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Abstract—We consider a system where a load aggregator (LA)
serves a large number of small-sized, economically-driven con-
sumers with deferrable demand, as envisioned in smart electricity
grid and data networks. In these systems, consumers can behave
opportunistically by deferring their demand in response to the
prices, to obtain economic gains. However, if not controlled
properly, such opportunistic behavior can be detrimental to the
system by creating aggregate effects that lead to undesirable
fluctuations in price and total load.

To avoid the unwanted effects of demand-side flexibilities
and to reap system-wide benefits from them, we propose two
novel real-time dynamic pricing algorithms. The first algorithm
communicates individual prices to consumers by adding small
random perturbations to a common price. The second algorithm
introduces a secondary price that penalizes the change in users’
consumption in time. The common feature of both algorithms is
creating differentiation among consumers and thus regulating the
aggregate load. We conduct comprehensive numerical investiga-
tions and show that both the LA and the consumers economically
benefit under the proposed pricing schemes.

I. INTRODUCTION

IN this work, we aim to design real-time dynamic pricing
strategies for large systems where the demands possess

various types of flexibilities. Demand-side flexibilities arise in
systems such as smart electricity grids and cloud computing
services. In these systems, flexibilities can materialize in var-
ious forms including, but not limited to, shifting or deferring
service in time, giving intermittent service, and controlling the
service amount. Consumers, who are inherently self-interested
and economically-driven, will naturally want to alter their
consumption behavior to take advantage of these flexibilities.
Such consumer behavior induced by demand-side flexibilities
brings both opportunities and challenges, and necessitates the
design of novel management techniques.

We consider a system where a large number of small
self-interested consumers with flexible demand are served
by a load aggregator (LA). Specifically, we use the retail-
level smart electricity grid as an example. The consumers
can be households with smart electrical devices, or small
manufacturers, whereas the LA can be an electricity retailer.
The type of demand-side flexibility that is considered in this
paper is the ability to defer demand in time. For instance,
smart air conditioners and washing machines can operate in
this fashion. We assume that the consumers are not under
the direct control of the LA, i.e. they independently decide
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on their consumption based on their individual economic
interests and service requirements. Furthermore, in contrast
to an offline formulation of the problem where future demand
is assumed to be known in advance, we consider the real-
time control problem for the LA, where future demand can
exhibit uncertain dynamics. We further note that the model in
this paper can be applied to various scenarios such as a cloud
computing center serving customers with computational tasks.

From the LA’s perspective, demand-side flexibilities can be
utilized to the advantage of the system operation. For example,
in a smart electricity grid [1], or in a computer network [2],
consumer demand can be deferred to a later time to cut peak
load and to reduce service and maintenance costs. On the
other hand, from consumer’s perspective, flexibilities can be
exploited to obtain economic benefits by reducing payments
[3]. Towards this end, this work aims to design real-time
pricing schemes to be implemented by an LA that incentivize
economically-driven agents to defer their flexible demand so
that system-wide benefits can be obtained.

However, pricing-based dynamic control of self-interested
users also raises challenges. Under a time-dependent pricing
scheme, consumers will likely defer their service to the periods
of time with lower price in an opportunistic manner. Indeed,
works such as [4], [5] establish optimality of threshold-based
consumption policies, that have this opportunistic flavor, under
different flexibility and cost structures. However, aggregate
response of a large consumer base employing such threshold
policies can potentially lead to highly- and abruptly-fluctuating
total load and price (as will be demonstrated in Section III).
In most systems, this volatile behavior is undesirable, because
it increases service costs, puts stress on the network, and
endangers the stability of the infrastructure [6]. Thus, in
designing new pricing mechanisms, we aim to mitigate such
effects of opportunistic behavior of flexible consumers.

Previous related work on demand-side management, which
address the aforementioned opportunities and challenges re-
lated to demand-side flexibilities, and their fundamental dif-
ferences from this work are listed below. In [7]–[9], the welfare
maximization problem of an LA is studied under a utility max-
imization framework at day-ahead and real-time time-scales.
However, consumers are assumed to have strictly concave
utility functions, which result in smoother user behavior, and
hence do not capture the above-mentioned volatility and fluc-
tuation exhibited from the opportunistic decision making of
self-interested users with deferrable demand. Game theoretic
approaches are discussed in [10], [11] for incentivizing time-
shifting of energy consumption, but the resulting mechanisms
require the knowledge of all consumers’ demand and utility
which is unrealistic when the system is large. Furthermore,
[12] considers an LA’s problem of renewable supply integra-
tion via load scheduling, and formulate a Markov Decision



problem. However, the solution requires the precise knowledge
of the probabilistic distribution of future uncertainty.

Thus, a key difference of this work from the aforementioned
literature is that we consider the opportunistic decision-making
of self-interested consumers, with deferrable demand, without
relying on assumptions of strictly-concave utility functions or
known probabilistic distributions. As in [4]–[6], we directly
capture the behavior of such users through threshold policies,
which however have been found to lead to system-level volatil-
ity. We then explicitly address such volatility through two new
pricing mechanisms. Specifically, note that our preliminary
investigations (Section III) show that consumption decisions of
flexible consumers under a threshold policy get synchronized
when all consumers face a common price signal. Motivated
by this observation, the key idea in designing our new pricing
algorithms is to create differentiation either in price or in
agents’ internal states. Our first algorithm creates information
asymmetry among users by sending individual prices to users
obtained by creating small perturbations around a common
price (Section IV). This scheme is appropriate when there are a
large number of consumers, and it preserves long-term fairness
among users although each user sees slightly different prices
at each time period. On the other hand, the second algorithm
introduces heterogeneity among users by imposing a common
secondary price for the change in consumption of each user in
time (Section V). This scheme is appropriate for both small
and large systems, and it does not differentiate users based on
the price they see.

Technically, both of the proposed algorithms solve vari-
ations of the same cost minimization problem, which are
obtained by augmenting the objective of the original problem
with convex terms. Furthermore, our results (Section VI)
convey the prominent message that introducing differentiation
among opportunistically behaving agents alleviates the detri-
mental effects of the feedback loop between aggregate load
and price. In particular, under the proposed algorithms (i) high
volatility and instability problems are alleviated; (ii) a flatter
load pattern, which is less costly to supply, is achieved; and
(iii) flexible consumers obtain economic benefits.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system where a load aggregator (LA) serves
a large number of small consumers. In the following, we
present a generic real-time model and introduce the system
participants. Then, we focus on the smart electricity grid and
formulate the control and pricing problem.

A. System Model

The system is operated over discrete time periods, t =
0, 1, . . ., and at each time period the participants make their
control decisions. The system comprises an LA and a large
number of consumers as depicted in Figure 1. The LA sets the
real-time prices for its consumers, and ensures that consumers’
loads are served upon their request. The goal of the LA is
to maximize its profit. On the other hand, consumers seek
to satisfy their demand with the aim of making the lowest
payment for consumption. There are two types of consumers

in the system. Flexible consumers have deferrable demand,
i.e. they can delay their consumption. Inflexible consumers,
however, cannot delay their consumption and must serve their
demand at the time the demand is realized. The system model
described is a closed-loop feedback stochastic dynamical sys-
tem. Consumers react to the price generated by the LA in
real-time, and the LA adjusts the price based on the total
load. Next, we present the participants and the operation of the
system in detail, using electricity system as a specific example.
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Fig. 1. The system model depicting the participants and their interactions.

1) Load Aggregator (LA): The LA serves its customers
by procuring electricity via purchasing from a wholesale
market or a distributor. The procurement of s watts of power
incurs cost C(s) to the LA. Note that the cost function C
encapsulates the payments for purchasing electricity as well
as maintenance and capital costs [7], [8], [10], [11], [13],
[14]. We assume that C : R+ → R+ is a continuously
differentiable and increasing function of s. We also assume
that C̈(s) ≥ cc > 0 for all s ≥ 0, and hence C is strongly
convex and Ċ is invertible.

The LA intends to coordinate its customers by setting the
real-time prices at each time period, i.e. p(t) for t = 0, 1, . . ..
The price is generated ex-ante, meaning that the amount of
consumption is unknown at the time the price is set. Based on
the price it sets, the LA receives the payment ω(t) , p(t)s(t).
Hence, the LA’s goal is to maximize its profit ω(t)−C(s(t)).
Furthermore, the LA does not have the knowledge of consumer
valuations and their control strategies.

2) Consumers: There are N flexible and Ni inflexible
consumers. At period t, consumer n generates demand an(t).
an(t) is a random variable that is assumed to be independent
among consumers and i.i.d. over time. The average demand
generation rate is λn, and E [an(t)] = λn for all t. We
assume that demand is bounded such that an(t) ∈ [0, Amaxn ].
The energy consumption, namely load1, by user n at period
t is denoted by xn(t) ∈ [0, xn]. For inflexible consumers,
xn(t) = an(t) because the realized demand must be served
immediately. We define Si(t) ,

∑Ni

n=1 xn(t), with mean
λS =

∑Ni

n=1 λn, to be the total load of inflexible users. For
flexible consumers, the amount of electric energy consumption
is not necessarily equal to the amount of realized demand;
Realized demand can be deferred and served later as load.

The waiting queue for flexible consumer n’s deferrable
demand at time t is qn(t) and its evolution is given by

qn(t+ 1) = [qn(t) + an(t)− xn(t)]
+ (1)

where [z]
+ , max{z, 0}. These queues are required to be

stable, otherwise the delay experienced by the demand will

1To be precise: “Demand” is externally generated according to a, but can
be delayed. “Load” is the actual consumption at each time period.



approach infinity. The goal of flexible consumer n is to
minimize its payment, rn(t) , p(t)xn(t), under the queue
stability constraint. Inflexible consumers do not have such
objective since they do not have control on their load.

B. Problem Formulation

In the paper, we use boldface letters to denote vectors, e.g.
x = (x1, . . . , xN ) is the N dimensional vector of the scalar
quantities xn for n = 1, . . . , N . We use {.} to denote a set of
quantities whose size should be understood from context.

The optimization problem we consider is the LA’s cost
minimization problem:

min
{x(t)}{s(t)}

lim
T→∞

1

T

T−1∑
t=0

E [C (s(t))] (2)

s.t.
N∑
n=1

xn(t) + Si(t) = s(t), ∀t = 0, 1, . . . (3)

lim
T→∞

1

T

T−1∑
t=0

E [xn(t)] ≥ λn, ∀n. (4)

In problem (2), the objective is the time-averaged expected
cost of electricity procurement. Constraint (3) ensures that the
consumer load is served completely, constraint (4) ensures that
the flexible consumers experience finite delay.

Instead of Problem (2), we will consider the following static
(one time-period) problem:

min
x,s

C (s) s.t.
N∑
n=1

xn + λS ≤ s (5)

λn ≤ xn, ∀n.

It can be shown that the optimum objective value of (5) is a
lower bound for that of (2) due to the convexity of C. Hence,
by providing a solution to problem (5), which satisfies the
constraint (4) and matches supply to load, we can achieve
an objective value that is close to the optimum value of
problem (2).

Problem (5) is easy to solve and various iterative algorithms
can be developed to achieve the optimum solution. However,
such algorithms may dictate undesirable control-rules on the
consumer side that do not align with flexible consumers’
objective of minimizing their payments. On the other hand, as
we will show in Section III-B, allowing flexible consumers to
fully exhibit their opportunistic behavior may cause instability
and inefficiency by generating abrupt changes and fluctuations
in power consumption. Therefore, our goal is to design control
and real-time pricing schemes that will give flexible consumers
the freedom to opportunistically consume electricity for their
own interest, and that will also achieve the minimum or close-
to-minimum electricity procurement cost.

III. FLEXIBLE CONSUMER BEHAVIOR AND BENCHMARK
REAL-TIME PRICING SCHEMES

In the following, we will first characterize the flexible
consumer behavior, and then discuss its impact on the sys-
tem performance. To demonstrate the detrimental effects of

consumer-side flexibility, we present two simple and intuitive
real-time pricing schemes that will also serve as benchmarks
when assessing our own pricing schemes’ performance.

A. Flexible Consumer Behavior

In our model, consumers are price-taking; At period t, each
consumer receives a price p(t) for consuming unit amount of
power, and then decides on his load. Thus, the optimization
problem faced by a flexible consumer can be formulated as

min
{xn(t)}

lim
T→∞

1

T

T−1∑
t=0

E [p(t)xn(t)] (6)

s.t. lim
T→∞

1

T

T−1∑
t=0

E [xn(t)] ≥ λn, ∀n.

From a single consumer’s perspective, his individual load
decisions have negligible effect on the future prices when
the number of users is large. Hence, we assume that p(t)
is exogenous; It is independent of xn(t) in problem (6).
Under this assumption, the following policy achieves the
optimal value of (6) in the asymptotic regime where the design
parameter κn > 0 approaches 0:

xn(t) = xn1{p(t) ≤ κnqn(t)}. (7)

We note that this threshold policy and similar threshold-based
policies have been shown to be asymptotically optimal when
the prices are exogenous [4], [15], [16].

The policy in (7) results in an opportunistic behavior. Users
consume electricity only when price is below a certain thresh-
old, and when they consume, they demand their maximum
load xn to take full advantage of the low price. However, this
behavior, when aggregated over a large consumer base, will
cause very high (low) load when price is low (high). Thus, as
we will see subsequently, the resulting load pattern will not
be flat and will be costly to supply. Furthermore, supply and
price will be highly fluctuating since the price is adjusted in
real-time by the LA as a response to the changes in load.

B. Benchmark Real-time Pricing Schemes

i) Scheme I (Real-time Pricing With Zero Flexible Con-
sumer Penetration): In this scheme, all consumers are inflexi-
ble, so they do not have the ability to defer their loads; Arriv-
ing demand is served immediately, i.e. xn(t) = an(t) for all
n. On the other hand, the LA uses

∑
n xn(t) as the prediction

of the load on the next time period, and sets the price to
the total marginal procurement cost, i.e. p(t + 1) = Ċ (s(t))
subject to s(t) =

∑
n xn(t). This choice of price maximizes

the LA’s profit assuming that the load prediction is accurate.
To summarize, Scheme 1 is given as follows:

Scheme 1. At time t:
• Consumer n sets xn(t) = an(t).
• The LA computes:

p(t+ 1) = Ċ (s(t)) , s.t. s(t) =
∑
n

xn(t) + Si(t)



We note that Scheme 1 serves as a baseline setup, which will
be useful in assessing both the advantages and disadvantages
of consumer-side flexibility.
ii) Scheme II (Gradual Real-time Price Update under

Flexible Consumer Presence): Under his scheme, a percentage
of users have flexible demand. We assume that these users
implement the threshold policy (7). Due to (7), we expect the
aggregate load to become either very large or too small, since
the consumers use the maximum amount xmn or nothing based
on the common price. Thus, in order to prevent fluctuations
in price in response to the total load, this scheme iteratively
updates the price instead of setting it to the marginal cost of
the total load. Scheme 2, which updates the price based on
the dual of problem (5), is presented below.

Scheme 2. At time t:
• Consumer n computes (1) and

xn(t) = xn1 {p(t) ≤ κnqn(t)} (8)

• The LA must meet the real load
∑
n xn(t)+Si(t). Further,

it computes s(t) = Ċ−1 (p(t)), and updates the price:

p(t+ 1) =

[
p(t) + κs

(∑
n

xn(t) + Si(t)− s(t)

)]+
(9)

Under Scheme 2, although the price exhibits relatively small
oscillations due to the dampening effect of κs, the total load
abruptly fluctuates as seen in Figure 2. Figure 2 also depicts
the same amount of total load under Scheme 1. Note that
although Scheme 1 does not have the fluctuation problem
as Scheme 2, it does not take advantage of the demand
flexibilities either. Under the presence of demand flexibilities,
the key problem appears to be that the customers, who
implement the threshold policy (7), respond to a common price
in a synchronous manner. In the following sections, we will
propose pricing schemes that will resolve this synchronization
problem by introducing differentiation among consumers.
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Fig. 2. Load under Scheme 1 and 2: Flexible consumers receive Poisson
distributed demand arrivals, and their load constitute 5% of the total load.

IV. RANDOMIZED PRICING (RP) ALGORITHM

In this section, we propose to employ randomized pricing
to overcome the deficiencies of the benchmark schemes in
Section III-B. Randomized pricing has previously been em-
ployed in economic models for different purposes, including:
hiding information from consumers and competitors (see [17]
and references therein); and profit maximization (dating back
to [18]). In this work, we propose randomized pricing (cf.
Algorithm RP) for the purpose of mitigating volatility and
instability problems from opportunistic behavior of flexible

consumers, while also guaranteeing fairness in terms of non-
preferential treatment of consumers (see Proposition 1).

The underlying motivation in the design of our RP Algo-
rithm is twofold. First, we consider updating the common
price incrementally so that sudden changes in load do not
directly translate to large fluctuations in price. Second, in order
to prevent flexible consumers’ load decisions from aligning
together (which creates peaks and valleys in the aggregate
load), we differentiate the price over the consumer base. In
particular, each consumer receives an individual price that is
randomly differentiated from the common price.

The real-time randomized pricing (RP) algorithm is given
below. In Algorithm RP, individual prices are generated by
adding to the common price i.i.d. random noise εn(t), which
has the CDF (Cumulative Distribution Function) Fε. The
additive perturbations can have an arbitrary distribution as long
as Fε satisfies Assumption 1, which ensures that Fε has an
inverse function.

Assumption 1. Fε is continuous on its domain and strictly
increasing from 0 to 1 on an interval

[
εmin, εmax

]
.

Algorithm RP Randomized Pricing Algorithm
At iteration t:
• Consumer n receives an individual price pn(t). Then, it
computes its queue as in (1) and load as

xn(t) = xn1{pn(t) ≤ κnqn(t)} (10)

• The LA must meet the real load
∑
n xn(t) +Si(t). Further,

it computes s(t) = Ċ−1(p(t)), and updates the common price:

p(t+ 1) =

[
p(t) + α

(
N∑
n=1

xn(t) + Si(t)− s(t)

)]+
.

Then, the LA generates individual prices that are communi-
cated to each consumer separately:

pn(t+ 1) = p(t+ 1) + εn(t+ 1)

where εn(t) are i.i.d. random variables over time and con-
sumers with the CDF Fε.

Under Algorithm RP, users pay for their consumption at
the individual price that is privately communicated to them
by the LA. Since this price is generated by adding a random
disturbance to the common price, the revenue obtained at each
time period will be different from the revenue anticipated
by the LA. Hence, it is not surprising that RP does not
achieve the optimal solution to problem (2). Instead, we will
show that RP achieves the optimal solution to a welfare
maximization problem that is closely related to the original
problem. The basic idea is that communicating randomized
prices to consumers induces a utility-function based decision
at the consumer side. To demonstrate this, we first present
a continuous-time fluid approximation of RP which will also
be instrumental in analyzing its optimality and convergence.
Then, we present the analysis of RP in discrete-time in the
next subsection.



A. Continuous-time Fluid Approximation Model and Utility-
Maximization-Based Formulation

In this section we derive a continuous-time fluid approxi-
mation for algorithm RP [19]. Then, we relate the model to a
utility maximization problem with modified consumer utility
functions induced by price randomization.

The aggregate flexible consumer load is the sum of N bi-
nary variables, i.e. X(t) ,

∑
n xn1{εn(t) ≤ κnqn(t)− p(t)}.

Moreover, conditioned on p(t) and qn(t), each xn(t) is inde-
pendent since εn are independent. Applying the Law of Large
Numbers based on this assumption, we obtain the following
expression for the aggregate load

X(t) ≈
∑
n

xnFε (κnqn(t)− p(t)) . (11)

The above expression is the mean behavior for the aggregate
load, and when the number of users is large it will well
approximate the dynamics of the load.

We define un(x) , xnFε(−x), and write

xn(t) ≈ un (p(t)− κnqn(t)) ,

which approximates the mean behavior of individual users.
Next, we present a continuous-time approximation to RP.

Algorithm RP-C Continuous-time Approximation to RP

xn(t) = un (p(t)− κnqn(t)) (12)

s(t) = Ċ−1(p(t)) (13)

q̇n(t) =

{
λn − xn(t) if qn(t)>0, or

λn−xn(t)≥0
0 otherwise

ṗ(t) =


α
(∑N

n=1 xn(t) + λS − s(t)
)

if p(t)>0, or∑N
n=1 xn(t)+λS−s(t)≥0

0 otherwise

In RP-C, consumer loads are computed via the smooth
functions un. Since Fε is continuous and strictly increasing
on
[
εmin, εmax

]
, un is continuous and strictly decreasing, and

has an inverse u−1n with the domain [0, xn]. We define function
Un such that U̇n(x) , u−1n (x) on (0, xn), which exists since
u−1n (x) is continuous, and hence integrable. Explicitly,

U̇n(x) ,
∫
u−1n (x)dx, for x ∈ [0, xn] (14)

Note that Un is strictly concave on [0, xn], i.e. there exists
cu > 0 such that Ün(z) ≤ −cu < 0 for all z and n.

Having defined the functions Un, we consider the following
social welfare maximization problem

min
x,s

C(s)−
N∑
n=1

Un(xn) (15)

s.t.
N∑
n=1

xn + λS ≤ s (16)

λn ≤ xn, ∀n (17)

In (15), Un can be interpreted as a consumer utility function.
Problem (15) is quite similar to problem (5) only with a change
in the objective function, where the utility of consumption is
amended.

Define p to be the dual variable corresponding to (16),
and qn to be the dual variables corresponding to (17).
Let (x̂, ŝ, p̂, q̂) be the optimal primal-dual solution to prob-
lem (15). The next theorem shows that RP-C converges to the
optimal solution of (15)-(17).

Theorem 1. The continuous-time approximation algo-
rithm RP-C converges to the optimal solution (x̂, ŝ, p̂, q̂) of
Problem (15).

Proof. See Appendix A.

Note that Theorem 1 gives insights on the average behavior
of RP as we will see in Section VI. For the convergence
and performance result on RP, we provide the discrete-time
analysis of RP in the following.

B. Discrete-time Analysis of Algorithm RP

In the previous section, we observed that the continuous-
time approximation of RP converges to the optimal solution
of (15), which is closely related to the original problem (5) via
the distribution of the price perturbations εn(t). In this section,
we provide convergence results for RP in discrete time.

The following theorem shows that, under Algorithm RP,
s(t) and the price p(t) get arbitrarily close to the correspond-
ing optimum values ŝ and p̂ of the modified problem (15).

Theorem 2. Under Algorithm RP, we have

lim
T→∞

1

T

T−1∑
t=1

E
[
(s(t)− ŝ)2

]
≤ B

cc
(18)

lim
T→∞

1

T

T−1∑
t=1

∑
n

E
[
(x̃n(t)− x̂n)2

]
≤ B

cu
(19)

where B is a constant that depends on the step size α and
user parameter κn, and x̃n(t) , un(p(t)− κnqn(t)).

Proof. See Appendix B.

We have the following observations on Theorem 2:
i) The Effect of Price Randomization: Theorem 2 shows that

the common price p(t) and the average consumer load xn(t)
get closer to the optimum values of problem (15), as cc and
cu become large. Note that cu is defined as Ün(x) ≤ −cu and
we had U̇n(x) = u−1n (x). Thus, the larger cu is, the less steep
the CDF Fε is. For instance, for εn(t) ∼ U (−ε, ε), as ε gets
larger cu gets larger as well. Hence, increasing the amount of
randomness on the common price decreases the bounds in (18)
and (19). On the other hand, we should note that B is directly
proportional to the second moment of εn(t); increasing the
amount of randomness, increases B. Due to this two-sided
effect of randomization on convergence results, the distribution
for the disturbances added to the common price should be
carefully chosen as we will observe in Section VI.
ii) Step Size α and Load Tracking Capability: The results

show that α should be sufficiently small for better convergence



because the bounding term B depends on α. On the other hand,
too small a value of α may affect how the algorithm tracks
the changes in the inflexible load Si(t). Specifically, if α is
chosen to be too small, the price can lag behind Si(t), and
consequently the flexible load can miss the valleys in the daily
pattern. We note that this trade-off between convergence rate
and tracking capability is common among iterative algorithms.
iii) Number of Flexible Users N and Fluctuations in Total

Load: Theorem 2, in particular (19), suggests that x̃(t) will be
close to x̂n. Note that x̃n(t) , un(p(t)− κnqn(t)) and x̂n =
un(p̂ − κnq̂n). Thus, as α → 0 we get (p(t) − κnqn(t)) →
(p̂−κnq̂n). In this regime, the consumption of individual cus-
tomer is given by xn(t) = xn1{εn(t) ≤ κnqn(t)− p(t)} ≈
xn1{εn(t) ≤ κnq̂n − p̂}. Hence xn(t) are approximately in-
dependent random variables. Then, we invoke Kolmogorov’s
Strong Law of Large Numbers to argue that, as N →∞, we
have with probability 1

1

N

∑
n

xn(t)− 1

N

∑
n

xnFε(κnq̂n − p̂)→ 0 (20)

As a result, we can deduce that as the number of flexible users,
N , increases, total flexible load tends to remain close to its
average value.

C. Fairness

We conclude this section with a discussion on the fairness
of Algorithm RP. Although each user receives a randomized
version of the price pn(t), the randomization is performed in
an unbiased and independent manner based on a common price
p(t). As a result, no user receives more preferential treatment
in its individual price. In this sense, the prices seen by the users
are still fair. This fairness property can be stated rigorously as
follows. Consider an arbitrary time-interval [t1, t2]. For user
n, define pn(t1, t2) = 1

t2−t1+1

∑t2
t=t1

pn(t) as the average
price seen by user n during this time interval. Let F(t) denote
the σ-algebra generated by all random variables at or before
time t. Further, for any a > 0, let I(a) = maxθ≥0{θa −
log[Mε(θ)Mε(−θ)]}, where Mε(θ) , E[exp(θεn(t)] is the
moment generating function of the i.i.d. random variable εn(t).
It is easy to verify that I(a) > 0 for all a > 0 (see, e.g., [20,
p27]).

Proposition 1 (Fairness Property of RP). The following prop-
erties hold for all t1 ≤ t2 and for any two users n1, n2:

(i) E[pn1
(t1, t2)|F(t1 − 1)] = E[pn2

(t1, t2)|F(t1 − 1)],
where the expectation is taken with respect to the ran-
domization introduced by all random variables εn(t).

(ii) P[|pn1(t1, t2)− pn2(t1, t2)| ≥ a] ≤ 2e−(t2−t1+1)I(a).

As we can see from the above proposition, over any time
interval [t1, t2], the average price seen by any two users n1
and n2 will be the same in expectation, independently of what
happens before t1. Further, the probability that their average
prices over this time-interval differ by more than a value a > 0
will decrease exponentially to zero as the length of the time-
interval increases. The proof follows directly from the Markov
inequality, and is omitted due to space constraints.

V. CHANGE-OF-USE PRICING (COUP) ALGORITHM

In this section, we take a different approach and propose
a new pricing scheme. The key idea is to penalize large
variations in each consumer’s load by introducing a secondary
price. In particular, consumers are charged for an extra penalty
based on the amount of change in their loads between consec-
utive time periods, while they still pay for their consumption
at each time period at the primary price.

Pricing the change in load can be interpreted as another sort
of differentiation among users. In this case, the secondary price
introduces heterogeneity among consumption decisions of
users. Intuitively, users will prefer changing their consumption
more gradually depending on their internal states instead of
consuming either the maximum xn or 0. We will show that our
pricing algorithm coordinates users’ consumption decisions in
an asynchronous manner such that changes in users’ loads
cancel out to create a total load that is flat.

Under the new algorithm COUP, at each time t the common
price p(t) and the secondary price γ are announced. The
payment at time t for a consumer with load xn(t) is

p(t)xn(t) + γ(xn(t)− xn(t− 1))2.

Here, the second term is the new component that incurs a
penalty (uniform across users and constant over time) on the
change of load. Intuitively, this penalty encourages the users
to smooth out their loads, and reduces the potential volatility.
Having discussed the new pricing scheme, we present the new
pricing mechanism in Algorithm COUP below.

Algorithm COUP Change-of-Use Pricing Algorithm
At iteration t:
• Consumer n receives the common price p(t) and the penalty
price γ. Then, it computes its queue as in (1) and load as

xn(t) =

[
xn(t− 1) +

1

2γ
(κnqn(t)− p(t))

]+
(21)

• The LA must meet the real load
∑
n xn(t) +Si(t). Further,

it computes s(t) = Ċ−1(p(t)), and updates the price:

p(t+ 1) =

[
p(t) + α

(
N∑
n=1

xn(t) + Si(t)− s(t)

)]+

In COUP, (21) corresponds to the solution of the following
optimization problem given the user’s consumption in the
previous period t− 1:

min
xn

{
(p− κnqn)xn + γ(xn − xn(t− 1))2

}
. (22)

Drawing direct comparison to RP and the threshold rule (10),
we observe that without the second term, (22) is similar to the
problem that a consumer solves under RP. Hence, the second
term can be seen as the addition due to the penalty on the
change in consumption. Furthermore, the price update rule in
COUP is still the same as that in RP. Following a similar
method as in the analysis of RP, we will show next that the
continuous-time approximation of COUP achieves the optimal
objective value of the original problem (5) by solving a closely



related welfare maximization problem. In particular, the new
welfare maximization problem differs from the original one in
its objective, which involves the augmentation of a proximal
term to the original objective due to the penalty term we
introduced in the pricing mechanism.

A. The Continuous-Time Fluid Approximation Model and
Welfare-Maximization-Based Formulation

The continuous-time fluid approximation model for COUP
is straightforward to obtain and it is presented in Algo-
rithm COUP-C. Similar to what we noted before for the
discrete-time algorithms, COUP-C differs from RP-C only in
the description of user consumption xn(t).

Algorithm COUP-C Continuous-time Approximation to
COUP

ẋn(t) =

{
1
2γ (κnqn(t)− p(t)) if xn(t)>0, or

κnqn(t)−p(t)≥0
0 otherwise

(23)

q̇n(t) =

{
λn − xn(t) if qn(t)>0, or

λn−xn(t)≥0
0 otherwise

(24)

s(t) = Ċ−1(p(t)) (25)

ṗ(t) =


α
(∑N

n=1 xn(t) + λS − s(t)
)

if
p(t)>0, or

(
∑N

n=1 xn(t)+λS−s(t))>0

0 otherwise

(26)

Next, we will show that COUP-C converges to a stationary
regime where it achieves the optimal objective of the orig-
inal problem (5). To this end, we augment the objective of
problem (5) with an additional cost term motivated by the
proximal optimization algorithm [21]. The resulting welfare-
maximization problem is

min
x,y,s

C (s) + γ
N∑
n=1

(xn − yn)
2 (27)

s.t.
N∑
n=1

xn + λS ≤ s (28)

λn ≤ xn, ∀n, (29)

where γ is a positive constant and yn ∈ R are auxiliary
variables. It is easy to see that if x∗n and s∗ are the optimal
solution to problem (5), then xn = x∗n, yn = x∗n, and s = s∗

are trivially the optimal solution to problem (27). However, the
quadratic term in (27) makes the problem strictly convex in xn,
which helps to alleviate volatility as we will see shortly. As in
other proximal optimization algorithms [21], at each iteration
we first fix yn(t) and optimize the objective of (27) over xn.
Let the corresponding optimal solution be xn(t). We then set
yn(t + 1) = xn(t) and continue with the next iteration. By
setting yn(t+ 1) = xn(t), the quadratic term in (27) becomes
γ
∑N
n=1 (xn(t)− xn(t− 1))

2, which penalizes the difference
in load between periods t and t− 1.

We consider the Lagrangian function for problem (27) for
fixed yn = xn(t− 1), and obtain the dual function as

D(p,q) =

N∑
n=1

min
xn

{
(p− κnqn)xn + γ(xn − yn)2

}
+ min

s≥0
{C(s)− ps}+ pλS +

N∑
n=1

λnκnqn, (30)

where p ≥ 0 and κ · q , [κnqn ≥ 0, n = 1, 2, . . . , N ] are the
dual variables corresponding to the constraints (28) and (29),
respectively. The first optimization in (30) is the users’ opti-
mization problem (22) whose solution gives the consumption
update rule (21) of COUP. The second optimization in (30)
is the profit maximization for the LA. Furthermore, inspecting
the dual problem reveals that COUP-C corresponds to the dual
algorithm for problem (27). Specifically, the primal variables
x, s and the dual variables p, q are updated at each iteration
first with y kept fixed, and then y is updated at the end of
each iteration by setting y(t+1) = x(t). Thus, y(t) is dropped
from the algorithm description and is replaced with x(t− 1).

Having established the relation between COUP-C and prob-
lems (5) and (27), we can study the convergence and optimality
of COUP-C. Before doing so, we give the definition of the
stationary point for the sum of variables.

Definition 1. Define Φ(t) , (
∑
n xn(t),

∑
n qn(t), p(t), s(t)).

Φ∗ , (X∗, Q∗, p∗, s∗) is a stationary point of COUP and
COUP-C in the sum sense, if Φ(t0) = Φ∗ for some t0 < ∞
and Φ(t) = Φ(t0) for all t > t0.

Note that, Φ∗ may not achieve the optimal objective of
problem (27) since we use xn(t − 1) in place of yn(t).
However, if Φ∗ satisfies p∗ = Ċ(s∗), s∗ = X∗ + λS ,
X∗ =

∑
n λn, then Φ∗ achieves the optimal objective of

problem (5). The next theorem shows that the system of
equations given in COUP-C converges to the stationary state
as described in Definition 1, where Φ∗ achieves the optimal
objective of (5).

Theorem 3. In the system characterized by Algorithm COUP-
C, Φ(t) converges to a stationary point Φ∗, which achieves the
optimal objective value of problem (5).

Proof. See Appendix C.

Theorem 3 shows that the aggregate flexible load,
∑
n xn(t)

converges to X∗. Thus, the main observation that we draw
from the theorem is that the oscillations in the price and the
total load become arbitrarily small under COUP-C.

B. Discrete-time Analysis of Algorithm COUP

This section presents the analysis of COUP in discrete-time.
In particular, Theorem 4 shows that s(t) and the price p(t) get
arbitrarily close to s∗ and p∗, respectively, the optimum values
of the original problem (5).

Theorem 4. Under Algorithm COUP, we have

lim
T→∞

1

T

T−1∑
t=1

E
[
(s(t)− ŝ)2

]
≤ B

cc
(31)



lim
T→∞

1

T

T−1∑
t=1

∑
n

E
[
(xn(t)− xn(t− 1))

2
]
≤ B

γ
(32)

where B is a constant that depends on the step size α and
user parameter κn.

Proof. See Appendix D.

Theorem 4 further states that the differences in individual
consumers’ loads between consecutive time slots decrease with
increasing penalty factor γ. Thus, as anticipated, sufficiently
large values of γ dampens the fluctuations in the total flexible
load and the price. Furthermore, as in the case of RP and
Theorem 2, we can make similar observations regarding the
step size α and the algorithm’s load tracking capability.

VI. PERFORMANCE AND NUMERICAL RESULTS

We now provide numerical results that demonstrate the
desirable features of the proposed algorithms. The perfor-
mance metrics that we consider are the payments made by
the consumers and the cost of generation. In terms of these
metrics, we compare the performance of RP and COUP to the
benchmark schemes. In the rest of this section, the following
simulation setup is used unless stated otherwise: LA cost is
set to be C(s) = s2

2 . Flexible consumers receive Poisson
distributed random arrivals. In RP, εn(t) ∼ U (−ε, ε) for all t.
In COUP, κn = 1 and α = 0.01.

First, we present the algorithms’ behavior over time. In
Figure 3, load evolutions obtained by running RP and COUP
are plotted for two days. There are 1000 flexible consumers
and their total average load is set to be 5% of the total load.
Historical metered load data from PJM is used as inflexible
load [22]. In Figure 3, we observe a waterfilling behavior that
results in a smoother load pattern (c.f. Figure 2); Flexible users
consume electricity when the inflexible demand is low (i.e.
when the average price is low) and fill the valleys in the daily
pattern. The effect of price differentiation by randomization
among flexible users shows up as the random zigzag pattern
for RP. On the other hand, total load is smoother under COUP
as deduced from (32) in Theorem 4.
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Fig. 3. Waterfilling behavior of the aggregate grid load. In RP, ε is set to be
1% of the average price. In COUP, γ is set to be 1% of the average price.

A. Consumer and LA Payments

The payment made by consumer n in RP-C is given by

rn(t) = p(t)xn(t) + xmn E
[
εn1
{
εn ≤ −U̇(xn(t))

}]
which follows from (12). On the other hand, the LA anticipates
the payment w(t) = p(t)s(t), since it sets p(t) based on the

computed value of s(t). At the equilibrium of Algorithm RP-
C, the supplier and total consumer payments are given by

r̂ = p̂
∑
n

x̂n +
∑
n

xmn E
[
εn1
{
εn ≤ −U̇(x̂n)

}]
(33)

ω̂ = p̂ŝ = p̂
∑
n

x̂n (34)

where (34) follows from the KKT condition in (39).
On the other hand, under COUP-C, an individual con-

sumer’s payment does not achieve a constant equilibrium value
due to the sum convergence result in Theorem 3. Instead,
consumer payment has the following time-varying limit when
the system is in the stationary regime given in Definition 1:

rn(t) = p̂xn(t) + γ (xn(t)− xn(t− 1))
2 (35)

Therefore, total consumer payment is also time-varying, and
is given by

r(t) = p̂X∗ + γ
∑
n

(xn(t)− xn(t− 1))
2 (36)

Besides, supplier payment under COUP-C achieves a constant
value in the stationary state as it does under RP-C

ω̂ = p̂ŝ = p̂X∗ (37)

Comparing (33) to (34), and (36) to (37), we observe that
the amount of payment received from flexible consumers and
the amount of anticipated payment computed by the supplier
do not necessarily match. The differences between consumer
and supplier payments are given by the second terms in (33)
and (36). We call this difference the LA deficit. Note that
the LA deficit is always positive for COUP-C because of the
secondary price γ, whereas under RP-C, the deficit can be
either negative or positive depending on the distribution of εn.

Naturally, one wants to make the LA deficit as close as
possible to 0 so that the system actually clears in terms of
payments. As an example, for algorithm RP-C, consider the
case where λn = λ, xn = x for all n, and εn’s have the
identical uniform distribution over the interval [ε, ε+ a], i.e.
Fε(x) = x−ε

a . Then, setting ε = −aλx ensures that the deficit is
0. On the other hand, for COUP-C, increasing γ decreases the
changes in individual consumer loads due to Theorem 4, and
consequently the secondary term in (36) decreases. In fact, our
simulations show that the LA deficit is fairly small for both
RP and COUP. For RP, naively setting εn ∼ U(−ε, ε), where
ε is approximately 1% of the average price, ensures that the
deficit is no larger than 0.5% of the payment anticipated by
the LA. On the other hand for COUP, setting κn to 1 and γ
to 1% of the average price increases the consumers’ payments
by only 0.01% while achieving the desired flat load.

B. Impact of Flexible Consumer Penetration on Supply Cost
and Payments

Next, we demonstrate the impact of increasing penetration
of flexible consumers on the supply cost and the flexible
consumers’ payments in Figure 4. We vary the number of
flexible consumers in the system while keeping the total load
constant. In Figure 4, the arrows indicate the direction that the



penetration of flexible consumers increases. We observe that
a flexible consumer’s payment is greatly reduced compared to
the case where it has to serve its demand immediately (i.e.
Scheme 1). Furthermore, compared to the amount that they
pay under Scheme 2, flexible consumers pay less under RP,
and they pay similar or slightly higher under COUP. Thus, we
can conclude that consumers significantly benefit from having
flexible demand and they will be willing to participate in the
new pricing mechanisms to further reduce their payments.
Another observation is that payments increase as the number
of flexible consumers increases. This is because lower price
periods are filled with flexible load, and consequently prices in
these periods are not as low as before. As a result, the flexible
consumers do not have as much opportunity to take advantage
of prices.
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Fig. 4. Algorithms RP and COUP perform better with increasing flexible
consumer penetration in the system. In RP, εn(t) ∼ U (−ε, ε), where ε is
set to be 1% of the average of the optimal common price. In COUP, γ is set
to be 10% of the average of the common price.

Figure 4 demonstrates that for Scheme 2 there are two
regimes in terms of the supply cost. In the first regime, where
flexible load is less than 20% of the total load, increasing
flexibility reduces the cost, even though Scheme 2 already
starts to exhibit abrupt fluctuations in price and total load. A
reason for the decrease in cost is the reduced peak load with
the increased number of flexible consumers. We also note that
our formulation is based on convex cost structure, hence it
may not capture efficiently the effect of abrupt fluctuations
such as the stress on the network and maintenance costs.
However, in the second regime where flexible load is higher
than 20%, fluctuations in load become too large and they are
reflected directly in cost under Scheme 2. As far as RP and
COUP are concerned, they eliminate the fluctuations, and thus
always lead to strictly lower supply cost as the penetration of
flexible consumers increases. Due to this reason, the advantage
of the proposed algorithms become more apparent when the
flexible consumer penetration increases beyond 20% as seen
in Figure 4.

C. Performance with Randomized-Delay (RD) Schemes

We note that the idea in Algorithm RP, i.e., of differentiating
the users to eliminate the alignment of their load decisions,
can also be applied in other dimensions. For instance, the LA
may instead delay the consumers’ service by a random delay.
While a full analysis of such randomized-delay schemes is
beyond the scope of this paper, below we briefly present some

representative numerical results to illustrate their different
behavior. In the following randomized-delay (RD) schemes,
the LA sets the common price p(t) based on the total load,
and the consumers make their consumption decisions, xn(t),
considering the price and the amount of their waiting tasks.
Then, the LA adds another delay amount dn(t), which is a
random variable that is independently generated for each piece
of demand from a common distribution. Each consumer has
to defer its decided consumption amount, xn(t), for dn(t)
time slots. Consequently, the decision xn(t) appears as load
in the system at time t+ dn(t). We investigated two ways of
implementing RD: non-preemptive, where the consumers are
not allowed to make further consumption decisions until their
last task is served; and preemptive, where they are allowed to
do so.
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(b) 8-minute random delay, preemptive
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Fig. 5. Load evolution under two versions of randomized-delay schemes: (a)
non-preemptive; (b) and (c): preemptive.

Fig. 5(a) and (b) show the performance of both schemes
with a random delay of within 8 minutes (each slot takes
1 minute). We find that the first scheme (non-preemptive) is
not effective in eliminating the fluctuations of the total load
(Fig. 5(a)). In this case, users will begin to get service at
every opportunity due to the excessive backlog they receive
while waiting for the random amount of delay, preventing
the valley-filling behavior. The second scheme (preemptive)
of randomized delay can exhibit valley-filling behavior, but
the amount of delay must be carefully chosen. If the delay
is not sufficiently high, the load exhibits highly fluctuating
behavior (Fig. 5(b)).

When the delay is large (e.g., 32 minutes), the preemptive
RD scheme starts to produce valley-filling behavior (Fig. 5(c)).
However, we believe that in this case the excessive delay may



distort the users’ perception of service quality. Note that the
key idea for pricing-based demand-response is to let users
choose their time-of-service based on both the price signals
and their own preferences (e.g., in terms of how much they are
willing to wait). When an uncontrolled, potentially substantial,
amount of random delay is added by the LA, the users no
longer have an accurate sense of the overall delay experienced
by their demand. This distortion of service experience could
potentially make it less desirable for the users to take informed
actions as to when to use service. In contrast, there is no such
distortion in our proposed randomized pricing (RP) scheme:
the users are always in complete control as to when they can
choose to have their demand served. Thus, how to design RD
schemes to achieve comparable performance as RP schemes
remains an open problem, which may warrant a separate in-
depth study on its own.

VII. CONCLUSIONS

We proposed two novel real-time dynamic pricing schemes
that attempt to solve the volatility problem in a system where
economically-driven consumers have the flexibility to defer
their demand. We demonstrated the destabilizing effect of
opportunistic consumer behavior on the load and the price,
when conventional real-time pricing methods are employed.

We propose two new pricing schemes to address this prob-
lem. In our first pricing scheme, individual consumers receive
different prices that are created by adding small random
perturbations to a common price. On the other hand, the
second algorithm sets a secondary price for all consumers,
along with the common price for consumption. The secondary
price penalizes abrupt changes in individual users’ consump-
tion. The underlying idea in both proposed algorithms is to
create differentiation among consumers so that their aggregate
behavior is averaged out over the consumer base. The proposed
pricing schemes are simple to implement since they do not
require any knowledge on consumer strategies, and they can
be employed in various systems other than the smart grid
where demand has time flexibilities. Furthermore, in the paper,
we numerically demonstrated that self-interested consumers
economically benefit from deferring their demand while the
supply cost for the LA is kept low.

APPENDIX A
PROOF OF THEOREM 1

The convergence of the continuous-time algorithm RP-C can
be established by using techniques in [23], [24]. To that end,
using the KKT conditions for problem (15), it can be shown
that the following Lyapunov functions is strictly decreasing:

V (t) =
1

2α
(p(t)− p̂)2 +

1

2

∑
n

κn(qn(t)− q̂n)2. (38)

APPENDIX B
PROOF OF THEOREM 2

First, note the KKT conditions for problem (15):

ŝ =
∑
n

x̂n + λS , p̂ = Ċ(ŝ), (39)

x̂n = U̇−1n (p̂− κnq̂n) , x̂n ≥ λn, ∀n (40)
q̂n(λn − x̂n) = 0, ∀n (41)

To establish the convergence of RP, we consider the fol-
lowing Lyapunov function and its 1-slot drift:

V (t) =
1

2α
(p(t)− p̂)2 +

1

2

∑
n

κn(qn(t)− q̂n)2. (42)

After algebraic manipulations, and using the fact that(
[y]

+ − z
)2
≤ (y − z)2 for z ≥ 0, the bound on the drift

V (t+ 1)− V (t) is obtained as

V (t+ 1)− V (t) ≤ α

2

(∑
n

xn(t) + Si(t)− s(t)

)2

(43)

+

(∑
n

xn(t) + Si(t)− s(t)

)
(p(t)− p̂) (44)

+
∑
n

κn
2

(an(t)− xn(t))2 (45)

+
∑
n

κn(an(t)− xn(t))(qn(t)− q̂n) (46)

Noting that Si(t), an(t), and εn(t) are independent of the rest
of the variables, we take the expectation of the drift bound
w.r.t. their distributions conditional on p(t) and qn(t). After
taking the expectation, we note that (43) and (45) can be
bounded as follows:

E

α
2

(∑
n

xn(t) + Si(t)− s(t)

)2 ∣∣∣∣∣p(t), qn(t)

 ≤ B1

(47)

E

[∑
n

κn
2

(an(t)− xn(t))2

∣∣∣∣∣p(t), qn(t)

]
≤ B2 (48)

where 0 < B1, B2 < ∞, due to the fact that first
and second moments of the aforementioned variables are
bounded. Furthermore, we have E [Si(t) |p(t), qn(t) ] = λS ,
E [an(t) |p(t), qn(t) ] = λn, and

x̃n(t) , E [xn(t) |p(t), qn(t) ]

= E [xn1{εn(t) ≤ κnqn(t)− p(t)} |p(t), qn(t) ]

= xnFε(κnqn(t)− p(t))
= un(p(t)− κnqn(t))

We also define the conditional expected drift as ∆V (t) ,
E [V (t+ 1)− V (t) |p(t), qn(t) ]. Using the bounds (47) and
(48), and the above expected values, we obtain the bound on
∆V (t) as

∆V (t) ≤ B1 +B2 +

(∑
n

x̃n(t) + λS − s(t)

)
(p(t)− p̂)

+
∑
n

κn(λn − xn(t))(qn(t)− q̂n)

Adding and subtracting x̂n and ŝ, using ŝ =
∑
n x̂n+λS , and

defining B3 , B1 +B2 we obtain

∆V (t) ≤ B3 + (p(t)− p̂)

(∑
n

(x̃n(t)− x̂n) + ŝ− s(t)

)



+
∑
n

κn(qn(t)− q̂n)(λn − x̂n + x̂n − x̃n(t))

= B3 + (p(t)− p̂)(ŝ− s(t)) (49)

+
∑
n

κn(qn(t)− q̂n)(λn − x̂n) (50)

+
∑
n

(x̃n(t)− x̂n) (p(t)− κnqn(t)− (p̂− κnq̂n)) (51)

Now, we treat each term in the above expression separately.
For the second term in (49), we apply the mean value theorem
and use the strong convexity of C to obtain

(p(t)− p̂)(ŝ− s(t)) = −
(
Ċ(s(t))− Ċ(ŝ)

)
(s(t)− ŝ)

= −C̈(z)(s(t)− ŝ)2 ≤ −cc(s(t)− ŝ)2

where cc > 0 is such that C̈(z) ≥ cc > 0 for all z.
Furthermore, (50) is upper bounded by 0: From comple-

mentary slackness condition given in (41), q̂n(λn − x̂n) = 0
for all n. Also, qn(t)(λn − x̂n) ≤ 0 due to dual and primal
feasibility. Hence, (qn(t) − q̂n)(λn − x̂n) ≤ 0 for all n, and
(50) is upper bounded by 0.

Consider (51) in the drift bound. Taking the inverse of the
function un, we get p(t)−κnqn(t) = u−1n (x̃n(t)) = U̇(x̃n(t)).
Furthermore, p̂−κnq̂n = U̇(x̂n) from (40). Plugging the above
expressions in (51), applying the mean value theorem, and
using the strong concavity of Un, we obtain∑

n

(x̃n(t)− x̂n) (p(t)− κnqn(t)− (p̂− κnq̂n))

=
∑
n

(x̃n(t)− x̂n)
(
U̇(x̃n(t))− U̇(x̂n)

)
=
∑
n

(x̃n(t)− x̂)Ün(z)(x̃n(t)− x̂)

≤ −cu
∑
n

(x̃n(t)− x̂)2

where cu > 0 is such that Ün(z) ≤ −cu < 0 for all z and n.
Using the bounds that we obtained for the terms (49), (50),

and (51) we obtain

∆V (t) ≤ B3 − cc(s(t)− ŝ)2 − cu
∑
n

(x̃n(t)− x̂n)2 (52)

Then, we take the expectation of the above drift expression
w.r.t. p(t) and qn(t), write it for t = 0, . . . , T − 1, add both
sides of the inequalities, divide by T , and take the limit as
t→∞ to obtain

lim
T→∞

cu
T

T−1∑
t=1

∑
n

E
[
(x̃n(t)− x̂n)2

]
+ lim
T→∞

cc
T

T−1∑
t=1

E
[
(s(t)− ŝ)2

]
≤ B3 (53)

APPENDIX C
PROOF OF THEOREM 3

The convergence of the continuous-time algorithm COUP-
C can be established by using techniques in [25]. We define
Θ(t) , (x(t),q(t), p(t), s(t)) to be the system state at t.

Using the KKT conditions for problem (27), we consider the
following Lyapunov function:

V (Θ(t)) =
N

2α
(p(t)− p∗)2

+ γ

(∑
n

xn(t)−X∗
)2

+
κ

2

(∑
n

qn(t)−Q∗
)2

(54)

where Φ∗ is given in Definition 1 and achieves the optimal
objective of (5). Using similar techniques to the ones in [23],
[24], it can be shown that (54) is strictly decreasing, which
establishes the theorem’s result.

APPENDIX D
PROOF OF THEOREM 4

Note the KKT conditions for problem (27):

ŝ =
∑
n

x̂n + λS , p̂ = Ċ(ŝ), (55)

x̂n = ŷn, x̂n ≥ λn, ∀n (56)
q̂n(λn − x̂n) = 0, q̂n = p̂, ∀n (57)

To establish the convergence result for COUP, we consider
the following Lyapunov function and its 1-slot drift:

V (t) =
1

2α
(p(t)− p̂)2 +

1

2

∑
n

κn

(
qn(t)− q̂n

κn

)2

+ γ
∑
n

(xn(t− 1)− x̂n)
2 (58)

Note that the above function is very similar to the one
we used in Appendix B in the proof of Theorem 2, ex-
cept with the edition of the last term. Therefore, following
similar steps taken in Appendix B, we obtain the follow-
ing bound on the conditional expected drift as ∆V (t) ,
E [V (t+ 1)− V (t) |p(t), qn(t), xn(t− 1) ]:

∆V (t) ≤ B3 + (p(t)− p̂)(ŝ− s(t)) (59)

+
∑
n

κn

(
qn(t)− q̂n

κn

)
(λn − x̂n) (60)

+
∑
n

(xn(t)− x̂n) (p(t)− κnqn(t)− (p̂− q̂n)) (61)

+
1

4γ

∑
n

(κnqn(t)− p(t))2 (62)

+
∑
n

(xn(t− 1)− x̂n) (κnqn(t)− p(t)) (63)

Now, we treat each term in the above expression separately.
First, note that, in (61), (p̂− q̂n) = 0 due to (57).
For the second term in (59), applying the mean value

theorem and using the strong convexity of C, we obtain

(p(t)− p̂)(ŝ− s(t)) = −
(
Ċ(s(t))− Ċ(ŝ)

)
(s(t)− ŝ)

= −C̈(z)(s(t)− ŝ)2 ≤ −cc(s(t)− ŝ)2.

Furthermore, (60) is upper bounded by 0 by using the KKT
conditions given in (55)-(57)



Using the bounds that we obtained for the terms (59), (60),
and combining (61) and (63) together, we obtain

∆V (t) ≤ B3 − cc(s(t)− ŝ)2

+
1

4γ

∑
n

(κnqn(t)− p(t))2

+
∑
n

(xn(t)− xn(t− 1)) (p(t)− κnqn(t)) . (64)

Rearranging the terms and using the update rule for xn(t), we
obtain

∆V (t) ≤ B3 − cc(s(t)− ŝ)2 − γ
∑
n

(xn(t)− xn(t− 1)))
2
.

Then, we take the expectation of the above drift expression
w.r.t. p(t), qn(t), and xn(t− 1), write it for t = 0, . . . , T − 1,
add both sides of the inequalities, divide by T , and take the
limit as t→∞ to obtain

lim
T→∞

γ

T

T−1∑
t=1

∑
n

E
[
(xn(t)− xn(t− 1))

2
]

+ lim
T→∞

cc
T

T−1∑
t=1

E
[
(s(t)− ŝ)2

]
≤ B3. (65)
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