) − ql,∗)(
I
∑

i=1

θ(i)
∑

j=1

El
ijy

∗
ij − Rl).

Since (~y∗, ~q∗) is a stationary point,
I
∑

i=1

θ(i)
∑

j=1

El
ijy

∗
ij − Rl ≤ 0 and

ql,∗(
I
∑

i=1

θ(i)
∑

j=1

El
ijy

∗
ij − Rl) = 0. Further, since ql(t) ≥ 0, we obtain,

2(ql(t) − ql,∗)
d

dt
ql(t) ≤ 2αl(ql(t) − ql,∗)

I
∑

i=1

θ(i)
∑

j=1

El
ij(xij(t) − y∗

ij). (4.27)

Substituting (4.15) and (4.27) into (4.26), we have,

d

dt
V(~y(t), ~q(t)) = 2(~q(t) − ~q∗)T Â−1 d

dt
~q(t) + 2(~y(t) − ~y∗)T B̂−1V

d

dt
~y(t)

≤ 2(~q(t) − ~q∗)T E(~x(t) − ~y∗) + 2(~y(t) − ~y∗)T V (~x(t) − ~y(t))

= −2〈 [~y(t) − ~y∗, ~q(t) − ~q∗], T [~y(t), ~q(t)] − T [~y∗, ~q∗] 〉,

where the inner product is defined in (4.18). Hence, by Lemma 4.3.1,

d

dt
V(~y(t), ~q(t)) ≤ 0.

In fact, using (4.24), we can show that

d

dt
V(~y(t), ~q(t)) ≤ −2(~x(t) − ~y(t))T V (~x(t) − ~y(t)) ≤ 0. (4.28)
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Therefore, V(~y(t), ~q(t)) must converge to a limit V0 as t → ∞, i.e.,

lim
t→∞

||~q(t) − ~q∗||Â + ||~y(t) − ~y∗||B̂V = V0 ≥ 0. (4.29)

It remains to show that V0 = 0 for some choice of the stationary point ( ~y∗, ~q∗).

Towards this end, define a set M to be an invariant set with respect to algorithm

AC if, starting from any point in M, the trajectory (~y, ~q) governed by the algorithm

AC will lie entirely in M. Let M0 denote the set of limit points of (~y(t), ~q(t)). Since

V(~y(t), ~q(t)) is non-negative, by LaSalle’s Theorem [70, p115], it follows that M0 is

an invariant set, and d
dt
V(~y, ~q) = 0 for any points in M0. We will now show that M0

contains a stationary point of algorithm A. To see this, pick a point (~y0, ~q0) ∈ M0.

Let ~̃y(0) = ~y0 and ~̃q(0) = ~q0. Let (~̃y(t), ~̃q(t)) denote the trajectory of algorithm AC
starting from (~y0, ~q0). We first study ~̃y(t). Using the fact that

d

dt
V(~̃y(t), ~̃q(t)) = 0 for all t ≥ 0,

we have, from (4.28),

~̃x(t) = ~̃y(t) for all t ≥ 0,

where ~̃x(t) = argmax~x L(~x,~̃q(t), ~̃y(t)). Hence,

d

dt
~̃y(t) = B̂(~̃x(t) − ~̃y(t)) = 0.

Therefore, ~̃x(t) = ~̃y(t) = ~̃y(0) for all t ≥ 0. We next study ~̃q(t). For any link l, there

are two possibilities. The first possibility is

I
∑

i=1

θ(i)
∑

j=1

El
ijx̃ij(t) =

I
∑

i=1

θ(i)
∑

j=1

El
ij ỹij(0) > Rl. (4.30)

If this was true, since

d

dt
q̃l(t) = αl(

I
∑

i=1

θ(i)
∑

j=1

El
ijx̃ij(t) − Rl) = αl(

I
∑

i=1

θ(i)
∑

j=1

El
ij ỹij(0) − Rl) > 0,

we have q̃l(t) → ∞, as t → ∞. It implies that x̃ij(t) → 0, as t → ∞, for all i, j such

that El
ij > 0. We then conclude that

I
∑

i=1

θ(i)
∑

j=1

El
ijx̃ij(t) → 0 as t → ∞.
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This contradicts with the assumption (4.30). Hence, only the other possibility can

be true, i.e.,
I
∑

i=1

θ(i)
∑

j=1

El
ijx̃ij(t) =

I
∑

i=1

θ(i)
∑

j=1

El
ij ỹij(0) ≤ Rl.

Note that if the above inequality is strict, then q̃l(t) will decrease to zero after a finite

time t. On the other hand, q̃l(t) will be unchanged if q̃l(t) = 0 or
I
∑

i=1

θ(i)
∑

j=1

El
ij ỹij(0) = Rl.

Define (~̃y0, ~̃q0) as

~̃y0 = ~y0 = ~̃y(0)

q̃l
0 =



















ql
0 if

I
∑

i=1

θ(i)
∑

j=1

El
ij ỹij(0) = Rl

0 if
I
∑

i=1

θ(i)
∑

j=1

El
ij ỹij(0) < Rl

.

We can now conclude that, starting from (~y0, ~q0), eventually (~̃y(t), ~̃q(t)) = (~̃y0, ~̃q0).

By the definition of M0, (~̃y0, ~̃q0) is also a limit point of (~y(t), ~q(t)). Further, (~̃y0, ~̃q0)

satisfies the definition of the stationary point of algorithm A. Pick a subsequence

(~y(th), ~q(th)), h = 1, 2, ... such that th → ∞ and (~y(th), ~q(th)) → (~̃y0, ~̃q0), as h → ∞.

We can now replace (~y∗, ~q∗) by (~̃y0, ~̃q0) in (4.29), and conclude that

lim
t→∞

||~q(t) − ~̃q0||Â + ||~y(t) − ~̃y0||B̂V

= lim
h→∞

||~q(th) − ~̃q0||Â + ||~y(th) − ~̃y0||B̂V

= 0.

The result then follows.

We next study the convergence of the discrete-time algorithm A. Since the

continuous-time algorithm AC can be viewed as an approximation of the discrete-

time algorithm A when the step-sizes are close to zero, we can then expect from

Proposition 4.3.1 that algorithm A will converge when the step-sizes αl and βi are

small. However, when these step-sizes are too small, convergence is unnecessarily
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slow. Hence, in practice, we would like to choose larger step-sizes, while still preserv-

ing the convergence of the algorithm. Such knowledge on the step-size rule can only

be obtained by studying the convergence of the discrete-time algorithm directly.

Typically, convergence of the discrete-time algorithms requires stronger condi-

tions on the associated mapping T defined in (4.17), i.e., the mapping T needs to

be strictly monotone [69]. A mapping T is strictly monotone if and only if

〈 X1 − X2, T X1 − T X2 〉 ≥ d||T X1 − T X2|| for any vectors X1 and X2, (4.31)

where d is a positive constant and || · || is an appropriately chosen norm. Note that

strict monotonicity in (4.31) is stronger than monotonicity in (4.20). Such type

of strict monotonicity indeed holds for the case when K = ∞, which is why the

convergence is much easier to establish under the two-level convergence structure.

However, when K < ∞, strict monotonicity will not hold for the mapping T defined

in (4.17) whenever some users in the network have multiple paths. To see this, choose

X2 = [~y∗, ~q∗] to be a stationary point of algorithm A and assume that E ~y∗ = R.

Let X1 = [~y, ~q∗] such that
θ(i)
∑

j=1

yij =
θ(i)
∑

j=1

y∗
ij for all i. Note that for a user i that

has multiple paths, we can still choose yij 6= y∗
ij for some j such that E~y 6= R. By

comparing with the complementary slackness conditions (4.13), we have ~x0(~y, ~q∗) ,

argmax~x L(~x, ~q∗, ~y) = ~y. Hence,

~u(~y, ~q∗) = 0, and ~v(~y, ~q∗) = −(E~y − R).

Further, since ~u(~y∗, ~q∗) = 0 and ~v(~y∗, ~q∗) = 0 by the complementary slackness con-

ditions (4.13), we have

〈 X1 − X2, T X1 − T X2 〉 = 〈 [~y − ~y∗, ~q∗ − ~q∗], T [~y, ~q∗] − T [~y∗, ~q∗] 〉

= [~y − ~y∗]T (~u(~y, ~q∗) − ~u(~y∗, ~q∗)) + ~0 T (~v(~y, ~q∗) − ~v(~y∗, ~q∗)) = 0.

However, T X1 − T X2 = [0,−(E~y − R)] 6= 0. Hence, the inequality (4.31) will never

hold! As we have just seen, it is precisely the multi-path nature of the problem that

leads to this lack of strict monotonicity. (One can indeed show that (4.31) would
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have held if all users had one single path and the utility functions fi(·) were strictly

concave.)

This lack of strict monotonicity when K < ∞ forces us to carry out a more refined

convergence analysis than that in the standard convex programming literature. We

will need the following key supporting result. Let ( ~y∗, ~q∗) denote a stationary point

of algorithm A. Using (4.23), we have

[

∇f(~x1) −∇f(~y∗)
]T

(~x1 − ~y∗) ≤ 0. (4.32)

The following Lemma can be viewed as an extension of the above inequality. The

proof is very technical and is given in Appendix C.1.

Lemma 4.3.2 Fix ~y = ~y(t). Let ~q1, ~q2 be two implicit cost vectors, and let ~x1, ~x2 be

the corresponding maximizers of the Lagrangian (4.16). Then,

[

∇f(~x1) −∇f(~y∗)
]T

(~x2 − ~y∗) ≤ 1

2
(~q2 − ~q1)

T EV −1ET (~q2 − ~q1),

where ∇f(~x1) and ∇f(~y∗) are defined in (4.21) and (4.22), respectively.

Remark: If ~q2 = ~q1, then ~x2 = ~x1 and we get back to (4.32). Lemma 4.3.2 tells us

that as long as ~q1 is not very different from ~q2, the cross-product on the left hand

side will not be far above zero either.

We can then prove the following main result, which establishes the sufficient

condition on the step-sizes for the convergence of the discrete-time algorithm A.

Proposition 4.3.2 Fix 1 ≤ K ≤ ∞. As long as the step-size αl is small enough,

algorithm A will converge to a stationary point ( ~y∗, ~q∗) of the algorithm, and ~x∗ = ~y∗

will solve the original problem (4.1). The sufficient condition for convergence is:

max
l

αl <



















2
SL mini ci if K = ∞
1

2SL mini ci if K = 1

4
5K(K+1)SL mini ci if K > 1

,

where L = max{
L
∑

l=1

El
ij, i = 1, ..., I, j = 1, ...θ(i)}, and S = max{

I
∑

i=1

θ(i)
∑

j=1

El
ij, l =

1, ..., L}.
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Proposition 4.3.2 establishes the convergence of algorithm A for any value of K

(even K = 1 is good enough). Hence, the typical two-level convergence structure is

no longer required. Further, we observe that the sufficient condition for convergence

when K = 1 differs from that of K = ∞ by only a factor of 4. Note that for K = ∞,

the sufficient condition in fact ensures the convergence of the dual updates to the

solution of the augmented problem (4.5) during one iteration of step A1. On the

other hand, the sufficient condition for K = 1 ensures the convergence of the entire

algorithm A. By showing that the sufficient conditions for the two cases differ by only

a factor of 4, we can infer that the convergence of the entire algorithm when K = 1

is not necessarily much slower than the convergence of one iteration of step A1 when

K = ∞. Hence, the algorithm A with K = 1 in fact converges much faster. For

K > 1, our result requires that the step-size be inversely proportional to K2. This is

probably not as tight a result as one could get: we conjecture that the same condition

for K = 1 would work for any K. However, we leave this for future work. We also

note that ci appears on the right hand side of the sufficient conditions. Hence, by

making the objective function more concave, we also relax the requirement on the

step-sizes αl. Finally, Proposition 4.3.2 indicates that convergence will hold for any

βi (the step-size in the primal update) that is in (0, 1]. In summary, the discrete-

time analysis allows much wider choices of the step-sizes than those predicted by the

continuous-time analysis.

Proof [of Proposition 4.3.2] In order to highlight the main ideas of the proof, we

will focus here on the case when K = 1. The other cases can be shown analogously

(see Appendix C.2 for details). Define matrices A and B analogously to matrices

Â and B̂, respectively, except that their diagonal elements are now filled with the

step-sizes αl and βi of the discrete-time algorithm A. Define the norms analogously

to (4.19). When K = 1,

~q(t + 1) = [~q(t) + A(E~x(t) − R)]+. (4.33)
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Let (~y∗, ~q∗) be any stationary point of algorithm A. We will show that the Lyapunov

function

V(~y(t), ~q(t)) = ||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV

is non-increasing in t. Using the property of the projection mapping [64, Proposition

3.2(b), p211], we have

(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − [~q(t) + A(E~x(t) − R)]) ≤ 0. (4.34)

Hence,

||~q(t + 1) − ~q∗||A
= ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − ~q(t))

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T (E~x(t) − R) (4.35)

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗), (4.36)

where in the last step we have used the fact that E ~y∗−R ≤ 0 and ~q∗
T
(E ~y∗−R) = 0.

On the other hand, since yij(t + 1) = (1 − βi)yij(t) + βizij(t), we have

(yij(t + 1) − y∗
ij)

2 ≤ (1 − βi)(yij(t) − y∗
ij)

2 + βi(zij(t) − y∗
ij)

2

||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV ≤ ||~z(t) − ~y∗||V − ||~y(t) − ~y∗||V . (4.37)

Hence, combining (4.36) and (4.37), we have,

||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV − (||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV )

≤ −||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗)

+||~z(t) − ~y∗)||V − ||~y(t) − ~y∗||V
≤ −||~q(t + 1) − ~q(t)||A

+
{

||~z(t) − ~y∗)||V − ||~y(t) − ~y∗||V − 2(~z(t) − ~y(t))T V (~x(t) − ~y∗)
}

(4.38)

+2
[

∇f(~z(t)) −∇f(~y∗)
]T

(~x(t) − ~y∗), (4.39)

where in the last step we have used (4.21) and (4.22), and consequently

ET (~q(t + 1) − ~q∗) = ∇f(~z(t)) −∇f(~y∗) − V (~z(t) − ~y(t)). (4.40)
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By simple algebraic manipulation, we can show that the second term (4.38) is equal

to

||~z(t) − ~y∗||V − ||~y(t) − ~y∗||V − 2(~z(t) − ~y(t))T V (~x(t) − ~y∗)

= ||(~z(t) − ~x(t)||V − ||~y(t) − ~x(t)||V . (4.41)

Invoking Lemma 4.3.1, part 2,

||~z(t) − ~x(t)||V ≤ (~q(t + 1) − ~q(t))T EV −1ET (~q(t + 1) − ~q(t)). (4.42)

For the third term (4.39), we can invoke Lemma 4.3.2,

2
[

∇f(~z(t)) −∇f(~y∗)
]T

(~x(t)− ~y∗) ≤ (~q(t+1)−~q(t))T EV −1ET (~q(t+1)−~q(t)). (4.43)

Therefore, by substituting (4.41-4.42) into (4.38), and substituting (4.43) into (4.39),

we have

V(~y(t + 1), ~q(t + 1)) − V(~y(t), ~q(t))

≤ −(~q(t + 1) − ~q(t))T C1(~q(t + 1) − ~q(t)) − ||~y(t) − ~x(t)||V .

where C1 = A−1 − 2EV −1ET . If C1 is positive definite, then

V(~y(t + 1), ~q(t + 1)) − V(~y(t), ~q(t))

≤ −(~q(t + 1) − ~q(t))T C1(~q(t + 1) − ~q(t)) − ||~y(t) − ~x(t)||V ≤ 0. (4.44)

This proves that V(~y(t), ~q(t)) is non-increasing in t and hence must have a limit, i.e.,

lim
t→∞

||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV = V0 ≥ 0. (4.45)

Therefore, the sequence {~y(t), ~q(t), t = 1, ...} is bounded, and there must exist a

subsequence {~y(th), ~q(th), h = 1, ...} that converges to a limit point. Let (~y0, ~q0) be

this limit. From (4.44), we have,

lim
h→∞

~q(th + 1) = ~q0 and lim
h→∞

~x(th) = ~y0.



118

Taking limits at both sides of (4.33) as h → ∞, we have,

~q0 = [~q0 + A(E~y0 − R)]+. (4.46)

Hence

~q0 ≥ 0, E~y0 ≤ R and ~qT
0 (E~y0 − R) = 0. (4.47)

Further, note that ~x(th) maximizes L(~x, ~q(th), ~y(th)) over all ~x. Similar to

Lemma 4.3.1, one can show that the mapping from (~y(th), ~q(th)) to ~x(th) is con-

tinuous. Hence, taking limits as h → ∞, we have

~y0 maximizes L(~x, ~q0, ~y0) over all ~x .

Therefore, (~y0, ~q0) is a stationary point of algorithm A. We now replace ( ~y∗, ~q∗) by

(~y0, ~q0) in (4.45) and thus,

lim
t→∞

||~q(t) − ~q0||A + ||~y(t) − ~y0||BV = lim
h→∞

||~q(th) − ~q0||A + ||~y(th) − ~y0||BV = 0.

Hence (~y(t), ~q(t)) → (~y0, ~q0) as t → ∞. Finally, it is easy to show that a sufficient

condition for C1 to be positive definite is maxl α
l < 1

2SL mini ci (see Lemma C.4 in

Appendix C.2).

4.4 Convergence with Measurement Noise

In this section, we will study the convergence of algorithm A when there is

measurement noise, i.e., when the dynamics of the system are governed by (4.11)

and (4.12). The convergence of algorithm A will be established in the “stochastic

approximation” sense, i.e., when the step-sizes are driven to zero in an appropriate

fashion. To be specific, we replace the step-sizes αl and βi by

αl(t) = ηtα
l
0, βi(t) = ηtβi,0,

for some positive sequence {ηt, t = 1, 2, ...} that goes to zero as t → ∞. For simplicity,

we will focus on the case when K = 1 and we will drop the index k in (4.12). Let
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N(t) = [nl(t), l = 1, ..., L]T . Use the vector notation from the previous section and

define matrices A0 and B0 analogously as the matrices A and B, respectively, except

that the diagonal elements are now filled with αl
0 and βi,0. We can then rewrite

algorithm A as:

Algorithm AN :

A1-N) Let ~x(t) = argmax~x L(~x, ~q(t), ~y(t)). Update the dual variables by

~q(t + 1) = [~q(t) + ηtA0(E~x(t) − R + N(t))]+. (4.48)

A2-N) Let ~z(t) = argmax~x L(~x, ~q(t+1), ~y(t)). Update the primal variables by

~y(t + 1) = ~y(t) + ηtB0(~z(t) − ~y(t)).

Proposition 4.4.1 If
∞
∑

t=1

ηt = ∞,
∞
∑

t=1

ηt
2 < ∞,

and

E[N(t)|~x(s), ~y(s), ~q(s), s ≤ t] = 0, (4.49)
∞
∑

t=1

ηt
2E||N(t)||2 < ∞, (4.50)

then algorithm AN will converge almost surely to a stationary point ( ~y∗, ~q∗) of algo-

rithm A.

Assumption (4.49) simply states that the noise term N(t) should be un-biased.

Assumption (4.50) is also quite general. For example, it will hold if the variance of

the noise, i.e., E[(nl(t))2] is bounded for all l and t. We can prove Proposition 4.4.1 by

first extending the analysis of Proposition 4.3.2 to show that, as t → ∞, V(~y(t), ~q(t))

converges almost surely to a finite non-negative number. This implies that (~y(t), ~q(t))

is bounded almost surely. We can then use the ODE method of [66] to show that,

as t → ∞, the limiting behavior of the stochastic approximation algorithm will
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converge to that of the ordinary differential equations defined by the continuous-

time algorithm AC in Section 4.3 with Â = A0 and B̂ = B0. Proposition 4.3.1 can

then be invoked to show that (~y(t), ~q(t)) converges to a stationary point. Details of

the proof are available in Appendix C.3.

We now comment on the step-size rule used in Proposition 4.4.1. As is typical for

stochastic approximation algorithms, the convergence of algorithm AN is established

when the step-sizes are driven to zero. When this type of stochastic approximation

algorithms are employed online, we usually use step-sizes that are away from zero

(e.g., constants). In this case, the trajectory (~y(t), ~q(t)) (or (~x(t), ~q(t))) will fluctuate

in a neighborhood around the set of stationary points, instead of converging to one

stationary point. In practice, we are interested in knowing how to choose the step-

sizes so that the trajectory stays in a close neighborhood around the solutions. Since

Proposition 4.4.1 requires that both αl and βi be driven to zero, we would expect

that, if we were to choose both αl and βi small enough (but away from zero), the

trajectory (~x(t), ~q(t)) will be kept in a close neighborhood around the solutions. This

choice of the step-sizes might seem overly conservative at first sight. In particular,

since the noise terms nl(t) are only present in the dual update (4.12), it appears

at first quite plausible to conjecture that only αl needs to be driven to zero in

Proposition 4.4.1 (in order to average out the noise), while βi can be kept away from

zero. If this conjecture were true, it would imply that, in order to keep the trajectory

(~x(t), ~q(t)) in a close neighborhood around the set of stationary points, only αl needs

to be small. However, our simulation results with constant step-sizes seem to suggest

the opposite. We observe that, when there is measurement noise, the disturbance

in the primal variables ~x(t) cannot be effectively controlled by purely reducing the

step-sizes αl at the links. We will elaborate on this observation in the next section

with a numerical example, and we will show that the required step-size rule (i.e.,

both αl and βi needs to small) is again a consequence of the multi-path nature of

the problem.
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4.5 Numerical Results

In this section, we present some simulation results for algorithm A. For all

simulations, we have chosen K = 1, i.e., we do not use the two-level convergence

structure. We will use the setting of the multi-path flow control problem as an

example, but the results here apply to other problems as well [22]. Specifically,

xij corresponds to the data rate of user i on path j, and E l
ij = 1 if path j of

user i uses link l, E l
ij = 0 otherwise. We first simulate the case when there is no

measurement noise. We use the “Triangle” network in Fig. 4.1. There are three

users (AB,BC,CA). For each user, there are two alternate paths, i.e., a direct one-

link path (path 1), and an indirect two-link path (path 2). For example, user AB

can take the one-link path A → B or the two-link path A → C → B. The utility

functions for all three users are of the form:

fi(

θ(i)
∑

j=1

xij) = wi ln(

θ(i)
∑

j=1

xij),

where wi is the “weight” of user i, and xij is the data rate of user i on path j. We

choose the weights as follows: wAB = 5.5, wBC = 2.5, wCA = 0.5. The capacity on

each link is 10 units.

Fig. 4.2 demonstrates the evolution over time of the implicit costs ql and the

users’ data rates xij, respectively, for algorithms A. We choose ci = 1.0 for all users.
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The step-sizes are αl = 0.1 for all links, and βi = 1.0 for all users. We observe that

all quantities of interest converge to the optimal solution, which is

qAB = 0.425, qBC = 0.354, qCA = 0.071,

xAB,1 = 10, xAB,2 = 2.94, xBC,1 = xCA,1 = 7.06, xBC,2 = xCA,2 = 0.

Note that at the stationary point, user AB will use both alternative paths while

users BC and CA will only use the direct paths. Because the weight of the utility

function of user AB is larger than that of the other users, algorithm A automatically

adjusts the resource allocation of users BC and CA to give way to user AB.

Fig. 4.3 demonstrates the evolution of algorithm A for the same network when

there is measurement noise. We assume that an i.i.d. noise term uniformly dis-

tributed within [−2, 2] is added to each xij when each link estimates the aggregate

load
I
∑

i=1

θ(i)
∑

j=1

H l
ijxij. The step-sizes are αl = 0.003 for all links, and βi = 0.1 for all

users. We can observe that all quantities of interest eventually fluctuate around a

small neighborhood of the solution.

We now investigate how the choice of the step-sizes αl and βi affect the level of

fluctuation on the implicit costs and the users’ data rates when there is measurement

noise. We use a simpler “Two-Link” topology in Fig. 4.1. The capacity of the two

links is 10 and 5, respectively. There is only one user, which can use both links. Its

utility function is given by

fi(x) = 5.5 ln x.

The noise term nl(t) is i.i.d. and uniformly distributed within [−2, 2].

Fig. 4.4 shows the evolution over time of the implicit costs (top) and that of the

users’ data rates (bottom) of algorithm A for different choices of the step-sizes. In

the first three columns, we keep β unchanged and reduce the step-size α from 0.01

to 0.0001. We observe that, although the fluctuation in the implicit costs becomes

smaller as the step-size α is reduced, the fluctuation in the data rates decreases only

a little. Note that the unit on the x-axis becomes larger as we move from the first

column to the third column. These figures indicate that, by reducing the step-size
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α alone, the fluctuation in the data rates becomes slower, but the magnitude of the

fluctuation changes little. In the fourth column, we decrease both β and α. The

fluctuation in the data rates is now effectively reduced.

Although somewhat counter-intuitive, these observations are consistent with

Proposition 4.4.1 where we require both α and β to be driven to zero for the con-

vergence of the stochastic approximation algorithm to hold. As we will show next

by studying the linearized version of the system, this step-size rule appears to be

necessitated by the multi-path nature of the problem. Assume that algorithm A
has a unique stationary point (~y∗, ~q∗). We can linearize the continuous-time system

(4.14)-(4.15) around this unique stationary point, and use Laplace transforms to

study the frequency response of the system in the presence of noise N(t). Without

loss of generality, we can assume that xij(t) > 0 for all i, j and ql(t) > 0 for all l.

(Otherwise, we can eliminate the paths with xij(t) = 0 and the links with ql(t) = 0
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from the analysis because they do not contribute to the dynamics of the linearized

system.) Let X (s) and N (s) denote the Laplace transform of the perturbation of

~x(t) and the noise N(t), respectively. We can then compute the transfer function

from N(t) to ~x(t) as (see Appendix C.4 for the detail)

X (s) = H(s)N (s)

with

H(s) = −
{

B̂−1sI + G + V −1(I − G)
ET ÂE

s
B̂−1(sI + B̂)

}−1

× B̂−1(sI + B̂)V −1(I − G)
ET Â

s
,

where the matrices E, Â, B̂ and V are defined as in Section 4.3, I is the
I
∑

i=1

θ(i) ×
I
∑

i=1

θ(i) identity matrix, G = diag{Gi, i = 1, ..., I} and each Gi is a θ(i)×θ(i) matrix

whose elements are all

gi =

f ′′
i (

θ(i)
∑

j=1

y∗
ij)

θ(i)f ′′
i (

θ(i)
∑

j=1

y∗
ij) − ci

.

If the utility function fi(·) is strictly concave, gi will be positive. However, since

each Gi has all identical elements, the matrix G is not invertible whenever some

users have multiple paths. Its presence in the denominator of H(s) turns out to be a

source of instability. To see this, we compute H(s) for the above Two-Link example.

Note that

E =





1 0

0 1



 , G = g





1 1

1 1



 for some g > 0,

Â = αI, B̂ = βI, and V = cI.

Let s = jω. We have,

H(jω) = −
{

jω

β
I + G +

α

c

jω + β

jωβ
(I − G)

}−1
α

c

jω + β

jωβ
(I − G). (4.51)



126

The terms in the denominator can be collected into
[

α

βc
+

jω

β
(1 − αβ

cω2
)

]

I +

[

(1 − α

βc
) + j

α

cω

]

G. (4.52)

Since the matrix G is not invertible, if the terms that are associated with I is small,

a “spike” in the transfer function H(jω) will appear. This will happen when ω ≈ ω∗,

where ω∗ is determined by

1 − αβ

c(ω∗)2
= 0,

i.e.,

ω∗ =

√

αβ

c
. (4.53)

Substituting ω∗ into (4.51) and (4.52) and assuming that α � β, we have

H(jω∗) ≈ −
α
c
( 1

β
+ 1

jω
)

α
βc

(I − G)

≈ j
α
ωc
α
βc

(I − G) ≈ j

√

cβ

α
(I − G). (4.54)

We can draw the following conclusions from equations (4.53) and (4.54). If we

keep β fixed and reduce α alone, the cutoff frequency ω∗ will decrease with α. How-

ever, the gain H(jω∗) at the cutoff frequency will increase! In Fig. 4.5, we plot

||H(jω)||2 with respect to ω for different values of α and β. We can easily observe

the increased spike when α alone is reduced from 0.1 (the solid curve) to 0.001 (the

dotted curve). If we further assume that nl(t) is white noise with unit energy, then

the total energy of the fluctuation of ~x can be estimated by the area under the curve

||H(jω)||2 in Fig. 4.5. Due to the increased spike, the total energy of the fluctuation

of ~x(t) will not decrease much when α alone is reduced, even though the frequency

of the fluctuation becomes smaller. On the other hand, if we reduce β as well as α,

the gain at the cutoff frequency ω∗ will remain the same as the cutoff frequency itself

decreases (shown as the dashed curve in Fig. 4.5 when β is also reduced to 0.001).

Hence, the total energy of the fluctuation in ~x(t) is effectively reduced. These con-

clusions are thus consistent with our simulation results in Fig. 4.4. Therefore, the

step-size rule (i.e., both αl and βi needs to be reduced) is necessary to address the

potential instability in the system due to the multi-path nature of the problem.
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4.6 Concluding Remarks

In this chapter, we have developed a distributed algorithm for the utility max-

imization problem in communication networks that have the capability to allow

multi-path routing. We have studied the convergence of our algorithm in both

continuous-time and discrete-time, with and without measurement noise. We have

shown how the multi-path nature of the problem can potentially lead to difficulties

such as instability and oscillation, and our analyses provide important guidelines on

how to choose the parameters of the algorithm to address these difficulties and to

ensure efficient network control. When there is no measurement noise, our analysis

gives easy-to-verify conditions on how large the step-sizes of the algorithm can be

while still ensuring convergence. When there is measurement noise, we find that

the step-sizes in the updates of both the user algorithm and the network component

algorithm have to decrease at the same time in order to reduce the fluctuation of the

resource allocation. Reducing only the step-sizes in the update of the network com-

ponent algorithm will reduce the frequency of the fluctuation, but not necessarily its

magnitude. These guidelines are confirmed by our simulation results.

We briefly discuss possible directions for future work. The analysis in this chap-

ter has focused on the case when all computation is synchronized. An interesting

problem is to study the convergence and stability of the algorithm when the com-

putation is asynchronous and when feedback delays are non-negligible. Simulations

suggest that our distributed algorithm may still be used in those situations, however,

the step-size rules may need to change. Another direction is to extend our solution

to resource allocation problems in wireless networks. In wireline networks, the re-

source constraints of different network components are orthogonal to each other.

In wireless networks, however, the capacity of a link is a function of the signal to

interference ratio, which depends not only on its own transmission power, but also

on the power assignments at other links. Hence, the resource constraints in wireless

networks are of a more complex form than that of wireline networks. It would be
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interesting to see whether the results of this chapter can be extended to multi-path

utility maximization problems in wireless networks.
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5. CAPACITY-DELAY TRADEOFF IN LARGE MOBILE

WIRELESS NETWORKS

5.1 Introduction

In Chapters 2-4, we have studied the simplification of network control in commu-

nication networks with large capacity. By exploiting the largeness of these networks,

we have developed simple and efficient control algorithms for pricing-based network

control and for Quality-of-Service routing. Note that the large-capacity paradigm is

suitable for wire-line networks. In fact, due to the advance in fiber-optic technol-

ogy, it is not uncommon for the backbone links in today’s wire-line networks (such

as the Internet) to have Gibabits-per-second or even Terabits-per-second capacity.

Therefore, the results that we have developed in the earlier chapters can be readily

applied to large-capacity wire-line networks.

In this chapter and the next chapter, we will turn to wireless networks, where

the situation is quite different. In wireless networks, the network capacity is funda-

mentally limited by the radio spectrum, and thus is usually not very large. Hence,

the results and techniques of the previous chapters do not directly apply to wireless

networks.

Can we still obtain simplicity results for wireless networks? In the following

chapters we will address this question. The answer is yes, however, we need to

take some new approaches that are different from those in the previous chapters.

In this chapter, we will study simplicity due to largeness in terms of the number

of nodes. Note that in wireless ad hoc and sensor networks, the number of nodes

can be quite large. We will show that this type of largeness can also lead to simple

and critical insights in control. In particular, we will exploit this type of largeness
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to obtain simple relationships that characterize the fundamental tradeoff between

the capacity and the delay in large mobile wireless networks. Then, in the next

chapter, we will study how to simplify control by designing an appropriate system

architecture for multihop wireless systems.

5.1.1 Capacity and Delay in Mobile Wireless Networks

In this chapter, we are interested in the performance study of wireless networks

that have the multihop communication capability, i.e., terminals can use each other

as relays. This is in contrast to cellular systems where terminals always commu-

nicate directly with the base-station (i.e., by one hop). Studies have shown that

the capacity of a wireless network can be substantially improved by using multi-hop

communications [71,72]. These multihop networks can either be used to extend the

coverage of an existing infrastructure, or to deploy in areas where an infrastructure

can not be established (e.g., as ad hoc networks for military or disastrous scenarios,

or as sensor networks). They can be either static networks (i.e., nodes do not move),

or mobile networks (i.e., nodes move from time to time). Our work in this chapter

will focus on mobile networks.

Among the many problems in the research of multihop wireless network, capacity

and delay are two of the most important ones. The capacity of the network deter-

mines how much information can be carried by the network, and the packet delay

can significantly affect the performance of many applications as well. The difficulty

in studying the capacity and delay of multihop wireless networks lies in the complex-

ity. Although one can develop deterministic algorithms that solve for the optimal

capacity [72–74], the complexity of these algorithms is usually too high once the

number of nodes in the network is large.

In the past few years, there have been some advances in using asymptotic meth-

ods to understand the capacity and delay of large wireless networks [23, 71, 75–85].

Although an asymptotical analysis usually does not give the precise optimum, it
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is still an attractive approach for two reasons. First, an asymptotical analysis can

remain mathematically tractable even when the number of nodes is large. Secondly,

an asymptotical analysis is usually able to reveal the most important tradeoffs in

the system, which will then provide us with insights on how to design simple control

algorithms that can remain effective even when the network is large.

For a static network (where nodes do not move), Gupta and Kumar have shown

that the per-node capacity decreases as O(1/
√

n log n)1 as the number of nodes n

increases [71]. The capacity of wireless networks can be improved when mobility is

taken into account. When the nodes are mobile, Grossglauser and Tse show that

per-node capacity of Θ(1) is achievable [23], which is much better than that of static

networks. This capacity improvement is achieved at the cost of excessive packet

delays. In fact, it has been pointed out in [23] that the packet delay of the proposed

scheme could be unbounded.

There have been several recent studies that attempt to address the relationship

between the achievable capacity and the packet delay in mobile wireless networks.

In fact, our work is first motivated by the research on this problem under the i.i.d.

mobility model [75]. In the work by Neely and Modiano [75], it was shown that the

maximum achievable per-node capacity of a mobile wireless network is bounded by

O(1). Under an i.i.d. mobility model, the authors of [75] present a scheme that

can achieve Θ(1) per-node capacity and incur Θ(n) delay, provided that the load

is strictly less than the capacity. Further, they show that it is possible to reduce

packet delay if one is willing to sacrifice capacity. In [75], the authors formulate

and prove a fundamental tradeoff between the capacity and delay. Let the average

1We use the following notation throughout:

f(n) = o(g(n)) ↔ lim
n→∞

f(n)

g(n)
= 0,

f(n) = O(g(n)) ↔ lim sup
n→∞

f(n)

g(n)
< ∞,

f(n) = ω(g(n)) ↔ g(n) = o(f(n)),

f(n) = Θ(g(n)) ↔ f(n) = O(g(n)) and g(n) = O(f(n)).
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end-to-end delay be bounded by D. For D between Θ(1) and Θ(n), [75] shows that

the maximum per-node capacity λ is upper bounded by

λ ≤ O(
D

n
). (5.1)

The authors of [75] develop schemes that can achieve Θ(1), Θ(1/
√

n), and

Θ(1/(n log n)) per-node capacity, when the delay constraint is on the order of Θ(n),

Θ(
√

n), and Θ(log n), respectively.

Inequality (5.1) leads to the pessimistic conclusion that a mobile wireless net-

work can sustain at most O(1/n) per-node capacity with a constant delay bound.

This capacity is even worse than that of static networks. It turns out that this

pessimistic conclusion is due to certain restrictive assumptions that are implicit in

the work in [75] (we will elaborate on these assumptions in Section 5.7). In fact,

Toumpis and Goldsmith [76] present a scheme that can achieve a per-node capacity

of Θ(n(d−1)/2/ log5/2 n) when the delay is bounded by O(nd). The result of [76] has

incorporated the effect of fading. If we remove fading, the per-node capacity will be

of the order Θ(n(d−1)/2/ log3/2 n). Ignoring the logarithmic term, we find that in [76]

the following capacity-delay tradeoff is achievable:

λ2 = Θ(
D

n
). (5.2)

This is better than (5.1). In particular, the authors of [76] present a scheme that can

achieve Θ(1/(
√

n log3/2 n)) per-node capacity with a constant delay bound. (The

capacity will be Θ(1/(
√

n log n)) with no fading.) This capacity is now comparable

to that of the static wireless networks.

An open question that still remains is: what is the optimal capacity-delay tradeoff

in mobile wireless networks? Inequality (5.1) is clearly not optimal. Without a

careful study of the various inherent tradeoffs within the system, a constructive

methodology such as the one in [76] will only produce a lower bound like (5.2). Note

that the search for the optimal capacity-delay tradeoff is important for two reasons.

First, it will allow us to see where the fundamental limits (i.e., upper bounds) are,
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and how far existing schemes could possibly be improved. Secondly, as has happened

in previous works [71], a careful study of the upper bound is usually able to reveal

the delicate tradeoffs inherent to the problem. A complete understanding of these

tradeoffs will help us identify the possible points of inefficiency in existing schemes

and provide directions for further improvement. The ultimate goal is to find a scheme

that can achieve the optimal capacity-delay tradeoff.

In this chapter, we will use a systematic methodology to investigate the funda-

mental tradeoff between the capacity and the delay in mobile wireless networks. Our

methodology is as follows. We first identify several key parameters of a general class

of scheduling schemes, and investigate the inherent tradeoffs among the capacity, the

delay, and these scheduling parameters. Based on these inherent tradeoffs (in the

form of inequalities), we are then able to compute an upper bound on the maximum

per-node capacity of a large mobile wireless network under given delay constraints.

In the process of proving the upper bound, we are also able to identify the optimal

values of the key scheduling parameters. Knowing these optimal values, we can then

develop scheduling schemes that achieve the upper bound up to some logarithmic

factor, which suggests that our upper bound is tight. We have applied this method-

ology to three different mobility models, i.e., the i.i.d. mobility model [24, 75, 76],

the random way-point mobility model [84, 85], and the Brownian-motion mobility

model [83, 84, 86]. For the i.i.d. mobility model, the inherent tradeoffs that our

methodology is based on can be analytically established [24–26]. For the random

way-point mobility model, we use a combination of analytical and numerical tech-

niques to establish these inherent tradeoffs [25]. In both cases, we are able to obtain

new insights on the optimal choices of the key scheduling parameters, and develop

new scheduling schemes that can achieve larger capacity than previous proposals

under the same delay constraints. For example, under the i.i.d mobility model, we

can achieve a new capacity-delay tradeoff of

λ3 ≥ Θ(
D̄

n
/ log9/2 n). (5.3)
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noring the logarithmic terms).

In Fig. 5.1, we draw this new tradeoff (the top line) alongside the capacity-delay

tradeoffs achieved by the schemes in [75] and [76] (the bottom line and the middle

line, respectively). Our new scheme clearly achieves larger capacity when the delay

constraints are small. In particular, when the delay is bounded by a constant, our

scheme can achieve Θ(n−1/3/log3/2 n) per-node capacity. Unlike previous works, this

result shows that, even for a constant delay bound, the per-node capacity of mobile

wireless networks can be larger than that of the static networks! Our methodology

can be extended to incorporate additional constraints of the scheduling schemes.

Finally, for the Brownian-motion mobility model, we will find that the delay-capacity

tradeoff is radically different from those under the i.i.d. mobility model and the

random way-point mobility model [27].

The rest of the chapter is structured as follows. In Section 5.2, we outline the

network and mobility models. We will first focus on the i.i.d. mobility model in

Sections 5.3-5.7. In Section 5.3, we outline the general class of scheduling policies

that we will consider. We then identify a number of key scheduling parameters and

study their inherent tradeoffs in Section 5.4. We establish the upper bound on the

optimal capacity-delay tradeoff in Section 5.5 and present a scheme in Section 5.6
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that achieves a capacity-delay tradeoff close to the upper bound. In Section 5.7, we

discuss how to treat additional scheduling constraints such as those that appear in

previous works [75,76]. The capacity-delay tradeoff under the random way-point mo-

bility model is studied in Section 5.8, and that under the Brownian-motion mobility

model is studied in Section 5.9. Then we conclude.

5.2 Network and Mobility Model

We consider a mobile wireless network with n nodes moving within a certain area

with unit size. For simplicity, we assume the following traffic model similar to the

models in [75, 76]. We assume that the number of nodes n is even and the nodes

can be labeled in such a way that node 2i− 1 communicates with node 2i, and node

2i communicates with node 2i − 1, i = 1, 2, ..., n/2. The communication between

any source-destination pairs can go through multiple other nodes as relays. That is,

the source can either send a message directly to the destination; or, it can send the

message to one or more relay nodes; the relay nodes can further forward the message

to other relay nodes (possibly after moving to another position); and finally some

relay node forwards the message to the destination.

We assume the following Protocol Model from [71] that governs direct radio trans-

missions between nodes. Let W be the bandwidth of the system. Let Xi denote

the position of node i, i = 1, ..., n. Let |Xi −Xj| be the Euclidean distance between

nodes i and j. At any time, node i can communicate directly with another node j at

W bits per second if and only if the following interference constraint is satisfied [71]:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xj|

for every other node k 6= i, j that is simultaneously transmitting. Here, ∆ is some

positive number. Note that an alternative model for direct radio transmission is

the Physical Model [71, 76]. In the Physical Model, a node can communicate with

another node if the signal-to-interference ratio is above a given threshold. It has

been shown that, under certain conditions, the Physical Model can be reduced to
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the Protocol Model with an appropriate choice of ∆ [71]. Hence, we will not consider

the Physical Model any further in this chapter. We also assume that no nodes can

transmit and receive over the same frequency at the same time.

We will study three types of mobility models.

1) The i.i.d. Mobility Model: In the i.i.d mobility model [75], the time

is divided into slots of unit length. At each time slot, the positions of each node

are i.i.d. and uniformly distributed within a unit square2. Between time slots,

the distributions of the positions of the nodes are independent. Although the i.i.d.

mobility model is somewhat restrictive in assuming the distribution of the node

positions to be independent across time slots, its mathematical tractability allows

us to gain important insights into the structure of the problem, which can then be

extended to other more realistic mobility models.

2) The Random Way-point (RWP) Mobility Model: In the random way-

point (RWP) mobility model, we assume that nodes move within a unit square and

the unit square wraps around like a torus, i.e., a node can move out of the unit square

from an edge and immediately move into the unit square from the opposite edge3.

The initial positions of the nodes at time t = 0 are i.i.d. and uniformly distributed

within the unit square. Each node then moves independently in trips : for each trip,

the node picks a target position uniformly distributed within the unit square, and

moves towards the target position along the shortest path at a constant speed v.

(Note that since the unit square is a torus, the shortest path may not always be

the straight line.) When the node reaches the target position, it immediately starts

another trip by picking a new target position randomly. Unlike [79], we assume

that, when a node is picked as the relay node for a message, the information about

the future motion of the relay node is not available to the scheduler. (On the other

hand, the scheduling scheme in [79] has exploited this knowledge to obtain a different

2Note that changing the shape of the area from a square to a circle or other topologies will not
affect our main results for the i.i.d. mobility model.
3The assumption of a torus could be removed. It is included here for mathematical convenience so
that we do not need to deal with the edge effects.
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capacity-delay tradeoff than ours under a somewhat similar uniform mobility model.)

Following the convention in related studies [84], we assume that the speed v scales

as v(n) = Θ(1/
√

n) when the number of nodes n increases4.

3) The Brownian Motion Mobility Model: In the Brownian-motion model,

we assume that nodes move independently on the surface S of a unit sphere as in [84].

(A similar Brownian motion model on a 2-d torus is also considered in [83].) It is

easier to describe the motion of each node using the spherical coordinates. Let θt and

φt denote the colatitude and longitude, respectively, of the position of a particular

node at time t (0 ≤ θt ≤ π and 0 ≤ φt < 2π). When a node moves according to

the Brownian motion model on the unit sphere S, the (Itô) stochastic differential

equations for the process (θt, φt) are given by [87]:

dθt = σndBt +
σ2

n

2 tan θt

dt, (5.4)

and

dφt =
σn

sin θt

dB′
t, (5.5)

where Bt and B′
t are independent standard one-dimensional Brownian motions (i.e.,

with variance 1). We call σ2
n the variance of the Brownian Motion described in (5.4)

and (5.5). We assume that the initial positions of the nodes are i.i.d. and uniformly

distributed on the unit sphere. This implies that the positions of the nodes will

remain uniform at all times.

Under all three mobility models, we assume the following separation of time

scales, i.e., radio transmission can be scheduled at a time scale much faster than

that of node mobility. This is usually a reasonable assumption in real networks.

Hence, a message may be divided into multiple bits and each bit can be forwarded

“instantaneously” across multiple hops as if the positions of all nodes are frozen.

We assume a uniform traffic pattern, that is, all source nodes communicate with

their destination nodes at the same rate λ. Let D̄ be the mean delay averaged over

4It is also possible to extend our methodology to the case when the speed is randomly distributed
between [v(n), cv(n)] for some c > 1, and to the case when nodes pause between trips.
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all messages and all source-destination pairs. Both λ and D̄ will depend on how the

transmissions between mobile nodes are scheduled. We are interested in capturing

the fundamental tradeoff between the achievable capacity λ and the delay D̄. That

is, over all possible ways of scheduling the radio transmissions, what is the maximum

per-node capacity λ given certain constraint on the delay D̄.

5.3 The Class of Scheduling Policies

In Sections 5.3-5.7, we will focus on the i.i.d mobility model, and we will defer

the study of the other mobility models until later sections. In this section, we define

the class of scheduling policies that we will consider for the i.i.d. mobility model.

Because we are interested in the fundamental achievable capacity for given delay

constraints, we will assume that there exists a scheduler that has all the informa-

tion about the current and past status of the network, and can schedule any radio

transmission in the current and future time slots. At each time slot t, for each bit

b that has not been delivered to its destination yet, the scheduler needs to perform

the following two functions:

• Capture: The scheduler needs to decide whether to deliver the bit b to the

destination within the current time slot. If yes, the scheduler then needs to

choose one relay node (possibly the source) that has a copy of the bit b at

the beginning of the time slot t, and schedule radio transmissions to forward

this bit to the destination within the same time slot, using possibly multi-hop

transmissions. When this happens successfully, we say that the chosen relay

node has successfully captured the destination of bit b, or a successful capture

has occurred for bit b.

• Replication: If capture does not occur for bit b, the scheduler needs to decide

whether to replicate bit b to other nodes that do not have the bit at the

beginning of the time slot t. The scheduler also needs to decide which nodes
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to relay from and relay to, and how to schedule radio transmissions to forward

the bit to these new relay nodes.

The capture function and the replication function are mutually exclusive for a

given bit b. Once a successful capture occurs, the bit b will be delivered to its

destination within the same time slot, and hence can exit the system. Note that once

a successful capture occurs, it is important to forward the bit b to the destination

within a single time slot. Otherwise, since the chosen relay node may move arbitrarily

far away from the destination in the next time slot, the nodes that received the bit

b in the current time slot will only count as new relay nodes for the bit b, and they

have to capture again in the next time slot.

In this chapter, we will consider the class of causal scheduling policies that per-

form the above two functions at each time slot. The causality assumption essentially

requires that, when the scheduler makes the capture decision and the replication

decision, it can only use information about the current and the past status of the

network. In particular, at any time slot t, the scheduler cannot use information

about the future positions of the nodes at any time slot s > t.

This class of scheduling policies is clearly very general, and encompasses nearly

any practical scheduling scheme we can think of. (Note that even predictive schedul-

ing schemes have to rely on current and past information only.) Some remarks on

the capture process are in order. Although we do allow for other less intuitive al-

ternatives, in a typical scheduling policy a successful capture usually occurs when

some relay nodes are within an area close to the destination node, so that fewer

resources will be needed to forward the information to the destination. For example,

a relay node could enter a disk of a certain radius around the destination, or a relay

node could enter the same cell as the destination. We call such an area a capture

neighborhood. The relay nodes that has the bit b at the beginning of the time slot t

are called mobile relays for bit b. The mobile relay that is chosen to forward the bit

b to the destination is called the last mobile relay for bit b.
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The following examples are illustrative of the possible scheduling policies within

this broad class. The schemes in previous works are all special cases or variants of

these examples.

Example A: The number of mobile relays R is fixed and the capture neighborhood

is chosen to be a disk with a fixed radius ρ around the destination. Once a bit b

enters the system, it is immediately broadcast to the nearest R − 1 neighboring

nodes. When any of the R mobile relays (including the source node) move within

distance ρ from the destination, the bit b is then forwarded from the nearest mobile

relay to the destination.

Example B (The Cell-based Scheme): The unit area is divided into a number

of cells. Once a bit b enters the system, it is immediately broadcast to all other nodes

in the same cell. The number of mobile relays for the bit b then stay unchanged.

Note that the actual number of mobile relays depends on the number of nodes that

reside in the same cell as the source (at the time slot when the bit b enters the

system), and is thus a random variable. When one of the mobile relays moves into

the same cell as the destination, the bit b is then forwarded from the nearest mobile

relay to the destination.

Example C: In the above two schemes, no replication for bit b is carried out except

at the first time slot when the bit enters the system. A more sophisticated strategy

is to use an “opportunistic replication scheme” such as the example below. The unit

area is divided into a number of cells. After a bit b enters the system, at each time

slot t, if one of the mobile relays moves into the same cell as the destination, bit b

is then forwarded from the nearest mobile relay to the destination. Otherwise, the

source node (or, alternatively, the current mobile relays) broadcasts the bit to all

other nodes that reside at the same cell. Hence, replication may occur at each time

slot until bit b is delivered to its destination.
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5.4 Inherent Tradeoffs Among the Key Scheduling Parameters

In the sequel, we will prove several key inequalities that capture the various

tradeoffs inherent in this broad class of scheduling policies. Intuitively, the larger

the number of mobile relays and the larger the capture neighborhood, the smaller

the delay. On the other hand, in order to improve capacity, we need to consume

fewer radio resources, which implies a smaller number of mobile relays and a shorter

distance from the last mobile relay to the destination. As we will see later, these

tradeoffs will determine the fundamental relationship between achievable capacity

and delay in mobile wireless networks.

We first define three parameters Rb, Db, and lb that are the key to characterize

the various tradeoffs in the system.

5.4.1 Notations

Let (Ω,F , P ) be the probability space on which the random mobility of the mobile

nodes is defined. Let X(i, t) be the random variable that denotes the position of node

i at time slot t. Let b denote a bit that needs to be communicated from a source

node S(b) to destination node D(b). Let t0(b) be the time slot when bit b first

enters the system. Let Ib(i, t) be an indicator function, where Ib(i, t) = 1 if node

i has a copy of bit b at the beginning of time slot t, Ib(i, t) = 0 otherwise. By

definition, Ib(S(b), t0(b)) = 1, and Ib(i, t) = 0 for all i and t < t0(b). Let Ft be the

σ-algebra generated by the random variables X(i, s) and Ib(i, s) for all s ≤ t. Hence

{Ft, t = 0, 1, ...} is a filtration [88, p231] and Ft captures all information about the

“history” up to time slot t.

Fix any scheduling policy and fix a bit b that enters the system at time slot t0(b).

For any time slot t ≥ t0(b), let Cb(t) = 1 if the scheduler decides that a successful

capture occurs at this time slot. Cb(t) = 0, otherwise. If Cb(t) = 1, the scheduler

then picks one mobile relay that has a copy of the bit b at the beginning of the

time slot to forward the bit towards the destination within the same time slot t,
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using possibly multi-hop transmissions. Let l̃b(t) be the distance from the chosen

mobile relay to the destination of the bit b. Let l̃b(t) = ∞ if Cb(t) = 0. Finally,

let rb(t + 1) denote the number of mobile relays holding the bit b at the end of the

time slot t, i.e., rb(t + 1) is the cardinality of the set {i : Ib(i, t + 1) = 1}. Since the

random variables Cb(t), l̃b(t) and rb(t + 1) are all outcomes of the scheduling policy,

the causality assumption implies that they are all Ft-measurable5.

Let

sb , min{t : t ≥ t0(b) and Cb(t) = 1}

be the first time when a successful capture for bit b occurs. Thus sb is a stopping

time [88, p234] with respect to the filtration {Ft, t = 0, 1, ...}. Let Rb , rb(sb)

denote the number of mobile relays holding the bit b at the time of capture. Let

Db , sb− t0(b) denote the number of time slots from the time bit b enters the system

to the time of capture. Let lb , l̃b(sb) denote the distance from the chosen last

mobile relay node to the destination. The quantities Rb, Db, and lb are essential

for the tradeoffs that follow. Note that Db includes possible queueing delays at the

source node or at the relay nodes.

We are now ready to state the inherent tradeoffs among capacity, delay and these

key parameters. In this section, we will state these tradeoffs precisely for the i.i.d.

mobility model, and defer the discussion on other mobility models until Sections 5.8

and 5.9.

5.4.2 Tradeoff I : Db versus Rb and lb

Proposition 5.4.1 Under the i.i.d. mobility model, the following inequality holds

for any causal scheduling policy when n ≥ 3,

c1 log nE[Db] ≥
1

(E[lb] + 1
n2 )2E[Rb]

for all bits b, (5.6)

where c1 is a positive constant.

5Here we have excluded probablistic scheduling policies. Otherwise, Ft should be augmented with
a σ-algebra that is independent of node mobility in future time slots.
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The proof is available in Appendix D.1. This new result is one of the corner-

stones for deriving the optimal capacity-delay tradeoff in mobile wireless networks.

It captures the following tradeoff: the smaller the number Rb of mobile relays the bit

b is replicated to, and the shorter the targeted distance lb from the last mobile relay

to the destination, the longer it takes to capture the destination. This seemingly odd

relationship is actually motivated by some simple examples. Consider Example A in

Section 5.3. When Rb and the area of the capture neighborhood Ab are constants,

then 1 − (1 − Ab)
Rb is the probability that any one out of the Rb nodes can capture

the destination in one time slot. It is easy to show that, the average number of time

slots needed before a successful capture occurs, is,

E[Db] =
1

1 − (1 − Ab)Rb
≥ 1

AbRb

.

If, as in Example B, Rb and possibly Ab are random but fixed after the first time slot

t0(b), then

E[Db|Rb, Ab] ≥
1

AbRb

.

By Hőlder’s Inequality [88, p15],

E2[
1√
Ab

] ≤ E[Rb]E[
1

AbRb

].

Hence,

E[Db] ≥ E[
1

AbRb

] ≥ E2[
1√
Ab

]
1

E[Rb]

≥ 1

E2[
√

Ab]E[Rb]
,

where in the last step we have applied Jensen’s Inequality [88, p14]. Note that on

average lb is on the order of
√

Ab. Hence,

E[Db] ≥
c′1

E2[lb]E[Rb]
for all bits b, (5.7)

where c′1 is a positive constant. It may appear that, when an “opportunistic repli-

cation scheme” such as the one in Example C is employed, such a scheme might

achieve a better tradeoff than (5.7) by starting off with fewer mobile relays and a
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smaller capture neighborhood, if the node positions at the early time slots after the

bit’s arrival turns out to be favorable. However, Proposition 5.4.1 shows that no

scheduling policy can improve the tradeoff by more than a log n factor. For details,

please refer to Appendix D.1.

5.4.3 Tradeoff II : Multihop

Once a successful capture occurs, the chosen mobile relay (i.e., the last mobile

relay) will start transmitting the bit to the destination within a single time slot,

using possibly other nodes as relays. We will refer to these latter relay nodes as

static relays. The static relays are only used for forwarding the bit to the destination

after a successful capture occurs. Let hb be the number of hops it takes from the last

mobile relay to the destination. Let Sh
b denote the transmission range of each hop

h = 1, .., hb. The following relationship is trivial.

Proposition 5.4.2 The sum of the transmission ranges of the hb hops must be no

smaller than the straight-line distance from the last mobile relay to the destination,

i.e.,
hb
∑

h=1

Sh
b ≥ lb. (5.8)

5.4.4 Tradeoff III : Radio Resources

It consumes radio resources to replicate each bit to mobile relays and to forward

the bit to the destination. Proposition 5.4.3 below captures the following tradeoff:

the larger the number of mobile relays Rb and the further the multi-hop transmis-

sions towards the destination have to traverse, the smaller the achievable capacity.

Consider a large enough time interval T . The total number of bits communicated

end-to-end between all source-destination pairs is λnT .

Proposition 5.4.3 Assume that there exist positive numbers c2 and N0 such that

Db ≤ c2n
2 for n ≥ N0. If the positions of the nodes within a time slot are i.i.d.
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and uniformly distributed within the unit square, then there exist positive numbers

N1 and c3 that only depend on c2, N0 and ∆, such that the following inequality holds

for any causal scheduling policy when n ≥ N1,

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+ E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c3WT log n. (5.9)

The assumption that Db ≤ c2n
2 for large n is not as restrictive as it appears.

It has been shown in [75] and [84] that the maximal achievable per-node capacity

is Θ(1) and this capacity can be achieved with Θ(n) delay under both the i.i.d.

mobility model and the random way-point mobility model. Hence, we are most

interested in the case when the delay is not much larger than the order Θ(n). Further,

Proposition 5.4.3 only requires that the stationary distribution of the positions of

the nodes within a time slot is i.i.d. It does not require the distribution between

time slots to be independent.

We briefly outline the motivation behind the inequality (5.9). The details of the

proof are quite technical and available in Appendix D.2. Consider nodes i, j that

directly transmit to nodes k and l, respectively, at the same time. Then, according

to the interference constraint:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xk]

|Xi − Xl| ≥ (1 + ∆)|Xj − Xl].

Hence,

|Xj − Xi| ≥ |Xj − Xk| − |Xi − Xk|

≥ ∆|Xi − Xk|.

Similarly,

|Xi − Xj| ≥ ∆|Xj − Xl|.

Therefore,

|Xi − Xj| ≥
∆

2
(|Xi − Xk| + |Xj − Xl|).
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That is, disks of radius ∆
2

times the transmission range centered at the transmitter

are disjoint from each other6. This property can be generalized to broadcast as well.

We only need to define the transmission range of a broadcast as the distance from

the transmitter to the furthest node that can successfully receive the bit. The above

property motivates us to measure the radio resources each transmission consumes by

the areas of these disjoint disks [71]. For unicast transmissions from the last mobile

relay to the destination, the area consumed by each hop is π∆2

4
(Sh

b )2. For replica-

tion to other nodes, broadcast is more beneficial since it consumes fewer resources.

Assume that each transmitter chooses the transmission range of the broadcast in-

dependently of the positions of its neighboring nodes. If the transmission range is

s, then on average no greater than nπs2 nodes can receive the broadcast, and a

disk of radius ∆
2
s (i.e., area π∆2

4
s2) centered at the transmitter will be disjoint from

other disks. Therefore, we can use ∆2

4
E[Rb]−1

n
as a lower bound on the expected area

consumed by replicating the bit to Rb − 1 mobile relays (excluding the source node).

This lower bound will hold even if the replication process is carried out over multiple

time slots, because the average number of new mobile relays each broadcast can

cover is at most proportional to the area consumed by the broadcast. Therefore,

inspired by [71], the amount of radio resources consumed must satisfy

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+ E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c′3WT, (5.10)

where c′3 is a positive constant.

However, ∆2

4
E[Rb]−1

n
may fail to be a lower bound on the expected area con-

sumed by replicating to Rb − 1 mobile relays if the following opportunistic broadcast

scheme is used. The source may choose to broadcast only when there are a larger

number of nodes close by. If the source can afford to wait for these “good opportu-

nities”, an opportunistic broadcast scheme may consume less radio resources than a

non-opportunistic scheme to replicate the bit to the same number of mobile relays.

6A similar observation is used in [71] except that they take a receiver point of view.
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Nonetheless, Proposition 5.4.3 shows that no scheduling policies can improve the

tradeoff by more than a log n factor. For details, please refer to Appendix D.2.

5.4.5 Tradeoff IV : Half Duplex

Finally, since we assume that no node can transmit and receive over the same

frequency at the same time (a practically necessary assumption for most wireless

devices), the following property can be shown as in [71].

Proposition 5.4.4 The following inequality holds,

λnT
∑

b=1

hb
∑

h=1

1 ≤ WT

2
n. (5.11)

5.5 The Upper Bound on the Capacity-Delay Tradeoff

Our first main result is to derive, from the above four tradeoffs, the upper bound

on the optimal capacity-delay tradeoff of mobile wireless networks under the i.i.d.

mobility model. Since the maximal achievable per-node capacity is Θ(1) and this

capacity can be achieved with Θ(n) delay by the scheme of [75], we are only interested

in the case when the mean delay is o(n).

Proposition 5.5.1 Let D̄ be the mean delay averaged over all bits and all source-

destination pairs, and let λ be the throughput of each source-destination pair. If

D̄ = O(nd), 0 ≤ d < 1, the following upper bound holds for any causal scheduling

policy under the i.i.d. mobility model,

λ3 ≤ O(
D̄

n
log3 n).

Proof Our goal is to reduce the four inequalities (5.6), (5.8), (5.9) and (5.11) to one

inequality and eliminate all variables except D̄ and λ. Using the Cauchy-Schwartz

inequality, we have
(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

≤
(

λnT
∑

b=1

hb
∑

h=1

1

)(

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2

)
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≤ WTn

2

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2, (5.12)

where in the last step we have used Tradeoff IV (5.11). Equality holds in (5.12)

when inequality (5.11) is tight and when Sh
b is equal for all b and h. We thus have,

E[
λnT
∑

b=1

hb
∑

h=1

(Sh
b )2] ≥ 2

WTn
E[

(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

]

≥ 2

WTn

(

E[
λnT
∑

b=1

hb
∑

h=1

Sh
b ]

)2

(5.13)

≥ 2

WTn

(

λnT
∑

b=1

E[lb]

)2

, (5.14)

where in the last two steps we have used Jensen’s Inequality and the Tradeoff II (5.8),

respectively. Inequality (5.13) is tight when
λnT
∑

b=1

hb
∑

h=1

Sh
b is almost surely a constant,

and (5.14) is tight when (5.8) is tight.

From Tradeoff I (5.6), we have

λnT
∑

b=1

E[Rb] ≥
λnT
∑

b=1

1

c1 log n

1

(E[lb] + 1
n2 )2E[Db]

. (5.15)

Let

D̄ =

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

=

λnT
∑

b=1

E[Db]

λnT
.

Using Jensen’s Inequality and Hőlder’s Inequality, we have,

1




λnT
P

b=1

(E[lb]+
1

n2 )

λnT
P

b=1
1





2 ≤











λnT
∑

b=1

1
(E[lb]+

1
n2 )

λnT
∑

b=1

1











2

≤

λnT
∑

b=1

1
(E[lb]+

1
n2 )2E[Db]

λnT
∑

b=1

1

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

. (5.16)

Equality holds when E[lb] is the same for all b and E[Db] = D̄ for all b. Substituting

(5.16) in (5.15), we have

λnT
∑

b=1

E[Rb] ≥ 1

c1 log n

(

λnT
∑

b=1

1

)3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2 . (5.17)
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Substituting (5.14) and (5.17) into Tradeoff III (5.9), we have

4c3WT log n

∆2
≥

λnT
∑

b=1

E[Rb] − 1

n
+ πE[

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2]

≥ 1

c1n log n

(λnT )3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2

+
2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT.

To obtain a relationship between λ and D̄, it remains to eliminate lb. There are

two cases that we need to consider.

Case 1: If
λnT
∑

b=1

E[lb] ≤ λT
n

, then

4c3WT log n

∆2
≥ 1

c1n log n

(λnT )3

D̄
(

2λT
n

)2 − λT

=
1

4c1 log n

λTn4

D̄
− λT.

When D̄ = O(nd), d < 1, the first term dominates when n is large. Hence, for n

large enough,

4c3WT log n

∆2
≥ 1

8c1 log n

λTn4

D̄

λ ≤ 32c1c3W

∆2

D̄ log2 n

n4
. (5.18)

Case 2: If
λnT
∑

b=1

E[lb] ≥ λT
n

, then

4c3WT log n

∆2
≥ 1

c1n log n

(λnT )3

D̄

(

2
λnT
∑

b=1

E[lb]

)2 +
2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT (5.19)

≥ 2

√

1

c1 log n

2π

WTn2

(λnT )3

4D̄
− λT (5.20)

= 2

√

π

2c1 log n

λ3nT 2

D̄W
− λT. (5.21)
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Therefore, either

λ ≤ O(
D̄ log n

n
), (5.22)

or, if λ = ω( D̄ log n
n

), then the first term in (5.21) dominates when n is large. In the

latter case, for n large enough,

4c3WT log n

∆2
≥

√

π

2c1 log n

λ3nT 2

D̄W

λ3 ≤ 32c1c
2
3W

3

π∆4

D̄ log3 n

n
. (5.23)

Finally, we compare the three inequalities we have obtained, i.e., (5.18), (5.22)

and (5.23). Since D̄ = o(nd), d < 1, inequality (5.23) will eventually be the loosest

for large n. Hence, the optimal capacity-delay tradeoff is upper bounded by

λ3 ≤ O(
D̄

n
log3 n).

5.6 An Achievable Lower Bound on the Capacity-Delay Tradeoff

The capacity-delay tradeoff in Proposition 5.5.1 is better than those reported

in [75] and [76]. Assuming that the delay bound is Θ(nd), 0 ≤ d < 1, the achievable

per-node capacity is O(n−(1−d)) by the scheme in [75], and O(n−(1−d)/2) by the scheme

in [76]. Our upper bound, however, implies a per-node capacity of O(n−(1−d)/3) (we

have ignored all log n factors). Since d < 1, there is clearly room to substantially

improve existing schemes (see Fig. 5.1).

In this section, we will show how the study of the upper bound also helps us to

develop a new scheme that can achieve a capacity-delay tradeoff that is close to the

upper bound. Precisely, we met several inequalities (5.12)-(5.20) during the deriva-

tion of the upper bound. By studying the conditions under which these inequalities

are tight, we will be able to identify the optimal choices of various key parameters

of the scheduling policy. In the end, the knowledge of the optimal choices of the

parameters will help us develop a new scheme that is superior to existing ones.
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5.6.1 Choosing the Optimal Values of the Key Parameters

Assume that the mean delay is bounded by nd, d < 1. By Proposition 5.5.1, we

have,

λ ≤ Θ(
3

√

D̄

n
log3 n) = Θ(n

d−1
3 log n). (5.24)

In order to achieve the maximum capacity on the right hand side, all inequalities

(5.12)-(5.20) should hold with equality. By checking the conditions when (5.12)-

(5.16) are tight, we can infer that the parameters (such as Sh
b ,E[lb],E[Db]) of each

bit b should be about the same and should concentrate on their respective average

values. This implies that the scheduling policy should use the same parameters for

all bits. From now on, we will assume that all key parameters (such as Rb, lb, etc.)

are indeed the same for all bits.

The inequality (5.20) is essential for deriving the optimal values of these param-

eters. Note that equality holds in (5.20) if and only if

1

4c1n log n

(λnT )3

D̄(
λnT
∑

b=1

E[lb])2

=
2π

WTn
(
λnT
∑

b=1

E[lb])
2.

Substituting
λnT
∑

b=1

E[lb] = λnT lb, we can solve for lb,

1

4c1n log n

λnT

D̄l2b
=

2π

WTn
(λnT )2l2b

l4b =
1

8πc1

W

D̄λn log n
.

Substituting λ = Θ(n(d−1)/3 log n) and D̄ = nd, we obtain the optimal value of lb,

lb = Θ(n− 1+2d
6 log− 1

2 n).

A reasonable choice for the area of capture neighborhood, Ab, is then,

Ab = l2b = Θ(n− 1+2d
3 / log n).

By setting (5.11) of Tradeoff IV to equality, we have

λnThb =
WTn

2

hb =
W

2λ
= Θ(n

1−d
3 / log n).
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Table 5.1
The order of the optimal values of the parameters when the mean
delay is bounded by nd.

Rb: # of Duplicates Θ(n(1−d)/3)

lb: Distance to Destination Θ(n−(1+2d)/6/ log1/2 n)

hb: # of Hops Θ(n(1−d)/3/ log n)

Sh
b : Transmission Range of Each Hop Θ(

√

log n
n

)

By setting (5.8) of Tradeoff II to equality, we have

Sh
b =

lb
hb

= Θ(

√

log n

n
).

Finally, by setting (5.6) of Tradeoff I to equality, we have

Rb = Θ(
1

c1 log n

1

l2bD̄
) = Θ(n

1−d
3 ).

The optimal values of these parameters are summarized in Table 5.1.

Several remarks are in order. Since it is sufficient to control all parameters around

these optimal values, simple cell-based schemes such as the one in Example B of

Section 5.4 suffice. Secondly, the optimal values for Rb and lb can provide guidelines

on how to choose the cell partitioning. Thirdly, the optimal value for Sh
b is roughly the

average distance between neighboring nodes when n nodes are uniformly distributed

in a unit square. Hence, it is desirable to use multi-hop transmission over neighboring

nodes to forward the information from the last mobile relay to the destination. These

guidelines have sketched a blueprint of the optimal scheduling scheme for us. We

next present schemes that can achieve capacity-delay tradeoffs that are close to the

upper bound up to a logarithmic factor.
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5.6.2 Achievable Capacity with Θ(nd) Delay

We now present a scheme that can achieve the optimal capacity-delay tradeoff

in (5.24) up to a logarithmic factor. Our scheme can achieve Θ(n
d−1
3 / log3/2 n) per-

node capacity with Θ(nd) delay, 0 ≤ d < 1. When d = 0, i.e., when the delay is

bounded by a constant, our scheme can achieve Θ(n−1/3/ log3/2 n) per-node capacity

with Θ(1) delay7. This is an encouraging result for mobile networks because we know

that the per-node capacity of static networks is O(1/
√

n log n) [71]. Hence, mobility

increases the capacity even with constant delay. This is the first such result of its

kind in the literature.

We will need the following Lemma before stating the main scheduling scheme.

We will repeatedly use the following type of cell-partitioning. Let m be a positive

integer. Divide the unit square into m × m cells (in m rows and m columns, see

Fig. 5.2). Each cell is a square of area 1/m2. As in [76], we call two cells neighbors

if they share a common boundary, and we call two nodes neighbors if they lie in

the same or neighboring cells. We say that a group of cells can be active at the

same time when one node in each cell can successfully transmit to or receive from a

neighboring node, subject to the interference from other cells that are active at the

same time. Let bxc be the largest integer smaller than or equal to x. The proof of

the following Lemma is available in Appendix D.3.

Lemma 5.6.1 There exists a scheduling policy such that each cell can be active for

at least 1/c4 amount of time, where c4 is a constant independent of m.

Group every bndc time slots into a super-frame. The capacity achieving scheme

is as follows.

Capacity Achieving Scheme:

7The scheme for d = 0 can be further refined to achieve Θ(n−1/3/ log n) per-node capacity with
Θ(1) delay [24].
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Fig. 5.2. Cells that are b2∆ + 6c/m apart (i.e., the shaded cells in
the figure) can be active together.
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1) In every odd super-frame (i.e., the 1st, 3rd, 5th, ... super-frame), we schedule

transmissions from the sources to the relays. We will refer to the bndc time slots in

each odd super-frame as the sending time slots. At each sending time slot:

• We divide the unit square into g1(n) = b
(

n
2+d
3

16 log n

) 1
2

c2 cells. Each cell is a square

of area 1/g1(n). We refer to each cell in the sending time slot as a sending cell.

By Lemma 5.6.1, each cell can be active for 1
c4

amount of time in each sending

time slot.

• When a cell is scheduled to be active, each node in the cell broadcasts a new

packet to all other nodes in the same cell for 1

4096c4n(1−d)/3 log3/2 n
amount of time

(Fig. 5.3). The length of the packet is W

4096c4n(1−d)/3 log3/2 n
. These other nodes

then serve as mobile relays for the packet. The nodes within the same sending

cell coordinate themselves to broadcast sequentially in each sending time slot.

• If, in any of the bndc sending time slots, there exists a sending cell that has

more than 64n(1−d)/3 log n nodes, we refer to it as a Type-I error [76]. If no

Type-I errors occur, each source can broadcast a total of bndc distinct packets,

each of length W

4096c4n(1−d)/3 log3/2 n
, during the entire odd super-frame.

2) In every even super-frame (i.e., the 2nd, 4th, 6th, ... super-frame), we schedule

transmissions from the mobile relays to the destination nodes. We will refer to the

bndc time slots in each even super-frame as the receiving time slots. At each receiving

time slot:

• We divide the unit square into g2(n) = b
(

n
1+2d

3

) 1
2 c2 cells. Each cell is a square

of area 1/g2(n). We refer to each cell in the receiving time slot as a receiving

cell.

• Note that there are nbndc distinct packets that are injected into the system at

the previous odd super-frame. Capture occurs for each packet k when one of its

mobile relays moves within the same receiving cell as the destination node (see
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g_1(n) rows

g_1(n) columns

move

Source

Relay

Fig. 5.3. Transmission schedule in each time slot of the odd super-

frame. g1(n) = b
(

n
2+d
3

16 log n

) 1
2

c2.
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g_2(n) rows

g_2(n) columns

moved

Destination

Mobile Relay

Static Relay
Last

Fig. 5.4. Transmission schedule in each time slot of the even super-

frame. g2(n) = b
(

n
1+2d

3

) 1
2 c2.

Fig. 5.4). Let Yj(t) denote the set of packets that meet the criteria for capture

in receiving cell j at receiving time slot t. We will refer to these packets as the

active packets. Among the nbndc distinct packets, if there exists a packet k that

does not meet the criteria for capture in any of the bndc receiving time slots,

i.e., packet k does not belong to Yj(t) for any j = 1, ..., g2(n) and t = 1, ..., bndc,
we will refer to it as a Type-II error. Unless a Type-II error occurs, each of

these nbndc distinct packets will have at least one opportunity to be carried

into the same receiving cell as its destination node (see Fig. 5.4).

• The active packets in each set Yj(t) are then forwarded to their destination

nodes (residing in the same receiving cell j) within the same time slot t in

the following multi-hop fashion. We further divide the receiving cell j into

g3(n) = b
(

n
2−2d

3

8 log n

) 1
2

c2 mini-cells (in
√

g3(n) rows and
√

g3(n) columns, see

Fig. 5.5). Each mini-cell is a square of area 1/(g2(n)g3(n)). By Lemma 5.6.1,

there exists a scheduling scheme where each mini-cell can be active for 1
c4

amount of time in time slot t. When each mini-cell is active, it forwards an

active packet (or a part of the packet) to one other node in the neighboring
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g_3(n) rows

g_3(n) columns

Mobile Relay

A Receiving Cell

Static Relays

Destination

Last

Fig. 5.5. Multi-hop transmissions within a receiving cell.

mini-cell. If the destination of the active packet is in the neighboring mini-cell,

the packet is forwarded directly to the destination node. The active packets

from each mobile relay are first forwarded towards neighboring mini-cells along

the X-axis, then to their destination nodes along the Y-axis (see Fig. 5.5). In

this fashion, a successful schedule will be able to deliver all active packets in

Yj(t) to their respective destination nodes (in the same receiving cell j) within

the time slot t. For details on constructing such a schedule, see Appendix D.4.

If no such schedule exists, we refer to it as a Type-III error.

• At the end of each even super-frame, any packets that remain in the buffer of

the mobile relays (i.e., that have not been delivered to the destination nodes)

are dropped.

It is possible that the above scheme delivers the same packet more than once

to the same destination node. However, our analysis shows that such replication

does not change the order of the asymptotic achievable capacity. We assume that

each packet has a sequence number so that the destination node can detect replicate

packets and only keep the new packets. We can show that, as n → ∞, the proba-

bilities of errors of Type-I, II, and III, will all go to zero. The following proposition
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then holds, which shows that our scheme can achieve Θ(n(d−1)/3/ log3/2 n) per-node

capacity with Θ(nd) delay. The proof is available in Appendix D.4.

Proposition 5.6.1 Assume the i.i.d. mobility model. With probability approaching

one, as n → ∞, the above scheme allows each source to send bndc packets of length

W

4096c4n(1−d)/3 log3/2 n
to its respective destination node within 2bndc time slots.

Remark: Our schemes belong to the class of cell-based schemes (see Example B in

Section 5.3). However, our scheme uses different cell-partitioning in the odd super-

frames than that in the even super-frames. Note that in previous works [75, 76],

the cell structure remains the same over all time slots. Our judicious choice of

the cell-structures is the key to the derivation of a tighter lower bound for the

capacity. In particular, the size of the sending cell is chosen such that the average

number of nodes in each cell, n/g1(n) = Θ(n(1−d)/3 log n), is close to the optimal

value of Rb in Section 5.6.1. The size of the receiving cell is chosen such that its

area, 1/g2(n) = Θ(n−(1+2d)/3), is close to the optimal value of l2b . Finally, the size

of the mini-cell is chosen such that each hop to the neighboring cell is of length

1/
√

g2(n)g3(n) = Θ(
√

log n/n), which is close to the optimal value of Sh
b .

5.6.3 The Effect of Queueing

When we defined the delay Db of each bit b in Section 5.4, it included possible

queueing delays at the source node and at the relay nodes. The upper bound on

the capacity-delay tradeoff (Proposition 5.5.1) thus holds regardless of the queueing

discipline used in the system, and D̄ also includes the queueing delay. We now show

how to analyze the queueing delay of the capacity-achieving scheme in Section 5.6.2.

We first consider the case when d = 0. For d = 0, our scheme will attempt to

deliver one packet of length W

4096c4n1/3 log3/2 n
for each source-destination pair every

two time slots. Let ps be the probability that a packet is successfully delivered to

the destination at the end of the even time slot. (Note that ps is the same for

all source-destination pairs due to symmetry, and by Proposition 5.6.1, ps → 1 as
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n → ∞.) Assume that, if such delivery is unsuccessful, packets that have not been

delivered to the destinations at the end of each even time slot are removed from the

buffers of the relay nodes and have to be retransmitted by their source nodes at the

next time slot. Further, assume that packets of length W

4096c4n1/3 log3/2 n
arrive at each

source according to a certain stochastic process. Then packets may get enqueued at

the source nodes. If we observe the system at the end of each even time slot, the

number of packets queued for each source-destination pair will evolve as that of a

single-server discrete-time queue with geometric service time distributions [89], and

the queues for each source-destination pair can be studied independently. If we know

the packet arrival process, we can then compute the queueing delay. For example, fix

a source-destination pair and assume that the distribution of the number of packets

(denoted by A) that arrive at the source node every two time slots is i.i.d. with

P[A = i] = ei, i = 0, 1, ...,∞. Let Λ denote the mean packet arrival rate in every

two time slots, i.e., Λ = E[A]. Let Â(z) denote the moment generating function of

A, i.e., Â(z) =
∑∞

i=0 eiz
i, |z| ≤ 1. Using results for Geom[X]/Geom/1 discrete-time

queues [89, p89], we can compute the average number of packets queued at the source

node as:

E[Q] = Â′(1) +
Â′′(1) + 2Â′(1)(1 − ps)

2(ps − Â′(1))
.

Using Little’s Law and the fact that

Â′(1) = E[A] = Λ, and Â′′(1) = Var[A] + E2[A] − E[A] = Var[A] + Λ2 − Λ,

we can compute the mean queueing delay (in number of time slots) as

E[D] = 2
E[Q]

Λ
= 2

(

1 +
Var[A]

2Λ(ps − Λ)
+

Λ − 1

2(ps − Λ)
+

1 − ps

ps − Λ

)

.

Because ps → 1 as n → ∞, we have,

E[D] → 1 +
Var[A]

Λ(1 − Λ)
, as n → ∞.

In particular, if the arrival process is Bernoulli, i.e., one new packet arrives at the

source node every two time slots with probability Λ, then

Var[A] = Λ(1 − Λ).
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Hence,

E[D] → 2, as n → ∞.

On the other hand, if the arrival process is Poisson with rate Λ/2, then the number

of packets that arrive at the source node every two time slots is a Poisson random

variable with mean Λ. Hence,

Var[A] = Λ,

and

E[D] → 1 +
1

1 − Λ
=

2 − Λ

1 − Λ
, as n → ∞.

Note that in both cases, the mean queueing delay is at most a constant multiple

of 2 (time slots) provided that 1 − Λ (i.e., the difference between the arrival rate

and the capacity) is positive and bounded away from zero as n → ∞. Hence, the

capacity-achieving scheme in Section 5.6.2 can sustain Θ(n−1/3/ log3/2 n) per-node

throughput (in bits per time slot) with O(1) queueing delay.

The above analysis can be generalized to d > 0 as well. Let N = bndc. Our

scheme in Section 5.6.2 will attempt to deliver N packets of length W

4096c4n(1−d)/3 log3/2 n

for each source-destination pair every two super-frames. Let ps be the probability

that all Nn packets are successfully delivered to the destination at the end of the

even super-frame. Because ps → 1 as n → ∞, we will simply use ps = 1 in the

following derivation. Assume that packets of length W

4096c4n(1−d)/3 log3/2 n
arrive at each

source according to certain stochastic process. If we observe the system at the end

of each even super-frame, the number of packets queued for each source-destination

pair will evolve as that of a discrete-time queue with N servers and deterministic

service times (equal to the length of two super-frames), and the queues for each

source-destination pair can again be studied independently. Fix a source-destination

pair and assume that the distribution of the number of packets (denoted by A) that

arrive at the source node every two super-frames is i.i.d. with P[A = i] = ei, i =

0, 1, ...,∞. We can then study the mean queueing delay using results from discrete-

time Geom[X]/D/N queues [90,91]. The exact analysis is usually quite tedious [90].
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However, simple upper bounds are available in [90, 91]. Let NΛ denote the mean

packet arrival rate in every two super-frames, i.e., NΛ = E[A]. Let Â(z) denote the

moment generating function of A. Using results in [90, Lemma 1], we can compute

the upper bound on the average number of packets queued at the source node as:

E[Q] ≤ QL +
N

2
,

where

QL = NΛ +
Â′′(1) − NΛ(N − 1)

2N(1 − Λ)
.

Using Little’s Law and the fact that,

Â′(1) = E[A] = NΛ, and Â′′(1) = Var[A] + E2[A] − E[A] = Var[A] + N 2Λ2 − NΛ,

we can compute the upper bound on the mean queueing delay (in number of super-

frames) as8

E[D] ≤ 2
E[Q]

NΛ
≤ 1 +

1

Λ
+

Var[A]

N2Λ(1 − Λ)
.

If Λ is bounded away from 1 and Var[A] = O(N 2), then the mean queueing delay is at

most a constant multiple of 2 (super-frames). Since each super-frame consists of bndc
time slots, we have thus shown that the capacity-achieving scheme in Section 5.6.2

can sustain Θ(n(d−1)/3/ log3/2 n) per-node throughput (in bits per time slot) with

O(nd) queueing delay (in number of time slots).

5.6.4 Simulation Results

We have simulated the capacity achieving scheme in Section 5.6.2 for different

values of the delay exponent d and the number of nodes n. In our simulation, we use

Bernoulli packet arrival processes, i.e., one packet arrives at each source-destination

pair every time-slot with probability p. Hence, Λ = 2p. The packet size scales as

W

4096c4n(1−d)/3 log3/2 n
. For a fixed p, the offered load for each source-destination pair

8This upper bound may explode when Λ → 0. However, since we are interested in the achievable

capacity, we only need to deal with the case when Λ is bounded away from zero. Tighter upper
bounds for Λ close to zero are given in [91].



164

10
1

10
2

10
3

10
0

10
1

10
2

10
3

 The Number of Nodes

 T
he

 A
ve

ra
ge

 D
el

ay

 d=0
 d=0.2
 d=0.4
 d=0.6
 d=0.8
 d=1.0

Fig. 5.6. Mean queueing delay (in number of time slots) versus the
number of nodes.

then scales as Θ(n(d−1)/3/ log3/2 n) (in bits per time slot). We use p = 0.4 in the

simulation. Fig. 5.6 shows the mean queueing delay (in number of time slots) versus

the number of nodes n at different values of d. We observe that, for large n, the

mean queueing delay evolves as Θ(nd) for all values of d. This figure demonstrates

that our scheme can indeed sustain Θ(n(d−1)/3/ log3/2 n) per-node throughput with

Θ(nd) delay.

5.7 The Limiting Factors in Existing Schemes

In Section 5.6, we have shown that choosing the optimal values of the schedul-

ing parameters is the key to achieve the optimal capacity-delay tradeoff. In this

section, we will show that deviating from these optimal values will lead to subop-

timal capacity-delay tradeoffs. In particular, we will identify the limiting factors in

the existing schemes in [75] and [76] by comparing the optimal values of scheduling

parameters in Section 5.6.1 with those used by the existing schemes. Our model
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in Section 5.5 can be extended to study the upper bounds on the capacity-delay

tradeoff when one imposes additional restrictive assumptions that correspond to

these limiting factors. We will see that these new upper bounds are inferior to the

capacity-delay tradeoff reported in Sections 5.5 and 5.6. The existing schemes of [75]

and [76] in fact achieve capacity-delay tradeoffs that are close to the respective up-

per bounds. These results will give us new insights on which schemes to use under

different conditions.

5.7.1 The Limiting Factor in the Scheme of Neely and Modiano

The scheme by Neely and Modiano [75] divides the unit square into n cells each

of area 1/n. A mobile relay will forward messages to the destination only when

they both reside in the same cell. Hence, the distance from the last mobile relay to

the destination, lb, is on average on the order of O(1/
√

n), regardless of the delay

constraints. However, we have shown in Section 5.6.1 that the optimal choice for lb

should be on the order of Θ(n−(1+2d)/6 log−1/2 n), when the mean delay is bounded

by Θ(nd). The next Proposition shows that the restrictive choice of lb is indeed the

limiting factor of the scheme in [75]. The proof is available in Appendix D.5.

Proposition 5.7.1 Let D̄ be the mean delay averaged over all bits and all source-

destination pairs, and let λ be the throughput of each source-destination pair. If

D̄ = O(nd), 0 ≤ d < 1 and E[lb] = O(1/
√

n), then for any causal scheduling policy,

λ ≤ O(
D̄

n
log2 n).

Remark: The scheme of [75] achieves the above upper bound up to a logarithmic

factor.

5.7.2 The Limiting Factor in the Scheme of Toumpis and Goldsmith

In the scheme by Toumpis and Goldsmith [76], a mobile relay will always use

single-hop transmission to forward the messages directly to the destination. That
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is, the number of hops from the last mobile relay to the destination node, hb, is

always 1. However, we have shown in Section 5.6.1 that the optimal value of hb is

Θ(n(1−d)/3/ log n) when the mean delay is bounded by Θ(nd). The next Proposition

shows that the restriction on hb is indeed the limiting factor of the scheme in [76].

The proof is available in Appendix D.6.

Proposition 5.7.2 Let D̄ be the mean delay averaged over all bits and all source-

destination pairs, and let λ be the throughput of each source-destination pair. If

D̄ = O(nd), 0 ≤ d < 1 and hb = O(1), then for any causal scheduling policy,

λ2 ≤ O(
D̄

n
log3 n).

Remark: The scheme of [76] achieves the above upper bound up to a logarithmic

factor.

Propositions 5.5.1, 5.7.1 and 5.7.2 present three different upper bounds on the

capacity-delay tradeoff of mobile wireless networks under different assumptions.

Assume that the mean delay is bounded by nd, 0 ≤ d < 1. When the capac-

ity is the main concern, Proposition 5.5.1 shows that the per-node throughput is

at most O(n(d−1)/3 log n). The capacity-achieving scheme reported in Section 5.6

can achieve close to this upper bound up to a logarithmic factor. However, this

capacity-achieving scheme requires sophisticated coordination among the mobile

nodes. Hence, it may not be suitable when simplicity is the main concern. On

the other hand, the scheme of [75] only requires coordination among nodes that are

within a cell of area 1/n. Note that the average number of nodes in such a cell is

Θ(1). Proposition 5.7.1 then shows that, when coordination among a large number

of nodes is prohibited, the scheme of [75] is close to optimal. Similarly, the scheme

of [76] only requires single-hop transmissions from the mobile relays to the destina-

tions. Proposition 5.7.2 shows that, when multi-hop transmissions are undesirable,

the scheme of [76] is close to optimal. Therefore, the results reported in this chapter

present a relatively complete picture of the achievable capacity-delay tradeoffs under

different conditions.
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5.8 The Random Way-point Mobility Model

The analyses in the previous sections have focused on the i.i.d. mobility model.

In this section, we will extend our methodology to the random way-point (RWP)

mobility model. In previous sections, we have shown that, at least for the i.i.d. mo-

bility model, there is not a significant loss of generality by using cell-based schemes.

Indeed, the capacity-achieving scheme in Section 5.6.2 belong to the class of cell-

based schemes (see Example B in Section 5.3). By choosing the appropriate cell-

partitioning, we have been able to use cell-based schemes to asymptotically achieve

the maximum capacity under given delay constraints. Note that the key parameters

of the capacity-achieving scheme in Section 5.6.2 are the number of sending cells

g1(n) and the number of receiving cells g2(n). Hence, in this section, we will restrict

our attention to cell-based schemes only, and our focus will be to find the optimal

cell-partitioning (i.e., the values of g1(n) and g2(n)) for the RWP mobility model.

However, in the RWP mobility model, the nodes move continuously instead of in

time slots. Hence, we need to modify the cell-based scheme as follows. We still divide

the time into slots of unit length. After a bit b enters the system, it is broadcast to

all other nodes in the same sending cell by the end of the next time slot. Let Rb be

the number of mobile relays that receive the bit b. After certain delay Db, one of

the mobile relays (i.e., the last mobile relay) moves into the same receiving cell (of

area Ab) as the destination node of bit b. The bit b is then forwarded from the last

mobile relay to the destination by the end of the next time slot. Since the velocity

of the nodes is v(n) = Θ(1/
√

n), the distance any node can move within one time

slot is of order Θ(1/
√

n), which is small compared to the sizes of the sending cells

and the receiving cells that we will choose later. Hence, the mobility of the nodes

will not interfere much with both the replication of the bit at the very beginning

and the multi-hop forwarding after capture. Let hb be the number of hops that bit

b takes from the last mobile relay to the destination.
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With the above modification of the cell-based scheme, the Tradeoffs II, III, and IV

can be readily extended to the RWP mobility model. However, the exact counterpart

to Tradeoff I is quite difficult to obtain analytically. We instead use numerical

methods to study the likely form of Tradeoff I under the RWP mobility model. In

the cell-based scheme, the number of mobile relays for each bit b is determined at the

beginning of the replication process, and all of these mobile relays were close to the

source node of bit b when they received bit b. Hence, we can use the following simple

simulation model to study the tradeoff between Db, Rb and Ab. At time t = 0, we

put one (destination) node at a random position uniformly distributed within the

unit square. We put Rb mobile relays at another random position. Let the size of the

receiving cell be Ab = 1/g2(n). We then let these nodes move according to the RWP

mobility model and record the mean delay E[Db] (averaged over simulation runs)

before any one of the Rb mobile relays moves within the same receiving cell as the

destination node. Varying Rb and Ab, we can thus obtain the relationship between

E[Db], Rb and Ab. However, note that we are only interested in the relationship when

n is large. In order to extract the most useful information, we let Rb = nd1 , 0 < d1 <

1, and Ab = n−d2 , 0 < d2 < 1. With any fixed d1 and d2, we observe from our

simulations that, when n is large, log E[Db]
log n

will converge to a number d, i.e., the delay

is approximately nd. In Fig. 5.7, we plot the relationship between d, d1, and d2 for

the RWP mobility model. It is instructive to compare with the same plot obtained

under the i.i.d. mobility model (Fig. 5.8). Note that each line in Fig. 5.8 can be

expressed as

d = d2 − d1, for d ≥ 0,

which is consistent with (5.6) noting that lb = Θ(
√

Ab). On the other hand, each

line in Fig. 5.7 can be expressed as

d =
1 + d2

2
− d1, for 0.5 < d < 1,

which corresponds to

E[Db] ≈ Θ(
n

1
2

E[lb]E[Rb]
). (5.25)
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Fig. 5.7. Delay exponent d versus d1 and d2 for the random way-point
mobility model.

This relationship between Db, lb and Rb under the RWP mobility model is consistent

with the findings in [84]. When lb and Rb are fixed, it has been shown in [84] that a

given mobile relay can move within a distance lb from the destination node during a

single trip with probability Θ(lb). Since odd trips are independent from each other,

the expected number of trips for any of the Rb mobile relays to move within distance

lb from the destination node is Θ( 1
lbRb

). Finally, as v(n) = Θ(1/
√

n), each trip will

take Θ(
√

n) amount of time. We then obtain (5.25). However, this relationship

only holds when d ≥ 0.5. In fact, it has been shown in [84] that, in order to take

advantage of mobility, the minimum amount of delay under the RWP mobility model

is Θ(
√

n).

5.8.1 Upper Bound on the Capacity-Delay Tradeoff

Combining relationship (5.25) with Tradeoffs II, III and IV, we can then compute

the upper bound on the maximum capacity under given delay constraints as in
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Fig. 5.8. Delay exponent d versus d1 and d2 for the i.i.d. mobility model.
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Proposition 5.5.1. We can in fact assume a more general version of the estimate

(5.25):

E[Db] ≥
c1n

1
2
−ε

E[lb]E[Rb]
, (5.26)

where c1 > 0 and ε is a positive number close to 0. We then have

λnT
∑

b=1

E[Rb] ≥ c1n
1
2
−ε

λnT
∑

b=1

1

E[lb]E[Db]
. (5.27)

Let

D̄ =

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

=

λnT
∑

b=1

E[Db]

λnT
.

Using Jensen’s Inequality and Hőlder’s Inequality, we have,

1




λnT
P

b=1
E[lb]

λnT
P

b=1
1





≤











λnT
∑

b=1

1√
E[lb]

λnT
∑

b=1

1











2

≤

λnT
∑

b=1

1
E[lb]E[Db]

λnT
∑

b=1

1

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

. (5.28)

Equality holds when E[lb] is the same for all b and E[Db] = D̄ for all b. Substituting

(5.28) in (5.27), we have

λnT
∑

b=1

E[Rb] ≥ c1n
1
2
−ε

(

λnT
∑

b=1

1

)2

D̄
λnT
∑

b=1

E[lb]

. (5.29)

Substituting (5.14) and (5.29) into Tradeoff III (5.9), we have

4c3WT log n

∆2
≥

λnT
∑

b=1

E[Rb] − 1

n
+ πE[

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2]

≥ c1n
− 1

2
−ε (λnT )2

D̄
λnT
∑

b=1

E[lb]

+
2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT.



172

Using the inequality

a + b + c ≥ 3
3
√

abc,

we have,

4c3WT log n

∆2
≥ 3

3

√

√

√

√

√

√

√

√











c1

2
n− 1

2
−ε (λnT )2

D̄
λnT
∑

b=1

E[lb]











2

2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT (5.30)

= 3
3

√

c2
1π

2

λ4n2−2εT 3

D̄2W
− λT. (5.31)

Therefore, either

λ ≤ O(
D̄2

n2−2ε
), (5.32)

or, if λ = ω( D̄2

n2−2ε ), then the first term in (5.31) dominates when n is large. In the

latter case, for n large enough, we have,

4c3WT log n

∆2
≥ 3

2

3

√

c2
1π

2

λ4n2−2εT 3

D̄2W
64c3

3W
3T 3 log3 n

∆6
≥ 27

8

c2
1π

2

λ4n2−2εT 3

D̄2W

λ2 ≤
√

1024c3
3W

4

27πc2
1∆

6

D̄

n1−ε
log

3
2 n. (5.33)

Compare (5.32) and (5.33). Since D̄ = o(nd), d < 1, inequality (5.33) will eventually

be the loosest for large n. Hence, the optimal capacity is upper bounded by

λ2 ≤ O(
D̄

n1−ε
log

3
2 n).

We can now take ε → 0 and obtain the following upper bound on the capacity-delay

tradeoff under the RWP mobility model:

λ2 ≤ O(
D̄

n
log

3
2 n).

5.8.2 Optimal Values of the Key Scheduling Parameters

We can also identify the optimal values of the parameters Rb, Ab and hb for

achieving the above upper bound. Towards this end, we can infer as in Section 5.6.1
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again that the scheduling policy should use the same parameters for all bits. Hence,

we will assume that all key parameters (such as Rb, lb, etc.) are indeed the same for

all bits. Assume that the mean delay is bounded by nd, d < 1. By earlier derivations,

we have,

λ ≤ Θ(n
d−1+ε

2 log
3
4 n).

Note that equality holds in (5.30) if and only if

c1

2
n− 1

2
−ε (λnT )2

D̄
λnT
∑

b=1

E[lb]

=
2π

WTn
(
λnT
∑

b=1

E[lb])
2.

Substituting
λnT
∑

b=1

E[lb] = λnT lb, we can solve for lb,

c1

2
n− 1

2
−ε λnT

D̄lb
=

2π

WTn
(λnT )2l2b

l3b =
c1

4π

W

D̄λn
1
2
+ε

.

Substituting λ = Θ(n(d−1+ε)/2 log3/4 n) and D̄ = nd, we obtain the optimal value of

lb,

lb = Θ(n− d+ε
2 log− 1

4 n).

A reasonable choice for the area of capture neighborhood, Ab, is then,

Ab = l2b = Θ(n−d−ε/
√

log n).

By setting (5.11) of Tradeoff IV to equality, we have

λnThb =
WTn

2

hb =
W

2λ
= Θ(n

1−d−ε
2 / log

3
4 n).

By setting (5.8) of Tradeoff II to equality, we have

Sh
b =

lb
hb

= Θ(

√

log n

n
).
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From (5.26), equality is attained when

Rb = Θ(
c1n

1
2
−ε

lbD̄
) = Θ(n

1−d−ε
2 log

1
4 n).

Taking ε → 0, we summarize the optimal values of the scheduling parameters

below when the delay constraint is Db = O(nd):

Rb = Θ(n
1−d
2 log

1
4 n), lb = Θ(n− d

2 / log
1
4 n),

hb = Θ(n
1−d
2 / log

3
4 n), and Sh

b = Θ(

√

log n

n
).

5.8.3 The Capacity-Achieving Scheme

We can now use these optimal values to construct the cell-based

capacity-achieving scheme as in Section 5.6. According to the optimal values of

Rb and lb, the number of sending cells and receiving cells should be g1(n) = Θ(n
1+d
2

log n
)

and g2(n) = Θ(nd), respectively. We have simulated this cell-based scheme under

the RWP mobility model and found that it can achieve the following capacity-delay

tradeoff:

λ2 ≥ Θ(
D̄

n
/ log2 n) when 0.5 < d < 1.

Note that this capacity-delay tradeoff is better than the tradeoff reported in earlier

studies [84]. Analogous to Section 5.7, we can show that a restrictive choice of the

receiving cell size is again the performance limiting factor of the scheme in [84].

5.9 The Brownian Motion Mobility Model

We now study the capacity-delay tradeoff under the Brownian Motion mobility

model9. Interestingly, we will see that the results in this section are very different

from those reported in earlier sections for the i.i.d. mobility model and the random

9We note that the results of this section can also be easily extended to other related mobility
models such as the random walk mobility model [92] and the Markovian mobility model [75]. This
is because the Brownian motion model can be viewed as a limiting case of these other mobility
models.
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Fig. 5.9. The degenerate delay-capacity tradeoff under the Brownian
motion model (the solid line) compared with the “smooth” delay-
capacity tradeoff under the random way-point mobility model (the
dashed line) reported in Section 5.8. We have chosen σ2

n = 1/n and
ignored all logarithmic terms in the figure.

way-point mobility model. We will show that there is virtually no tradeoff between the

capacity and delay under the Brownian motion model (see Fig. 5.9). In particular, we

show that under a large class of scheduling and relaying schemes, in order to achieve

a delay of Θ(nα/σ2
n) for any α < 0, the per-node capacity must be O(1/

√
n). (Recall

that σ2
n is the variance parameter of the Brownian motion. See the definition in

Section 5.2.) Note that one can achieve Θ(1/
√

n log n) per-node capacity for static

wireless networks using multi-hop transmission [71]. On the other hand, schemes

have been developed that can achieve Θ(1) per-node capacity at Θ(log n/σ2
n) delay

[83]10. Thus, in order to achieve any significant capacity gains by exploiting mobility,

one must be ready to tolerate huge delays, roughly on the order of Θ(1/σ2
n), which

is close to the delay at Θ(1) per-node capacity.

10We are referring to Scheme 2 in [83]. There is a missing log n factor in the delay result in [83] for
Scheme 2. Independent of our work [27], the authors of [83] have also identified the missing log n
factor (see [86]).



176

5.9.1 Basic Properties of Brownian Motion on a Sphere

Before we state the main result, we first summarize some basic properties of

Brownian motion on a sphere, which will be used later on. Let us consider the motion

of a single node. Let Xt denote its position at time t, which can be represented

using the spherical coordinates (θt, φt). Recall the definition of Brownian motion

on a sphere (see (5.4) and (5.5)). For analysis, it is useful to project each node’s

position onto the z-axis. Substituting Yt = cos θt into (5.4), and using Itô’s Lemma,

we obtain

dYt = −σ2
nYtdt − σn

√

1 − Y 2
t dBt. (5.34)

Note that Yt is a diffusion process with drift coefficient −σ2
nYt and diffusion coefficient

σ2
n(1 − Y 2

t ).

We first cite the following result from [87] concerning the expected travel time

of Yt:

Lemma 5.9.1 Let −1 < a < x < 1. Then, in traveling from x to a, Yt takes an

expected time, Va(x), given by:

Va(x) =
2

σ2
n

log

(

1 + x

1 + a

)

. (5.35)

The First Hitting Time

The first concept we study is the first hitting time. Let A be an arbitrary region

on the sphere. We have the following definition:

Definition 5.9.1 The first hitting time of A, denoted by TA, is the first time instant

at which Xt enters A; i.e., TA = inf{t ≥ 0 : Xt ∈ A}.

Let Π denote the uniform distribution on the unit sphere S, and denote by EΠ

the expectation conditioned on X0 being distributed according to Π. Let A = {x ∈
S : dS(x, y) ≤ an}, where y is an arbitrary point on S, dS denotes the geodesic

distance on the sphere, and an > 0. For an ↓ 0, as n → ∞, we have the following

result:
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Lemma 5.9.2 EΠ[TA] = Θ(log (1/an)/σ2
n).

Proof In view of the symmetry of the sphere, taking y to be the south pole (i.e., the

bottom most point of S that corresponds to θ = π) entails no loss of generality. Now,

for x ∈ A, we have E[TA|X0 = x] = 0. For x /∈ A, let zx denote its z co-ordinate.

Note that the radius of S is 1
2
√

π
. The first time that Xt enters A is also the first

time that Yt travels from zx to − cos(2an

√
π). Using Lemma 5.9.1, we obtain

E[TA|X0 = x] =
2

σ2
n

log

(

1 + zx

1 − cos (2an

√
π)

)

.

Integrating over all possible positions of the point x on S, and using the fact that x

is uniformly distributed on S, we obtain

EΠ[TA] =

∫ π

θ=2
√

πan

sin θ

σ2
n

log

(

1 + cos θ
2
√

π

1 − cos (2an

√
π)

)

dθ,

and the result follows after straightforward calculations.

Remark: If an = nα, α < 0, then by Lemma 5.9.2, the first hitting time is always

Θ(log n/σ2
n), regardless of the value of α. Even if we take an =

√
π/4, which means

that the set A covers about half of the sphere, the first hitting time is still Θ(1/σ2
n).

Hence, the first hitting time changes very little when the size of the set A is increased.

This result reveals the fundamental difference between the mobility pattern under

the Brownian motion model and that under other mobility models (such as the i.i.d

mobility model and the random way-point mobility model that we have studied in the

previous sections). In these other models, the first hitting time for a set A decreases

substantially when the size of the set A is increased [24, 84]. On the other hand,

Lemma 5.9.2 is not completely surprising given the fact that, under the Brownian

motion model, the node always wanders around like a “drunkard.” Therefore, it is

very difficult for the node to move towards any given destination.

The First Exit Time

The second concept that we study is the first exit time.
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Definition 5.9.2 Let A = {x ∈ S : dS(x, y) ≤ an}. The first exit time for the

region A, denoted by τA, is the first instant of time at which the Brownian motion

started at y (the center of A) exits A, i.e.,

τA = inf{t ≥ 0 : X0 = y,Xt /∈ A}.

Assuming an → 0 as n → ∞, we have the following result:

Lemma 5.9.3 E[τA] = Θ(a2
n/σ

2
n).

Proof Using the symmetry of the sphere, we can set y to be the north pole of S

(i.e., the top most point of S that corresponds to θ = 0). It then follows that E[τA]

is the expected travel time of Yt from 1 to cos(2an

√
π). Applying Lemma 5.9.1 and

performing some straightforward calculations, the result follows.

Remark: From the above discussion it is clear that under the Brownian motion

model a node requires Θ(a2
n/σ

2
n) time to move a radial distance of an. Thus the

time a Brownian motion process spends in a region is in proportion to the area of

the region. This also points to the well-known result that the path of Brownian

motion is nowhere differentiable [88, p380]. Hence, it is inappropriate to define the

“velocity” of a node that is moving in accordance with the Brownian motion model.

5.9.2 The Degenerate Capacity-Delay Tradeoff

In this section, we show that there is virtually no tradeoff between the delay

and the capacity under the Brownian motion model. Specifically, we will show that

whenever the delay constraint is O(nα/σ2
n) for any α < 0, the per-node capacity

is O(1/
√

n). In order to provide the readers with the main insight underlying this

result, we use a slightly different network model in this section. We assume that the

nodes are executing independent Brownian walks within a unit square on a plane

(instead of on a unit sphere). This change simplifies the exposition substantially.

Nonetheless, as we will see later, our results hold for a unit sphere as well.
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Consider n nodes on a unit square centered at the origin, executing independent

two-dimensional Brownian motions within the square. As will become clear soon,

our result does not depend on how the boundary condition is handled: the Brownian

motion could either be reflected at the boundary, or wrap around the boundary (like

the 2-d torus model in [83]).

In order to prove the main result of this section, namely, that the delay-capacity

tradeoff under the Brownian motion model is degenerate, we need some supporting

results (Lemma 5.9.4 and Lemma 5.9.6 below). The main idea is as follows: if the

delay is O(nα/σ2
n) for α < 0, then we can show that the contribution due to node

mobility in the packet delivery is likely very small. Hence, in order to deliver the

packet to the destination, relaying over order Θ(1) distance is required. We can then

show that the per-node capacity must be O(1/
√

n).

We start by showing that, if the delay is O(nα/σ2
n) for α < 0, then the contribu-

tion due to node mobility in the packet delivery is likely very small. Let SQ(cn) be

the square centered at the origin with length cn (see Fig. 5.10). Suppose there are

kn ≤ n nodes, starting at the origin at time 0. Each node then moves according to

a two-dimensional Brownian motion with variance σ2
n, which can be viewed as the

composition of two independent one-dimensional Brownian motion along the x-axis

and the y-axis, respectively, each having a variance of σ2
n/2. Let pkn(cn, tn) denote

the probability of the event that one or more of the kn nodes ever exit the square

SQ(cn) within time tn. We have the following result concerning pkn(cn, tn):

Lemma 5.9.4 If there exists N0 < ∞ such that

c2
n

tn
≥ 8σ2

n log n, for n ≥ N0, (5.36)

then

lim
n→∞

pkn(cn, tn) = 0.

The following corollary is an immediate consequence of Lemma 5.9.4.
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Fig. 5.10. kn nodes at the origin

Corollary 5.9.5 If

lim infn→∞ cn log n = c > 0

lim supn→∞
σ2

ntn
nα = c′ < +∞, for some α < 0 ,

then

lim
n→∞

pkn(cn, tn) = 0.

Remark: Corollary 5.9.5 shows that, within O(nα/σ2
n) time (α < 0), none of the

kn nodes can possibly travel a Θ(1/ log n) distance in any direction.

Proof [of Lemma 5.9.4] Consider an arbitrary node. Let Xt be its position at

time t. Let Bx
t and By

t denote its x-coordinate and y-coordinate, respectively. Then

Bx
t and By

t are independent one-dimensional Brownian motions with variance σ2
n/2.

Let p(cn, tn) be the probability that this particular node ever exits the square SQ(cn)

within time tn. Let

τ+
x , inf{t ≥ 0 : Bx

t = cn/2},

τ−
x , inf{t ≥ 0 : Bx

t = −cn/2},
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and let τ+
y , τ−

y be similarly defined with By
t in place of Bx

t . Using the union bound,

and appealing to the symmetry of the two-dimensional Brownian motion, we obtain

p(cn, tn) ≤ P{τ+
x ≤ tn or τ−

x ≤ tn or τ+
y ≤ tn or τ−

y ≤ tn}

≤ 4P{τ+
x ≤ tn}.

Further, using the Reflection Principle for one-dimensional Brownian motion [88,

p394], we have

P{τ+
x ≤ tn} = 2P{Bx

tn ≥ cn/2}.

Since the distribution of Bx
tn is Gaussian with zero mean and variance σ2

ntn/2, we

have,

P{τ+
x ≤ tn} = 2

∫ ∞

cn√
2σn

√
tn

1√
2π

exp

(

−u2

2

)

du.

Using the inequality,

∫ ∞

x

1√
2π

exp

(

−u2

2

)

du ≤ 1√
2π

∫ ∞

x

u

x
exp

(

−u2

2

)

du

=
1√
2πx

exp

(

−x2

2

)

,

we have,

P{τ+
x ≤ tn} ≤ 2

√

σ2
ntn

πc2
n

exp

[

− c2
n

4σ2
ntn

]

.

Using (5.36), we have

P{τ+
x ≤ tn} ≤ 1√

2π log n
exp(−2 log n) =

1

n2
√

2π log n
.

Hence,

p(cn, tn) ≤ 4

n2
√

2π log n
.

Finally, since there are kn nodes, each of them moves according to a two-dimensional

Brownian Motion, we have

pkn(cn, tn) ≤ knp(cn, tn) ≤ 4kn

n2
√

2π log n
.

Noting that kn ≤ n, the result then follows.
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By Corollary 5.9.5, if the delay is O(nα/σ2
n) for α < 0, then the contribution

due to node mobility to the packet delivery is likely very small (O(1/ log n)). Hence,

in order to deliver the packet to the destination, relaying over order Θ(1) distance

is required. We now show that if each packet is relayed over Θ(1) distance (on an

average), then the per-node capacity must be O(1/
√

n). Consider a large enough

time interval T . The total number of packets communicated end-to-end between all

source-destination pairs during the interval is cpλnT , where 1/cp is the number of

bits per packet. Let hp be the number of times the packet p is relayed, and let lhp ,

for h = 1, ..., hb, denote the transmission range for the h-th relaying. We have the

following result:

Lemma 5.9.6 Suppose that there exists a constant c > 0, such that on average each

packet is relayed over a total distance no less than c, i.e.,

cpλnT
∑

p=1

hb
∑

h=1

lhp

cpλnT ≥ c, (5.37)

then

λ ≤ O(1/
√

n).

Proof We use the idea in Section 5.4.4 again that disks of radius ∆
2

times the

transmission range centered at the transmitter are disjoint from each other. We can

therefore measure the radio resources that each transmission consumes by the areas

of these disjoint disks. Note that the total area of the square is 1; for each of these

disks, at least 1/4 of it must lie inside the unit square; and each relaying of a packet

lasts 1
cpW

amount of time. Thus,

1

4

cpλnT
∑

p=1

hb
∑

h=1

π

[

∆

2
lhp

]2

≤ cpWT . (5.38)

By Cauchy-Schwarz Inequality,

[

cpλnT
∑

p=1

hb
∑

h=1

lhp

]2

≤
[

cpλnT
∑

p=1

hb
∑

h=1

(lhp )2

][

cpλnT
∑

p=1

hb
∑

h=1

1

]

. (5.39)
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Further, since there are at most n simultaneous transmissions at any given time in

the network, we have
cpλnT
∑

p=1

hp ≤ cpWT n. (5.40)

Therefore,

16cpWT
π∆2

≥
cpλnT
∑

p=1

hb
∑

h=1

(lhp )2 (using (5.38))

≥

"

cpλnT
P

p=1

hb
P

h=1
lhp

#2

"

cpλnT
P

p=1
hp

# (using (5.39))

≥ (cpλnT c)2

cpWT n
(using (5.37) and (5.40)).

Hence,

λ ≤
√

16W 2

π∆2c2

1√
n

.

We are now ready to prove the main result of this section. We will consider the

general class of scheduling policies outlined in Section 5.3, except that now we impose

an additional restriction as follows. Recall the notion of replication and capture in

Section 5.3. We will restrict our study to the class of scheduling policies that satisfy

the following assumption:

Assumption A:

• Only the source of a packet is allowed to replicate the packet. That is, relay

nodes holding a packet are not allowed to replicate it further.

Remark: Note that almost all scheduling schemes that have been proposed in the

literature satisfy Assumption A [23,24,75,76,83–85].

It is worthwhile to elaborate on Assumption A a little bit, since it may seem

restrictive at first sight. First, observe that the notions of replication and relaying

are different, even though both involve forwarding packets to other relay nodes. For

example, when node i decides to replicate the packet p to node j, node i can either
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transmit the packet directly to node j, or use multi-hop transmission; i.e., node i can

forward the packet to another node k, and let node k forward the packet to node j.

(Node k may also keep the copy of the packet p, in which case, both nodes k and j

are considered to receive the packet due to the same replication decision initiated by

node i.) In this example, although both nodes i and k forward the packet p to other

nodes, their roles are different. Node i is the one who initiates the replication, while

node k is just passively following the instruction of node i to relay the packet to node

j. Thus, we see that Assumption A only prohibits relay nodes to initiate replication.

Hence, multi-hop relaying is still allowed under Assumption A. (Multi-hop relaying

is also allowed for the relay-to-destination communication, i.e., capture.)

If we attempt to develop distributed scheduling policies where nodes make repli-

cation decisions and capture decisions without any knowledge of the decisions at

other nodes, then restricting the replication decisions to the source node is a natural

way to control the number of copies of a packet in the system. Note that excessive

redundancy would reduce the system throughput substantially. The source node of

a packet p is in the best position to control both the total number of replications

for the packet and the number of relay nodes getting the packet for each replication.

If the relay nodes were allowed to replicate, then additional cooperation among the

relay nodes would most likely be required in order to limit the number of replicas of a

packet (see, for example, the scheme in [79], where the relay nodes know the location

of the static destination, and also have some knowledge of the future direction of

other nodes’ movement, based on which they can cooperate to make selective and

more efficient replication toward the destination).

We can prove the following main result:

Proposition 5.9.1 Let D̄ denote the expected delay averaged over all packets and all

source-destination pairs, and let λ denote the throughput of each source-destination

pair. For any scheduling policy that satisfies Assumption A, if

D̄ ≤ O(nα/σ2
n), α < 0,
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then

λ ≤ O(1/
√

n).

Proof Consider squares A and B of length 1/4, centered at (−1/4, 1/4) and

(1/4,−1/4), respectively (see Fig. 5.11). Since the packet arrivals are independent of

the positions of the mobile nodes, there will be a constant fraction f0 of the packets

that have their source nodes in square A and destinations in square B, at the time

of arrival. (If the stationary distribution of the positions of the nodes are uniform,

then f0 =
(

1
4

)4
= 1/256. Otherwise, f0 is still a positive constant independent of

n.) Let ΦAB denote this set of packets. In order to ensure that D̄ ≤ O(nα/σ2
n), the

delay for the packets in ΦAB has to be O(nα/σ2
n). Precisely, since D̄ ≤ O(nα/σ2

n),

there exists some N0 > 0 and c1 > 0, such that

D̄ ≤ c1n
α/σ2

n, when n ≥ N0. (5.41)

Therefore, the delay of at least half of the packets in ΦAB must be no greater than

tn =
2c1

f0

nα

σ2
n

.

(Otherwise, the delay of the other half of the packets in ΦAB must be greater than

tn. Because this other half contributes to at least f0/2 fraction of all packets, the

condition (5.41) will be violated.) Let Φ0
AB denote the set of packets in ΦAB whose

delay is no greater than tn. Consider an arbitrary packet p which is in Φ0
AB. Let Sp

and Dp denote its source node and destination node, respectively. Fig. 5.12 shows

a typical packet delivery. The source nodes Sp moves from position S0 to U1, and

replicates the packet p to a relay node, say r1, at position V1, possibly using multi-

hop transmission. The node r1 then moves independently of Sp. The source node

moves on to position U2, where it replicates the packet p to one more relay node,

say r2, positioned at V2, and so on. It is also possible to replicate the packet to

more than one relay node at the same time (for example, we can take U1 = U2 if the

source node replicates the packet to r1 and r2 at the same time). At time t ≤ tn,

a successful capture occurs, as one of the relay nodes holding the packet p (node r2
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1/4

1/4

source node S

A

B

Origin

destination node D

b

b

Fig. 5.11. There exists a constant fraction of packets that originate
from nodes in A and are destined to nodes in B.
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U 1

V 1

U 2 V 2

r 2

r 1

W1

W2

S 0

W0

source or destination node
relay node
replication / capture

pS D 0

Dp

D

Fig. 5.12. How a typical packet p is delivered.

in the case shown in Fig. 5.12) decides to forward the packet to its destination node

Dp, which has moved from its initial position D0 to the position D, at time t. Let

kn denote the total number of relay nodes that hold packet p in this process, and

let rk, for k = 1, 2, ..., kn, denote the k-th relay. Let Uk and Vk denote the position

of the source node Sp and the position of the relay node rk, respectively, at time of

replication. Let Wk denote the position of the relay node rk at the time of capture

(see Fig. 5.13). Let d(x, y) denote the Euclidean distance between positions x and

y within the unit square. Since the direct straight-line path is always the shortest

path connecting any two points, we have, for any k,

d(S0, Uk) + d(Uk, Vk) + d(Vk,Wk) + d(Wk, D) + d(D0, D) ≥ d(S0, D0).

Hence,

d(Uk, Vk) + d(Wk, D) ≥ d(S0, D0) − d(D0, D) − d(S0, Uk) − d(Vk,Wk). (5.42)

Since S0 and D0 are in the squares A and B, respectively,

d(S0, D0) ≥
√

2

4
.

Further, each of the terms d(D0, D), d(S0, Uk), and d(Vk,Wk), corresponds to the

movement of a different node. There are at most n nodes involved in this process. By
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S 0

source or destination node
relay node
replication / capture

V k

Wk

D 0

U k

Sp

D

pD

k
r

Fig. 5.13. The relay node rk

setting cn = 1/ log n in Corollary 5.9.5, we can see that, with probability approaching

1 as n → ∞, all of the last three terms in (5.42) are no greater than
√

2/ log n, for

all k. Therefore,

d(Uk, Vk) + d(Wk, D) ≥
√

2

4
− 3

√
2

log n
≥ 1/4

for large enough n. Finally, let W0 denote the position of the source node at time t.

Then using a similar argument,

d(W0, D) ≥ d(S0, D0) − d(D,D0) − d(S0,W0) ≥ 1/4.

This shows that for each packet p in Φ0
AB, the total distance that the packet p has

to be relayed is at least 1/4. Since Φ0
AB contributes to at least f0/2 fraction of all

packets, on an average each packet must be relayed over a distance no less than

f0/8 > 0. Hence, by Lemma 5.9.6, the per-node throughput λ must be no larger

than O(1/
√

n).

Remark: For the ease of exposition, we have shown the above results for Brownian

motion on a plane. However, it is not difficult to see that the argument in Proposition

5.9.1 applies to Brownian motion on a unit sphere as well. In particular, in Lemma
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5.9.4, if we choose cn = c/ log n, the size of the square SQ(cn) diminishes to zero

as n → ∞. Hence, the difference between such a square on a plane and that on a

unit sphere vanishes. Therefore, both Corollary 5.9.5 and Proposition 5.9.1 hold for

Brownian motion on a unit sphere as well.

The Degenerate Tradeoff: Proposition 5.9.1 shows that the capacity-delay

tradeoff under the Brownian motion model is degenerate: For delay less

than O(nα/σ2
n), α < 0, the per-node capacity is at most O(1/

√
n). Since one can

achieve Θ(1/
√

n log n) per-node capacity for static wireless networks using multi-hop

transmission [71], our result shows that whenever the delay is constrained to be less

than O(nα/σ2
n), α < 1, Brownian mobility cannot improve the capacity by more than

a logarithmic factor. Further, since the packet transmissions are usually carried out

at a much faster time-scale than the node mobility, one could view the delay under

the multi-hop scheduling (see [71]) as being almost zero. Earlier studies have shown

that it is possible to achieve Θ(1) per-node capacity at roughly Θ(1/σ2
n) delay under

the Brownian motion model [83]. Obviously, Θ(1) is an upper bound on the per-

node capacity (under our network model). Hence, if we ignore the logarithmic terms,

the capacity-delay tradeoff under the Brownian motion model degenerates into two

points: one can either achieve Θ(1/
√

n log n) per-capacity at almost no delay, or

Θ(1) per-node capacity at roughly Θ(1/σ2
n) delay, but nothing in between! Finally,

although Proposition 5.9.1 is shown under the Brownian motion model, it is not

difficult to see that the result also applies to the random walk mobility model [92],

or the Markovian mobility model in [75]. This is because as n → ∞, the difference

between these mobility models vanishes.

The result of Proposition 5.9.1 is in sharp contrast to the results reported in the

existing works [83,85], where it is claimed that certain schemes can provide a smooth

tradeoff between the capacity and the delay under the Brownian motion model. For

a discussion of the reasons for these discrepancies, please refer to [27].
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5.10 Conclusion and Future Work

In this chapter, we have studied the fundamental capacity-delay tradeoff in mo-

bile wireless networks. We have developed a systematic methodology to study this

problem. Unlike previous works that start from some specific scheduling schemes and

try to prove that the particular scheme achieves the optimal capacity-delay tradeoff,

we assume the most general class of scheduling schemes and start our study by in-

vestigating the inherent tradeoffs in the system among the capacity, the delay and

various key scheduling parameters. Based on these inherent tradeoffs (in the form of

inequalities), we can not only derive the true upper bound on the per-node capacity

of a large mobile wireless network under given delay constraints, but also identify the

the optimal values of the key scheduling parameters and construct the corresponding

capacity-achieving schemes. Our methodology also allows us to identify the limit-

ing factors in existing schemes. In Table 5.2, we have compared the results in this

chapter with those in previous works. The previous works often put various implicit

restrictions on the key scheduling parameters (i.e., Rb, lb and hb) in their model. As

we have seen in the results of this chapter, such restrictions can significantly limit the

achievable performance of the network. Even if these restrictions may have practical

significance, it is still important to understand their implications, which can only be

revealed through a systematic methodology as we have gone through in this chapter.

The results in this chapter can be generalized in several directions. For example,

the i.i.d. mobility model can be extended to incorporate “pause times.” Specifically,

at each time slot, each node may independently choose to stay in its old position with

probability p, and to move to a new random position with probability 1 − p. This

model may approximate scenarios where nodes move at a fast speed and then stay for

a relatively long period of time. Tradeoff I in Section 5.4 will hold for this extension

of the i.i.d. mobility model, and hence our main results in Sections 5.5 and 5.6 will

hold as well. Our result for the Brownian motion model can also be extended to
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Table 5.2
Restrictions on the parameters Rb, lb and hb may limit the capacity-delay tradeoff

Scheme Mobility Model Rb lb hb Capacity-Delay

Tradeoff Achieved

Neely & Modiano [75] i.i.d. Vary O(1/
√

n) Vary λ ≤ O(D
n
)

Toumpis & Goldsmith [76] i.i.d. Vary Vary 1 λ2 = Θ(D
n
/ log3 n)

Our work [24–26] i.i.d. Vary Vary Vary λ3 = Θ(D
n
/ log9/2 n)

Sharma & Mazumdar [84] Random Way-Point Vary O(1/
√

n) Vary λ ≤ O(D
n
)

Our work [25] Random Way-Point Vary Vary Vary λ2 = Θ(D
n
/ log2 n)

Gamal et al [83] Brownian Motion 2 Vary Vary

Sharma & Mazumdar [85] Brownian Motion Vary O(1/
√

n) Vary

Our work [27] Brownian Motion Vary Vary Vary Degenerate
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the other related models, such as the random walk model [86] and the Markovian

Model [75].

An interesting observation of the results in this chapter is that the delay-capacity

tradeoff in mobile wireless networks critically depends on the underlying mobility

model. As we have seen in Section 5.9, the tradeoff is degenerate under the Brownian

motion model. On the other hand, under the i.i.d. mobility model, we have shown

in Section 5.5 that the following tradeoff between the per-node capacity λ and the

delay D can be achieved:

λ = Θ

(

3

√

D

n
/log3/2 n

)

for Θ(1) ≤ D ≤ Θ(n). Further, under the random way-point mobility model, our

scheme in Section 5.8 can achieve the following delay-capacity tradeoff:

λ = Θ

(

2

√

D

n
/ log n

)

for Θ(
√

n) ≤ D ≤ Θ(n), when the speed of the nodes is v(n) = 1/
√

n. In Fig. 5.14,

we illustrate the difference in the above three delay-capacity tradeoffs. In this figure,

we have chosen v(n) = 1/
√

n and σn = 1/
√

n. The reason for such choice of v(n)

and σn is to ensure that the contact time (i.e., the time for two nodes to remain

neighbors of each other) is Θ(1) under all three mobility models. As we can see, a

smooth tradeoff exists for any value of delay for the i.i.d. mobility model, while a

smooth tradeoff only exists for delay between Θ(
√

n) and Θ(n) under the random

way-point mobility model, and the tradeoff degenerates to only two points under the

Brownian motion model.

Looking at these results, a natural question to ask is: what will the tradeoff be

for a real mobile wireless network? Will the tradeoff in real networks be one of these

three types? Or will it be a combination of these three? A closely related question

is whether these tradeoffs (along with their respective mobility models) represent

three distinct cases, or are part of a continuous range of delay-capacity tradeoffs.

Thus, it is important to understand the reasons behind these different tradeoffs, and



193

Θ(1) Θ(
√

n) Θ(n)

O( 1√
n
)

O( 1
3
√

n
)

O(1)

Capacity

Delay

Fig. 5.14. The delay-capacity tradeoffs under the Brownian motion
model (the solid line), the random way-point mobility model (the
dashed line), and the i.i.d. mobility model (the dash-dotted line). We
have chosen v(n) = 1/

√
n and σn = 1/

√
n and ignored all logarithmic

terms in the figure.
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to investigate whether a unified framework can be developed to understand these

results. We plan to address these questions in our future work.



195

6. A LOOSE-COUPLING APPROACH TO

CROSS-LAYER DESIGN IN MULTIHOP WIRELESS

NETWORKS

6.1 Introduction

In Chapters 2-5, we have shown how one can obtain simple and efficient control

solutions for large networks by exploiting the largeness of the system. The accuracy

of such an approach varies according to the particular problem. For example, for

wire-line networks where the capacity is large, we can obtain simple control solutions

that are asymptotically exact in the sense that the gap between the simple solution

and the optimal solution goes to zero as the scale of the system increases to infinity

(see Chapters 2 and 3). However, for wireless networks where the number of nodes

is large, our approach that exploits largeness has only allowed us to obtain results

that are order-accurate (e.g., Θ(1/ 3
√

n) versus Θ(1/
√

n), see Chapter 5). Note that

due to the scarcity of network resources in wireless systems, the constants before the

order terms are often important in many practical scenarios (e.g., 1/n versus 10/n).

Thus, other approaches are required if we want to obtain tighter simplicity results

for wireless networks.

In this chapter, we will demonstrate that simplification of network control can

also be obtained through appropriately designing the control architecture. In par-

ticular, we will study the cross-layer design problem in multihop wireless networks.

Here, simplicity is obtained in the sense that the complex cross-layer interactions

in multihop wireless networks can be structured into layers that are only weakly

dependent on each other through a judiciously chosen set of control parameters. We

refer to our solution the loose-coupling approach to cross-layer design. By loose-
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coupling, we mean that the cross-layer solution only requires a minimal amount of

interaction between the layers, and is robust to imperfect decisions at each layer. We

will demonstrate how cross-layer control solutions with this loose-coupling property

can be developed for the cross-layer congestion control and scheduling problem in

multihop wireless networks. These results allow us to use imperfect, but simpler and

potentially distributed, algorithms for cross-layer control of large wireless networks.

In fact, we will develop one such fully distributed algorithm for certain interference

model by taking advantage of the loose-coupling approach.

6.1.1 Cross-Layer Design in Wireless Networks

Traditionally, communication networks have been engineered according to the

layered architecture [28]. The functionality of the network is divided into layers.

For example, the OSI reference model has seven layers: the physical layer, the data

link layer, the network layer, the transport layer, the session layer, the presentation

layer, and the application layer. The layering concept essentially treats each layer as

a black box : the higher layer only needs to know the interface to the lower layer, but

not the details of how the interface is implemented. Clearly, the layered architecture

provides modularity, which contributes to simplicity and scalability of the entire

system. Thus, the layered architecture has been a key contributing factor to the

success of many network systems, including the Internet.

While such a layered approach has been very successful for wire-line networks,

it has turned out to be increasingly inadequate for wireless networks. In wireless

networks, there exists a natural coupling between different layers. For example, in a

wireless system, the capacity of each radio link depends on the signal and interference

levels, and thus depends on the power and transmission schedules at the other links.

To make things more complicated, even if the power assignment and schedule at each

link are known, the wireless channel exhibits variations due to fading [93–96]. These

characteristics of wireless networks are in contrast to wire-line networks where the
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capacity of each link is fixed and known. Hence, the set of end-to-end data rates

that can be supported by a multihop wireless network (and that can be used by the

high-layer protocol layers) is usually in a complex form that critically depends on

the way in which resources at the underlying physical (PHY) and MAC layers (such

as modulation, coding, and power control) are scheduled [72–74,93,94,97].

Due to this tight coupling between layers, researchers have increasingly adopted

a “cross-layer” approach for the design and control of multihop wireless networks

[29, 72–74, 93–95, 97–104]. The rational is very simple, if one can optimize control

variables at two layers together, a better performance can be achieved than the case

where control variables at each layer are optimized independently. However, one

needs to be very careful in developing such cross-layer solutions. In fact, one of the

main arguments against cross-layer design is that it destroys modularity [105]. The

argument is as follows: Although cross-layer solutions could potentially increase the

performance of the system, the resultant tight interaction between the layers could

make the overall system much more complex and fragile. The entire system may

become sensitive to changes at each layer, i.e., changes at one layer could potentially

lock the overall system into a substantially inefficient operating point, if the impact

of such changes on the overall system behavior are not carefully accounted for. This

is like an elaborate three dimensional puzzle: a beautiful replica emerges only when

the pieces are placed in their correct positions. However, by removing one piece, the

whole replica may fall apart.

Therefore, there is a fundamental tradeoff between efficiency and modularity in

cross-layer control of wireless networks [105]. In this chapter, we address this trade-

off by proposing a loose-coupling approach to cross-layer design. By loose-coupling,

we mean that the cross-layer control solution only requires a minimal amount of

information shared across layers, and the solution should be robust to imperfect

information or imperfect actions taken at different layers. In other words, the com-

plex cross-layer interactions in the system will then be structured into layers that

are only weakly dependent on each other through a judiciously chosen set of control
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parameters. Clearly, if the solution has the loose-coupling property, it will achieve

both efficiency and modularity, which is very desirable for wireless system design.

In the rest of the chapter, we will demonstrate how such a loose-coupling solu-

tion can be obtained for the cross-layer congestion control and scheduling problem

in multihop wireless networks. The loose-coupling approach then provides us with a

framework to design simple, efficient, and potentially distributed cross-layer control

solutions for multihop wireless networks [29, 30]. In particular, we will demonstrate

how to use the insights drawn from our analyses to design a simple and fully dis-

tributed cross-layer congestion control and scheduling algorithm under a particular

interference model.

The rest of the chapter is organized as follows. In Section 6.2, we formulate the

cross-layer congestion control and scheduling problem. In Section 6.3, we present the

optimal solution for this problem, which demonstrates the loose-coupling property.

In Section 6.4 and 6.5, we further investigate the loose-coupling property by studying

the impact of imperfect scheduling on the cross-layer solution. In Section 6.6, we

present a fully distributed cross-layered congestion control and scheduling algorithm.

Then we conclude.

6.2 Problem Formulation

In this work, we investigate the problem of how to fairly and efficiently manage

resources over multiple layers so as to maximize the end-to-end data rates that can

be supported by the network without incurring excessive overload, delays, or packet

losses. This is in fact the congestion control problem, i.e., determining the fair end-

to-end rate allocation at which users should transmit information into the network.

Congestion control is a key functionality in modern communication networks to avoid

congestion and to ensure fairness among the users. In the standard OSI layering

architecture [28], congestion control is categorized as functionality at the transport
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layer. For the Internet, it is the functionality of the Transport Control Protocol

(TCP).

Although congestion control has been studied extensively for wireline networks

(see [61,106] for good references), these results cannot be applied directly to multihop

wireless networks. In wireline networks, the capacity region (i.e., the set of feasible

data rates) is of a simple form, i.e., the sum of the data rates at each link should be

less than the link capacity, which is known and fixed. In multihop wireless networks,

the capacity of each radio link depends on the signal and interference levels, and

thus depends on the power and transmission schedule at other links. Hence, the

capacity region is usually of a complex form that critically depends on the way in

which resources at the underlying physical and MAC layers are scheduled. Therefore,

the congestion control problem in wireless networks needs to be investigated as a

cross-layer control problem jointly with control at the underlying MAC and physical

layers.

Consider the following network model. There are N nodes in a multihop wire-

less network. Let L denote the set of node pairs (i, j) (i.e., links) such that direct

transmission from node i to node j is allowed. The links are assumed to be di-

rectional. Due to the shared nature of the wireless media, the data rate rij of a

link (i, j) depends not only on its own modulation/coding scheme and power as-

signment Pij, but also on the interference due to the power assignments on other

links. Let ~P = [Pij, (i, j) ∈ L] denote the vector of global power assignments and

let ~r = [rij, (i, j) ∈ L] denote the vector of data rates. We assume that ~r = u( ~P ),

i.e., the data rates are completely determined by the global power assignment1. The

function u(·) is called the rate-power function of the system. Note that the global

power assignment ~P and the rate-power function u(·) summarize the cross-layer

control capability of the network at both the physical layer and the MAC layer.

Precisely, the global power assignment determines the Signal-to-Interference-Ratio

1Although we have not considered channel variation, e.g., due to fading, our main results may be
generalized to those cases.
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(SIR) at each link. Given the SIR, each link can choose appropriate modulation

and coding schemes to achieve the data rate specified by u( ~P ). Finally, the network

can schedule different sets of links to be active (and to use different power assign-

ments) at different time to achieve maximum capacity [73, 94, 97]. There may be

constraints on the feasible power assignment. For example, if each node has a total

power constraint Pi,max, then
∑

j:(i,j)∈L Pij ≤ Pi,max. Let Π denote the set of feasible

power assignments, and let R = {u( ~P ), ~P ∈ Π}. We assume that Co(R), the convex

hull of R, is closed and bounded. We assume that time is divided into slots and

the power assignment vector ~P (t) is fixed during each time slot t. We will refer to

~r(t) = u( ~P (t)) as the schedule at time slot t.

In the rest of the chapter, it is usually more convenient to index the links numer-

ically (e.g., links 1, 2, ..., L) rather than as node-pairs (e.g., link (i, j)). The power

assignment vector and the rate vector should then be written as ~P = [P1, ..., PL] and

~r = [r1, ..., rL], respectively.

There are S users and each user s = 1, ..., S has one path through the network2.

Let H = [H l
s] denote the routing matrix, i.e., H l

s = 1, if the path of user s uses link

l, and H l
s = 0, otherwise. Let xs be the rate with which user s injects data into the

network. Each user is associated with a utility function Us(xs), which reflects the

level of “satisfaction” of user s when its data rate is xs. As is typically assumed in

the congestion control literature, we assume that each user s has a maximum data

rate Ms and the utility function Us(·) is strictly concave, non-decreasing and twice

continuously differentiable on (0,Ms].

We now define the capacity region of the system. We say that a system is stable

if the queue lengths at all links remain finite. We say that a user rate vector ~x =

[x1, ..., xs] is feasible if there exists a scheduling policy that can stabilize the system

under user rates ~x. We define the capacity region to be the set of feasible rates ~x. It

2Extensions to the case with multipath routing are also possible (see [29]).
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has been shown in [72–74] that the optimal capacity region Λ is a convex set and is

given by

Λ =

{

~x

∣

∣

∣

∣

∣

[
S
∑

s=1

H l
sxs] ∈ Co(R)

}

, (6.1)

where
S
∑

s=1

H l
sxs can be interpreted as the total data rate on link l. The convex hull

operator Co(·) is due to a standard time-averaging argument [72–74]. Λ is optimal

in the sense that no vector ~x outside Λ is feasible for any scheduling policy.

We now formulate a cross-layered congestion control and scheduling problem as

follows.

The Cross-Layered Congestion Control and Scheduling Problem:

• Find the end-to-end data rates xs of the users within the capacity region of

the system such that the total system utility is maximized;

max
xs

S
∑

s=1

Us(xs) (6.2)

subject to [xs] ∈ Λ. (6.3)

• Find the associated scheduling policy that stabilizes the system.

The above problem is indeed a cross-layer control problem. The first part of the

problem determines the rates with which users inject data into the network (i.e.,

an end-to-end problem). The second part of the problem determines when and at

what rate each link in the network should transmit (i.e., a link-by-link problem).

The utility maximization formulation is standard in wireline systems for studying

fair rate-allocations [14–16, 61, 106, 107]. Maximizing the total system utility as in

(6.2) has been shown to be equivalent to various fairness objectives when the utility

functions are appropriately chosen [108]. For example, utility functions of the form

Us(xs) = ws log xs (6.4)

correspond to weighted proportional fairness, where ws, s = 1, ..., S are the weights.

A more general form of utility function is

Us(xs) = ws
x1−β

s

1 − β
, β > 0. (6.5)
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Maximizing the total utility corresponds to maximizing the weighted throughput as

β → 0, weighted proportional fairness as β → 1, minimizing weighted potential delay

as β → 2, and max-min fainess as β → ∞.

The above cross-layer congestion control and scheduling problem is difficult to

solve because the capacity region Λ is in a highly complex form. Note that Λ is a

convex combination of potentially a large number of points (see (6.1)). In the next

section, we will present an optimal solution to the cross-layer congestion control and

scheduling problem that do not require exact knowledge of the set Λ.

6.3 Cross-Layer Congestion Control with Perfect Scheduling

We now take a duality approach to solve problem (6.2). We can rewrite the

constraint (6.3) in an equivalent form as:

subject to
S
∑

s=1

H l
sxs ≤ rl, (6.6)

[rl] ∈ Co(R).

We then associate a Lagrange multiplier ql for each constraint in (6.6). The La-

grangian is then:

L(~x, ~r, ~q)

=
S
∑

s=1

Us(xs) −
L
∑

l=1

ql

[

S
∑

s=1

H l
sxs − rl

]

=
S
∑

s=1

[

Us(xs) −
L
∑

l=1

H l
sq

lxs

]

+
L
∑

l=1

qlrl.

The objective function of the dual of problem (6.2) is then:

D(~q) = max
0≤xs≤Ms,s=1,...,S,~r∈Co(R)

L(~x, ~r, ~q)

=
S
∑

s=1

Bs(~q) + V (~q),

where

Bs(~q) = max
0≤xsMs

[

Us(xs) −
L
∑

l=1

H l
sq

lxs

]

, (6.7)
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and

V (~q) = max
~r∈Co(R)

L
∑

l=1

qlrl. (6.8)

Further, because the objective function in (6.8) is a linear function of ~r, the optimal

point must lie in the set R, i.e.,

V (~q) = max
~r∈R

L
∑

l=1

qlrl = max
~r=u( ~P ), ~P∈Π

L
∑

l=1

qlrl. (6.9)

The dual approach thus results in an elegant decomposition of the original problem.

Given the Lagrange multipliers ql, the congestion control problem Bs(~q) and the

scheduling problem V (~q) are decomposed. Both of these two subproblems react

on ~q independently. Note that V (~q) also appears as the optimal scheduling policy

in [73,74].

The dual problem of (6.2) is then

min
~q≥0

D(~q). (6.10)

The dual objective function D(~q) is convex. We can show that its subgradient is

given by,

∂D

∂ql
= −

(

S
∑

s=1

H l
sxs − rl

)

.

where ~x = [xs] and ~r = [rl] solve (6.7) and (6.9), respectively. We can then use the

subgradient method to solve the dual problem [109]. The solution to the optimal

cross-layered congestion control problem can be summarized as follows:

The Optimal Cross-Layered Congestion Control Algorithm:

At each iteration t:

• The data rates of the users are determined by

xs(t) = argmax
0≤xs≤Ms

[

Us(xs) −
L
∑

l=1

H l
sq

l(t)xs

]

. (6.11)

• The schedule is determined by

~r(t) = argmax
~r∈R

L
∑

l=1

ql(t)rl = argmax
~r=u( ~P ), ~P∈Π

L
∑

l=1

ql(t)rl. (6.12)
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Fig. 6.1. The optimal solution retains a certain degree of modularity
with only a loose coupling between the congestion control component
and the scheduling component via the queue length.

• The Lagrange multipliers are updated by

ql(t + 1) =

[

ql(t) + αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (6.13)

Hence, as illustrated in Fig. 6.1, we observe that the congestion control com-

ponent and the scheduling component are only loosely coupled by the Lagrange

multipliers ~q. We will see later that ~q is also closely associated with the queue length

at each link. Note that the above set of equations make perfect economic sense. We

can interpret the Lagrange multipler ql as the price (or implicit cost) of the resource

at link l. So
L
∑

l=1

H l
sq

l can be viewed as the price of the resource on the path of

user s. The congestion control component (6.11) simply says that each user should

maximize its own net utility. Because Us(·) is strictly concave, if the price increases,

the rate of the user will decrease. On the other hand, the scheduling component

(6.12) means that the network should choose the schedule that maximizes the total

value of the data transmitted. Finally, the price is updated based on the principle of

balancing the supply with the demand: if the demand (
S
∑

s=1

H l
sxs) exceeds the supply

(rl), the price increases, and vice versa.

The following proposition shows that this simple set of control rules will converge

to an arbitrarily small neighborhood of the optimal rate allocation, provided that

the stepsize αl is sufficiently small3. The details of the proof is in Appendix E.1.

3If instead the stepsizes are time-varying and diminishing to zero, i.e., they are chosen such that
αl(t) = htα

0
l , ht → 0 as t → ∞ and

∑+∞
t=1

ht = +∞, then ~x(t) → ~x∗ as t → ∞.
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Proposition 6.3.1 a) There is no duality gap, i.e., the minimal value of (6.10)

coincides with the optimal value of (6.2).

b) Let Φ be the set of ~q that minimizes D(~q). For any ~q ∈ Φ, let ~x solve (6.11),

then ~x is the unique optimal solution ~x∗ of (6.2).

c) Assume that αl = hα0
l . Define ||~q||A =

∑L
l=1

(ql)2

α0
l

and let

d(~q, Φ) = min~p∈Φ

√

||~q − ~p||A. For any ε > 0, there exists some h0 > 0 such

that, for any h ≤ h0 and any initial implicit costs ~q(0), there exists a time T0

such that for all t ≥ T0,

d(~q(t), Φ) < ε and ||~x(t) − ~x∗|| < ε.

The optimal cross-layered congestion control algorithm (6.11)-(6.13) not only

computes the optimal rate allocation, but also generates the stabilizing scheduling

policy by solving (6.12) at each time slot t. In fact, let Ql denote the queue size at

link l. Then Ql evolves approximately as4:

Ql(t + 1) ≈
[

Ql(t) +

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (6.14)

Comparing (6.14) with (6.13), we can see that Ql(t) ≈ ql(t)/αl. From here we can

infer that Ql(t) is bounded.

Proposition 6.3.2 If the stepsizes αl are sufficiently small, then using the schedules

determined by solving (6.12) at each time slot, we have,

sup
t

Ql(t) < +∞ for all l ∈ L.

We give the proof in Appendix E.2. Combining Propositions 6.3.1 and 6.3.2, we

conclude that, by choosing the stepsizes αl sufficiently small, we can obtain user

rate allocation ~x as close to ~x∗ as we want, and we can obtain the joint stabilizing

scheduling policy at the same time.

4Note, (6.14) is an approximation because not all links are active at the same time. Hence, data
injected to the network by each user at time t may take several time slots to reach downstream
links.
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Remark: The duality approach that we used here (and in [29]) shares some

similarities to the approach in [98,100,101]. However, there are also some major dif-

ferences. The network models in [98] and [101] assume a restrictive set of rate-power

functions. They either assume that the data rate at each link is a concave function of

its own power assignment, or assume a special form of rate-power functions that are

concave after a change of variables. In this chapter, we impose no such restrictions.

Further, a consequence of the assumption in [101] is that, at their optimal solution,

all links will be transmitting at the same time. In the more general network model

of this chapter, it usually requires different sets of links to transmit at different time

in order to achieve optimality. In [100], the authors propose a column generation

approach for solving (6.2). This approach appears to be more suitable for offline

computation as it requires solving a sequence of approximate problems to (6.2), each

of which requires an iterative solution by itself. In contrast, in this chapter we are

more interested in solutions suitable for on-line implementation. Finally, these pre-

vious works have not addressed the joint stabilizing scheduling policy as we did in

Proposition 6.3.2.

6.4 The Impact of Imperfect Scheduling on Cross-Layered Congestion

Control: The Static Case

Note that in our optimal cross-layer congestion control algorithm in Section 6.3,

the congestion control component (6.11) is fully distributed: each user only needs to

know the implicit cost at the links that it traverses. Also distributed is the implicit

cost update (6.13) at each link, which only requires the information about the offered

load and capacity at the local link. However, the scheduling component (6.12) in

the optimal solution is a global optimization problem that is generally difficult to

solve. Although the power constraint Π in (6.12) may sometimes be a convex set, the

function u(·) is typically neither concave nor convex (e.g., consider the case when u(·)
is determined by the Shannon bound on capacity). Hence, the scheduling problem
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is usually not a convex programming problem, and is usually very difficult to solve.

In some cases, this optimization problem does not even have a polynomial-time

solution. Therefore, solving (6.12) exactly at every time slot is too time-consuming.

The complexity of the scheduling component is the main difficulty in implementing

our cross-layer solution.

In large multihop wireless networks, it is usually preferred that the control algo-

rithm be implemented in a distributed fashion. However, the scheduling subproblem

(6.12) is difficult to solve even by a centralized algorithm, let alone in a distributed

fashion. Again, the complexity of the scheduling component is the main obstacle in

developing fully distributed solutions.

Therefore, in order to develop simple and potentially distributed solutions for the

cross-layer congestion control and scheduling problem, we have to consider the likely

scenario with imperfect scheduling, i.e., the scheduling component does not compute

the optimal schedule in (6.12) at each time. Next, we will study how imperfect

scheduling impacts the optimality of cross-layered congestion control. Our objective

is to find some imperfect scheduling policies that are easy to implement and that,

when properly designed with congestion control, result in good overall performance.

In this chapter, we will particularly be interested in the following class of imper-

fect scheduling policies:

Imperfect Scheduling Policy Sγ:

Fix γ ∈ (0, 1]. At each time slot t, compute a schedule ~r(t) ∈ R that satisfies:

L
∑

l=1

rl(t)q
l(t) ≥ γ max

~r∈R

L
∑

l=1

rlq
l(t). (6.15)

With an imperfect scheduling policy Sγ , the dynamics of cross-layered congestion

control are summarized by the following set of equations:

xs(t) = argmax
0≤xs≤Ms

[

Us(xs) −
L
∑

l=1

H l
sq

l(t)xs

]

, (6.16)

~r(t)T~q(t) ≥ γ max
~r∈R

~r T~q(t), ~r(t) ∈ Co(R), (6.17)
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ql(t + 1) =

[

ql(t) + αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (6.18)

The parameter γ in (6.15) can be viewed as a tuning parameter indicating the

degree of precision of the imperfect schedule. The complexity of finding a schedule

~r(t) satisfying (6.15) usually decreases as γ is reduced. When γ = 1, the dynamics

(6.16)-(6.18) reduce to the case with perfect scheduling (as in Section 6.3).

Loose Coupling Property Revisited: We now get to the heart of the is-

sue of modularity versus efficiency in cross-layer design. Our solution (6.11)-(6.13) is

optimal when all components run perfectly. In particular, it is optimal only when op-

timal schedules are computed at each time. When an imperfect scheduler Sγ is used

by the scheduling component, we no longer have a handle on the efficiency of the rate

allocation. The rate allocation computed by the dynamics (6.16)-(6.18) will likely

be sub-optimal, but we do not know how bad it can be. In fact, due to the interplay

between the congestion control component and the scheduling component, there is a

possibility that the entire system may get stuck into some local sub-optimal regions

where the performance is very poor. For our proposed cross-layer control solution to

be successful, we need to be able to quantify the impact of these imperfect scheduling

policies, and ensure that the performance of the system degrades gracefully. Recall

that we would like to maintain a loose coupling between the layers: i.e., even when

one layer changes, the system should still result in satisfactory performance.

We next investigate the impact of imperfect scheduling policies on cross-layer

congestion control when the number of users in the system is fixed (i.e., the static

setting). Let ~x ∗,0 denote the solution to the original optimal cross-layered congestion

control and scheduling problem (6.2). The solution to the following problem turns

out to be a good reference point for studying the dynamics (6.16)-(6.18) when γ < 1:

The γ-Reduced Problem:

max
0≤xs≤Ms

S
∑

s=1

Us(xs) (6.19)

subject to ~x ∈ γΛ.
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Let ~x ∗,γ denote the solution to the γ-reduced problem. The choice of γΛ in the

constraint of the γ-reduced problem is motivated by the following proposition, which

shows that an imperfect scheduling policy Sγ at most reduces the capacity region by

a factor of γ. The proof is given in Appendix E.3.

Proposition 6.4.1 If the user rates ~x lie strictly inside γΛ, then any imperfect

scheduling policy Sγ can stabilize the system.

Motivated by Proposition 6.4.1, we would expect that the rate allocation com-

puted by the dynamics (6.16)-(6.18) will be “no worse than” ~x ∗,γ . However, this

assertion is not quite true. As we will see soon, the interaction between cross-layered

congestion control and imperfect scheduling is much more complicated. As the data

rates of the users are reacting to the same implicit costs as the scheduling compo-

nent is, there is a possibility that the system gets stuck into local sub-optimal areas.

We will construct examples where, for a subset of the users, their data rates deter-

mined by the dynamics (6.16)-(6.18) can be much smaller than the corresponding

rate allocation computed by the γ-reduced problem. Nonetheless, we will be able to

show certain weak but desirable results on the fairness and convergence properties

of cross-layer congestion control with imperfect scheduling.

6.4.1 Dominance

Our first hope is that the rate allocation computed by the dynamics (6.16)-(6.18)

will dominate ~x ∗,γ , which is the rate allocation computed by the γ-reduced problem

(6.19). (Note: a vector [x1, ..., xS ] dominates another vector [y1, ..., yS] if xi ≥ yi for

all i = 1, ..., S.) However, we will soon see that this is not true in general. We begin

our analysis by studying whether ~x ∗,0, the rate allocation computed by the optimal

cross-layer solution, will dominate ~x ∗,γ . Note that the perfect scheduling policy is

automatically an Sγ policy for any γ < 1. Hence, if such dominance does not hold,

then the hope that an arbitrary Sγ policy will compute a rate allocation dominating

~x ∗,γ will not hold either. The following proposition shows that ~x ∗,0 will dominate
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~x ∗,γ if the utility function is logarithmic. (Recall that logarithmic utility functions

are of the form

Us(xs) = ws log xs for all user s,

where ws is the weight for user s. In this case, the rate allocation computed by the

original problem (6.2) is weighted proportionally fair [108].)

Proposition 6.4.2 Assume that the utility function is logarithmic. Let ~x ∗,0 be the

solution to the original problem (6.2). Then the solution to the γ-reduced problem is

~x ∗,γ = γ~x ∗,0.

Proof In the γ-reduced problem (6.19), do a change of variables ~x′ = ~x/γ. Using

the fact that

Us(xs) = ws log x′
s + ws log γ,

one can show that the γ-reduced problem becomes equivalent to the original problem

(6.2). Hence, ~x ∗,γ = γ~x ∗,0 .

However, as shown in the following example, if the utility function is not loga-

rithmic, dominance will not hold in general.

Example 1: Consider the following wireline network (note that a wireline net-

work can be viewed as a special case of our network model where the capacity of

each link is fixed). There are two links, whose capacities are 2 and 7, respectively.

There are three users. The first user uses both links, the second user uses only the

first link, and the third user uses only the second link. Their utility functions are

U1(x) = log x + 6x

U2(x) = log x

U3(x) = 36 log x.

The γ-reduced problem is then

max
x1,x2,x3≥0

(log x1 + 6x1) + log x2 + 36 log x3

subject to x1 + x2 ≤ 2γ

x1 + x3 ≤ 7γ.
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When γ = 1, the solution is ~x ∗,0 = [1 1 6]T . When γ = 0.95, the solution becomes

~x ∗,γ = [0.8551 1.0449 5.7949]T . Note that the rate of the second user increases

as γ is reduced. This example shows that ~x ∗,0 does not dominate ~x ∗,γ in general.

6.4.2 A Weak Fairness Property

For the rest of the chapter, we will focus on logarithmic utility functions, although

most of the results that follow can also be extended to utility functions of other

forms (as in (6.5)). Note that even though ~x ∗,0 dominates ~x ∗,γ when the utility

function is logarithmic (as shown in Proposition 6.4.2), it does not imply that the

rate allocation computed by the cross-layered congestion control algorithm with an

arbitrary imperfect scheduling policy Sγ will dominate ~x ∗,γ .

In the following proposition, we characterize the likely rate allocation under im-

perfect scheduling provided that the dynamics (6.16)-(6.18) converges. The proof is

given in Appendix E.4.

Proposition 6.4.3 Assume that the utility function is logarithmic (i.e., of the form

in (6.4)). If the dynamics (6.16)-(6.18) converges, i.e., ~x(t) → ~x ∗,I and ~q(t) → ~q ∗
I

as t → ∞, then

~x ∗,I ∈ Λ and
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

≤
S
∑

s=1

ws. (6.20)

Proposition 6.4.3 can be generalized to other forms of utility functions (as in

(6.5)). This result can be viewed as a weak fairness property. It shows that, if

the dynamics (6.16)-(6.18) converge, the rate allocation of the users will lie in a

strip defined by (6.20) (see Fig. 6.2). Hence, even though the rates of the users

may not dominate ~x ∗,γ , they are unlikely to be too unfair compared to ~x ∗,γ . In

particular, if ws = 1 for all s, then by (6.20), x∗,I
s will be no smaller than x∗,γ

s /S.

On the negative side, the rates of some users can still be substantially smaller than

their rates computed by the γ-reduced problem, which indicates that cross-layered

congestion control with imperfect scheduling may indeed get stuck into local sub-

optimal regions.
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6.4.3 Convergence

We next study the question whether the dynamics (6.16)-(6.18) converge in the

first place. Using a duality approach analogous to that in Section 6.3, we can define

the dual of the γ-reduced problem as

Dγ(~q) =
S
∑

s=1

Bs(~q) + γV (~q),

where Bs(~q) and V (~q) are still defined as in (6.7) and (6.8), respectively. Note that

both D(~q) and Dγ(~q) are convex functions and D(~q) ≥ Dγ(~q).

Let ~q ∗,0 denote a minimizer of D(~q) and ~q ∗,γ denote a minimizer of Dγ(~q). Fur-

ther, let

Φγ = {~q : Dγ(~q) ≤ D(~q ∗,0)}.

Proposition 6.4.4 Assume that αl = hα0
l . Let ||~q||A =

∑L
l=1

(ql)2

α0
l

. For any ε > 0,

there exists some h0 > 0 such that, for any h ≤ h0 and any initial implicit costs

~q(0), there exists a time T0 such that for all t ≥ T0,

√

||~q(t) − ~q ∗,0||A < max
~p∈Φγ

√

||~p − ~q ∗,0||A + ε.

The proof is provided in Appendix E.5. Proposition 6.4.4 shows that, if the

stepsizes αl are sufficiently small, the dynamics (6.16)-(6.18) will eventually enter a

neighborhood of the set Φγ . Note that both ~q ∗,0 and ~q ∗,γ belong to the set Φγ (see

Fig. 6.2). Hence, in a weak sense, the dynamics of the system are moving in the

right direction. However, in general the set Φγ is quite large and does not provide

much further insights on the eventual rate allocation. We next present two examples

illustrating the possible behaviors of the dynamics.

Example 2:

We will first show that, for any vectors ~q ∗
I and ~x ∗,I that satisfy

x∗,I
s =

ws

L
∑

l=1

H l
sq

l,∗
I

< Ms for all s, ~x ∗,I ∈ Λ, and

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s > γ max

~r∈Co(R)

L
∑

l=1

ql,∗
I rl, (6.21)
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there exists an imperfect scheduling policy Sγ such that the dynamics (6.16)-(6.18)

converge to ~q ∗
I and ~x ∗,I . Note that the above set of conditions implies (6.20). In

fact, since
[

S
∑

s=1

H l
sx

∗,γ
s , l ∈ L

]

∈ γCo(R),

we have,

S
∑

s=1

ws =
S
∑

s=1

x∗,I
s

L
∑

l=1

H l
sq

l,∗
I =

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s

≥
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s =

S
∑

s=1

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I

=
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

.

We now show how a suitable imperfect scheduling policy Sγ can be constructed.

It is easy to verify that ~x ∗,I is the solution to the following optimization problem

and ~q ∗
I is the corresponding Lagrange multipliers.

max
~x≥0

S
∑

s=1

ws log xs

subject to
S
∑

s=1

H l
sxs ≤

S
∑

s=1

H l
sx

∗,I
s . (6.22)

Hence, if we let

rl(t) =
S
∑

s=1

H l
sx

∗,I
s for all l and all t, (6.23)

then, using a standard gradient descent argument for the dual problem of (6.22), we

can show that the dynamics (6.16)-(6.18) will converge to ~q ∗
I and ~x ∗,I as t → ∞. It

remains to be verified whether the schedule in (6.23) belongs to the class of imperfect

scheduling policies Sγ. To see this, note that if we pick the initial implicit cost vector

~q(0) to be sufficiently close to ~q ∗
I , then ~q(t) ≈ ~q ∗

I for all t. Hence,

L
∑

l=1

ql(t)rl(t) ≈
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s

> γ max
~r∈Co(R)

L
∑

l=1

ql,∗
I rl ≈ γ max

~r∈Co(R)

L
∑

l=1

ql(t)rl,
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i.e., the schedule in (6.23) indeed belongs to Sγ if the initial implicit cost vector ~q(0)

is sufficiently close to ~q ∗
I .

Example 3:

We next give another example in which the dynamics (6.16)-(6.18) never converge

to any point. Consider the following simple wireline network with two users, each of

which uses one different link. The capacity is c for both links. The solution to the

γ-reduced problem is simply x∗,γ
1 = x∗,γ

2 = γc. Assume that the vectors ~q ∗
I and ~x ∗,I

satisfy the conditions in (6.21) of Example 2. At any time t, define

∆(t) = ~q(t) − ~q ∗
I .

Let ε be a small positive number. We now use the following scheduling policy:

~r(t) = [r1 r2]
T =































[

x∗,I
1 x∗,I

2

]T

− ε





0 −1

1 0





∆(t)
||∆(t)|| , if ∆(t) ≤ ε,

[

x∗,I
1 x∗,I

2

]T

− ε ∆(t)
||∆(t)|| , if ε ≤ ∆(t) ≤ 2ε,

c, otherwise.

With this choice of the schedule ~r(t), the update of the implicit cost ~q(t) will be

around a circle when ||~q(t) − ~q ∗
I || ≤ ε, and it will be towards ~q ∗

I when ε < ||~q(t) −
~q ∗
I || ≤ 2ε (see Fig. 6.3). Provided that the initial ~q(0) satisfies ||~q(0) − ~q ∗

I || ≤ 2ε

and the stepsizes are sufficiently small, the dynamics (6.16)-(6.18) will eventually

follow the circle ||~q(t)− ~q ∗
I || = ε, and hence will never converge. We can verify as in

Example 2 that the schedule ~r(t) does belong to the class Sγ when the stepsizes and

ε are sufficiently small.

To conclude this section, we have studied the impact of imperfect scheduling on

the dynamics of cross-layered congestion control when the number of users in the

system is fixed. We have presented several examples that illustrate the difficulty in

characterizing the dynamics precisely. We have shown that the system may not even

converge in the first place, or, it may converge to any rate allocation within a fairly

large set that does not possess any desirable dominance property. These examples

indicate that the interaction between cross-layered congestion control and imperfect
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Fig. 6.3. The direction of the update of the implicit costs
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scheduling are quite complicated, and the system may indeed get stuck into local

sub-optimal regions. Nonetheless, we do show two desirable, but weak, results on

the fairness and convergence properties of the system. In Proposition 6.4.4, we are

able to show that the dynamics (6.16)-(6.18) appear to move in the right direction

globally. In Proposition 6.4.3, we show that those local sub-optimal regions are

probably “not too bad.” In the next section, we will turn to the case when users

dynamically arrive and depart the network, and surprisingly, we will be able to show

far stronger results on the performance of the system there.

6.5 Stability Region of Cross-Layered Congestion Control with Imper-

fect Scheduling

In this section, we turn to the case when the number of users in the system is itself

a stochastic process. We will study how imperfect scheduling impacts the stability

region of the system employing cross-layer congestion control. Here, by stability, we

mean that the number of users in the system and the queue lengths at all links in

the network remain finite. The stability region of the system is the set of offered

loads under which the system is stable. Previous works for wireline networks have

shown that, by allocating data rates to the users according to some fairness criteria,

the largest possible stability region can be achieved [108, 110–112]. This result is

important as it tells us that fairness is not just an aesthetic property, but it actually

has a strong global performance implication, i.e., in achieving the largest possible

stability region. In this section, we will show that similar but stronger results can

be shown for our cross-layered congestion control scheme with imperfect scheduling.

To be precise, instead of using the notation s for user s, we now use s to denote

a class of users with the same utility function and the same path. We assume that

users of class s arrive according to a Poisson process with rate λs and that each user

brings with it a file for transfer whose size is exponentially distributed with mean

1/µs. The load brought by users of class s is then ρs = λs/µs. Let ~ρ = [ρ1, ..., ρS].
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Let ns(t) denote the number of users of class s that are in the system at time t, and

let ~n(t) = [n1(t), ..., nS(t)]. We assume that the rate allocations for users of the same

class are identical. Let xs(t) denote the rate of each user of class s at time t. In

the rate assignment model that follows, the evolution of ~n(t) will be governed by a

Markov process. Its transition rates are given by:

ns(t) → ns(t) + 1, with rate λs,

ns(t) → ns(t) − 1, with rate µsxs(t)ns(t)

if ns(t) > 0.

As in [113], We say that the above system is stable if

lim sup
t→∞

1

t

∫ t

0

I
{

S
P

s=1
ns(t)+

L
P

l=1
ql(t)>M}

dt → 0,

as M → ∞. This means that the fraction of time that the amount of “unfinished

work” in the system exceeds a certain level M can be made arbitrary small as

M → ∞. The stability region Θ of the system under a given congestion control and

scheduling policy is the set of offered loads ~ρ such that the system is stable.

We next describe the rate assignment and implicit cost update policy. We assume

that time is divided into slots of length T , and the schedules and implicit costs are

only updated at the end of each time slot. However, users may arrive and depart in

the middle of a time slot. Let ~q(kT ) denote the implicit cost at time slot k. The

data rates of the users are determined by the current implicit costs as in (6.11).

For simplicity, we assume that the utility function is logarithmic (the result can

be readily generalized to utility functions of other forms in (6.5)). Further, let Ms

denote the maximum data rate for users of class s. The rate of each user of class s

is then given by

xs(t) = xs(kT ) = min

{

ws
∑L

l=1 H l
sq

l(kT )
,Ms

}

(6.24)



219

for kT ≤ t < (k + 1)T . The schedule ~r(kT ) at time slot k is computed according to

an imperfect scheduling policy Sγ based on the current implicit cost ~q(kT ). Finally,

at the end of each time slot, the implicit costs are updated as

ql((k + 1)T ) =

[

ql(kT ) + αl

(

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(kT )dt − rl(kT )T

)]+

.

(6.25)

The following proposition shows that, using the above cross-layered congestion

control algorithm with imperfect scheduling policy Sγ, the stability region of the

system is no smaller than γΛ.

Proposition 6.5.1 If

max
l∈L

αl ≤
1

T S̄L̄
min

s

ws

4ρsMs

, (6.26)

where S̄ = maxl∈L
S
∑

s=1

H l
s is the maximum number of classes using any link, and

L̄ = maxs

L
∑

l=1

H l
s is the maximum number of links used by any class, then for any

offered load ~ρ that resides strictly inside γΛ, the system described by the Markov

process [~n(kT ), ~q(kT )] is stable.

Several remarks are in order: Firstly, Proposition 6.5.1 shows that, when im-

perfect schedules are used, the stability region of the system employing cross-layer

congestion control is no worse than the capacity region shown in Proposition 6.4.1

(and used by the γ-reduced problem). This result is interesting (and somewhat

surprising) given the fact that, when the number of users in the system is fixed,

the dynamics of cross-layered congestion control with imperfect scheduling can form

loops or get stuck into local sub-optimal regions. Nonetheless, Proposition 6.5.1

shows that these potential local sub-optimums are inconsequential when the arrivals

and departures of the users are taken into account.

Secondly, we do not need the rates of any users to converge. Previous results on

the stability region of congestion control typically adopt a time-scale separation as-

sumption [108,110–112], which assumes that the rate allocation ~x(t) perfectly solves



220

(6.2) at each time instant t. Such an approach is of little value for the model in this

chapter because the dynamics (6.16)-(6.18) with imperfect scheduling do not even

converge in the first place! Further, the time-scale separation assumption is rarely

realistic in practice: as the number of users in the system is constantly changing, the

rate allocation may never have the time to converge. In Proposition 6.5.1, we estab-

lish the stability region of the system without requiring such a time-scale separation

assumption. This result is of independent value. For the special case when γ = 1,

it can be viewed as a stronger version of previous results in the literature (including

those for wireline networks, e.g., Theorem 1 in [108]).

Finally, a simple stepsize rule is provided in (6.26). Note that when the number

of users in the system is fixed, we typically require the stepsizes to be driven to zero

for convergence to occur (see Proposition 6.3.1). However, in (6.26) the stepsizes can

be chosen bounded away from zero. In fact, as the set γΛ is bounded, the stepsizes

can be chosen independently of the offered load. The simplicity in the stepsize rule

is another benefit we obtain by studying the dynamic arrivals and departures of the

users.

6.5.1 The Main Idea of the Proof of Proposition 6.5.1

We now sketch the main idea of the proof for Proposition 6.5.1 so that the reader

can gain some insight on the dynamics of the system. Define the following Lyapunov

function,

V(~n, ~q) = Vn(~n) + Vq(~q),

where Vn(~n) =
S
∑

s=1

wsn2
s

2λs
, and Vq(~q) =

L
∑

l=1

(ql)2

2αl
. We shall show below that V(~n, ~q) has

a negative drift. As a crude first-order approximation, assume that users arrive and

depart only at the end of each time slot. Thus, ns(t) = ns(kT ) during the k-th time

slot. We can show that (see Appendix E.6 for the details),

E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]
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≤ T
S
∑

s=1

[

ws

xs(kT )

]

[ρs − ns(kT )xs(kT )] + E1(k),

where E1(k) is an error term that is roughly on the order of |ρs − ns(kT )xs(kT )|.
Since the rate allocation is determined by (6.24), we have (ignoring the maximum

data rate Ms),

E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤ T
S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT )

]

[ρs − ns(kT )xs(kT )]

+E1(k). (6.27)

We can also show that

E[Vq(~q((k + 1)T ) − Vq(~q(kT ))|~n(kT ), ~q(kT )]

≤ T

L
∑

l=1

ql(kT )

[

S
∑

s=1

H l
sns(kT )xs(kT ) − rl(kT )

]

+E2(k), (6.28)

where E2(k) is an error term that is roughly on the order of
[

S
∑

s=1

H l
sns(kT )xs(kT ) − rl(kT )

]2

. Hence, by adding (6.27) and (6.28), and by chang-

ing the order of the summation, we have

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ T
L
∑

l=1

ql(kT )

[

S
∑

s=1

H l
sρs − rl(kT )

]

+E1(k) + E2(k). (6.29)

By assumption, ~ρ lies strictly inside γΛ. Hence, there exists some ε > 0 such that

[(1 + ε)
S
∑

s=1

H l
sρs] ∈ γCo(R).

By the definition of the imperfect scheduling policy Sγ,

L
∑

l=1

ql(kT )rl(kT ) ≥ (1 + ε)
L
∑

l=1

ql(kT )
S
∑

s=1

H l
sρs.
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Substituting into (6.29), we have,

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )] (6.30)

≤ −Tε
L
∑

l=1

ql(kT )
S
∑

s=1

H l
sρs + E1(k) + E2(k).

This shows that V(·, ·) would drift towards zero when ||~q(kT )|| is large and when the

error terms E1(k) and E2(k) are bounded. We would then apply Theorem 2 of [113]

to establish the stability of the system.

To complete the proof, however, we have to address several difficulties:

• In order to apply Theorem 2 of [113], a stronger negative drift is required.

Instead of (6.30), we need,

E[V(~n((k + 1)T ), ~q((k + 1)T ))

−V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ −ε′(||~n(kT )|| + ||~q(kT )||) + E0

for some positive constants ε′ and E0.

• Further, in order to apply Theorem 2 of [113], the error terms E1(k) and E2(k)

have to be bounded, which is not true in (6.30) since they both can become

large as ns(kT ) increases.

• Finally, users could arrive and depart at any time (not only at the end of a

time slot).

The complete proof that addresses these difficulties is given in Appendix E.6. There,

we use a slightly modified Lyapunov function, and we use the stepsize condition (6.26)

and the assumption on the maximum data rate Ms to obtain upper bounds on the

error terms E1(k) and E2(k). For details, please refer to Appendix E.6.

We now give two examples showing how efficient cross-layer congestion control

schemes can be constructed by applying Proposition 6.5.1 to different network set-

tings.
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6.5.2 The Node Exclusive Interference Model

Proposition 6.5.1 is most useful when an imperfect schedule that satisfies (6.15)

can be easily computed for some reasonable value of γ. This is the case under the

following node exclusive interference model.

The Node Exclusive Interference Model:

• The data rate of each link is fixed at cl.

• Each node can only send to or receive from one other node at any time.

This interference model has been used in earlier studies of congestion control

in multihop wireless networks [114, 115]. Under this model, the perfect schedule

(according to (6.12)) at each time slot corresponds to the Maximum Weighted

Matching (MWM), where the weight of each link is qlcl. (A matching is a subset of

the links such that no two links share the same node. The weight of a matching is the

total weight over all links belonging to the matching. A maximum-weighted-matching

(MWM) is the matching with the maximum weight.) An O(N 3)-complexity algo-

rithm for MWM can be found in [116], where N is the number of nodes. On the

other hand, the following much simpler Greedy Maximal Matching (GMM)

algorithm can be used to compute an imperfect schedule with γ = 1/2. Start from

an empty schedule. From all possible links l ∈ L, pick the link with the largest

qlcl. Add this link to the schedule. Remove all links that are incident with either

the sending node or the receiving node of link l. Pick the link with the largest q lcl

from the remaining links, and add to the schedule. Continue until there are no links

left. The GMM algorithm has only O(L log L)-complexity (where L is the number

of links), and is much easier to implement than MWM. Using the technique in The-

orem 10 of [117], we can show that the weight of the schedule computed by the

GMM algorithm is at least 1/2 of the weight of the maximum-weighted-matching.

According to Proposition 6.5.1, the stability region will be at least Λ/2 using our

cross-layered congestion control scheme with the GMM scheduling policy.
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For the node-exclusive interference model, a layered approach to congestion con-

trol is also possible, which considers separately the dynamics of congestion control

and scheduling [114,115]. In the layered approach, the network designer will choose

a rate region within the capacity region, which has a simpler set of constraints simi-

lar to that of wireline networks, and compute the rate allocation within this simpler

rate region [114, 115, 118]. For the node-exclusive interference model, such a simple

rate region can be found. It has been shown that the optimal capacity region Λ in

the node-exclusive interference model is bounded by 2
3
Ψ0 ⊆ Λ ⊆ Ψ0, where

Ψ0 =







~x

∣

∣

∣

∣

∣

∣

∑

l:b(l)=i or e(l)=i

1

cl

S
∑

s=1

H l
sxs ≤ 1 for all i







.

and b(l) and e(l) are the sending node and the receiving node, respectively, of link

l. The layered approach then chooses the lower bound 2
3
Ψ0 as the rate region for

computing the rate allocation [114,115]. On the other hand, when an imperfect GMM

scheduling policy is used, the capacity region can be reduced by half in the worst

case (according to Proposition 6.4.1). Hence, the layered approach then needs to

use Ψ0/3(⊆ Λ/2) as the rate region. Note that for the layered approach with GMM

scheduling, Ψ0/3 is an upper bound for its stability region, which is smaller than

the lower bound of the stability region of the corresponding cross-layered approach

(which is Λ/2 according to Proposition 6.5.1). Hence, due to its conservative nature,

the layered approach always suffers from worst case inefficiencies. In Section 6.7, we

will use simulations to show that our cross-layered congestion control scheme can in

practice substantially outperform the layered approach.

6.5.3 General Interference Models

Under general interference models, it may still be time-consuming to compute a

schedule that satisfies (6.15) for a given value of γ. We now use Proposition 6.5.1 to

develop a scheduling policy that can cut down the frequency of such computation,

and hence effectively reduce the computation overhead. This idea is motivated by
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the observation that implicit costs, being updated by (6.18), cannot change abruptly.

Hence, there is a high chance that a schedule computed earlier can be reused in

subsequent time-slots. To see this, assume that we know a schedule ~r 0 that satisfies

(6.15) for an inefficiency factor γ0 > γ when the implicit cost vector is ~q 0, i.e.,

L
∑

l=1

r0
l q

l
0 ≥ γ0 max

~r∈R

L
∑

l=1

rlq
l
0. (6.31)

Let the implicit cost vector at the current time slot be ~q, and let ~r ∗ denote the

corresponding (but unknown) perfect schedule. We can normalize ~q 0 and ~q to be of

unit length since the corresponding schedules will remain the same. We have,

L
∑

l=1

qlr∗l =
L
∑

l=1

(ql − ql
0)r

∗
l +

L
∑

l=1

ql
0r

∗
l

≤
L
∑

l=1

[ql − ql
0]

+rmax
l +

L
∑

l=1

ql
0r

0
l

γ0

,

where rmax
l is the maximum rate of link l. Hence, if

L
∑

l=1

qlr0
l ≥ γ



















L
∑

l=1

[ql − ql
0]

+rmax
l +

L
∑

l=1

ql
0r

0
l

γ0



















,

we can still use ~r 0 as the imperfect schedule for ~q. This approach is even more

powerful when the network can remember multiple schedules from the past. Let

~r k = [rk
1 , ..., r

k
L] and ~q k = [q1

1, ..., q
L
k ], k = 1, ..., K. Assume that the schedules

~r 1, ~r 2, ..., ~r K correspond to ~q 1, ~q 2, ..., ~q K , respectively, and each pair satisfies (6.31).

Then, as long as

max
k=1,..,K

L
∑

l=1

qlrk
l (6.32)

≥ min
k=1,...,K

γ



















L
∑

l=1

[ql − ql
k]

+rmax
l +

L
∑

l=1

ql
kr

k
l

γ0



















,
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we do not need to compute a new schedule. Instead, we can use the schedule that

maximizes the left hand side of (6.32). By Proposition 6.5.1, the stability region of

the system using the above scheduling policy is no smaller than γΛ. In Section 6.7,

we will use simulations to show that such a simple policy can perform very well in

practice.

6.6 A Fully Distributed Cross-Layered Rate Control and Scheduling Al-

gorithm

Proposition 6.5.1 opens a new avenue for studying cross-layer design for conges-

tion control in multihop wireless networks. Instead of restricting our attention to

the rate allocation at each snapshot of the system (as we did in Section 6.4 where

the results tend to be weaker), we can now study the entire time horizon by focusing

on the stability region of such a cross-layer-designed system. Motivated by Propo-

sition 6.5.1, we now present a fully distributed cross-layered congestion control and

scheduling algorithm for the node-exclusive interference model in Section 6.5.2. (In

contrast, the GMM algorithm in Section 6.5.2 still requires centralized implementa-

tion.) This new algorithm can be shown to achieve a stability region no smaller than

Λ/2.

The new algorithm uses Maximal Matching (MM) to compute the schedule

at each time [117, 119, 120]. A maximal matching is a matching such that no more

links can be added without violating the node-exclusive interference constraint. To

be precise, let qij denote the implicit cost at link (i, j). (For convenience, in this

section we will index a link by a node pair (i, j).) A maximal matching M is a

subset of L such that qij ≥ 1 for all (i, j) ∈ M, and, for each (i, j) ∈ L, one of the

following holds:

qij < 1, or (6.33)

(i, k) ∈ M for some link (i, k) ∈ L, or

(k, i) ∈ M for some link (k, i) ∈ L, or
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(j, h) ∈ M for some link (j, h) ∈ L, or

(h, j) ∈ M for some link (h, j) ∈ L.

Note that a maximal matching can be computed in a distributed fashion as

follows. When a link (i, j) is added to the matching, we say that both node i and

node j are matched. For each node i, if it has already been matched, no further

action is required. Otherwise, node i scans its neighboring nodes. If there exists a

neighboring node j such that node j has not been matched, node i sends a matching

request to node j. It is possible that a matching request conflicts with other matching

requests. In this case, the nodes involved in the conflict can use some randomization

and local coordination to pick any non-conflicting subset of the matching requests.

For those nodes whose matching requests are declined, they can repeat the above

procedure until every node in the network is either matched or has no neighbors that

are not matched.

Let

Qi =
∑

j:(i,j)∈L
qij +

∑

j:(j,i)∈L
qji

denote the total cost of the links that either start from, or end at node i. Our new

cross-layered congestion control and scheduling algorithm then proceeds as follows.

The Distributed Cross-Layered Congestion Control Algorithm:

At each time slot [kT, (k + 1)T ):

• A maximal matching M(kT ) is computed based on the implicit costs ~q(kT ).

• The data rate of each user of class s is determined by

xs(t) = xs(kT ) = max







ws

2
∑

(i,j)∈L H ij
s

Qi(kT )+Qj(kT )

cij

,Ms







(6.34)

where cij is the capacity of link (i, j), and H ij
s is defined as H l

s, i.e., H ij
s = 1,

if users of class s use link (i, j); and H ij
s = 0, otherwise.
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• The implicit costs are updated by:

qij((k + 1)T ) = [qij(kT )

+α

(

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT )

cij

dt −T I{(i,j)∈M(kT )}

)]+

.

(6.35)

This new cross-layered congestion control and scheduling algorithm is similar to

the algorithms of Section 6.4 and 6.5 in many aspects:

• A user reacts to congestion by reducing its data rate when the implicit costs

along its path increase.

• The implicit cost at each link (i, j) is updated based on the difference between

the offered load and the schedule of the link.

However, there is a critical difference. When the maximal matching is computed,

we do not care about the precise value of the implicit costs (see (6.33), where the

maximal matching only depends on whether the implicit costs qij are larger than

a chosen threshold). Hence, the maximal matching typically does not satisfy the

requirement of the imperfect scheduling policy Sγ, and Proposition 6.5.1 does not

apply either. Further, the congestion control part (6.34) is also different from that

in the earlier sections. It has been chosen specifically for the maximal matching

scheduling policy. Nonetheless, using similar techniques as in Section 6.5, we can

show the following result on the stability region of the system. The details are given

in Appendix E.7.

Proposition 6.6.1 If the stepsize α is sufficiently small, then for any offered load

~ρ that resides strictly inside Λ/2, the system with the above distributed cross-layered

congestion control algorithm is stable.
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Fig. 6.4. The network topology

6.7 Numerical Results

We now use simulations to verify the results in this chapter. We use the network in

Fig. 6.4. There are 5 classes of users, whose paths are shown in Fig. 6.4. Their utility

functions are all given by Us(xs) = log xs. We first use the following interference

model. The path loss G(i, j) from a node i to a node j is given by G(i, j) = d−4
ij

where dij is the distance from node i to node j (the positions of the nodes are also

given in Fig. 6.4). We assume that the data rate rij at link (i, j) ∈ L is proportional

to the SIR, i.e.,

rij = W
G(i, j)Pij

N0 +
∑

(k,h)∈L,(k,h)6=(i,j) G(k, j)Pkh

,

where N0 is the background noise and W is the bandwidth of the system. This

assumption is suitable for CDMA systems with a moderate processing gain [74].

Each node i has a power constraint Pi,max, i.e., the power allocation must satisfy
∑

j:(i,j)∈L Pij ≤ Pi,max for all i.

We first simulate the case when there is one user for each class. The top figure

in Fig. 6.5 shows the evolution of the data rates for all five users when the network

computes the perfect schedule according to (6.12) at every time slot. We have chosen
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W = 10, N0 = 1.0, Pi,max = 1.0 for all node i and αl = 0.1 for all link l. Note that

the scheduling subproblem (6.12) for this interference model is a complex non-convex

global optimization problem. In [29], we have given an O(2N) algorithm for solving

the perfect schedule, where N is the number of nodes. Executing such an algorithm

at every time-slot is extremely time-consuming.

We then simulate the imperfect scheduling policy outlined in Section 6.5.3 for

general interference models. Such an imperfect scheduling policy attempts to reuse

schedules that have already been computed in the past. In our simulation, we have

chosen γ0 = 1.0 in (6.31), i.e., each of these past schedules are perfect schedules.

The computational complexity could have been further reduced if we had chosen

γ0 < 1. However, we leave this for future work. Instead, in this section we focus on

how the imperfect scheduling policy can reduce the number of times that new perfect

schedules have to be computed. The system that we simulate can store at most 10

past schedules. If there are already 10 past schedules and a new perfect schedule is

computed, the new schedule will replace the old one that has the smallest weighted-

sum
L
∑

l=1

qlrl. In the bottom figure of Fig. 6.5, we show the evolution of the data

rates when γ = 0.5. Note that the rate allocation eventually converges to values

close to that with perfect scheduling. We also record the number of times that

perfect schedules are computed. When γ = 0.5, perfect schedules are computed

in only 7 iterations among the entire 2000 iterations of the simulation, and most

of these perfect schedules are computed at the initial stage of the simulation. We

have simulated other values of γ and find similar results. In fact, by just reducing

γ from 1.0 to 0.9, the number of times that perfect schedules have to be computed

is reduced to 34 (over 2000 iterations of simulation). These results indicate that

our cross-layered congestion control scheme with the imperfect scheduling policy in

Section 6.5.3 can substantially reduce the computation overhead and still maintain

good performance.

We then simulate the case when there are dynamic arrivals and departures of

the users as in Section 6.5. Users of each class arrive to the network according to
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Fig. 6.6. The average number of users in the system versus load.

a Poisson process with rate λ. Each user brings with it a file to transfer whose size

is exponentially distributed with mean 1/µ = 100 unit. We vary the arrival rate λ

(and hence the load ρ = λ/µ) and record in Fig. 6.6 the average number of users

in the system at any time for different choice of γ. Given γ, the average number

of users in the system will increase to infinity as the offered load ρ approaches a

certain limit. This limit can then be viewed as the capacity of the system. From

Fig. 6.6, we observe that the capacity of the system is not significantly affected

when γ is reduced from 1.0 to 0.5. On the other hand, the number of time-slots that

new perfect schedules have to be computed is reduced to less than 1% of the total

number of time-slots when γ = 0.9, and to less than 0.05% when γ = 0.5. These

results confirm again the effectiveness of our cross-layered congestion control scheme

with the imperfect scheduling policy in Section 6.5.3, in reducing the computation

overhead and achieving good overall performance.

We next turn to the node-exclusive interference model in Section 6.5.2, where we

can draw a comparison with the layered approach to congestion control [114, 115].
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We still use the network topology in Fig. 6.4. The capacity of each link is now fixed

at 10 units. We only report the result for the case when there are dynamic arrivals

and departures of the users. Fig. 6.7 demonstrates the average number of users in

the system versus load with different congestion control and scheduling schemes.

We label each curve with the congestion control scheme (we use “Joint” to denote

the cross-layered congestion control scheme and use “Layered” to denote the lay-

ered approach in [115]), followed by the scheduling policy. (Note that the curve

for the cross-layered congestion control scheme with GMM scheduling, labeled as

“Joint-GMM,” in fact overlaps with the curve for the optimal cross-layered conges-

tion control scheme with perfect MWM scheduling, which is the right most curve

labeled as “Joint-MWM.”) From Fig. 6.7, we observe that, regardless of the schedul-

ing policy used (either MWM, GMM, or MM), the layered approach always performs

much poorer than the corresponding cross-layered approach. The performance gap

widens even more when an imperfect scheduling policy (such as GMM) is used. In

particular, the fully distributed joint congestion control and scheduling algorithm

in Section 6.6 (with imperfect maximal matching scheduling, labeled “Joint-MM”),

actually performs even better than the layered approach with the perfect (and more

complex) MWM scheduling (labeled “Layered-MWM”). These results demonstrate

that the conservative nature of the layered approach indeed hurts the overall perfor-

mance of the system, and an appropriately designed cross-layered congestion control

scheme can perform very well in practice even with imperfect scheduling.

6.8 Conclusion

In this chapter, we study issues in cross-layer design of multihop wireless net-

works. We propose a loose-coupling approach to cross-layer design, which achieves

both modularity and efficiency. We demonstrate how a cross-layer solution with such

a loose-coupling property can be developed for the cross-layer congestion control and

scheduling problem. Our cross-layer solution only requires minimal amount of inter-



234

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

 ρ

 A
ve

ra
ge

 N
um

be
r 

of
 U

se
rs  Joint−MWM

 Layered−MWM
 Joint−GMM
 Layered−GMM
 Joint−MM

Fig. 6.7. The average number of users in the system versus load: the
node-exclusive interference model



235

action among the protocol layers, and is robust to imperfect decisions made at the

scheduling component. We also demonstrate how fully distributed solutions may be

built by taking advantage of the loose-coupling property.

These results constitute an important step towards designing fully distributed

cross-layered congestion control schemes for multihop wireless networks. Several

directions for future work are possible. For example, Proposition 6.5.1 may be com-

bined with a clustering scheme to design distributed cross-layered congestion-control

solutions for large networks. We can also use similar techniques as in [29] to combine

cross-layered congestion control with multipath routing. Our main result (Propo-

sition 6.5.1) can also be extended to the case with random fading. It would also

be important to study the impact of feedback delays, to address the effect of node

mobility, and to extend our results to hybrid wireless-wireline networks.
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7. SUMMARY

7.1 Summary of Contributions

In this dissertation, we have studied how to simplify the network dynamics and

control in large communication networks. We have taken two orthogonal approaches

to this problem. Next, we summarize our main contributions through each approach.

7.1.1 Exploiting the Largeness of the System to Simplify Control

In the first approach, we seek simplicity through exploiting the largeness of the

network. We first studied the pricing-based network control problem and the Quality-

of-Service routing problem in large-capacity wire-line networks. We showed that

simple static control policies can approach the performance of the optimal (but com-

plex) dynamic control policy when the capacity of the system is large. Further, the

near-optimal static control parameters can be determined from a simple non-linear

programming problem that depends only on the average statistics of the network.

We have established this result under very general network settings, first for a non-

Markovian network with fixed topology and routing, then in the case when the

network supports dynamic routing, and also in the case where the topology of the

network becomes increasingly complex as its capacity grows.

These results indicates that significant simplicity in control can be achieved in

large-capacity networks. Compared with the optimal dynamic scheme, the static

scheme has several desirable features. The static schemes are much easier to obtain

because of their simple structures. They are also much easier to execute since they

do not require the collection of instantaneous load information. Hence, they intro-

duce less computation and communication overhead, and they are less sensitive to
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feedback delay. These advantages make the static scheme an attractive alternative

for controlling large networks.

For large networks, it is also imperative that the control algorithm can be im-

plemented on-line in a distributive fashion. In the second part of the dissertation,

we developed distributed control algorithms based on these static control policies.

Our distributed algorithm can adaptively track the optimal static control parameters

based on on-line measurements. We rigorously established the convergence of the

distributed algorithm to the optimal control parameters, without requiring an unre-

alistic two-level convergence structure typically in standard results. We also provided

guidelines on how to choose the parameters of the algorithm to ensure efficient con-

trol. This algorithm can then be applied to a number of networking problems, such

as multi-path flow control, QoS routing, and network pricing. For example, when ap-

plied to the QoS routing problem in large-capacity networks, our proposed algorithm

not only achieves near-optimal routing performance, but also substantially alleviates

the computation and communication overhead of QoS routing without sacrificing

the performance.

In the third part of the dissertation, we turned to wireless networks and we

investigated the fundamental tradeoff between the capacity and the delay in large

mobile wireless networks. By exploiting the largeness in the number of nodes in these

networks, we obtained simple scaling laws that determine the optimal achievable

capacity given delay constraints. We have developed a systematic methodology

both for finding the optimal capacity-delay tradeoff and for designing the capacity-

achieving scheme. Our methodology can be applied to a number of mobility models,

such as the i.i.d. mobility model, the random way-point mobility model, and the

Brownian motion mobility model. In each case, we have identified the limitations of

existing works, obtained sharper results under more general settings, and provided

new insights on the fundamental capacity-delay tradeoffs. In particular, under the

i.i.d. mobility model, our study allows us to develop a scheme that can exploit

mobility and achieve a provably larger per-node capacity than that of the static
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networks even with delay that does not grow with the number of nodes. This is the

first such result of its kind in the literature.

7.1.2 Designing Appropriate System Architecture to Simplify Control

In the second approach, we seek simplicity by designing an appropriate control

architecture such that complex interactions within the system can be structured into

layers that are only weakly dependent on each other through a judiciously chosen

set of control parameters. In particular, we investigated the cross-layer congestion

control and scheduling problem in multi-hop wireless networks. We have developed a

loose-coupling approach to this problem. By loose-coupling, we mean that the cross-

layer solution only requires a minimal amount of interaction between the layers, and

is robust to imperfect decisions at each layer. We showed that the optimal solution

to the cross-layer congestion control and scheduling problem can be decomposed into

a congestion control component and a scheduling component. Both components act

independently on the queue lengths of the system. They are then coupled by the

update of the queue length at each link. Further, if one replaces the scheduling com-

ponent by an imperfect scheduling policy that only computes suboptimal schedules

at each time, we can still quantify the impact on the overall system performance

fairly easily for a large class of imperfect scheduling policies. These results allow us

to use imperfect, but simpler and potentially distributed, algorithms for cross-layer

control of large wireless networks. Under the node-exclusive interference model, we

have successfully developed the first fully distributed cross-layer congestion control

and scheduling algorithm in the literature.

7.2 Suggestions for Future Research

In this dissertation, we have presented a number of scenarios where simplicity

arises in large communication networks. These scenarios are certainly not the only
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ones where simplicity can be obtained. Next, we give a few examples that illustrate

the multitude of possible future research directions.

7.2.1 Dynamics of TCP in Large-Capacity Networks

In Chapters 2 and 3, we have mainly studied the simplification of network dy-

namics in large-capacity networks where the data rates of the users are pre-chosen.

Even though we have considered users with elastic data rates in Section 2.4 of Chap-

ter 2, there we still assume that the amount of time that the user will remain in

the system is independent of the data rate. While these assumptions are suitable

for video/audio streaming traffic with fixed or adaptive data rates, they are not for

typical data traffic in the Internet, such as file transfers and HTTP traffic. For these

types of data traffic in the current Internet, the data rates of the flows are regulated

by TCP, and a flow will terminate as soon as a fixed amount of data is transferred

through the network. Hence, the amount of time that the flow remains in the system

is a function of its data rate.

Therefore, it remains an interesting problem to study the dynamics of TCP in

large-capacity networks. There are two paradigms we can consider. In the first

paradigm, we can consider a network with a large but fixed number of TCP users.

This has been the model taken in [121–123]. The authors there show that the

dynamics of the system will converge to that of a fluid system when the number of

users is large. A key assumption in these works is that the buffer size at the bottle

neck router also grows proportionally to the number of users. Hence, the per-user

buffer size remains fixed. Lately, it has been shown in [36] that, as long as the

capacity and the number of users in the system is large, one can in fact reduce the

per-user buffer size aggressively, while still maintaining high link-utilization and low

packet losses. Note that more aggressive buffer provisioning could translate into huge

savings in the cost of high-speed buffers in backbone routers in the Internet. These

result illustrates the possibility of exploiting new dynamics of TCP in a network with
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large capacity. The work in [36] has assumed that the system can be modeled as

a doubly-stochastic processes. It would be interesting to study whether the results

hold under more general assumptions.

In the second paradigm, the number of TCP users in the system can also change

according to certain stochastic processes. Previous works in [108, 124] have shown

that some of the conclusions drawn from such a dynamic settings can be very different

from those draw from a static setting (where the number of users is fixed). Thus, it

would be interesting to study whether the results in [36] also hold for networks with

a dynamic set of TCP users.

7.2.2 Scaling Laws in Wireless Networks

The techniques in Chapter 5 can be very powerful in obtaining first-order insights

regarding various quantities of interest in wireless networks. Other than capacity and

delay, another metric that is of great concern in many wireless systems (including

sensor networks) is energy. Problems of interest include: What is the most energy-

efficient way that the network should operate given capacity and delay constraints?

What is the difference between the most energy-efficient centralized solution com-

pared with the most energy-efficient distributed solution? Using the techniques in

Chapter 5, one may find simple answers to these questions, which will greatly en-

hance our understanding for the design of energy-efficient wireless networks.

7.2.3 TCP for Wireless Networks

In Chapter 6, we have provided a framework for cross-layer congestion control

and scheduling in multihop wireless networks. Note that the congestion control

component in our solution is not TCP yet. Nonetheless, there is a striking similarity

between our congestion control component and the modern understanding of TCP

based on the optimization framework [14–16, 41, 61, 106]. In the latter group of

work, a TCP flow is also viewed as carrying out a local net-utility maximization.
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Thus, the framework we provided in Chapter 6 offers great hope for the design of

practical congestion control protocols in wireless networks. We may be able to use

the insights obtained there to make minimal changes to TCP and make it work

efficiently in wireless networks.

7.2.4 Combining Scaling Laws with Loose-Coupling

In Chapter 6, we have developed a fully distributed cross-layer control solution

for the node-exclusive interference model. For more general interference models, fully

distributed solution remains an open problem. The main difficulty still lies upon the

complexity of the scheduling component. It would be interesting to study whether

we can use the insights from scaling laws (as in Chapter 5) to further simplify the

scheduling component, and eventually develop efficient distributed solutions for more

general interference models.
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APPENDICES

Appendix A: Supporting Results for Chapter 2

A.1 Proof of Proposition 2.2.1

Let us first focus on the case of a single link with users coming from a single

class i. To develop the result, we need to take a different but equivalent view of the

original model in Section 2.2. In the original system, the arrival rate is a function of

the current price. In the new but equivalent system, the arrival rate is constant but

the arrivals are “thinned” by a probability as a function of the price. Specifically,

in the new model, the arrivals are Poisson with constant rate λ0. Each arrival

now carries a value v that is independently distributed, with distribution function

P{v ≥ a} = λi(a)/λ0 for all a ≥ 0. The value v of each arrival is independent of the

arrival process and the service times. If v < u, where u is the current price charged

to the incoming call at the time of arrival, the call will not enter the system. It is

easy to verify that the model is equivalent to the original model since the arrivals at

price u (after “thinning”) is still Poisson with rate λ0P{v ≥ u} = λi(u).

In order to show stationarity and ergodicity, we will construct a regenerative event

Al as follows. Let d time units denote the length of the finite amount of past history

used in the prediction (d = 0 if no prediction is performed). Let τ e
l , τ s

l , and vl be the

l-th arrival’s interarrival time, service time, and value, respectively, −∞ < l < ∞
(note this is the arrival of the Poisson process before “thinning”). Define “epoch l”

to be the time of the l-th arrival. Let

Ql = 1{τs
l−1≤τe

l −d} + 1{τs
l−2≤τe

l +τe
l−1−d}

+... + 1{τs
l−k≤

Pk−1
j=0 τe

l−j−d} + ...,
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and let Al = {Ql = 0}. Note that Al can be interpreted as the event that “all

potential arrivals (i.e., those before ‘thinning’) have cleared the system d time units

before epoch l.” The event Al is a regenerative event, that is, if event Al occurs, then

after epoch l, the system will evolve independently from the past (this is true because

we assume that the price is only dependent on the current state of the network, or a

finite amount of past history with length d). The events Al are stationary. Precisely,

we can define T as the shift operator [125, p13] such that T{{τ e
li
, τ s

li
, vli} ∈ Bi, i =

1...k} = {{τ e
li+1, τ

s
li+1, vli+1} ∈ Bi, i = 1...k} for an arbitrary collection of indices

l1, ..., lk and Borel sets B1, ..., Bk. Then Al = TlA0, and P{Al} = P{A0}. Now to

proceed with the proof, we need the following lemma.

Lemma A.1 Let the sequence of service times τ s be i.i.d., and E[τ s] < ∞, then

P{A0} > 0.

Proof We follow [125, p205]. For any a > 0,m ≥ 1, we have,

P{A0} ≥ P

{

{τ e
0 ≥ a + d}

k=m
⋂

k=1

{

τ s
−k ≤ a

}

∞
⋂

k=m+1

{

τ s
−k ≤

−1
∑

j=−k+1

τ e
j

}}

= P{τ e
0 ≥ a + d} ×

m
∏

k=1

P{τ s
−k ≤ a}

×P

{ ∞
⋂

k=m+1

{

τ s
−k ≤

−1
∑

j=−k+1

τ e
j

}}

.

The above relationship can be interpreted as follows: A0 is the event that {Q0 = 0},
i.e., all potential arrivals have cleared the system d time units before epoch 0. The

event on the right hand side of the inequality above says that, of all potential arrivals

before epoch 0, the last arrival arrives before a time interval of a+d (τ e
0 ≥ a+d); the

last m arrivals all have service time less than a; and finally, the rest of the arrivals

leave the system before epoch −1. Obviously this is a smaller event than A0.
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We shall now focus on this smaller event. Choose a such that P{τ s
−k ≤ a} = q >

0. Since the interarrival times are exponential, we also have p , P{τ e
l ≥ a + d} > 0.

Thus,

P{A0} ≥ pqmP

{ ∞
⋂

k=m+1

{

τ s
−k ≤

−1
∑

j=−k+1

τ e
j

}}

.

Let B denote the event inside the outer bracket on the right hand side. Choose

b < E{τ e
l }. We have

P{Bc} = P

{ ∞
⋃

k=m+1

{

τ s
−k >

−1
∑

j=−k+1

τ e
j

}}

≤ P

{ ∞
⋃

k=m+1

{ −1
∑

j=−k+1

τ e
j < b(k − 1)

}

∞
⋃

k=m+1

{

τ s
−k ≥ b(k − 1)

}

}

≤ P

{ ∞
⋃

k=m+1

{ −1
∑

j=−k+1

τ e
j < b(k − 1)

}}

+ P

{ ∞
⋃

k=m+1

{τ s
−k ≥ b(k − 1)}

}

.

As m → ∞, the first term goes to

P

{ −1
∑

j=−k+1

τ e
j < b(k − 1) infinitely often

}

= 0

by the Strong Law of Large Numbers (since b < E{τ e
l }). On the other hand, as

m → ∞, the second term is bounded by

∞
∑

k=m+1

P{τ s
−k ≥ b(k − 1)} → 0

since E{τ s
l } < ∞. Therefore, we can choose m large enough such that P{Bc} < 1/2,

and thus P{A0} ≥ pqmP{B} > 0.

Now we invoke Borovkov’s Ergodic Theorem [126]. Since by Lemma A.1 the re-

generative events Al occur with positive probability, the distribution of the stochastic
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process ~n(t) (i.e., the vector of the number of flows of each class in the system) con-

verges as t → ∞ to the distribution of the stationary process. Ergodicity follows

from the lemma below.

Lemma A.2 The regenerative event Al is positive recurrent, i.e., let Xl be the state

of the system at epoch l. let T1 = inf{Xl ∈ Al}, then E{T1|X0 ∈ A0} < ∞.

Proof First note that

P{Xl ∈ Al at least once} = P

{∞
⋃

l=1

Al

}

.

Let T denote the shift operator defined earlier, and let B =
⋃∞

l=1 Al, then TB ⊂ B,

and further P{TB} = P{B} (because B is also a stationary event). Therefore, TB

and B differ by a set of measure zero, and thus B is an invariant set [125, p14].

By the metric transitivity [125, p14] of the i.i.d. sequence {τ e
l , τ s

l , vl}, we then have

P{B} = 0 or 1. However, since P{B} ≥ P{A0} > 0, we must have P{B} = 1, i.e.,

P{Xl ∈ Al at least once} = 1.

By [127, Prop. 6.38, p123], we thus have

E{T1|X0 ∈ A0} =
1

P{A0}
< ∞.

Since the regenerative event is positive recurrent, the stochastic process ~n(t) is

asymptotically stationary and the stationary version is ergodic [128, Theorem 2.7,

p50].

For the case of multiple classes and multiple links, we can construct the equivalent

system in the following way: Assuming there are I classes, we first construct Poisson

arrivals with rate Iλ0. Each of these arrivals is assigned to class i with probability

1/I, and each of these assignments is independent of each other. The service time

is then generated according to the service time distribution of class i. Each class i

arrival carries a value v that is independently distributed, with distribution function
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Pi{v ≥ ui} = λi(ui)/λ0. The value v of each arrival is independent of the arrival

process and the service times. If v < ui where ui is the current price for class i at

the time of the arrival, the call will not enter the system. Following the same idea as

in the first paragraph of the proof, it is easy to show that such a constructed system

is equivalent to the original system.

The initial Poisson arrivals with rate Iλ0 can be interpreted as “all potential

arrivals from all classes.” Let {τ e
n, τ s

n} be the n-th arrival’s interarrival time and

service time respectively. It then follows that the sequence of service times τ s
n is

again i.i.d. with finite mean, and it is independent of the arrivals. Hence, we can

construct the event A0 as before, which is now the event that “all potential arrivals

from all classes have cleared the system d time units before epoch n.” Again this

event is the “regenerative event” for the system, and we can show that P{A0} > 0,

and A0 is positive recurrent. Therefore, the system is asymptotically stationary and

the stationary version is ergodic.

A.2 Proof of Lemma 2.2.1

The key idea is to use an insensitivity result from [129]. In [129], Burman et. al.

investigate a blocking network model, where a call instantaneously seizes channels

along a route between the originating and terminating node, holds the channels for

a randomly distributed length of time, and frees them instantaneously at the end

of the call. If no channels are available, the call is blocked. When the arrivals are

Poisson and the holding time distributions are general, the authors in [129] show

that the blocking probabilities are still in product form, and are insensitive to the

call holding-time distributions. This means that they depend on the call duration

only through its mean.

When the static prices are given, our system is a special case of [129]. Hence,

we can reuse results for loss networks with Poisson arrivals and exponential holding-

times. If we assume that the bandwidth requirements ri are integers with greatest
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common divisor being 1, an upper bound on the blocking probability for calls of

class i is given by [130, Proposition 2.1]:

Pc
loss,i ≤ 2L

∑

l:Cl
i=1

e−cIl(R
l)

√

2πcΓ2
l

1 − e−riyl

1 − e−yl

[

1 + O(
1√
c
)

]

, (A.1)

where yl is the unique solution of

Rl =
I
∑

i=1

λi

µi

rie
−ylriC l

i , (A.2)

and

Γ2
l =

I
∑

i=1

λi

µi

r2
i e

−ylriC l
i

Il(R
l) =

I
∑

i=1

λi

µi

(1 − e−ylri)C l
i − ylR

l.

From (A.2), it is easy to verify that yl < 0 if
I
∑

i=1

λi

µi
riC

l
i < Rl, and yl = 0 if

I
∑

i=1

λi

µi
riC

l
i =

Rl. Note that −yl is also the minimizer of Λl(w) in (2.3) over w ≥ 0, and thus

Il(R
l) = − inf

w>0
Λl(w).

Hence, if the load at each resource is less than or equal to 1, i.e.,

I
∑

i=1

λi

µi

riC
l
i ≤ Rl for all l,

then yl ≤ 0 and Il(R
l) ≥ 0 for all l. We have,

Pc
loss,i ≤ 2L

∑

l:Cl
i=1

1
√

2πcΓ2
l

1 − e−riyl

1 − e−yl

[

1 + O(
1√
c
)

]

,

i.e., Pc
loss,i = O( 1√

c
). On the other hand, when the load of all the links that class i

traverses is strictly less than 1, then yl < 1 and Il(R
l) > 0 for all link l that class i

traverses. Hence, the exponential terms in (A.1) dominate. We thus have,

lim sup
c→∞

1

c
log Pc

loss,i ≤ max
l:Cl

i=1
−Il(R

l)

= max
l:Cl

i=1
inf
w>0

Λl(w) < 0.

The above techniques (and that of [130]) can easily be generalized to the case when

the bandwidth requirements ri are positive real numbers. For a more elementary

proof that does not use the result of [130], see [18].



258

A.3 Proof of Proposition 2.2.5

We first focus on the c-th network. To simplify notation, we will drop the index

c when there is no source of confusion. Let λi, i = 1, ..., I denote the solution of the

upper bound (2.2). Let ε be a positive real number smaller than 1. Let λε
i = (1−ε)λi

and uε
i = ui(λ

ε
i) for all i. Then the static revenue at static prices uε

i , i = 1, ..., I is

J c,ε
s =

I
∑

i=1

ui(λ
ε
i)λ

ε
i

1

µi

(1 − Pε
loss,i)

≥
I
∑

i=1

(1 − ε)ui(λi)λi
1

µi

(1 − Pε
loss,i),

where Pε
loss,i is the blocking probability of users of class i at static price uε

i , i = 1, ..., I,

and we have used the property that ui(·) is decreasing. Thus the relative difference

between J c,ε
s and J c

ub is

J c
ub − J c,ε

s

J c
ub

≤ ε + max
i=1,...,I

Pε
loss,i. (A.3)

Next we estimate Pε
loss,i. Let nj be the random variable that represents the

number of flows of class j that are in the system. We now consider another network

with the same topology and the same demand λε
i . However, each link in the new

network has infinite capacity. Let n∞
j be the random variable that represents the

number of flows of class j that are in the infinite capacity system. By a sample path

argument, nj ≤ n∞
j . Therefore,

Pε
loss,i = P{There exists l such that C l

i = 1

and
I
∑

j=1

njrjC
l
j ≥ Rl − ri}

≤
∑

l:Cl
i=1

P{
I
∑

j=1

njrjC
l
j ≥ Rl − ri}

≤
∑

l:Cl
i=1

P{
I
∑

j=1

n∞
j rjC

l
j ≥ Rl − ri}. (A.4)
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In the new system with infinite capacity, n∞
j , j = 1, ..., I are independent Poisson

random variables (by well known M/G/∞ results). We can calculate their moment

generating functions as

E[exp(θn∞
j )] = exp[

λε
j

µj

(eθ − 1)] for θ > 0 .

Fix i and l such that C l
i = 1. By invoking Markov Inequality, we have,

P{
I
∑

j=1

n∞
j rjC

l
j ≥ Rl − ri} ≤

E[exp(
I
∑

j=1

θrjn
∞
j C l

j)]

exp[θ(Rl − ri)]

= exp[
I
∑

j=1

λε
j

µj

C l
j(e

θrj − 1) − θ(Rl − ri)]

≤ exp[
I
∑

j=1

λε
j

µj

rjC
l
j

S(c)

Rl
(eθRl/S(c) − 1) − θ(Rl − ri)]

≤ exp[(1 − ε)S(c)(e
θRl

S(c) − 1) − θRl

S(c)
(S(c) − 1)], (A.5)

where in the last two inequalities we have used the definition of the scale S(c) such

that, for all j with C l
j = 1, we have

rj ≤
Rl

S(c)
,

and thus,
eθrj − 1

rj

≤ eθRl/S(c) − 1

Rl/S(c)
;

and we have used the assumption that,

I
∑

j=1

λε
j

µj

rjC
l
j =

I
∑

j=1

(1 − ε)
λj

µj

rjC
l
j ≤ (1 − ε)Rl.

Taking infimum of (A.5) over all θ > 0, we have

P{
I
∑

j=1

n∞
j rjC

l
j ≥ Rl − ri} ≤ exp[f(S(c))], (A.6)

where

f(s) = inf
θ>0

[

(1 − ε)s(eθ − 1) − θ(s − 1)
]

. (A.7)
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Note that the inequality (A.6) holds for all i and l such that C l
i = 1. Substituting

(A.6) into (A.4), we have,

Pε
loss,i ≤

∑

l:Cl
i=1

exp[f(S(c))] ≤ M exp[f(S(c))], (A.8)

where M is the maximum number of hops for all routes by Assumption B of scaling

(S2). Note that the right hand side is uniform for all class i. Substituting (A.8) into

(A.3), we have,

J c
ub − J c,ε

s

J c
ub

≤ ε + M exp[f(S(c))].

The function f(s) can be evaluated analytically. We can easily show that

lim
s→+∞

f(s)

s
= ε + ln(1 − ε).

Since ε ∈ (0, 1), ε + ln(1 − ε) < 0. Hence, lims→∞ f(s) = −∞. Now by Assumption

A of scaling (S2), S(c) → ∞ as c → ∞. Fix ε and let c → ∞, we have

lim
c→∞

J c
ub − J c,ε

s

J c
ub

≤ lim
c→∞

{ε + M exp[f(S(c))]} = ε.

Note that J c,ε
s is always no greater than the optimal static revenue J c

s . Hence,

lim
c→∞

J c
ub − J c

s

J c
ub

≤ ε.

This holds for any ε ∈ (0, 1). Letting ε → 0 and noting that J c
s ≤ J∗,c ≤ J c

ub, the

result then follows.
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Appendix B: Supporting Results for Chapter 3

B.1 Proof of Proposition 3.2.1

We will focus on the case when the performance objective is the total utility. The

case when the performance objective is the total revenue then follows as a special

case where the utility function is the identify function.

When the performance objective is the total utility, the definition of J ∗, J0, Js

and Jub needs to be modified accordingly. Given any dynamic routing policy g,

one can show that the system under g will converge to a stationary version and

the stationary version is ergodic (see Proposition 2.2.1 in Chapter 2). Let Ni(0, t)

denote the number of arrivals of class i that arrive to the system from time 0 to t.

Let Nij(0, t) denote the number of arrivals that are admitted and routed to path j

from time 0 to t. Let

λij = lim
t→∞

Nij(0, t)

t
.

The quantity λij denotes the average rate of flows of class i routed to path j. It

is well defined under a given policy g due to the stationary and ergodicity of the

system. By definition

λi = lim
t→∞

Ni(0, t)

t
.

Further,

θ(i)
∑

j=1

λij

λi

= lim
t→∞

θ(i)
∑

j=1

Nij(0, t)

Ni(0, t)

is the average proportions of flows of class i that are admitted.

Define the performance of policy g as the weighted total utility:

I
∑

i=1

λi

µi

viUi





θ(i)
∑

j=1

λij

λi



 . (B.1)
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Note that this performance objective is equivalent to the average revenue when the

utility function is the identify function, i.e., Ui(p) = p, Precisely, when Ui(p) = p,

then

I
∑

i=1

λi

µi

viUi





θ(i)
∑

j=1

λij

λi



 =
I
∑

i=1

θ(i)
∑

j=1

λij

µi

vi

=
I
∑

i=1

θ(i)
∑

j=1

Eg[nij]vi,

where nij is the random variable that denotes the number of flows of class i routed

to path j that are in the system at any time, and Eg denote the expectation taken

with respect to the stationary distribution under policy g. The last equality is by

the Little’s Law

Eg[nij] =
λij

µi

.

When Ui(p) is a concave function, it represents the “utility” when the average ad-

mission probability of class i is p, and U ′
i(p) represents the marginal utility lost if

the admission probability for class i is further reduced from p.

The performance of the optimal dynamic scheme is defined as

J∗ = max
g

I
∑

i=1

λi

µi

viUi





θ(i)
∑

j=1

λij

λi



 .

Note that λij is a function of g in the above formula.

The following Proposition establishs an upper bound for J ∗.

Proposition B.1 Let Jub be the solution of the following optimization problem:

Jub = max
~p∈Ω

I
∑

i=1

λi

µi

viUi(

θ(i)
∑

j=1

pij) (B.2)

subject to
I
∑

i=1

θ(i)
∑

j=1

λi

µi

pijriH
l
ij ≤ Rl for all l.

Then

J∗ ≤ Jub.
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Proof Fix a routing policy g. Let

pij =
λij

λi

.

Then

0 ≤ pij ≤ 1 and

θ(i)
∑

j=1

pij ≤ 1.

Hence, ~p ∈ Ω.

Let nij be the random variable that denotes the number of flows of class i routed

to path j that are in the system at any time. Let Eg denote the expectation taken

with respect to the stationary distribution under policy g. By Little’s Law,

Eg[nij] =
λij

µi

.

Hence,
λi

µi

pij =
λij

µi

= Eg[nij],

and
I
∑

i=1

θ(i)
∑

j=1

λi

µi

pijriH
l
ij =

I
∑

i=1

θ(i)
∑

j=1

Eg[nij]riH
l
ij.

By definition of nij, at any time

I
∑

i=1

θ(i)
∑

j=1

nijriH
l
ij ≤ Rl.

Therefore,
I
∑

i=1

θ(i)
∑

j=1

λi

µi

pijriH
l
ij ≤ Rl,

i.e., ~p satisfies the constraint of (B.2). Therefore,

I
∑

i=1

λi

µi

viUi





θ(i)
∑

j=1

λij

λi



 =
I
∑

i=1

λi

µi

viUi(

θ(i)
∑

j=1

pij) ≤ Jub.

Since this is true for any policy g, we thus have,

J∗ ≤ Jub.
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The performance of a static policy can be defined analogously to (B.1). That is,

let ~p denote the static policy, the weighted utility under ~p is

J0 =
I
∑

i=1

λi

µi

viUi





θ(i)
∑

j=1

pij(1 − PLoss,ij)



 ,

where PLoss,ij is the blocking probability of flows of class i routed to path j. Let

Js denote the performance of the static policy induced by the solution to the upper

bound, i.e., when ~p is the optimal point of (B.2).

Finally, we scale the capacity and the demand proportionally by c > 1, i.e., in

the c-scaled network, the capacity at each link l is Rl,c = cRl, and the arrival rate of

each class i is λc
i = cλi. Let J∗,c and J c

s be the utility of the optimal dynamic scheme

and the utility of the static scheme induced by the solution to the upper bound,

respectively, in the c-scaled system, We can now use Lemma 2.2.1 in Chapter 2 to

proceed with the main proof of Proposition 3.2.1.

Proof [of Proposition 3.2.1] Firstly, note that the upper bound in the c-scaled

system is obtained by

max
~p∈Ω

I
∑

i=1

cλi

µi

viUi(

θ(i)
∑

j=1

pij)

subject to
I
∑

i=1

θ(i)
∑

j=1

cλi

µi

pijriH
l
ij ≤ cRl for all l.

Hence, the upper bound is equal to cJub where Jub is the upper bound for the base

system (i.e., c = 1). Further, the optimal point is independent of c.

Now consider J c
s . Note that

J c
s =

I
∑

i=1

cλi

µi

viUi





θ(i)
∑

j=1

pij(1 − Pc
Loss,ij)



 ,

where ~p = [pij, i = 1, ..., I, j = 1, ..., θ(i)] is the solution to the upper bound, and

Pc
Loss,ij is the blocking probability of flows of class i on path j in the c-scaled system.

Since the arrivals of each class i are Poisson with rate λi, the flows that are routed
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to path j by the static policy ~p also form a Poisson process with rate λipij and are

independent of flows that are routed to other paths. Since ~p satisfies the constraint

in (B.2), the load at each link is less that 1. Hence, by Lemma 2.2.1, the blocking

probability Pc
Loss,ij goes to zero as c → ∞. Note that Ui is continuous due to

concavity, therefore,

lim
c→∞

J c
s

c
= lim

c→∞

I
∑

i=1

λi

µi

viUi





θ(i)
∑

j=1

pij(1 − Pc
Loss,ij)





=
I
∑

i=1

λi

µi

viUi(

θ(i)
∑

j=1

pij)

= Jub.

Finally, since J c
s ≤ J∗,c ≤ cJub, the result then follows.

B.2 An Efficient Algorithm for Solving the Local Subproblem (3.8)

Given the implicit costs ~q, each class i solves its local subproblem (3.8) to obtain

the routing probabilities. Recall that the local subproblem is:

Bi(~qi, ~yi) = max
~pi∈Ωi







Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pijqij −
θ(i)
∑

j=1

νi

2
(pij − yij)

2vi







, (B.3)

where

Ωi , {pij ≥ 0,

θ(i)
∑

j=1

pij ≤ 1, for all j}.

Let Lj be the Lagrangian multiplier for the constraint pij ≥ 0, and let L0 be the

Lagrangian multiplier for the constraint
θ(i)
∑

j=1

pij ≤ 1. Then, the Karush-Kuhn-Tucker

condition becomes:

L0 ≥ 0, Lj ≥ 0, j = 1, ..., θ(i),

pij ≥ 0,

θ(i)
∑

j=1

pij ≤ 1, j = 1, ..., θ(i),

Ljpij = 0, L0(

θ(i)
∑

j=1

pij − 1) = 0, j = 1, ..., θ(i),
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U ′
i(

θ(i)
∑

j=1

pij)vi − riqij − νi(pij − yij)vi + Lj − L0 = 0.

Let Qij = νiyijvi − riqij. The last equation becomes:

U ′
i(

θ(i)
∑

j=1

pij)vi − νivipij + Qij + Lj − L0 = 0. (B.4)

Without loss of generality, assume that the alternate paths are ordered such that

Qi,1 ≥ Qi,2 ≥ ... ≥ Qi,θ(i). Then we can show the following:

Lemma B.3 For any 1 ≤ k ≤ j ≤ θ(i), pik ≥ pij.

Proof The result trivially holds if pij = 0. If pij > 0, we have Lj = 0. Then for

any k < j,

U ′
i(

θ(i)
∑

j=1

pij)vi − νivipij + Qij − L0 = 0, and

U ′
i(

θ(i)
∑

j=1

pij)vi − νivipik + Qik + Lk − L0 = 0.

Hence,

νivi(pik − pij) = (Qik − Qij) + Lk ≥ 0,

i.e.,

pik ≥ pij.

By the above Lemma, there must exists a number J such that

pij > 0 for any j ≤ J , and pij = 0 for any j > J.

This number J is important because once J is known, the routing probabilities pij

can be easily found. To see this, let Lj = 0 and sum (B.4) for all j ≤ J . We have,

JU ′
i(

θ(i)
∑

j=1

pij)vi − νivi

θ(i)
∑

j=1

pij +
J
∑

j=1

Qij − JL0 = 0,

0 ≤
θ(i)
∑

j=1

pij ≤ 1, L0 ≥ 0, and L0





θ(i)
∑

j=1

pij − 1



 = 0.
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Let f(x) = JU ′
i(x)vi − νivix. To find the value of

θ(i)
∑

j=1

pij, it is equivalent to solve x

and L0 such that

f(x) +
J
∑

j=1

Qij − JL0 = 0, (B.5)

where either x = 1 and L0 ≥ 0, or L0 = 0 and 0 ≤ x ≤ 1. Note that f(x) is

decreasing in x due the concavity of Ui. If

f(1) +
J
∑

j=1

Qij < 0,

then the solution to (B.5) should be some x < 1 with L0 = 0, in which case x is the

solution of

f(x) +
J
∑

j=1

Qij = 0.

Otherwise, x should be equal to 1, and

L0 =
f(1) +

∑J
j=1 Qij

J
.

In both cases, we can find the values of x =
θ(i)
∑

j=1

pij and L0 easily. Once these values

are found, we can solve the routing probabilities pij via (B.4), i.e.,

pij =







U ′
i(x)vi+Qij−L0

νivi
if j ≤ J

0 if j > J
. (B.6)

We have just shown that, once the number J is know, the routing probabilities

pij can be easily computed. It remains to find the correct value of J . We use a linear

search for finding J . We start the search by assuming J = θ(i). We then verify

whether the current value of J is correct by solving pij via the procedure described

earlier. If the values of pij are all non-negative, then J is correct. If fact, since the

solution for pij computed in (B.6) is decreasing in j, we only need to ensure that

pi,J is non-negative. On the other hand, if the verification fails, we reduce J by 1,

and verify again; until either a correct value of J is found, or J = 0 and hence all

pij should be zero.

We summarize below the algorithm for solving the subproblem (3.8):



268

1. Sort the index j such that Qij is in decreasing order.

2. Let J = θ(i) and Q =
∑θ(i)

j=1 Qij.

3. If JU ′
i(1)vi − νivi + Q < 0, then solve

JU ′
i(x)vi − νivix + Q = 0

for x1 and let L0 = 0. Otherwise, let x = 1 and

L0 =
JU ′

i(1) − νivi + Q

J
.

4. Compute

pi,J =
U ′

i(x)vi + Qi,J − L0

νivi

.

(a) If pi,J ≥ 0, then the correct value of J is found. Compute pij as

pij =







U ′
i(x)vi+Qij−L0

νivi
if j ≤ J

0 if j > J
,

and the algorithm terminates.

(b) Otherwise, let J ⇐ J − 1 and let Q ⇐ Q − Qi,J+1. If J ≥ 1, go to step 3.

If J = 0, set pij = 0 for all j and terminate.

We now summarize the complexity of the above algorithm. All steps except Step 1

and Step 4(a) are O(1), and they may need to be executed θ(i) times in the worst

case. The Step 4(a) is O(θ(1)) but it only needs to be executed once. Sorting Qi,j in

Step 1 can be executed in O(θ(i) log θ(i)) time using an efficient sorting algorithm

such as quicksort. Hence, the overall complexity is at most O(θ(i) log θ(i)).

B.3 Properties of the Stationary Point of Algorithm A

From the definition of the stationary point of algorithm A, one can establish the

following properties that characterize any stationary point towards which algorithm

A converges:

1With the choice of the utility function in Section 3.5, the solution can be written explicitly.
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Proposition B.2 Let (~p∗, ~q∗) be a stationary point of algorithm A. Define the cost

of path j of class i to be the sum of the implicit costs over all links along the path,

i.e., q∗ij =
L
∑

l=1

H l
ijq

l,∗. Let qi,0 = minj=1,...,θ(i) q∗ij denote the minimum cost among all

alternate paths of class i. Then:

1. p∗ij > 0 ⇒ q∗ij = qi,0 for all i, j.

2. Further, if the functions Ui are strictly concave, then for any two stationary

points (~p∗,1, ~q∗,1) and (~p∗,2, ~q∗,2), we have

θ(i)
∑

j=1

p∗,1ij =

θ(i)
∑

j=1

p∗,2ij for all i, and (B.7)

q∗,1i,0 = q∗,2i,0 for all i such that 0 <
θ(i)
∑

j=1

p∗,1ij < 1. (B.8)

Proof To prove Part 1, assume in the contrary that there exists a p∗
ih > 0 and there

exists another path k of the same class i such that the cost of path k is lower than

that of path h, i.e., q∗ih > q∗ik. Consider a small perturbation ~pi around ~p∗i such that:

pih = p∗ih − δ,

pik = p∗ik + δ,

pij = p∗ij if j 6= h and j 6= k,

where 0 < δ < p∗ih. Then
θ(i)
∑

j=1

pij =
θ(i)
∑

j=1

p∗ij, ~pi ∈ Ωi and







Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pijq
∗
ij −

θ(i)
∑

j=1

νi

2
(pij − p∗ij)

2vi







−







Ui(

θ(i)
∑

j=1

p∗ij)vi − ri

θ(i)
∑

j=1

p∗ijq
∗
ij −

θ(i)
∑

j=1

νi

2
(p∗ij − p∗ij)

2vi







= riδq
∗
ih − riδq

∗
ik − νiδ

2vi,

which is positive for small enough δ. This contradicts with the definition that ~p∗
i

should maximize

Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pijq
∗
ij −

θ(i)
∑

j=1

νi

2
(pij − p∗ij)

2vi
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over all ~pi ∈ Ωi. This proves Part 1.

To prove Part 2, let ~p be a convex combination of ~p∗,1 and ~p∗,2, i.e., let 0 < δ < 1

and let

~p = δ~p∗,1 + (1 − δ)~p∗,2.

Then ~p also satisfies the constraints of the upper bound (3.3) and

θ(i)
∑

j=1

pij = δ

θ(i)
∑

j=1

p∗,1ij + (1 − δ)

θ(i)
∑

j=1

p∗,2ij .

Let u0 be the optimal value of (3.3), which is achieved at both ~p∗,1 and ~p∗,2 by

definition. Due to the concavity of Ui, we have

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi ≥ δ
I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

p∗,1ij )vi + (1 − δ)
I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

p∗,2ij )vi = u0.

However, since u0 is the optimal value, only equality can hold. Hence

I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

pij)vi = δ
I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

p∗,1ij )vi + (1 − δ)
I
∑

i=1

λi

µi

Ui(

θ(i)
∑

j=1

p∗,2ij )vi.

Since Ui is strictly concave, the above equality is possible only if

θ(i)
∑

j=1

p∗,1ij =

θ(i)
∑

j=1

p∗,2ij for all i,

which proves (B.7).

Finally, to show (B.8), note again that ~p∗,1 optimizes

Ui(

θ(i)
∑

j=1

pij)vi − ri

θ(i)
∑

j=1

pijq
∗,1
ij −

θ(i)
∑

j=1

νi

2
(pij − p∗,1ij )2vi

over all ~p ∈ Ω. If 0 <
θ(i)
∑

j=1

p∗,1ij < 1, then there exists some k such that p∗,1
ik > 0.

Taking derivative of the above function with respect to pik at ~p∗,1, and setting the

derivative to zero, we have

U ′
i(

θ(i)
∑

j=1

p∗,1ij )vi − riq
∗,1
ik = 0.
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(No Lagrangian multipliers are needed here because p∗,1
ik > 0 and

θ(i)
∑

j=1

p∗,1ij < 1.) Hence,

q∗,1ik = U ′
i(

θ(i)
∑

j=1

p∗,1ij )
vi

ri

.

Since p∗,1ik > 0, by the result in Part 1, q∗,1ik is also equal to the minimum cost among

all paths of class i, i.e.,

q∗,1i,0 = U ′
i(

θ(i)
∑

j=1

p∗,1ij )
vi

ri

.

Since
θ(i)
∑

j=1

p∗,1ij =
θ(i)
∑

j=1

p∗,1ij by (B.7), we thus have q∗,1i,0 = q∗,2i,0 .
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Appendix C: Supporting Results for Chapter 4

C.1 Proof of Lemma 4.3.2

We need to use the fact that f(~x) is of the form
I
∑

i=1

fi(
θ(i)
∑

j=1

xij), and that the

Lagrangian L(~x, ~q, ~y) is given by (4.6). The maximization of the Lagrangian (in

(4.7)) is taken over ~xi ∈ Ci for all i. Since Ci is of the form in (4.3), we can

incorporate the constraint
θ(i)
∑

j=1

xij ∈ [mi,Mi] into the definition of the function fi

by setting fi(x) = −∞ when x /∈ [mi,Mi]. Then the function fi is still concave,

and the maximization of the Lagrangian L(~x, ~q, ~y) can be taken over all ~x ≥ 0.

Given ~y and ~q, we associate a Lagrange multiplier L0
ij for each constraint xij ≥ 0

in the maximization of L(~x, ~q, ~y), and let ~x0 = argmax~x≥0 L(~x, ~q, ~y). Using the

Karush-Kuhn-Tucker condition, we can conclude that, for each i, there must exist a

subgradient ∂fi(
θ(i)
∑

j=1

xij,0) of fi at
θ(i)
∑

j=1

xij,0 such that, for all j,

∂fi(

θ(i)
∑

j=1

xij,0) −
L
∑

l=1

El
ijq

l − ci(xij,0 − yij) + L0
ij = 0, and L0

ijxij,0 = 0. (C.1)

Similarly, let (~y∗, ~q∗) denote a stationary point of algorithm A. Then

~y∗ = argmax~x≥0 L(~x, ~q∗, ~y∗). Associate a Lagrange multiplier L∗
ij for each constraint

xij ≥ 0 in the maximization of L(~x, ~q∗, ~y∗). Then, for all i, j,

∂fi(

θ(i)
∑

j=1

y∗
ij) −

L
∑

l=1

El
ijq

l,∗ + L∗
ij = 0, and L∗

ijy
∗
ij = 0. (C.2)

Comparing (C.1) and (C.2) with (4.21) and (4.22), we see that

[∇f( ~x0)]ij = ∂fi(

θ(i)
∑

j=1

xij,0) + L0
ij for all i, j,

and

[∇f(~y∗)]ij = ∂fi(

θ(i)
∑

j=1

y∗
ij) + L∗

ij for all i, j,

where [·]ij is the element in [·] that corresponds to xij.
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We can now proceed with the proof of Lemma 4.3.2. Let

~x1 = argmax~x≥0 L(~x, ~q1, ~y) and ~x2 = argmax~x≥0 L(~x, ~q2, ~y). Analogously to L0
ij and

∂fi(
θ(i)
∑

j=1

xij,0), define Lij,1, ∂fi(
θ(i)
∑

j=1

xij,1) and Lij,2, ∂fi(
θ(i)
∑

j=1

xij,2) for the case when the

implicit cost vectors are ~q1 and ~q2, respectively. Then,

[

∇f(~x1) −∇f(~y∗)
]T

(~x2 − ~y∗)

=
I
∑

i=1



∂fi(

θ(i)
∑

j=1

xij,1) − ∂fi(

θ(i)
∑

j=1

y∗
ij)



 (

θ(i)
∑

j=1

xij,2 −
θ(i)
∑

j=1

y∗
ij) (C.3)

+
I
∑

i=1

θ(i)
∑

j=1

(Lij,1 − L∗
ij)(xij,2 − y∗

ij). (C.4)

Lemma 4.3.2 will follow if we can show that both of the two terms (C.3) and

(C.4) are bounded by 1
4ci

I
∑

i=1

θ(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

. We will first bound the term

(C.3). Apply equation (C.1) for ~q1 and ~q2, respectively, and take difference. We

have, for each i, j,

L
∑

l=1

El
ij(q

l
2 − ql

1)

=



∂fi(

θ(i)
∑

j=1

xij,2) − ∂fi(

θ(i)
∑

j=1

xij,1)



− ci(xij,2 − xij,1) + Lij,2 − Lij,1. (C.5)

Now fix i. Let Ji denote the set {j : xij,2 > 0 or xij,1 > 0}. Note that if xij,2 > 0 and

xij,1 = 0, then Lij,2 = 0 and Lij,1 ≥ 0. Hence, xij,2 − xij,1 > 0 and Lij,2 − Lij,1 ≤ 0.

Let

γij , − Lij,2 − Lij,1

ci(xij,2 − xij,1)
≥ 0,

then,

L
∑

l=1

El
ij(q

l
2 − ql

1) =



∂fi(

θ(i)
∑

j=1

xij,2) − ∂fi(

θ(i)
∑

j=1

xij,1)



− (1 + γij)ci(xij,2 − xij,1).

(C.6)
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Similarly, we can show that (C.6) holds for any j ∈ Ji with some appropriate choice

of γij ≥ 0. Multiplying (C.6) by 1/(1 + γij) and summing over all j ∈ Ji, we have,

for all i,

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]

=
1

γ0
i



∂fi(

θ(i)
∑

j=1

xij,2) − ∂fi(

θ(i)
∑

j=1

xij,1)



− ci(

θ(i)
∑

j=1

xij,2 −
θ(i)
∑

j=1

xij,1), (C.7)

where γ0
i , 1

P

j∈Ji

1
1+γij

, and we have used the fact that xij,2 = xij,1 = 0 for j /∈ Ji.

Let

a1 = ∂fi(

θ(i)
∑

j=1

xij,1) − ∂fi(

θ(i)
∑

j=1

y∗
ij), a2 = ∂fi(

θ(i)
∑

j=1

xij,2) − ∂fi(

θ(i)
∑

j=1

y∗
ij),

b1 =

θ(i)
∑

j=1

xij,1 −
θ(i)
∑

j=1

y∗
ij, b2 =

θ(i)
∑

j=1

xij,2 −
θ(i)
∑

j=1

y∗
ij.

Since the function fi is concave, we have a1b1 ≤ 0 and a2b2 ≤ 0. Let γi , − ciγ
0
i b1

a1
≥ 0.

(The term (C.3) will be bounded by 1
4ci

I
∑

i=1

θ(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

trivially if a1 = 0.)

Then

(1 + γi)a1b2 = (a1 − ciγ
0
i b1)b2

= [(a1 − a2) − ciγ
0
i (b1 − b2)]b2 + (a2 − ciγ

0
i b2)]b2

≤ γ0
i

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]

b2 (by (C.7))

−ciγ
0
i b

2
2 (by a2b2 ≤ 0)

≤ γ0
i

4ci

{

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]}2

(by completing the square)

≤ γ0
i

4ci

{

∑

j∈Ji

(
1

1 + γij

)2

}







∑

j∈Ji

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2






(by Cauchy-Schwarz)

≤ 1

4ci

θ(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

,
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where in the last inequality we have used

γ0
i

{

∑

j∈Ji

(
1

1 + γij

)2

}

=

∑

j∈Ji
( 1

1+γij
)2

∑

j∈Ji

1
1+γij

≤ 1.

Since 1 + γi ≥ 1, the term (C.3) (i.e., a1b2) is then bounded

by 1
4ci

I
∑

i=1

θ(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

.

To bound the term (C.4), note that xij,2 ≥ 0, Lij,1 ≥ 0, L∗
ij ≥ 0 and L∗

ijy
∗
ij =

Lij,2xij,2 = Lij,1xij,1 = 0. Therefore,

(Lij,1 − L∗
ij)(xij,2 − y∗

ij) ≤ xij,2Lij,1 ≤ xij,1Lij,2 + xij,2Lij,1

= −(Lij,2 − Lij,1)(xij,2 − xij,1).

We thus have,

θ(i)
∑

j=1

(Lij,1 − L∗
ij)(xij,2 − y∗

ij)

≤ −
θ(i)
∑

j=1

(Lij,2 − Lij,1)(xij,2 − xij,1)

≤ −
θ(i)
∑

j=1



∂fi(

θ(i)
∑

j=1

xij,2) − ∂fi(

θ(i)
∑

j=1

xij,1) + Lij,2 − Lij,1



 (xij,2 − xij,1)

(by the concavity of ∂fi)

≤ −
θ(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1) + ci(xij,2 − xij,1)

]

(xij,2 − xij,1) (by (C.5))

≤ 1

4ci

θ(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

(by completing the square).

The result of Lemma 4.3.2 then follows.

C.2 Proof of Proposition 4.3.2 for K = ∞ or 1 < K < ∞

The following lemma will be quite convenient later on.
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Lemma C.4 If

max
l

αl <
a

SL min
i

ci for some positive number a,

then

aV > ET AE and aA−1 > EV −1ET .

Proof To show the first part, let ~x be any vector,

~xT ET AE~x =
L
∑

l=1

αl





I
∑

i=1

θ(i)
∑

j=1

El
ijxij





2

≤
L
∑

l=1

αl(
I
∑

i=1

θ(i)
∑

j=1

El
ij)





I
∑

i=1

θ(i)
∑

j=1

El
ijx

2
ij



 ≤ S
I
∑

i=1

θ(i)
∑

j=1

[

L
∑

l=1

αlEl
ij

]

x2
ij

≤ SLmax
l

αl

I
∑

i=1

θ(i)
∑

j=1

x2
ij.

Hence a sufficient condition for aV − ET AE to be positive definite is

max
l

αl <
a

SL min
i

ci.

The second part can be shown analogously.

Now we can proceed with the proof of Proposition 4.3.2 for K = ∞ or 1 < K <

∞.

The Case with K = ∞:

We only need to show that the step A1 converges. The convergence of the en-

tire algorithm A then follows the standard results on Proximal Optimization Al-

gorithms [64, p233]. Fix ~y(t). Let ~q0 denote a stationary point of (4.10) in step

A1. Let ~x0 be the corresponding prime variables. Note that ~x0 is unique and

~x0 = argmax~x L(~x, ~q0, ~y(t)). Using the property of the projection mapping [64,

Proposition 3.2(c), p211], we have
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||~q(t, k + 1) − ~q0||A
= ||

[

~q(t, k) + A(E~x(t, k) − R)
]+

−
[

~q0 + A(E ~x0 − R)
]+

||A
≤ ||

[

~q(t, k) + A(E~x(t, k) − R)
]

−
[

~q0 + A(E ~x0 − R)
]

||A
= || [~q(t, k) − ~q0] + AE(~x(t, k) − ~x0)||A
= ||~q(t, k) − ~q0||A + (~x(t, k) − ~x0)T ET AE(~x(t, k) − ~x0)

+2(~q(t, k) − ~q0)
T E(~x(t, k) − ~x0).

By Lemma 4.3.1, part 1,

(~q(t, k) − ~q0)
T E(~x(t, k) − ~x0) ≤ −(~x(t, k) − ~x0)T V (~x(t, k) − ~x0).

Hence, if we can ensure that

C0 = 2V − ET AE

is positive definite, then

||~q(t, k + 1) − ~q0||A ≤ ||~q(t, k) − ~q0||A − (~x(t, k) − ~x0)T C0(~x(t, k) − ~x0) (C.8)

≤ ||~q(t, k) − ~q0||A.

Therefore, ||~q(t, k)− ~q0||A, k = 1, 2, ... is a nonnegative and decreasing sequence, and

hence must have a limit. Then by (C.8), ~x(t, k) → ~x0 as k → ∞. By Lemma C.4, a

sufficient condition for C0 to be positive definite is

max
l

αl <
2

SL min
i

ci.

The Case with K > 1:

Let (~y∗, ~q∗) be any stationary point of algorithm A. We only need to show that

the following inequality holds: for sufficiently small step-sizes αl, l = 1, ..., L,

||~q(t + 1) − ~q∗||A + K||~y(t + 1) − ~y∗||BV − (||~q(t) − ~q∗||A + K||~y(t) − ~y∗||BV )

≤ −(~q(t + 1) − ~q(t))T C2(~q(t + 1) − ~q(t)) − ||~y(t) − ~x(t)||V (C.9)
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for some positive definite matrix C2. This corresponds to the inequality (4.44) for

the case when K = 1. The proof then follows along the same line as the case when

K = 1.

To show (C.9), we start from (4.35). For each k = 0, 1, ...K,

||~q(t, k + 1) − ~q∗||A − ||~q(t, k) − ~q∗||A
≤ −||~q(t, k + 1) − ~q(t, k)||A + 2(~q(t, k + 1) − ~q∗)T (E~x(t, k) − R). (C.10)

Since for any k ≤ K − 2,

~q(t, k + 1) − ~q∗ = ~q(t,K) − ~q∗ − (~q(t,K) − ~q(t, k + 1))

= ~q(t,K) − ~q∗ −
K−1
∑

m=k+1

γmA(E~x(t,m) − R),

where γm reflects the “truncation” when the implicit costs are projected to R+ and

0 ≤ γm ≤ 1. Hence,

2(~q(t, k + 1) − ~q∗)T (E~x(t, k) − R) (C.11)

= 2(~q(t,K) − ~q∗)T (E~x(t, k) − R) − 2
K−1
∑

m=k+1

γm(E~x(t,m) − R)T A(E~x(t, k) − R).

If we choose αl such that

max
l

αl <
1

KSL min
i

ci, (C.12)

then by Lemma C.4, ET AE < 1
K

V. Hence,

−2
K−1
∑

m=k+1

γm(E~x(t,m) − R)T A(E~x(t, k) − R)

≤ 1

2

K−1
∑

m=k+1

γm(~x(t,m) − ~x(t, k))T ET AE(~x(t,m) − ~x(t, k))

≤ 1

2K

K−1
∑

m=k+1

||~x(t,m) − ~x(t, k)||V

≤ 1

2K

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1E(~q(t,m) − ~q(t, k)), (C.13)
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where in the last step we have used the result in part 2 of Lemma 4.3.1. Further,

since (~y∗, ~q∗) is a stationary point of algorithm A, E ~y∗−R ≤ 0 and ~q∗
T
(E ~y∗−R) = 0.

Combining this, (C.11) and (C.13) into (C.10), we have,

||~q(t, k + 1) − ~q∗||A − ||~q(t, k) − ~q∗||A
≤ −||~q(t, k + 1) − ~q(t, k)||A + 2(~q(t,K) − ~q∗)T E(~x(t, k) − ~y∗)

+
1

2K

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1E(~q(t,m) − ~q(t, k)).

Summing over all k = 0, 1, ...K − 1, we have

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A + 2
K−1
∑

k=0

(~q(t,K) − ~q∗)T E(~x(t, k) − ~y∗)

+
1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k)).

Therefore, using (4.37) and (4.40), we have,

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV )

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A

+

{

K||~z(t) − ~y∗)||V − K||~y(t) − ~y∗||V − 2
K−1
∑

k=0

(~z(t) − ~y(t))T V (~x(t, k) − ~y∗)

}

(C.14)

+2
K−1
∑

k=0

(∇f(~z(t) −∇f(~y∗))T (~x(t, k) − ~y∗) (C.15)

+
1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k)).

The second term (C.14) on the right hand side can be bounded by

K||~z(t) − ~y∗)||V − K||~y(t) − ~y∗||V − 2
K−1
∑

k=0

(~z(t) − ~y(t))T V (~x(t, k) − ~y∗)

= −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V +
K−1
∑

k=0

||~z(t) − ~x(t, k)||V
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≤ −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V +
K−1
∑

k=0

(~q(t,K) − ~q(t, k))T EV −1ET (~q(t,K) − ~q(t, k)),

where in the last step we have used the result in part 2 of Lemma 4.3.1. For the

third term (C.15), by Lemma 4.3.2,

2
K−1
∑

k=0

(∇f(~z(t) −∇f(~y∗))T (~x(t, k) − ~y∗)

≤
K−1
∑

k=0

(~q(t, k) − ~q(t,K))T EV −1ET (~q(t, k) − ~q(t,K)).

Substituting them back to (C.14) and (C.15), we have

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV )

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V

+2
K−1
∑

k=0

(~q(t, k) − ~q(t,K))T EV −1ET (~q(t, k) − ~q(t,K)) (C.16)

+
1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k)). (C.17)

Note that

~q(t,K) − ~q(t, k) =
K−1
∑

m=k

~q(t,m + 1) − ~q(t,m).

Using the Cauchy-Schwarz inequality, we can show that the term in (C.16) is equal

to

2
K−1
∑

k=0

(~q(t, k) − ~q(t,K))T EV −1ET (~q(t, k) − ~q(t,K))

≤ 2
K−1
∑

k=0

(K − k)
K−1
∑

m=k

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m))

= 2
K−1
∑

m=0

[

m
∑

k=0

(K − k)

]

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m))

≤ K(K + 1)
K−1
∑

m=0

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m)).
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Similarly, the term in (C.17) is equal to

1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k))

≤ 1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(m − k)
m−1
∑

n=k

(~q(t, n + 1) − ~q(t, n))T EV −1E(~q(t, n + 1) − ~q(t, n))

=
1

2K

K−2
∑

k=0

K−2
∑

n=k
[

K−1
∑

m=n+1

(m − k)

]

(~q(t, n + 1) − ~q(t, n))T EV −1ET (~q(t, n + 1) − ~q(t, n))

≤ 1

2K

K−2
∑

n=0

n
∑

k=0

K(K − 1)

2
(~q(t, n + 1) − ~q(t, n))T EV −1ET (~q(t, n + 1) − ~q(t, n))

≤ K(K + 1)

4

K−2
∑

n=0

(~q(t, n + 1) − ~q(t, n))T EV −1ET (~q(t, n + 1) − ~q(t, n)).

Hence,

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV )

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V

+
5K(K + 1)

4

K−1
∑

m=0

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m)).

Therefore, in order to have

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV ) ≤ 0,

it is sufficient to let

C2 = A−1 − 5K(K + 1)

4
EV −1ET

be positive definite and to satisfy (C.12). By Lemma C.4, a sufficient condition is

max
l

αl <
4

5K(K + 1)SL min
i

ci,

which also satisfies (C.12) automatically.
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C.3 Proof of Proposition 4.4.1

For the sake of brevity, we will drop the subscripts and write matrices A,B instead

of A0, B0. We will follow the line of proof of Proposition 4.3.2 as in Section 4.3. Since

(4.10) is replaced by (4.48), the inequality (4.34) should also be replaced by

(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − [~q(t) + ηtA(E~x(t) − R + N(t))]) ≤ 0.

Hence, following the techniques in the proof of Proposition 4.3.2, we have,

||~q(t + 1) − ~q∗||A
= ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − ~q(t))

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2ηt(~q(t + 1) − ~q∗)T (E~x(t) − R)

+2ηt(~q(t + 1) − ~q∗)T N(t)

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2ηt(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗)

+2ηt(~q(t + 1) − ~q∗)T N(t). (C.18)

Let Ft be the σ-algebra generated by ~x(s), ~y(s) and ~q(s) for all s ≤ t. Then

E[(ql(t + 1) − ql,∗)nl(t)|Ft]

= E











[

ql(t) + ηtα
l(

I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t) − Rl)

]+

− ql,∗







nl(t)|Ft





+E











[

ql(t) + ηtα
l(

I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t) − Rl) + ηtα

lnl(t)
]+

−
[

ql(t) + ηtα
l(

I
∑

i=1

θ(i)
∑

j=1

El
ijxij(t) − Rl)

]+







nl(t)|Ft



 .

By (4.49), the first expectation is zero. Hence,

E[(ql(t + 1) − ql,∗)nl(t)|Ft] ≤ E[ηtα
l(nl(t))2|Ft].

Combining (4.37-4.43) and (C.18), we have,

E[||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV |Ft]
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≤ E
[

||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV

−(~q(t + 1) − ~q(t))T (A−1 − 2ηtEV −1ET )(~q(t + 1) − ~q(t))

−ηt||~y(t) − ~x(t)||V + ηt(~q(t + 1) − ~q∗)T N(t)|Ft

]

.

Without loss of generality, we can assume that ηt is small enough such that A−1 −
2ηtEV −1ET is positive definite. Therefore,

E[||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV |Ft]

≤ ||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV + ηt
2E[N(t)T AN(t)|Ft].

By condition (4.50),
∑

t

ηt
2E[N(t)T AN(t)] < ∞.

Hence, by [131, Lemma 1.10, p9], there exists a non-negative number V0 < ∞ such

that

||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV → V0, (C.19)

as t → ∞.

It remains to show that V0 = 0 for some choice of the stationary point ( ~y∗, ~q∗).

Analogous to the proof of Proposition 4.3.2 in Section 4.3, we need to show that there

exists a limit point of (~y(t), ~q(t)) that is also a stationary point of the algorithm.

The existence of such a limit point is unfortunately harder to establish than in

Proposition 4.3.2. The reason is that, when A in (4.46) is replaced by ηtA, the

properties in (4.47) no longer necessarily hold. To circumvent this difficulty, we use

the techniques of [66] to find such a limit point. Let st =
∑t−1

m=0 ηm, and define the

functions ~y 0(s) and ~q 0(s) by

~y 0(s) = ~y(t) and ~q 0(s) = ~q(t) if s = st ,

and by linear interpolation for all other value of s. Define the left-shifted process

(~y t(s), ~q t(s)) by

~y t(s) = ~y 0(s + st) and ~y t(s) = ~y 0(s + st).
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Then (~y t(s), ~q t(s)) defines a sequence of continuous functions of s. Following [66],

we can show that there exists a subsequence (~y th(s), ~q th(s)) that converges uniformly

on finite intervals to a continuous function (~̃y(s), ~̃q(s)), which satisfies the ordinary

differential equations (4.14) and (4.15). By Proposition 4.3.1, (~̃y(s), ~̃q(s)) converges

to a stationary point of the algorithm as s → ∞. Let (~y0, ~q0) denote this stationary

point. Then the fact that (~y th(s), ~q th(s)) converges to (~̃y(s), ~̃q(s)) uniformly on finite

intervals implies that (~y0, ~q0) is also a limit point of the sequence (~y(t), ~q(t)), t =

1, 2, ... We can then replace (~y∗, ~q∗) by (~y0, ~q0) in (C.19) and obtain

||~q(t) − ~q0||A + ||~y(t) − ~y0||BV → 0.

The result then follows.

C.4 The Transfer Function from N(t) to ~x(t)

Without loss of generality, assume that xij(t) > 0 for all i, j, and ql(t) > 0 for all

l. Since

~xi(t) = argmax
~xi







fi(

θ(i)
∑

j=1

xij) −
θ(i)
∑

j=1

xijqij(t) −
θ(i)
∑

j=1

ci

2
(xij − yij(t))

2







,

we have,

f ′
i(

θ(i)
∑

j=1

xij(t)) − qij(t) − ci(xij(t) − yij(t)) = 0 for all i, j. (C.20)

Assume that the problem (4.1) has a unique solution. Linearize the system around

this stationary point, i.e.,

xij(t) = y∗
ij + x̃ij(t),

yij(t) = y∗
ij + ỹij(t),

ql(t) = ql,∗ + q̃l(t), and

qij(t) = q∗ij + q̃ij(t) =
I
∑

i=1

θ(i)
∑

j=1

El
ijq

l,∗ +
I
∑

i=1

θ(i)
∑

j=1

El
ij q̃

l(t).
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We obtain,

f ′′
i (

θ(i)
∑

j=1

y∗
ij)

θ(i)
∑

j=1

x̃ij(t) − q̃ij(t) − ci(x̃ij(t) − ỹij(t)) = 0.

Summing over all j, we have,

θ(i)f ′′
i (

θ(i)
∑

j=1

y∗
ij)

θ(i)
∑

j=1

x̃ij(t) −
θ(i)
∑

j=1

q̃ij(t) − ci(

θ(i)
∑

j=1

x̃ij(t) −
θ(i)
∑

j=1

ỹij(t)) = 0.

Therefore,

θ(i)
∑

j=1

x̃ij(t) =

θ(i)
∑

j=1

q̃ij(t) − ci

θ(i)
∑

j=1

ỹij(t)

θ(i)f ′′
i (

θ(i)
∑

j=1

y∗
ij) − ci

.

We can then solve for each x̃ij(t) by

x̃ij(t) = ỹij(t) +
1

ci



f ′′
i (

θ(i)
∑

j=1

y∗
ij)

θ(i)
∑

j=1

x̃ij(t) − q̃ij(t)





= ỹij(t) +
1

ci











f ′′
i (

θ(i)
∑

j=1

y∗
ij)

θ(i)f ′′
i (

θ(i)
∑

j=1

y∗
ij) − ci)





θ(i)
∑

j=1

q̃ij(t) − ci

θ(i)
∑

j=1

ỹij(t)



− q̃ij(t)











.

(C.21)

When there is measurement noise nl(t) at each link l, we can get the linearization

of (4.14) and (4.15) as

d

dt
q̃l(t) = α̂l





I
∑

i=1

θ(i)
∑

j=1

El
ijx̃ij(t) + nl(t)



 (C.22)

d

dt
ỹij(t) = β̂i(x̃ij(t) − ỹij(t). (C.23)

Let Q(s),Y(s),X (s),N (s) denote the Laplace transforms of the perturbation of ~q(t),

~y(t), ~x(t), and the noise N(t), respectively. Taking Laplace transform of (C.21-C.23),

and using the fact that q̃ij(t) =
I
∑

i=1

θ(i)
∑

j=1

El
ij q̃

l(t), we have,

sQ(s) = Â(EX (s) + N (s))

sY(s) = B̂(X (s) − Y(s))

X (s) = Y(s) + V −1
[

G(ETQ− V Y) − ETQ
]

,
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where G = diag{Gi, i = 1, ..., I}, and each Gi is a θ(i) × θ(i) matrix whose terms

are all

gi =

f ′′
i (

θ(i)
∑

j=1

y∗
ij)

θ(i)f ′′
i (

θ(i)
∑

j=1

y∗
ij) − ci

.

From the above set of equations, we can solve for X (s) as

X (s) = H(s)N (s)

with

H(s) = −
{

B̂−1sI + G + V −1(I − G)
ET ÂE

s
B̂−1(sI + B̂)

}−1

× B̂−1(sI + B̂)V −1(I − G)
ET Â

s
,

where I is the
I
∑

i=1

θ(i) ×
I
∑

i=1

θ(i) identity matrix.
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Appendix D: Supporting Results for Chapter 5

D.1 Proof of Proposition 5.4.1

We will need the following lemma on the minimum distance from the mobile

relays to the destination at any time slot. Fix a bit b that enters into the system

at time slot t0(b). At each time slot t ≥ t0(b), recall that rb(t) is the number of

mobile relays holding the bit b at the beginning of the time slot. Among these rb(t)

mobile relays, there is one mobile relay whose distance to the destination of bit b is

the smallest. Let L̃b(t) denote this minimum distance, and let

Lb(t) = max{ 1

n2
, L̃b(t)}. (D.1)

Lemma D.5 Under the i.i.d. mobility model, if n ≥ 3, then

E

[

1

L2
b(t)rb(t)

|Ft−1

]

≤ 8π log n for all t ≥ t0(b).

Proof Let IA be the indicator function on the set A. By the definition of Lb(t), we

have,

E

[

1

L2
b(t)

|Ft−1

]

= E
[

n4I{L̃b(t)≤ 1
n2 }|Ft−1

]

+E

[

1

L̃2
b(t)

I{L̃b(t)>
1

n2 }|Ft−1

]

.

Since the nodes move on a unit square, L̃b(t) ≤
√

2. Hence,

E

[

1

L̃2
b(t)

I{L̃b(t)>
1

n2 }|Ft−1

]

=

∫

√
2

1
n2

1

u2
dP[L̃b(t) ≤ u|Ft−1]

=
1

u2
P[L̃b(t) ≤ u|Ft−1]|

√
2

1
n2

−
∫

√
2

1
n2

P[L̃b(t) ≤ u|Ft−1]d
1

u2

=
1

2
− n4P[L̃b(t) ≤

1

n2
|Ft−1] +

∫

√
2

1
n2

2

u3
P[L̃b(t) ≤ u|Ft−1]du.
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Hence,

E

[

1

L2
b(t)

|Ft−1

]

=
1

2
+

∫

√
2

1
n2

2

u3
P[L̃b(t) ≤ u|Ft−1]du.

Let ρb be the distance from any one mobile node to the destination of the bit b.

Then, due to the i.i.d. mobility model, we have,

P[ρb ≤ u|Ft−1] ≤ πu2,

and,

P[L̃b(t) ≤ u|Ft−1] ≤ 1 − (1 − πu2)rb(t)

≤ πrb(t)u
2.

Therefore,

E

[

1

L2
b(t)

|Ft−1

]

=
1

2
+

∫

√
2

1
n2

2

u3
P[L̃b(t) ≤ u|Ft−1]du

≤ 1

2
+

∫

√
2

1
n2

πrb(t)
2

u
du

=
1

2
+ 2πrb(t) log u|

√
2

1
n2

=
1

2
+ 2πrb(t)(log

√
2 + 2 log n)

≤ 8πrb(t) log n,

when n ≥ 3. Finally, since rb(t) is Ft−1-measurable, we have

E

[

1

L2
b(t)rb(t)

|Ft−1

]

=
1

rb(t)
E

[

1

L2
b(t)

|Ft−1

]

≤ 8π log n.

Proof [of Proposition 5.4.1] Let

Vt = 8π log n [t − t0(b)] −
t
∑

s=t0(b)+1

1

L2
b(s)rb(s)

I{Cb(s)=1},
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Then for all t ≥ t0(b), Vt is also Ft-measurable and Vt0(b) = 0. By Lemma D.5, we

have

E[Vt − Vt−1|Ft−1]

= 8π log n − E

[

1

L2
b(t)rb(t)

I{Cb(t)=1}|Ft−1

]

≥ 8π log n − E

[

1

L2
b(t)rb(t)

|Ft−1

]

≥ 0.

Hence,

E[Vt|Ft−1] ≥ Vt−1,

i.e., Vt is a sub-martingale. Recall that sb , min{t : t ≥ t0(b) and Cb(t) = 1} denotes

the first time when a successful capture for bit b occurs. Since sb is a stopping time,

by appropriately invoking the Optional Stopping Theorem [88, p249, Theorem 4.1],

we have,

E[Vsb
] ≥ 0.

Hence, substituting Db , sb− t0(b), Rb , rb(sb), Cb(sb) = 1 and Cb(t) = 0 for t < sb,

we have,

8π log nE[Db] ≥ E

[

1

L2
b(sb)Rb

]

.

Using Hőlder’s Inequality [88, p15],

E2[
1

Lb(sb)
] ≤ E[Rb]E[

1

L2
b(sb)Rb

],

we thus have,

8π log nE[Db] ≥ E2[
1

Lb(sb)
]

1

E[Rb]

≥ 1

E2[Lb(sb)]E[Rb]
.

Finally, recall that lb , l̃b(sb) denotes the distance from the last mobile relay node

to the destination. By definition (D.1),

lb = l̃b(sb) ≥ Lb(sb) −
1

n2
,
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therefore,

8π log nE[Db] ≥
1

(E[lb] + 1
n2 )2E[Rb]

.

D.2 Proof of Proposition 5.4.3

The next Lemma will be used frequently in the proof of

Propositions 5.4.3 and 5.6.1. Consider an experiment where we randomly throw

n balls into m ≤ n urns. The probability that each ball j enters urn i is p
m

and is

independent of the position of other balls. Thus, p ≤ 1 is the success probability that

the ball is thrown into any one of the urns. Let Bi, i = 1, ...m be the number of balls

in urn i after n balls are thrown. It is obvious that E[Bi] = np
m

. The following Lemma

shows that, when n is large, the probability that any Bi deviates substantially from

its mean will be very small.

Lemma D.6 As n → ∞,

1) If np
m

≥ c log n and c ≥ 8, then

P[Bi = 0 for any i] = O(
1

n3
).

2) If np
m

≥ c log n and c ≥ 16, then

P[Bi ≥ 2
np

m
for any i] ≤ 1

n3
.

3) If np
m

≤ c log n and c ≥ 16, then

P[Bi ≥ 2c log n for any i] ≤ 1

n3
.

4) If np
m

≤ cnα, where c > 0 and α > 0, then

P[Bi ≥ 2cnα for any i] = O(
1

n3
).
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Proof To prove part 1, note that for any i,

P[Bi = 0] =
[

1 − p

m

]n

≤
[

1 − 8 log n

n

]n

=

[

1 − 8 log n

n

] n
8 log n

8 log n

.

Since limx→0(1 − x)1/x = 1/e, we have

[

1 − 8 log n

n

] n
8 log n

≤ 1√
e

for large n.

Hence, for large n,

P[Bi = 0] ≤
[

1√
e

]8 log n

=
1

n4
.

Therefore,

P[Bi = 0 for any i ] ≤ n
1

n4
= O(

1

n3
).

To prove the other parts, we use known results on the characteristic function of

Bernoulli random variables. For any θ > 0, we have

E[eθBi ] =
[

eθ p

m
+ (1 − p

m
)
]n

=
[

1 + (eθ − 1)
p

m

]n

≤ exp
[np

m
(eθ − 1)

]

for all urn i,

where in the last step we have used the inequality that

(1 + x)
1
x ≤ e for x > 0.

Using the Markov Inequality [88, p15], for any y > 0,

P[Bi ≥ y] ≤ E[eθBi ]

eθy

≤ exp
[np

m
(eθ − 1) − θy

]

.
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Hence, by the union bound

P[Bi ≥ y for any i] ≤ n exp
[np

m
(eθ − 1) − θy

]

.

To prove part 2, let y = 2np
m

, hence

P[Bi ≥ y for any i] ≤ n exp
[np

m
(eθ − 1) − θy

]

= n exp
[np

m
(eθ − 1 − 2θ)

]

.

Let θ = log 2, then

eθ − 1 − 2θ = −(2 log 2 − 1) = −0.386 ≤ −1

4
. (D.2)

Hence, when np
m

≥ c log n and c ≥ 16, we have

P[Bi ≥ y for any i] ≤ n exp
[

− c

4
log n

]

≤ n
1

n4
=

1

n3
.

To prove part 3, let y = 2c log n. Since np
m

≤ c log n and θ > 0, we have,

P[Bi ≥ y for any i] ≤ n exp
[np

m
(eθ − 1) − θy

]

≤ n exp
[

c log n(eθ − 1 − 2θ)
]

.

Let θ = log 2, then using (D.2), we have

P[Bi ≥ y for any i] ≤ n exp
[

− c

4
log n

]

≤ n
1

n4
=

1

n3
.

To prove part 4, let y = 2cnα. Since np
m

≤ cnα and θ > 0, we have,

P[Bi ≥ y for any i] ≤ n exp
[np

m
(eθ − 1) − θy

]

≤ n exp
[

cnα(eθ − 1 − 2θ)
]

.

Let θ = log 2, then using (D.2), we have

P[Bi ≥ y for any i] ≤ n exp
[

− c

4
nα
]

≤ O(
1

n3
).
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Proof [of Proposition 5.4.3] At each time slot t, an opportunistic broadcast

scheme has to determine how to replicate each bit b to a larger number of mobile

nodes. Some of the mobile nodes that already have the bit b have to be selected to

transmit the bit b, and some of the other mobile nodes have to be selected to receive

the bit.

Let vb(t, i) be the distance from a node i that is chosen to transmit the bit b at

time slot t, to the furthest node that is chosen to receive the bit directly from node

i (vb(t, i) = 0 if node i is not chosen to transmit the bit or if the bit b has cleared

the system). Let ub(t, i) be the number of mobile nodes that are chosen to receive

the bit b directly from node i and that do not have the bit b prior to time slot t

(ub(t, i) = 0 if vb(t, i) = 0). Then ub(t, i) is bounded from above by the number of

nodes covered by a disk of radius vb(t, i) centered at node i. It is easy to verify that

Rb − 1 =
T
∑

t=1

n
∑

i=1

ub(t, i).

Fix a time slot t. We next bound the number of nodes that are covered by each

disk of radius vb(t, i) centered at node i. We divide the unit square into g4(n) =

b
(

n
16 log n

) 1
2 c2 cells (in

√

g4(n) rows and
√

g4(n) columns). Each cell is a square

of area 1/g4(n). Let Bi be the number of nodes in cell i, i = 1, ..., g4(n). Then

E[Bi] = n
g4(n)

. When n is large, we have

16 log n ≤ n

g4(n)
≤ 32 log n.

Let A be the event that

Bi ≤
2n

g4(n)
for all i = 1, ..., g4(n).

By part 2 of Lemma D.6, P[Ac] ≤ 1/n3, Now consider each disk of radius vb(t, i).

We need at most
[

2vb(t, i)
√

g4(n) + 2
]2

cells to completely cover the disk. Hence, if event A occurs, the number of nodes in

the disk of radius vb(t, i) will be bounded from above by
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[

2vb(t, i)
√

g4(n) + 2
]2 2n

g4(n)
≤ 16nv2

b (t, i) +
16n

g4(n)

≤ 16nv2
b (t, i) + 512 log n.

Note that the above relationship holds for all b and i. Let c7 = 16/π, and c8 = 512.

Since ub(t, i) is no greater than the number of nodes covered by the disk of radius

vb(t, i), we have,

P

[

ub(t, i)

n
> c7πv2

b (t, i) + c8
log n

n
for any b, i

]

≤ P[Ac] ≤ 1

n3
.

Fix a bit b. Let B be the event that

ub(t, i)

n
≤ c7πv2

b (t, i) + c8
log n

n
for all i and t = t0(b), ..., t0(b) + c2n

2.

Then,

P[Bc] ≤ 1

n3
c2n

2 =
c2

n
.

Since ub(t, i) ≤ n, we have

E

[

ub(t, i)

n

]

= E

[

ub(t, i)

n
I{B}

]

+ E

[

ub(t, i)

n
I{Bc}

]

≤ E

[

c7πv2
b (t, i) + c8

log n

n

]

+ P[Bc]

≤ c7πE[v2
b (t, i)] + c8

log n

n
+

c2

n

≤ c7πE[v2
b (t, i)] + (c8 + 1)

log n

n

when n ≥ max{N0, exp(c2)},
We now use the idea in Section 5.4 that disks of radius ∆

2
times the transmission

range centered at the transmitter are disjoint from each other. For each unicast

transmission (i.e., the transmission over each hop Sh
b ), the transmission range is just

Sh
b . For broadcast, the transmission range is the distance from the transmitter to

the furthest node that can successfully receive the bit, i.e. vb(t, i). By counting the

area covered by all the disks, we have

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

π
∆2

4
v2

b (t, i) +
λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2 ≤ WT. (D.3)
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Since there are at most n nodes that can serve as transmitters at any time, we have

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

I{vb(t,i)>0} ≤ WTn.

Hence,

λnT
∑

b=1

E[Rb] − 1

n
= E

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

ub(t, i)

n

]

≤ c7πE

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

v2
b (t, i)

]

+(c8 + 1)E

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

log n

n
I{vb(t,i)>0}

]

≤ c7πE

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

v2
b (t, i)

]

+ (c8 + 1)WT log n. (D.4)

Substituting (D.4) into (D.3), we have

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+

λnT
∑

b=1

hb
∑

h=1

π∆2

4
E[(Sh

b )2]

≤
{

c7E

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

π
∆2

4
v2

b (t, i)

]

+
λnT
∑

b=1

hb
∑

h=1

π∆2

4
E[(Sh

b )2]

}

+
(c8 + 1)∆2

4
WT log n

≤ c7WT +
(c8 + 1)∆2

4
WT log n

≤ (c8 + 2)∆2

4
WT log n,

when n ≥ max{N0, exp(c2), exp(4c7
∆2 )}.

D.3 Proof of Lemma 5.6.1

We can group all cells into c4 = b2∆+6c2 lattices. Each lattice consists of nodes

that are b2∆ + 6c/m apart along the X-axis or the Y-axis (see Fig.5.2). The cells of

each lattice can be active at the same time since

• the transmission range from a node to a neighboring node is at most 2/m, and
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• any interfering transmitters are at least (2∆ + 2)/m distance away from the

receiver.

We can schedule the c4 lattices in a round-robin fashion and each lattice is active for

1/c4 amount of time.

D.4 Proof of Proposition 5.6.1

We only need to show that the probabilities of errors of all types will go to zero

as n → ∞. We first study Type-I errors that may occur in the odd super-frame. Fix

a sending time slot t in the odd super-frame, t = 1, ..., bndc. Let zj(t) denote the

number of nodes in the sending cell j at the sending time slot t, j = 1, ..., g1(n). Let

pI(t) be the probability that a Type-I error occurs at time slot t, i.e.,

pI(t) = P[zj(t) ≥ 64n(1−d)/3 log n for any j].

Equivalently, we can consider the experiment that we throw n balls into g1(n) urns

with success probability p = 1 (see Lemma D.6). Since the average number of nodes

in each sending cell is

n

g1(n)
≤ 32n(1−d)/3 log n, when n is large,

using part 4 of Lemma D.6, we have,

pI(t) = P[xj ≥ 64n(1−d)/3 log n for any j]

≤ O(1/n3).

Finally, the probability pI that Type-I errors occurs at any of the bndc sending time

slots in the odd super-frame is

pI ≤ bndcpI(t) ≤ O(1/n2).

We next study errors of Type-II. Fix a packet k. Let S(k) and T (k) denote

the source node and the destination node, respectively, of packet k. Let t denote
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the sending time slot at which packet k is broadcasted into the system. Pick any

mobile relay node i 6= S(k), T (k). The probability that node i holds the packet k,

i.e., node i resides in the same sending cell as the source node S(k) at sending time

slot t, is 1/g1(n). Conditioned on the event that node i holds the packet k, for any

receiving time slot t′ in the even super-frame, the probability that node i captures

the destination node T (k) of packet k at time slot t′, i.e., node i resides in the same

receiving cell as the destination node T (k) at time slot t′, is 1/g2(n). Note that

there are bndc receiving time slots and the distribution of the position of node i is

independent across receiving time slots. Hence, the probability that node i captures

the destination node T (k) of packet k in any of the bndc receiving time slots is

p =
1

g1(n)

[

1 −
(

1 − 1

g2(n)

)bndc
]

. (D.5)

Since d < 1 and
bndc
g2(n)

→ 0, as n → ∞,

it is easy to show that,

1 −
(

1 − 1
g2(n)

)bndc

bndc
g2(n)

→ 1, as n → ∞.

Hence, when n is large,

p ≥ 2

3

bndc
g1(n)g2(n)

.

Further, there are (n − 2) nodes (other than S(k) and T (k)) that can potentially

serve as mobile relays for packet k, and the distribution of the positions of these

(n − 2) nodes are again independent from each other. Let pII(k) be the probability

that a Type-II error occurs for packet k, i.e., pII(k) is the probability that none of

these (n− 2) nodes capture the destination node T (k) of packet k in any of the bndc
receiving time slots. Equivalently, we can consider the experiment that we throw

(n−2) balls into one urn with success probability p given by (D.5). When n is large,

the average number of balls in the urn is

(n − 2)p ≥ 1

2

n(1+d)

g1(n)g2(n)
≥ 8 log n.
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Hence, by part 1 of Lemma D.6, the probability pII(k) that the urn is empty is

pII(k) ≤ O(1/n3).

Since there are a total of nbndc distinct packets in every two super-frames, the

probability pII that Type-II errors occur for any of these packets is

pII ≤ nbndcO(1/n3) ≤ O(1/n).

Hence, with probability (1 − pI − pII) approaching one as n → ∞, each packet

will have at least one opportunity to be carried into the same receiving cell as its

destination node. We now show that these packets can then be delivered successfully

to their destination nodes by eliminating Type-III errors with high probability. Let

pIII denote the probability that Type-III errors occur at any of the receiving cells

in any of the bndc receiving time slots. We need to specify how to schedule the

hop-by-hop transmissions from the mobile relays to the destination nodes within

each receiving cell. Fix a receiving time slot t, and fix a receiving cell j. Let

Yj(t) denote the set of packets that meet the criteria for capture in the receiving

cell j at receiving time slot t. We will refer to these packets in the set Yj(t) as

the active packets in receiving cell j at time slot t. We divide the receiving cell j

into g3(n) = b
(

n(2−2d)/3

8 log n

) 1
2 c2 mini-cells (in

√

g3(n) rows and
√

g3(n) columns, see

Fig. 5.5). Each mini-cell is a square of area 1/(g2(n)g3(n)). By Lemma 5.6.1, there

exists a scheduling scheme where each mini-cell can be active for 1
c4

amount of time.

When each mini-cell is active, it forwards an active packet (or a part of the packet)

to one other node in the neighboring mini-cell. If the destination of the active packet

is in the neighboring cell, the packet is forwarded directly to the destination node.

The active packets from each mobile relay are first forwarded towards neighboring

cells along the X-axis, then to their destination nodes along the Y-axis (see Fig. 5.5).

The above scheduling scheme can successfully forward all active packets in Yj(t)

from the mobile relays to the destination nodes in the same receiving cell provided

that:



299

• Each mini-cell contains at least one node. Hence, each node can always find

some node in the neighboring mini-cell to serve as static relays.

• The number of active packets that go through any mini-cell is bounded by

4096n(1−d)/3 log3/2 n. Because each packet is of length W

4096c4n(1−d)/3 log3/2 n
, each

mini-cell thus only needs to be active for at most 1
c4

amount of time, which is

always possible by Lemma 5.6.11.

In order to show that pIII (the probability of Type-III errors) goes to zero as

n → ∞, we only need to show that, with probability approaching one, both of the

above conditions will hold for all receiving cells and for all receiving time slots. To

show this, we will take four steps.

Step 1: We first bound the number of nodes in any mini-cell. Fix a receiving

time slot t. Note that the average number of nodes in each mini-cell is

n

g2(n)g3(n)
≥ 8 log n.

Let pa
III(t) be the probability that any of the g2(n)g3(n) mini-cells in the network are

empty at receiving time slot t. Equivalently, we can consider the experiment that

we throw n balls into g2(n)g3(n) urns with success probability p = 1. Then, by part

1 of Lemma D.6,

pa
III(t) = O(1/n3).

Hence, the probability pa
III that any mini-cells are empty in any of the bndc receiving

time slots is

pa
III ≤ bndcO(1/n3) = O(1/n2).

Step 2: We next bound the number of nodes in each receiving cell. Fix a

receiving time slot t. Let zj(t) be the number of nodes in the receiving cell j. Then

E[zj(t)] =
n

g2(n)
≤ 2n

2−2d
3 , when n is large.

1An assumption we have used here is the separation of time scales, i.e., we assume that radio
transmissions can be scheduled at a time scale much faster than that of node mobility. Hence, each
packet can be divided into many smaller pieces and the transmissions of different pieces can be
pipelined to achieve maximum throughput [71]. We also assume that the overhead of dividing a
packet into many smaller pieces is negligible.
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Let pb
III(t) be the probability that zj(t) ≥ 4n

2−2d
3 for any j. Equivalently, we can

consider the experiment that we throw n balls into g2(n) urns with success probability

p = 1. Then, by part 4 of Lemma D.6,

pb
III(t) = O(1/n3).

Let pb
III denote the probability that the number of nodes in any of the g2(n) receiving

cells at any of the bndc receiving time slots is greater than 4n
2−2d

3 . Then,

pb
III ≤ bndcpb

III(t) ≤ O(1/n2).

Step 3: We shall show that, with probability approaching one as n → ∞, the

number of active packets that go through any mini-cell along the X-axis is bounded

by 2048n(1−d)/3 log3/2 n. Towards this end, we first bound the number of active

packets that each mobile relay node may carry at each receiving time slot. Fix a

receiving time slot t and a receiving cell j. As in Step 2, we use zj(t) to denote the

number of nodes in the receiving cell j at time slot t. We shall condition the following

discussion on the event that zj(t) = m. For each mobile node i among the m nodes

in receiving cell j at time slot t, let xij(t) denote the number of active packets that

are held by mobile relay node i, i.e., these packets are the ones whose destination

nodes are also in the receiving cell j at time slot t. Pick any other node i′ that is

also in the receiving cell j at time slot t. Note that, for a given packet k destined to

node i′, with probability 1
g1(n)

node i holds the packet k, i.e., with probability 1
g1(n)

node i was in the same sending cell as the source node of packet k when the packet

k was broadcast into the system. Further, conditioned on the event that zj(t) = m,

the event that node i holds a packet k towards node i′ is independent of the event

that node i holds another packet h towards node i′′ when (k, i′) 6= (h, i′′). Since there

are bndc packets destined to each of the (m − 1) nodes (other than node i) in the

receiving cell j, we have

E[xij(t)|zj(t) = m] = (m − 1)bndc 1

g1(n)
.
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We now consider the probability that xij(t) ≥ 256 log n for a given node i in a given

receiving cell j. Note that if m ≤ 4n(2−2d)/3, we have

E[xij(t)|zj(t) = m] ≤ 128 log n, when n is large.

Conditioned on the event that zj(t) = m, we can equivalently consider the ex-

periment that we throw (m − 1)bndc balls into one urn with success probability

p = 1/g1(n). Hence, by part 3 of Lemma D.6, the conditional probability that

xij(t) ≥ 256 log n satisfies

P[xij(t) ≥ 256 log n|zj(t) = m] ≤ O(1/n3), if m ≤ 4n(2−2d)/3.

Fix a receiving time slot t. Let pc
III(t) be the probability that xij(t) ≥ 256 log n for

any node i = 1, ..., zj(t) in any receiving cell j = 1, ..., g2(n). Then

pc
III(t) ≤

g2(n)
∑

j=1

4n(2−2d)/3
∑

m=1

P[xij(t) ≥ 256 log n for any i|zj(t) = m]P[zj(t) = m]

+

g2(n)
∑

j=1

P[xij(t) ≥ 256 log n for any i|zj(t) > 4n(2−2d)/3]

×P[zj(t) > 4n(2−2d)/3]

≤ g2(n)
4n(2−2d)/3
∑

m=1

mO(1/n3)P[zj(t) = m] + g2(n)P[zj(t) > 4n(2−2d)/3]

≤ g2(n)(4n(2−2d)/3)O(1/n3)P[zj(t) ≤ 4n(2−2d)/3] + g2(n)pb
III(t)

≤ O(1/n2) + O(1/n2) = O(1/n2).

Hence, the probability pc
III that xij(t) ≥ 256 log n for any i, j, t is

pc
III ≤ bndcpc

III(t) ≤ O(1/n).

Therefore, with probability approaching one as n → ∞, each mobile relay node will

serve no more than 256 log n active packets in each receiving time slot. As presented

earlier, these active packets will first be forwarded along the X-axis. Fix a receiving

time slot t. We next bound the number of mobile relay nodes whose active packets

need to go through a given mini-cell along the X-axis. Pick any mini-cell k in a given
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receiving cell j, k = 1, ..., g3(n), j = 1, ..., g2(n). Let Zx
j,k(t) be the number of mobile

relays in receiving cell j that reside at the same row with the mini-cell k, i.e., these

mobile relays are the ones whose active packets need to go through mini-cell k along

the X-axis. Note that the mean of Zx
j,k(t) is

n/(g2(n)
√

g3(n)) ≤ 4n(1−d)/3
√

log n, when n is large.

Let pd
III(t) be the probability that Zx

j,k(t) ≥ 8n(1−d)/3
√

log n for any mini-cell k in

any receiving cell j. Equivalently, we can consider the experiment that we throw

n balls into g2(n)
√

g3(n) urns with success probability p = 1. Hence, by part 4 of

Lemma D.6,

pd
III(t) = P[Zx

j,k(t) ≥ 8n(1−d)/3
√

log n for any k, j ]

= O(
1

n3
).

Therefore, the probability pd
III that Zx

j,k ≥ 8n(1−d)/3
√

log n for any mini-cell in any

receiving time slot t is

pd
III ≤ bndcpd

III(t) ≤ O(1/n2).

Combining the discussion above, with probability 1 − pc
III − pd

III, for any given

mini-cell k, there are at most 8n(1−d)/3
√

log n mobile relays whose active packets

have to go through the mini-cell k along the X-axis, and each of these mobile relays

will have at most 256 log n active packets. Hence, with probability approaching one

as n → ∞, the number of active packets that go through any mini-cell along the

X-axis in any receiving time slot t is at most

2048n(1−d)/3 log3/2 n.

Step 4: Similar to Step 3, we can show that, with probability approaching

one as n → ∞, the number of active packets that go through any mini-cell along

the Y-axis is bounded by 2048n(1−d)/3 log3/2 n. Towards this end, let pe
III denote

the probability that, in any of the bndc receiving time slots, any destination node
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needs to receive more than 256 log n active packets from the mobile relay nodes in

the same receiving cell. Let pf
III denote the probability that, in any of the bndc

receiving time slots and for any given mini-cell k, the number of destination nodes

whose active packets need to go through the mini-cell k along the Y-axis is greater

than 8n(1−d)/3
√

log n. Analogous to Step 3, we can show that pe
III = O(1/n) and

pf
III = O(1/n2). Hence, with probability approaching one as n → ∞, the number of

packets that go through any mini-cell along the Y-axis in any receiving time slot t

is at most

2048n(1−d)/3 log3/2 n.

Combining Step 1-4, with probability no less than

1 − (pb
III + pc

III + pd
III + pe

III + pf
III),

the number of packets that have to go through any mini-cell at any receiving time

slot t is less than

4096n(1−d)/3 log3/2 n.

Hence, the probability of Type-III errors is bounded by

pIII ≤ pa
III + pb

III + pc
III + pd

III + pe
III + pf

III = O(1/n).

Proposition 5.6.1 then follows.

D.5 Proof of Proposition 5.7.1

We start from inequality (5.19). Since E[lb] ≤
√

c5n
−1/2 for some positive con-

stant ct, we have,

1

c1n log n

(λnT )3

D̄(2
λnT
∑

b=1

E[lb])2

≥ 1

4c1n log n

(λnT )3

D̄(λnT )2c5n−1

=
1

4c1c5 log n

λnT

D̄
,
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and,

2π

WTn
(
λnT
∑

b=1

E[lb])
2 ≤ 2π

WTn
(λnT )2c5n

−1

=
2πc5

W
λ2T.

Substitute the above two inequalities into (5.19). Note that when D̄ = o(n), the

first term of (5.19) dominates the rest for large n. Hence, when n is large,

4c3

∆2
WT log n ≥ 1

2

1

c1n log n

(λnT )3

D̄(2
λnT
∑

b=1

E[lb])2

≥ 1

8c1c5 log n

λnT

D̄
.

We can then solve for λ,

λ ≤ D̄ log2 n

n

32c1c3c5W

∆2
.

D.6 Proof of Proposition 5.7.2

Since hb ≤ c6 for some positive number c6, similar to the initial steps of the proof

of Proposition 5.5.1, we have,

(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

≤
(

λnT
∑

b=1

hb
∑

h=1

1

)(

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2

)

≤ λnTc6

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2,

and,

E[
λnT
∑

b=1

hb
∑

h=1

(Sh
b )2] ≥ 1

c6λnT
E[

(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

]

≥ 1

c6λnT

(

E[
λnT
∑

b=1

hb
∑

h=1

Sh
b ]

)2

≥ 1

c6λnT

(

λnT
∑

b=1

E[lb]

)2

. (D.6)
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Substitute (5.17) and (D.6) into (5.9), we have,

4c3

∆2
WT log n ≥

λnT
∑

b=1

E[Rb] − 1

n
+ πE[

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2]

≥ 1

c1n log n

(
λnT
∑

b=1

1)3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2

+
π

c6λnT
(
λnT
∑

b=1

E[lb])
2 − λT.

As in the proof of Proposition 5.5.1, the case with
λnT
∑

b=1

E[lb] ≥ λT/n will again prevail.

Hence,

4c3

∆2
WT log n ≥ 1

c1n log n

(
λnT
∑

b=1

1)3

D̄

(

2
λnT
∑

b=1

E[lb]

)2

+
π

c6λnT
(
λnT
∑

b=1

E[lb])
2 − λT

≥ 2

[

π

4c1c6n log nD̄
(λnT )2

]1/2

− λT

= 2

√

π

4c1c6

λ2nT 2

D̄ log n
− λT.

When D̄ = o(n), the first term dominates for large n. Hence, when n is large,

4c3

∆2
WT log n ≥

√

π

4c1c6

λ2nT 2

D̄ log n

λ2 ≤ D̄ log3 n

n

64c1c
2
3c6W

2

π∆4
.
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Appendix E: Supporting Results for Chapter 6

E.1 Proof of Proposition 6.3.1

The proof of part a) is quite standard (see, for example, Theorem 3.2.8 in [132,

p44]). In fact, let ~x∗ denote the optimal solution to the primal problem (6.2), and

let ~r ∗ denote the corresponding vector of link rates that satisfies (6.6). It is easy to

verify that, given ~q,

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) ≥ L( ~x∗, ~r ∗, ~q) ≥
S
∑

s=1

Us(x
∗
s) for all ~q ≥ 0 .

To prove part a), we only need to find Lagrange multipliers ~q ≥ 0 such that

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) =
S
∑

s=1

Us(x
∗
s).

Towards this end, let ~b = [bl, l ∈ L] and let

G(~b) = max
0≤xs≤Ms

S
∑

s=1

Us(xs)

subject to
S
∑

s=1

H l
sxs ≤ rl + bl for all l ∈ L (E.1)

and [rl] ∈ Co(R).

The original problem (6.2) corresponds to ~b = 0 and hence G(0) =
S
∑

s=1

Us(x
∗
s). It

is easy to show that G(~b) is a concave function of ~b. Hence, by Theorem 3.1.8

of [132, p36], there exists a subgradient ~q0 of G(~b) at ~b = 0. We now show that ~q0 is

the desired Lagrange multipliers. For any ~b ≥ 0, by the concavity of G(~b), we have

G(~b) ≤ G(0) + ~q tr
0

~b,

where [·] tr denotes the transpose. Further, by the definition of G(~b) in (E.1),

G(0) ≤ G(~b) for all ~b ≥ 0.

Hence, for any ~b ≥ 0,

G(0) ≥ G(~b) − ~q tr
0

~b ≥ G(0) − ~q tr
0

~b,
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and we have,

~q tr
0

~b ≥ 0 for all ~b ≥ 0.

This implies that ~q0 ≥ 0. Next, for any ~x such that xs ≤ Ms for all s, and for any

~r ∈ Co(R), if we let ~g(~x, ~r) =

[

S
∑

s=1

H l
sxs − rl, l ∈ L

]

, then (~x, ~r) is a feasible point

in the problem (E.1) with ~b = ~g(~x, ~r). Hence, using the concavity of G(~b) again, we

have

S
∑

s=1

Us(xs) ≤ G(~g(~x, ~r))

≤ G(0) + ~q tr
0 ~g(~x, ~r)

=
S
∑

s=1

Us(x
∗
s) + ~q tr

0 ~g(~x, ~r). (E.2)

Choosing ~x = ~x∗ and ~r = ~r ∗, we have

S
∑

s=1

Us(x
∗
s) ≤

S
∑

s=1

Us(x
∗
s) + ~q tr

0 ~g( ~x∗, ~r ∗),

i.e.,

~q tr
0 ~g( ~x∗, ~r ∗) ≥ 0.

However, since ~g( ~x∗, ~r ∗) ≤ 0 and ~q0 ≥ 0, we must have

~q tr
0 ~g( ~x∗, ~r ∗) = 0.

Finally, using (E.2) again, we obtain

L(~x, ~r, ~q0) =
S
∑

s=1

Us(xs) − ~q tr
0 ~g(~x, ~r)

≤
S
∑

s=1

Us(x
∗
s) =

S
∑

s=1

Us(x
∗
s) − ~q tr

0 ~g( ~x∗, ~r ∗)

= L( ~x∗, ~r ∗, ~q0).

Hence

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q0) = L( ~x∗, ~r ∗, ~q0) =
S
∑

s=1

Us(x
∗
s),

i.e., there is no duality gap.
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Proof of part b): Let ~x∗ denote the optimal solution to the primal problem

(6.2), and let ~r ∗ denote the corresponding vector of link rates that satisfies (6.6).

Note that ~x∗ is unique due to the strict concavity of Us(xs). Given ~q, the points

(~x, ~r) that maximize

L(~x, ~r, ~q) =
S
∑

s=1

Us(xs) −
L
∑

l=1

ql

(

S
∑

s=1

H l
sxs − rl

)

must have the same component ~x due to the strict concavity of Us(xs). Hence, in

order to show part (b), it suffices to show that for any ~q ∈ Φ, the following holds,

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) = L( ~x∗, ~r ∗, ~q). (E.3)

(Note that ~q may be different from ~q0 in the proof of part (a).) Towards this end,

since ~q ∈ Φ, we have,

S
∑

s=1

Us(x
∗
s) = D(~q) = max

0≤xs≤Ms,~r∈Co(R)
L(~x, ~r, ~q)

≥
S
∑

s=1

Us(x
∗
s) −

L
∑

l=1

ql

(

S
∑

s=1

H l
sx

∗
s − r∗l

)

. (E.4)

Hence,
L
∑

l=1

ql

(

S
∑

s=1

H l
sx

∗
s − r∗l

)

≥ 0.

However, since
S
∑

s=1

H l
sx

∗
s − r∗l ≤ 0 for all l and ~q ≥ 0, we must have

L
∑

l=1

ql

(

S
∑

s=1

H l
sx

∗
s − r∗l

)

= 0.

Substituting into (E.4), we have,

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) =
S
∑

s=1

Us(x
∗
s) = L( ~x∗, ~r ∗, ~q),

which shows (E.3). The result of part (b) then follows.

Proof of part c): (This part of the proof is analogous to that of Theorem 2.3

in [109, p26]). Let A denote the L×L diagonal matrix whose l-th diagonal element is
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α0
l . Let H denote the L×S matrix whose (l, s)-element is H l

s. Then ||~q||A = ~q trA−1~q.

For any ~q ∗,0 ∈ Φ, by (6.13), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A + 2h[H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0]

+h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)]. (E.5)

Note that

D(~q(t)) =
S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t) + ~r tr(t)~q(t),

and

D(~q ∗,0) = max
0≤xs≤Ms

{

S
∑

s=1

Us(xs) − (H tr~q ∗,0) tr~x

}

+ max
~r∈Co(R)

~r tr~q ∗,0

≥
S
∑

s=1

Us(xs(t)) − (H tr~q ∗,0) tr~x(t) + ~r tr(t)~q ∗,0.

Hence,

D(~q ∗,0) − D(~q(t)) ≥ [H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0].

Substituting into (E.5), we have

||~q(t + 1) − ~q ∗,0||A
≤ ||~q(t) − ~q ∗,0||A + 2h[D(~q ∗,0) − D(~q(t))] + h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)].

Fix η > 0. Let

Φ(η) = {~q|D(~q) ≤ D(~q ∗,0) + η}. (E.6)

Since both ~x(t) and ~r(t) are bounded, there exists M < ∞ such that

max
0≤xs≤Ms,~r∈Co(R)

(H~x − ~r) trA(H~x − ~r) ≤ M.

If we pick

h ≤ η/M,

then as long as ~q(t) /∈ Φ(η), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A − hη.
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Hence, eventually, ~q(t) will enter the set Φ(η). On the other hand, if we pick

h ≤ η/
√

M,

then once ~q(t) ∈ Φ(η), we have

√

||~q(t + 1) − ~q ∗,0||A ≤
√

||~q(t) − ~q ∗,0||A +
√

||~q(t + 1) − ~q(t)||A
≤

√

||~q(t) − ~q ∗,0||A + η. (E.7)

Since the inequality (E.7) holds for any ~q ∗,0 ∈ Φ ⊂ Φ(η), it implies that

d(~q(t + 1), Φ) ≤ d(~q(t), Φ) + η,

where d(~q, Φ) = min~p∈Φ

√

||~q − ~p||A. Hence, if

h ≤ min{η/M, η/
√

M},

then there exists time T0 such that

d(~q(t), Φ) ≤ ξ(η) for all t ≥ T0,

where

ξ(η) = max
~p∈Φ(η)

d(~p, Φ) + η.

It is easy to show that, as η → 0,

ξ(η) → 0.

Hence, for any ε > 0, we can pick η (and h) sufficiently small such that ξ(η) < ε,

i.e., there exists time T0 such that

d(~q(t), Φ) < ε for all t ≥ T0.

Finally, since the mapping from ~q(t) to ~x(t) is continuous, we can pick η (and h)

sufficiently small such that

||~x(t) − ~x∗|| < ε for all t ≥ T0.
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E.2 Proof of Proposition 6.3.2

We need the following assumption on the queueing discipline at each link. We

assume that, when each link forwards data, data at smaller number of hops away

from their source will have priority over data at a large number of hops away from

their source. Hence, first-hop data will be forwarded before all second-hop data,

then second-hop data will be forwarded before all third-hop data, and so on. One

way to achieve such priority queueing is to have each link maintain separate queues

for data at different number of hops away from their sources.

The above assumption allows us to study the queue lengths at all links in the

network in an inductive manner. We first study all first-hop traffic in isolation

because first-hop traffic takes precedence over all other traffic. Once we compute

the contribution to the queue lengths by the first-hop traffic, we can then study the

second-hop traffic in the network, and so on.

Let xs(t, k) denote the data from user s injected at time t to the link that is at

the k-th hop from the source of user s (let xs(t, k) = 0 if data of user s travels at

most k0 hops, and k > k0). Let H l
s(k) = 1, if link l is at the k-th hop from user

s, and let H l
s(k) = 0, otherwise. Let Al(t, k) denote the amount of data injected to

link l at time t by all first-hop through k-th hop traffic, i.e.,

Al(t, k) =
S
∑

s=1

k
∑

m=1

H l
s(m)xs(t,m).

Let Ql(t, k) denote the queue length at link l contributed by all first-hop through

k-th hop traffic. Applying Loynes’ formula, we have

Ql(t, k) = max
0≤t′≤t

[

t
∑

u=t−t′

Al(u, k) −
t
∑

u=t−t′

rl(u)

]

.

We now use induction to show that the queue lengths at all links are bounded.

The induction hypothesis is as follows.

The Induction Hypothesis:

Fix k.
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• For each user s, there exists a positive constant Ms(k) such that

t0+t
∑

u=t0

xs(u, k) ≤
t0+t
∑

u=t0

xs(u) + Ms(k), for all t0 and t. (E.8)

• The queue length Ql(t, k) at link l contributed by all first-hop through k-th hop

traffic is bounded for all t.

We first show that the inequality (E.8) implies the second part of the induction

hypothesis. Assume that αl = hα0
l . By Proposition 6.3.1, there exists some h0 > 0

such that for all h < h0 and any initial implicit costs ~q(0), there exists a time T0

such that

d(~q(t), Φ) ≤ 1 for all t ≥ T0.

Hence, ~q(t) is bounded for all t. Since

ql(t + 1) ≥ ql(t) + αl(
S
∑

s=1

H l
sxs(t) − rl(t)).

we have,

t0+t
∑

u=t0

S
∑

s=1

H l
sxs(u) −

t0+t
∑

u=t0

rl(u) ≤ 1

αl

[

ql(t0 + t + 1) − ql(t0)
]

.

Hence, the left hand side is bounded from above for all t0 and t. Let M l(0) be this

upper bound. Using (E.8), we then have,

Ql(t, k) = max
0≤t′≤t

[

t
∑

u=t−t′

Al(u, k) −
t
∑

u=t−t′

rl(u)

]

= max
0≤t′≤t

[

t
∑

u=t−t′

k
∑

m=1

S
∑

s=1

H l
s(m)xs(u,m) −

t
∑

u=t−t′

rl(u)

]

≤ max
0≤t′≤t

[

t
∑

u=t−t′

S
∑

s=1

H l
sxs(u) −

t
∑

u=t−t′

rl(u) +
k
∑

m=1

S
∑

s=1

H l
s(m)Ms(m)

]

≤ M l(0) +
k
∑

m=1

S
∑

s=1

H l
s(m)Ms(m).

Hence, Ql(t, k) is bounded for all t.
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We now use induction to show that the first part of the induction hypothesis,

i.e., the inequality (E.8), holds for all k. We first consider the case k = 1, i.e., the

first-hop traffic only. Since

xs(t, 1) = xs(t),

the inequality (E.8) trivially holds. The second part of the induction hypothesis then

follows (for k = 1).

Next, assume that the induction hypothesis holds for 1, 2, ..., k−1. Let M(k−1)

be the upper bound for Ql(t, k − 1) for all t and l, i.e.,

M(k − 1) = sup
t

max
l

Ql(t, k − 1).

We now consider the contribution by the k-th hop traffic. Note that

t0+t
∑

u=t0

xs(u, k) ≤
t0+t
∑

u=t0

xs(u, k − 1) + M(k − 1),

where the first term on the right hand side corresponds to contribution from (k−1)-

th hop traffic of user s, and the second term corresponds to the maximum amount

of backlog at time t0. Since the inequality (E.8) holds for (k − 1), we have,

t0+t
∑

u=t0

xs(u, k) ≤
t0+t
∑

u=t0

xs(u) + Ms(k − 1) + M(k − 1),

and hence the inequality (E.8) now holds for k. Again, by the discussion above, the

second part of the induction hypothesis also holds for k.

Finally, let L̄ denote the maximum number of hops of any users. Note that the

overall queue length Ql(t) at link l is equal to Ql(t, L̄). Hence,

sup
t

Ql(t) < +∞ for all l ∈ L.

E.3 Proof of Proposition 6.4.1

Define

Vq(~q) =
L
∑

l=1

(ql)2

2αl

.
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We now show that Vq(·) is a Lyapunov function of the system. In fact, using (6.18),

we have,

Vq(~q(t + 1)) − Vq(~q(t)) ≤
L
∑

l=1

ql(t)

[

S
∑

s=1

H l
sxs − rl(t)

]

+ E1(t),

where

E1(t) =
1

2

L
∑

l=1

αl

[

S
∑

s=1

H l
sxs − rl(t)

]2

.

Since both xs and rl(t) are bounded, E1(t) is bounded for all t. Hence,

Vq(~q(t + 1)) − Vq(~q(t)) ≤
L
∑

l=1

ql(t)

[

S
∑

s=1

H l
sxs − rl(t)

]

+ E0
1 , (E.9)

for some positive constant E0
1 . By assumption, ~x lies strictly inside γΛ. Hence, there

exists some ε ≥ 0 such that

(1 + ε)~x ∈ γΛ,

i.e.,
[

(1 + ε)
L
∑

l=1

H l
sxs , l ∈ L

]

∈ γCo(R).

By the definition of the imperfect scheduling policy Sγ,

L
∑

l=1

ql(t)rl(t) ≥ γ max
~r≥0,~r∈R

L
∑

l=1

rlq
l(t) = γ max

~r≥0,~r∈Co(R)

L
∑

l=1

rlq
l(t) ≥ (1 + ε)

L
∑

l=1

ql(t)H l
sxs.

Substituting into (E.9), we have,

Vq(~q(t + 1)) − Vq(~q(t)) ≤ −ε
L
∑

l=1

ql(t)H l
sxs + E0

1 .

By Theorem 2 of [113] (or Theorem 3 of [133]), the system in stable.

E.4 Proof of Proposition 6.4.3

Fix a positive number ε such that

ε < min
l:ql,∗

I 6=0

ql,∗
I .
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Then there exists a time slot T0 such that for all t ≥ T0

|xs(t) − x∗,I
s | ≤ ε, and (E.10)

|ql(t) − ql,∗
I | ≤ ε. (E.11)

We shall first show that there exists a large enough T such that,

L
∑

l=1

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t) ≤
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s + O(ε), (E.12)

where we have used O(ε) to denote the class of functions f(ε) such that

lim supε→0 f(ε)/ε < +∞. Towards this end, note that for each link l ∈ L, there

are two cases:

Case 1: If ql,∗
I > 0, then (E.11) implies that ql(t) > 0 for all t ≥ T0. Hence,

using (6.18), we have

αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)

= ql(t + 1) − ql(t) for all t ≥ T0. (E.13)

For any T > 0, summing (E.13) over t = T0, T0 + 1, ..., T0 + T , we have,

αl

∣

∣

∣

∣

∣

T0+T
∑

t=T0

S
∑

s=1

H l
sxs(t) −

T0+T
∑

t=T0

rl(t)

∣

∣

∣

∣

∣

=
∣

∣ql(T0 + T + 1) − ql(T0)
∣

∣ ≤ ql,∗
I + ε.

We can thus pick T large enough such that
∣

∣

∣

∣

∣

1

T

T0+T
∑

t=T0

S
∑

s=1

H l
sxs(t) −

1

T

T0+T
∑

t=T0

rl(t)

∣

∣

∣

∣

∣

< ε.

Using (E.10), we have

1

T

T0+T
∑

t=T0

rl(t) ≤
S
∑

s=1

H l
sx

∗,I
s + O(ε). (E.14)

Multiplying both side of (E.14) by ql,∗
I and using (E.11) again, we have

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t) ≤ ql,∗
I

S
∑

s=1

H l
sx

∗,I
s + O(ε). (E.15)

Case 2: If ql,∗
I = 0, the inequality (E.15) also holds trivially.
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Summing (E.15) over all l ∈ L, we thus obtain (E.12). Now, since the utility

function is logarithmic, we have,

xs(t) = min



















ws

L
∑

l=1

H l
sq

l(t)

,Ms



















for all t.

Taking limits as t → ∞, we have,

x∗,I
s = min



















ws

L
∑

l=1

H l
sq

l,∗
I

,Ms



















. (E.16)

Let J = {s : x∗,I
s = Ms}, then we have,

L
∑

l=1

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t)

≤
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s + O(ε)

=
S
∑

s=1

x∗,I
s (

L
∑

l=1

H l
sq

l,∗
I ) + O(ε)

=
∑

s/∈J

ws +
∑

s∈J

Ms(
L
∑

l=1

H l
sq

l,∗
I ) + O(ε). (E.17)

Let ~x ∗,γ denote the solution to the γ-reduced problem. Then, ~x ∗,γ

γ
∈ Λ by

definition. Hence, by the definition of the imperfect schedule policy Sγ, rl(t) must

satisfies

L
∑

l=1

ql(t)rl(t) ≥ γ

L
∑

l=1

ql(t)

S
∑

s=1

H l
sx

∗,γ
s

γ

=
L
∑

l=1

ql(t)
S
∑

s=1

H l
sx

∗,γ
s for all t.

Using (E.11) again, we obtain,

L
∑

l=1

ql,∗
I rl(t) ≥

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s − O(ε) for all t ≥ T0.
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Substituting into (E.17), we have,

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s

≤
L
∑

l=1

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t) + O(ε)

≤
∑

s/∈J

ws +
∑

s∈J

Ms(
L
∑

l=1

H l
sq

l,∗
I ) + O(ε).

Noting that

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s =

S
∑

s=1

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I =

∑

s/∈J

wsx
∗,γ
s

x∗,I
s

+
∑

s∈J

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I ,

we have,

S
∑

s=1

wsx
∗,γ
s

x∗,I
s

=
∑

s/∈J

wsx
∗,γ
s

x∗,I
s

+
∑

s∈J

wsx
∗,γ
s

Ms

=
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s −

∑

s∈J

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I +

∑

s∈J

wsx
∗,γ
s

Ms

≤
∑

s/∈J

ws +
∑

s∈J

(Ms − x∗,γ
s )(

L
∑

l=1

H l
sq

l,∗
I ) +

∑

s∈J

wsx
∗,γ
s

Ms

+ O(ε).

Since x∗,γ
s ≤ Ms and

L
∑

l=1

H l
sq

l,∗
I ≤ ws/Ms when s ∈ J , we have,

S
∑

s=1

wsx
∗,γ
s

x∗,I
s

≤
∑

s/∈J

ws +
∑

s∈J

(Ms − x∗,γ
s )

ws

Ms

+
∑

s∈J

wsx
∗,γ
s

Ms

+ O(ε)

=
S
∑

s=1

ws + O(ε).

Finally, let ε → 0. The result then follows.
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E.5 Proof of Proposition 6.4.4

Let A denote the L × L diagonal matrix whose l-th diagonal element is α0
l . Let

H denote the L × S matrix whose (l, s)-element is H l
s. Then ||~q||A = ~q trA−1~q. By

(6.18), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A + 2h[H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0]

+h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)]. (E.18)

Note that

Dγ(~q(t)) =
S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t) + γ max
~r∈Co(R)

~r tr~q(t)

≤
S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t) + ~r tr(t)~q(t),

and

D(~q ∗,0) = max
0≤xs≤Ms

{

S
∑

s=1

Us(xs) − [H tr~q ∗,0] tr~x

}

+ max
~r∈Co(R)

~r tr~q ∗,0

≥
S
∑

s=1

Us(xs(t)) − [H tr~q ∗,0] tr~x(t) + ~r tr(t)~q ∗,0.

Hence,

D(~q ∗,0) − Dγ(~q(t)) ≥ [H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0].

Substituting into (E.18), we have

||~q(t + 1) − ~q ∗,0||A
≤ ||~q(t) − ~q ∗,0||A + 2h[D(~q ∗,0) − Dγ(~q(t))] + h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)]

Fix η > 0. Let

Φγ(η) = {~q|Dγ(~q) ≤ D(~q ∗,0) + η}. (E.19)

Since both ~x(t) and ~r(t) are bounded, there exists M < +∞ such that

max
0≤xs≤Ms,~r∈Co(R)

(H~x − ~r) trA(H~x − ~r) ≤ M.
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If we pick

h ≤ η/M,

then as long as ~q(t) /∈ Φγ(η), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A − hη.

Hence, eventually, ~q(t) will enter the set Φγ(η). On the other hand, if we pick

h ≤ η/
√

M,

then once ~q(t) ∈ Φγ(η), we have

√

||~q(t + 1) − ~q ∗,0||A ≤
√

||~q(t) − ~q ∗,0||A +
√

||~q(t + 1) − ~q(t)||A
≤

√

||~q(t) − ~q ∗,0||A + η.

Hence, if

h ≤ min{η/M, η/
√

M}.

then there exists a time T0 such that

√

||~q(t) − ~q ∗,0||A ≤ ξ(η) for all t ≥ T0,

where

ξ(η) = max
~p∈Φγ(η)

√

||~p − ~q ∗,0||A + η.

It is easy to show that, as η → 0,

ξ(η) → max
~p∈Φγ

√

||~p − ~q ∗,0||A.

The result then follows.

E.6 Proof of Proposition 6.5.1

Define

V(~n, ~q) = (1 + ε)Vn(~n) + Vq(~q),
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where

Vn(~n) =
S
∑

s=1

wsn
2
s

2λs

, Vq(~q) =
L
∑

l=1

(ql)2

2αl

,

and ε is a positive constant to be chosen later. We shall show that V(·, ·) is a

Lyapunov function of the system. We begin with a few lemmas. The first two

lemmas bound the changes in Vn(·).

Lemma E.7

E[Vn(~n((k + 1)T ) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT )

][

ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

]

− 3ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

}

+ E1, (E.20)

where E1 is a finite positive constant.

Proof Over a small time interval δt, we have

E

[

ws

2λs

[

n2
s(t + δt) − n2

s(t)
]

|~n(t), ~q(t)

]

=
ws

2λs

{

[(ns(t) + 1)2 − n2
s(t)]λsδt + [(ns(t) − 1)2 − n2

s(t)]µsns(t)xs(t)δt
}

+ o(δt)

=
ws

λs

[ns(t)λsδt − ns(t)µsns(t)xs(t)δt] +
ws

2λs

[λsδt + µsns(t)xs(t)δt] + o(δt)

Let ρs = λs/µs. We have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
S
∑

s=1

{

wsns(t)

λs

[λs − µsns(t)xs(t)] +
ws

2λs

[λs + µsns(t)xs(t)]

}

+ o(1)

=
S
∑

s=1

{

wsns(t)

ρs

[ρs − ns(t)xs(t)] +
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1) (E.21)

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)]

+

[

ws

xs(t)
−

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)] (E.22)
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+ws

[

ns(t)

ρs

− 1

xs(t)

]

[ρs − ns(t)xs(t)] (E.23)

+
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

(E.24)

+o(1),

where ρs = λs/µs. We shall bound the three terms (E.22-E.24). By (6.24),

ws

xs(t)
= max

{

L
∑

l=1

H l
sq

l(t),
ws

Ms

}

.

Hence, the term (E.22) can be bounded by
[

ws

xs(t)
−

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)]

≤
[

ws

xs(t)
−

L
∑

l=1

H l
sq

l(t)

]

ρs

≤
[

ws

Ms

−
L
∑

l=1

H l
sq

l(t)

]+

ρs

≤ wsρs

Ms

. (E.25)

For the term (E.23), note that
[

ns(t)

ρs

− 1

xs(t)

]

[ρs − ns(t)xs(t)]

= − [ρs − ns(t)xs(t)]
2

ρsxs(t)

≤ − [ρs − ns(t)xs(t)]
2

ρsMs

.

Using

[ρs − ns(t)xs(t)]
2 + ρ2

s ≥
n2

s(t)x
2
s(t)

2
,

we have,
[

ns(t)

ρs

− 1

xs(t)

]

[ρs − ns(t)xs(t)]

≤ − 1

ρsMs

[

n2
s(t)x

2
s(t)

2
− ρ2

s

]

= −
[

n2
s(t)x

2
s(t)

2ρsMs

− ρs

Ms

]

. (E.26)
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Finally, for the last term (E.24), we have

ns(t)xs(t)

2ρs

≤ n2
s(t)x

2
s(t)

8ρsMs

+
Ms

2ρs

. (E.27)

Substituting (E.25-E.27) back to (E.22-E.24), we have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)]

+
wsρs

Ms

− ws

[

n2
s(t)x

2
s(t)

2ρsMs

− ρs

Ms

]

+ ws

[

1

2
+

n2
s(t)x

2
s(t)

8ρsMs

+
Ms

2ρs

]}

+ o(1)

=
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)] −
3wsn

2
s(t)x

2
s(t)

8ρsMs

+ ws

[

1

2
+

Ms

2ρs

+
2ρs

Ms

]}

+ o(1). (E.28)

Integrating over [kT, (k + 1)T ], and letting

E1 =
S
∑

s=1

wsT

[

1

2
+

Ms

2ρs

+
2ρs

Ms

]

,

the result (E.20) follows.

Lemma E.8

E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤
S
∑

s=1

{

ρsT

[

L
∑

l=1

H l
sq

l(kT )

]

− ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt

+
ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

}

+ E2, (E.29)

where E2 is a finite positive constant.

Proof From (E.21),

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
S
∑

s=1

{

wsns(t)

ρs

[ρs − ns(t)xs(t)] +
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1)
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≤
S
∑

s=1

{

ws

xs(t)
[ρs − ns(t)xs(t)] +

ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1)

=
S
∑

s=1

{[

wsρs

xs(t)
− wsns(t)

]

+
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1).

By (6.24),

wsρs

xs(t)
= ρs max

{

L
∑

l=1

H l
sq

l(t),
ws

Ms

}

≤ ρs

(

L
∑

l=1

H l
sq

l(t) +
ws

Ms

)

.

Combining with (E.27), we have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
S
∑

s=1

{[

ρs

L
∑

l=1

H l
sq

l(t) − wsns(t)

]

+
wsn

2
s(t)x

2
s(t)

8ρsMs

+ws

[

1

2
+

ρs

Ms

+
Ms

2ρs

]}

+ o(1). (E.30)

Integrating over [kT, (k + 1)T ], and letting

E2 =
S
∑

s=1

wsT

[

1

2
+

ρs

Ms

+
Ms

2ρs

]

,

the result (E.29) then follows.

The next lemma bounds the change in Vq(·). For simplicity, we use the following

matrix notation. Let A denote the L × L diagonal matrix whose l-th diagonal

element is αl. Let H denote the L × S matrix whose (l, s)-element is H l
s. Further,

let Xs(t) = ns(t)xs(t) and let ~X(t) = [X1(t), ..., XS(t)]. Then

Vq(~q) =
~q trA−1~q

2
,

and the update on the implicit costs (6.25) can be written as

~q((k + 1)T ) =

[

~q(kT ) + A

(

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT )T

)]+

. (E.31)
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Lemma E.9

E[Vq(~q((k + 1)T ) − Vq(~q(kT ))|~n(kT ), ~q(kT )]

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

E[ ~X(t)|~n(kT ), ~q(kT )]dt − ~r(kT )T

]

+TαmaxS̄L̄

S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

]

+ E3, (E.32)

where

αmax = max
l∈L

αl, L̄ = max
s

L
∑

l=1

H l
s, S̄ = max

l

S
∑

s=1

H l
s,

and E3 is a finite positive constant, .

Proof By (E.31),

Vq(~q((k + 1)T ) − Vq(~q(kT ))

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT )T

]

+
1

2

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT )T

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT )T

]

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT )T

]

+

[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

+ T 2[~r(kT )] trA~r(kT ),

where [·] tr denotes the transpose. Let

αmax = max
l∈L

αl, L̄ = max
s

L
∑

l=1

H l
s, S̄ = max

l

S
∑

s=1

H l
s.

Then, we have,

[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

=
L
∑

l=1

αl

[

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(t)dt

]2
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≤
L
∑

l=1

αl

[

S
∑

s=1

H l
s

]





S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2




≤ S̄
L
∑

l=1

αl





S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2




≤ T S̄
L
∑

l=1

αl

S
∑

s=1

H l
s

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

= T S̄
S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

][

L
∑

l=1

αlH
l
s

]

≤ TαmaxS̄L̄
S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

]

.

Letting

E3 = max
~r∈Co(R)

T 2~r trA~r,

the result (E.32) then follows.

Proof [of Proposition 6.5.1] Multiply (E.29) by ε < 1 and add to (E.20). We

have

(1 + ε)E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT )

][

(1 + ε)ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

]

−εws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt

− ws

4ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

}

+ E1 + E2 (E.33)

Adding (E.32) to (E.33), and noting that

S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT )

]

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

}

=
L
∑

l=1

ql(kT )
S
∑

s=1

H l
s

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

= ~q tr(kT )

[

H

∫ (k+1)T

kT

E[ ~X(t)|~n(kT ), ~q(kT )]dt

]

,
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we have

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤
S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT )

]

(1 + ε)ρsT − ~q tr(kT )~r(kT )T

−ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt

−
S
∑

s=1

[

ws

4ρsMs

− TαmaxS̄L̄

] ∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt (E.34)

+E0,

where E0 = E1 + E2 + E3. If (6.26) is satisfied, then

TαmaxS̄L̄ ≤ ws

4ρsMs

for all s.

Hence, the term in (E.34) is negative. By a rearrangement of the order of the

summation, we have,

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ T~q tr(kT ) [(1 + ε)H~ρ − ~r(kT )]

−ε

S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt + E0,

where ~ρ = [ρ1, ..., ρs]. By assumption, ~ρ lies strictly inside γΛ. Hence, there exists

some ε > 0 such that (1 + 2ε)~ρ ∈ γΛ, i.e.,

(1 + 2ε)H~ρ ∈ γCo(R).

Use this value of ε in the definition of V(·, ·). Further, by the definition of the

imperfect scheduling policy Sγ ,

~q tr(kT )~r(kT ) ≥ γ max
~r∈Λ

~q tr(kT )~r ≥ (1 + 2ε)~q tr(kT )H~ρ.

Hence,

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]
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≤ −εT~q tr(kT )H~ρ − ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt + E0

≤ −εT~q tr(kT )H~ρ − ε′
S
∑

s=1

wsns(kT ) + E0

for some ε′ > 0. By Theorem 2 of [113] (or Theorem 3 of [133]), the result then

follows.

E.7 Proof of Proposition 6.6.1

Recall that

Qi =
∑

j:(i,j)∈L
qij +

∑

j:(j,i)∈L
qji

denote the total cost of the links that either start from, or end at node i. Define

V(~n, ~q) = (1 + ε)Vn(~n) + Vq(~q),

where

Vn(~n) =
S
∑

s=1

wsn
2
s

2λs

, Vq(~q) =

∑N
i=1 Q2

i

α
, (E.35)

and ε is a positive constant to be chosen later. (Note that the definition of Vq(·) is

different from that in the earlier proofs.) We shall show that V(·, ·) is a Lyapunov

function of the system. In fact, analogous to Lemmas E.7 and E.8, we can show

that,

E[Vn(~n((k + 1)T ) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤
S
∑

s=1









2
∑

(i,j)∈L
H ij

s

Qi(kT ) + Qj(kT )

cij





×
[

ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

]

− 3ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

}

+ E1 (E.36)
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and

E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤
S
∑

s=1







ρsT



2
∑

(i,j)∈L
H ij

s

Qi(kT ) + Qj(kT )

cij





−ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt

+
ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

}

+ E2, (E.37)

where E1 and E2 are finite positive constants. Multiply (E.37) by ε < 1 and add to

(E.36). We have

(1 + ε)E[Vn(~n((k + 1)T )) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤
S
∑

s=1









2
∑

(i,j)∈L
H ij

s

Qi(kT ) + Qj(kT )

cij





×
[

(1 + ε)ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

]

−εws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt

− ws

4ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

}

+ E1 + E2 (E.38)

As in Lemma E.9, we shall prove the following lemma bounding the change in

Vq(·).

Lemma E.10 If α < 1/T , then

E[Vq(~q((k + 1)T )) − Vq(~q(kT ))|~n(kT ), ~q(kT )]

≤ 2
∑

(i,j)∈L
qij(kT )







∑

m:(i,m)∈L

S
∑

s=1

H im
s

∫ (k+1)T

kT

E[ns(t)xs(kT )|~n(kT ), ~q(kT )]

cim

dt

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s

∫ (k+1)T

kT

E[ns(t)xs(kT )|~n(kT ), ~q(kT )]

cmi

dt

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s

∫ (k+1)T

kT

E[ns(t)xs(kT )|~n(kT ), ~q(kT )]

cjh

dt
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+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s

∫ (k+1)T

kT

E[ns(t)xs(kT )|~n(kT ), ~q(kT )]

chj

dt − T







+αE3

S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

]

+ E4, (E.39)

where E3 and E4 are positive constants.

Proof By the definition of the maximal matching M(kT ), (i, j) ∈ M(kT ) implies

qij(kT ) ≥ 1. Further, since we can choose α < 1/T , the projection operator in (6.35)

is not needed. Hence,

[Qi((k + 1)T )]2 − [Qi(kT )]2

= 2αT





∑

j:(i,j)∈L
qij(kT ) +

∑

j:(j,i)∈L
qji(kT )





×





∑

j:(i,j)∈L

(

1

T

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT )

cij

dt − I{(i,j)∈M(kT )}

)

+
∑

j:(j,i)∈L

(

1

T

S
∑

s=1

Hji
s

∫ (k+1)T

kT

ns(t)xs(kT )

cji

dt − I{(j,i)∈M(kT )}

)





+α2T 2





∑

j:(i,j)∈L

(

1

T

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT )

cij

dt − I{(i,j)∈M(kT )}

)

+
∑

j:(j,i)∈L

(

1

T

S
∑

s=1

Hji
s

∫ (k+1)T

kT

ns(t)xs(kT )

cji

dt − I{(j,i)∈M(kT )}

)





2

.

Substituting into (E.35) and rearranging the terms, we have,

Vq(~q((k + 1)T )) − Vq(~q(kT ))

= 2
∑

(i,j)∈L
qij(kT )





∑

m:(i,m)∈L

S
∑

s=1

H im
s

∫ (k+1)T

kT

ns(t)xs(kT )

cim

dt

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s

∫ (k+1)T

kT

ns(t)xs(kT )

cmi

dt

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s

∫ (k+1)T

kT

ns(t)xs(kT )

cjh

dt
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+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s

∫ (k+1)T

kT

ns(t)xs(kT )

chj

dt





−2T
∑

(i,j)∈L
qij(kT )





∑

m:(i,m)∈L
I{(i,m)∈M(kT )} +

∑

m:(m,i)∈L
I{(m,i)∈M(kT )}

+
∑

h:(j,h)∈L
I{(j,h)∈M(kT )} +

∑

h:(h,j)∈L
I{(h,j)∈M(kT )}





+E4(k), (E.40)

where

E4(k) = αT 2

N
∑

i=1




∑

j:(i,j)∈L

(

1

T

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT )

cij

dt − I{(i,j)∈M(kT )}

)

+
∑

j:(j,i)∈L

(

1

T

S
∑

s=1

Hji
s

∫ (k+1)T

kT

ns(t)xs(kT )

cji

dt − I{(j,i)∈M(kT )}

)





2

.

Similar to the proof of Lemma E.9, we can show that

E4(k) ≤ αE3

S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

]

+ E5, (E.41)

where E3 and E5 are positive constants. (Note that E3 can be shown to only depend

on the topology of the network.) Further, by the definition of the maximal matching

M(kT ),

∑

m:(i,m)∈L
I{(i,m)∈M(kT )} +

∑

m:(m,i)∈L
I{(m,i)∈M(kT )}

+
∑

h:(j,h)∈L
I{(j,h)∈M(kT )} +

∑

h:(h,j)∈L
I{(h,j)∈M(kT )} ≥ 1,

for all (i, j) such that qij(kT ) ≥ 1.

Hence,

−qij(kT )





∑

m:(i,m)∈L
I{(i,m)∈M(kT )} +

∑

m:(m,i)∈L
I{(m,i)∈M(kT )}
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+
∑

h:(j,h)∈L
I{(j,h)∈M(kT )} +

∑

h:(h,j)∈L
I{(h,j)∈M(kT )}



 ≤ −qij(kT ) + 1,

for all (i, j) ∈ L. (E.42)

Substituting (E.41) and (E.42) into (E.40), the result (E.39) then follows with E4 =

E5 + 2LT , where L is the total number of links.

Proof [of Proposition 6.6.1] Note that for all as, s = 1, ..., S,

∑

(i,j)∈L
qij(kT )

∑

m:(i,m)∈L

S
∑

s=1

H im
s as

cim

=
S
∑

s=1

as

∑

(i,m)∈L
H im

s

∑

j:(i,j)∈L qij(kT )

cim

=
S
∑

s=1

as

∑

(i,j)∈L
H ij

s

∑

m:(i,m)∈L qim(kT )

cij

. (E.43)

Similarly,

∑

(i,j)∈L
qij(kT )

∑

m:(m,i)∈L

S
∑

s=1

Hmi
s as

cmi

=
S
∑

s=1

as

∑

(i,j)∈L
H ij

s

∑

m:(m,i)∈L qmi(kT )

cij

∑

(i,j)∈L
qij(kT )

∑

h:(j,h)∈L

S
∑

s=1

Hjh
s as

cjh

=
S
∑

s=1

as

∑

(i,j)∈L
H ij

s

∑

h:(j,h)∈L qjh(kT )

cij

∑

(i,j)∈L
qij(kT )

∑

h:(h,j)∈L

S
∑

s=1

Hhj
s as

chj

=
S
∑

s=1

as

∑

(i,j)∈L
H ij

s

∑

h:(h,j)∈L qhj(kT )

cij

.

(E.44)

Hence, by Lemma E.10,

E[Vq(~q((k + 1)T ) − Vq(~q(kT ))|~n(kT ), ~q(kT )]

≤ 2
S
∑

s=1





∑

(i,j)∈L
H ij

s

Qi(kT ) + Qj(kT )

cij





∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

−2T
∑

(i,j)∈L
qij(kT ) + αE3

S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

]

+E4. (E.45)
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Adding (E.45) to (E.38), we have

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ 2T (1 + ε)
S
∑

s=1

ρs





∑

(i,j)∈L
H ij

s

Qi(kT ) + Qj(kT )

cij



− 2T
∑

(i,j)∈L
qij(kT )

−ε

S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt

−
S
∑

s=1

[

ws

4ρsMs

− αE3

] ∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

(E.46)

+E7,

where E7 = E1 + E2 + E4. When α is sufficiently small, the product term in (E.46)

is negative. Further, by assumption, [ρs] lies strictly inside Λ
2
. Hence, there exists

some positive number ε such that, for all node i,

(1 + 2ε)





∑

j:(i,j)∈L

S
∑

s=1

H ij
s ρs

cij

+
∑

j:(j,i)∈L

S
∑

s=1

Hji
s ρs

cji



 ≤ 1/2.

Hence, applying (E.43-E.44) again on the inequality (E.46), we have,

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ 2T
∑

(i,j)∈L
qij(kT )





∑

m:(i,m)∈L

S
∑

s=1

H im
s (1 + ε)ρs

cim

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s (1 + ε)ρs

cmi

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s (1 + ε)ρs

cjh

+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s (1 + ε)ρs

chj

− 1





−ε

S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt + E7

≤ −2Tε
∑

(i,j)∈L
qij(kT )





∑

m:(i,m)∈L

S
∑

s=1

H im
s ρs

cim

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s ρs

cmi

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s ρs

cjh

+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s ρs

chj




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−ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT ), ~q(kT )]dt + E7.

By Theorem 2 of [113] (or Theorem 3 of [133]), the result then follows.
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