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Abstract—Greedy Maximal Matching (GMM) is an important
scheduling scheme for multi-hop wireless networks. It is com-
putationally simple, and has often been numerically shown to
achieve throughput that is close to optimal. However, to date
the performance limits of GMM have not been well understood.
In particular, although a lower bound on its performance has
been well known, this bound has been empirically found to be
quite loose. In this paper, we focus on the well-establishednode-
exclusive interference model and provide new analytical results
that characterize the performance ofGMM through a topological
notion called the local-pooling factor. We show that for a given
network graph with single-hop traffic, the efficiency ratio of
GMM (i.e., the worst-case ratio of the throughput ofGMM to
that of the optimal) is equal to its local-pooling factor. Further,
we estimate the local-pooling factor for arbitrary network graphs
under the node-exclusive interference model and show that the
efficiency ratio of GMM is no smaller than d

∗

2d∗
−1

in a network
topology of maximum node-degreed∗. Using these results, we
identify specific network topologies for which the efficiency ratio
of GMM is strictly less than 1. We also extend the results to
the more general scenario with multi-hop traffic, and show that
GMM can achieve similar efficiency ratios when a flow-regulator
is used at each hop.

I. I NTRODUCTION

L INK scheduling is an important problem in wireless net-
works [2]–[12]. Since radio transmissions on a common

medium can interfere with each other, it is often necessary
to schedule transmissions that interfere with each other at
different times. While the optimal scheduling algorithm has
been well-known [3], such algorithm is of high computational
complexity, and is difficult to be deployed in real networks.
Recently, several researchers have developed simple schedul-
ing solutions for an important class of interference models
called the node-exclusive(or primary) interference model.
Under this interference model, a node cannot simultaneously
transmit or receive, and cannot simultaneously communicate
with two or more nodes in the network. The node-exclusive
model is a good representation of practical wireless systems
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using Bluetooth or FH-CDMA networks [2], [13], [14]. Under
this model, the scheduling problem can be mapped to a
matching problem, i.e., any active set of links1 must form
a matchingof the nodes in the network. In this setting, there
exists a polynomial-time optimal solution called theMaximum
Weighted Matching(MWM) policy, which finds the matching
that maximizes the queue-weighted rate sum. However, the
complexity of MWM is roughlyO(|V |3) [15], where |V | is
the total number of nodes in the network. Hence, it is still too
complex to implement in most practical scenarios.

To address this issue, a well-known solution called the
Greedy Maximal Matching(GMM) has been developed that
significantly reduces the scheduling complexity [2], [16],[17].
Its schedule is the maximal matching obtained by selecting
links in decreasing order of queue-weighted rate. (See Section
II for more details.) We can characterize the performance of
GMM through its efficiency ratioγ∗, which is the largest
numberγ such that for any offered load~λ that the optimal
MWM policy can support,GMM can supportγ~λ. It is relatively
straightforward to show that the efficiency ratio ofGMM is at
least12 under the node-exclusive interference model, i.e.,GMM
can sustain at least half of the throughput of the optimalMWM
policy. In fact, simulation results suggest that the performance
of GMM is often much better than this lower bound in most
network settings. Further, it has been shown that if the network
topology satisfies the so-calledlocal pooling condition [18],
[19], thenGMM can in fact achieve the full capacity region.
However, realistic network topologies may not satisfy the local
pooling condition, thus sharp results on its efficiency ratio are
desirable.

In this paper, our main contribution is to provide new
analytical results on the achievable efficiency ratio ofGMM
for a large class of network topologies. Such an evaluation is
important for the following reasons: i) It has been empirically
observed in [4] that the throughput achieved byGMM is
close to the maximum achievable throughput in a variety
of networking scenarios. ii)GMM can be implemented in a
distributed manner [20], which is important from the point
of view of many multi-hop networking systems. Further, even
simpler constant-time-complexity random algorithms can be
developed to approximate the performance ofGMM as shown
in [4]. iii) Although many distributed scheduling schemes have

1A link is defined as a node pair, for which one of the nodes is transmitter
and the other is a receiver. We say that a link is active if a node in this node
pair transmits to the other node of the node pair. We assume throughout that
the links are bi-directional.
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been recently developed [8], [10]–[12], the study ofGMM
continues to remain attractive because, empirically,GMM
performs better than these schemes [9], either in terms of the
achievable throughput, or in terms of the resultant queueing
delay.

Along this direction, we generalize the notion of local
pooling in [18], and derive an equivalent characterizationof
the efficiency ratio ofGMM through a topological property,
i.e., thelocal-pooling factor, of the underlying network graph.
In particular, we show that the efficiency ratio ofGMM under
a given network topology is equal to its local-pooling factor.
We then estimate the local-pooling factor for arbitrary network
graphs under the node-exclusive interference model, which
enable us to identify network topologies where the efficiency
ratio of GMM could be much less than 1.

In related work [21], we have studied the Greedy Maximal
Scheduling (GMS) policy for more general interference mod-
els, and have developed an iterative methodology to obtain the
bounds on the local-pooling factor. However, the focus of this
paper is different, as described in the contributions below:

• We focus on the node-exclusive interference model, under
which we are able to derive far sharper bounds on the
worst-case efficiency ratio than in [21]. More importantly,
we provide these bounds as a function of the maximum
node degree, and find network topologies where these
bounds are tight.

• This paper allows for arbitrary link capacities, while in
[21] all links are assumed to have unit capacity.

• We also consider the scenario with multi-hop traffic. For
given multi-hop traffic flows and their paths, we show
that GMM achieves similar efficiency ratios in multi-hop
traffic scenarios as in the single-hop traffic case, when
per-flow regulators are used at each hop.

• We explicitly provide the proof of Proposition 1 of [21],
which was not presented in [21] because the focus of that
paper was on developing a methodology to estimate the
local-pooling factor.

The rest of the paper is organized as follows. We first de-
scribe our model in Section II. We then introduce the notion of
local-pooling factor and show in Section III that the efficiency
ratio of GMM under an arbitrary network topology is equal to
its local-pooling factor. In Section IV, by characterizingthe set
of unstable links underGMM, we estimate the local-pooling
factors for arbitrary network graphs under the node-exclusive
interference model. These results lead to the discovery of
network graphs where the efficiency ratio ofGMM is low.
Finally, we extend the results to the more general multi-hop
traffic scenarios in Section V, and we conclude in Section VI.

II. N ETWORK MODEL

We model a wireless network by a graphG(V,E), where
V is the set of nodes, andE is the set of undirected links. We
assume a time-slotted system, where the length of each time
slot is of unit length. Letcl denote the capacity of each linkl,
and let the column-vector~cT := [c1, c2, . . . , c|E|]. We assume
that in each time slot, a link can transmitcl packets provided
that the following node-exclusive interferenceconstraint is

satisfied: if a linkl is transmitting data, then no other links
that share a common transmitter node or receiver node with
link l can transmit at the same time. Hence, any active set of
links must form amatchingof the nodes inV .

Let ~ME be amaximalmatching onE, i.e., no more links can
be added to~ME without violating the node-exclusive interfer-
ence constraint. We use a vector in{0, 1}|E| to denote a maxi-
mal matching~ME such that thek-th element is set to1 if link
k ∈ E is included in the maximal matching~ME , and to0 oth-
erwise. LetME be the set of all possible maximal matchings
and letCo(ME) denote its convex hull. We also define the set
of link rates asCo(RE) := {~φ | ~φ = ~c◦ ~ψ for ~ψ ∈ Co(ME)},
where the operator denotes component-wise multiplication,
i.e., [x1, x2, . . . ] ◦ [y1, y2, . . . ] := [x1y1, x2y2, . . . ].

We first assume single-hop traffic, i.e., packets arrive to each
link l and once they are served, they immediately leave the
system. This assumption will be relaxed later in Section V.
We also assume that the packet arrivals follow a stationary
and ergodic process that satisfies the conditions for the fluid
limits to exist. One such condition is that the inter-arrival times
are i.i.d. The other alternate condition is that the number of
arrivals at each time-slot arei.i.d. across time. Further, we
assume that the dynamics of the system can be modeled as
a Markov process2. Let Al(t) denote the number of packet
arrivals at link l at time slott. Let Sl(t) denote the number
of packets that linkl can serve at time slott. Note thatSl(t)
takes the valuecl if link l is activated at time slott and is
zero otherwise. Also letQl(t) denote the number of packets
queued at linkl at the beginning of time slott. The queue
length then evolves according to the following equations:

Ql(t+ 1) = [Ql(t) +Al(t) − Sl(t)]
+, (1)

where[·]+ denote the projection to non-negative real numbers.
Definition 1: The network isstableif for the queue length

process, we have

lim sup
T→∞

1

T

T
∑

t=1

1{P

l∈E
Ql(t)>η} → 0, asη → ∞, (2)

where1{·} denotes an indicator function taking either0 or 1
based on the occurrence of specified event.

Let λl denote the average arrival rate. Thecapacity region
(or the stability region) under a given scheduling policy is
defined as the set of arrival rate vectors~λ = [λ1, λ2, . . . , λ|E|]
such that the system is stable. We define the optimal capacity
region Λ as the union of the capacity region of all possible
stationary scheduling policies. To characterize it, we define a
set

Λ′ := {~λ
∣

∣ for some~φ ∈ Co(RE),

λl < φl if φl > 0, andλl = 0 otherwise},
(3)

and its closure

Λ̄′ := {~λ
∣

∣ ~λ � ~φ, for some~φ ∈ Co(RE)}, (4)

where ~x � ~y denotes that~x is component-wise less than

2For example, we can describe the states using queue lengths,remaining
interarrival times, and remaining service times under the assumption ofi.i.d.
interarrival and service times [22].
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or equal to by~y. The optimal capacity regionΛ can be
characterized [3] as

Λ′ ⊂ Λ ⊂ Λ̄′. (5)

It is well-known that theMaximal Weighted Matching
(MWM) policy can achieve this optimal capacity region under
the node-exclusive interference model. However, its compu-
tational complexity (O(|V |3)) is high. In this paper, we are
interested in a simpler policy calledGreedy Maximal Matching
(GMM). GMM operates as follows: At each time slot, it first
picks the link l with the largest weightqlcl, whereql is the
backlog size of linkl; it then discards all links that interfere
with link l; it then picks the linkk with the largestqkck from
the remaining links; and this process continues until no links
are left. As we discussed in the introduction, in this paper we
are interested in characterizing the efficiency ratio ofGMM
under arbitrary network topologies. We formally define the
notion of the efficiency ratio as follows.

Definition 2: For a scheduling policy, e.g.,GMM, we say
that it achieves afraction γ (0 ≤ γ ≤ 1) of the capacity region
under a given network topology if it can keep the system stable
for any offered load~λ ∈ γΛ.

Definition 3: Theefficiency ratioγ∗ of a scheduling policy
under a given network topology is the supremum of allγ such
that the policy can achieve a fractionγ of the capacity region,
i.e.,

γ∗ := sup{γ | the system is stable under all offered

load vectors~λ such that~λ � γ~φ

for some~φ ∈ Co(RE)}.

(6)

III. A N EQUIVALENT CHARACTERIZATION OF THE

EFFICIENCY RATIO OF GMM

In this section, we derive an equivalent characterization of
the efficiency ratio ofGMM under arbitrary network topolo-
gies. We first recall the following definition oflocal pooling
from [18]:

Definition 4: Given a network graphG(V,E), a set of links
L ⊂ E satisfieslocal pooling, if there exists a nonzero~α ∈R|L|

+ such that~αT ~φ is a positive constant for all~φ ∈ Co(RL).
The graphG(V,E) satisfieslocal pooling if every L ⊂ E
satisfies local pooling.

An example of graphs that satisfy local pooling is the
triangular network topology with three nodes and three links
of unit capacity as shown in Fig. 1. In this graph, we have
three maximal matchings;[1, 0, 0], [0, 1, 0], and [0, 0, 1]. For
any convex combination~φ of these three vectors, we have
~αT ~φ = 1 with ~α = [1, 1, 1].

Note that if a set of linksL satisfies local pooling, no vector
in Co(RL) is strictly (component-wise) greater than another
vector in Co(RL)3. Dimakis and Walrand [18] have shown
that if a network graph satisfies local pooling,GMM achieves
the full capacity region.

3We can prove this by contradiction. Suppose that there exist~φ1, ~φ2 ∈
Co(RL) such that~φ1 ≻ ~φ2. Multiplying ~α to both sides, we obtain~αT ~φ1 >

~αT ~φ2, which contradicts the assumption.

Fig. 1. Triangular network topology with three nodes and three links.

In this paper, we are interested in arbitrary network topolo-
gies that may not satisfy local pooling. We now generalize the
notion of local pooling to that of the local-pooling factor.

Definition 5: A set of linksL satisfiesσ-local pooling, if
σ~µ � ~ν for all ~µ, ~ν ∈ Co(RL). In other words, for all~µ, ~ν ∈
Co(RL), there must exist somek ∈ L such thatσµk < νk.

Note thatσ cannot be greater than1 since we can take
~µ = ~ν. In addition, if a graph, e.g., the triangular net-
work topology, satisfies local pooling of Definition 4, then it
must satisfyσ-local pooling for anyσ < 1. We can prove
this by contradiction. Suppose that there exist two convex
combinations~φ1, ~φ2 and σ < 1 such thatσ~φ1 − ~φ2 � ~0.
Since the graph satisfies local pooling, there exists an~α such
that ~αT ~φ1 = ~αT ~φ2 > 0. Multiplying ~α on both sides of
σ~φ1 − ~φ2 � ~0, we obtainσ − 1 ≥ 0, which contradicts the
assumption.

Definition 6: The local-pooling factorof a graphG(V,E)
is the supremum of allσ such that every subsetL ∈ E satisfies
σ-local pooling. In other words,

σ∗ := sup{σ| σ~µ � ~ν for all L and all~µ, ~ν ∈ Co(RL)}

= inf{σ| σ~µ � ~ν for someL and some~µ, ~ν ∈ Co(RL)}.
(7)

By definition, if the local-pooling factor of a graph isσ∗,
then every subsetL ⊂ E must satisfyσ∗-local pooling. Note
that Definition 4 of local pooling corresponds toσ∗ = 1. The
results of [18] imply that if the local-pooling factor of the
graph is1, then the efficiency ratio ofGMM will be 1. We
next generalize this result to the case whenσ∗ < 1. We start
with two lemmas.

Lemma 1: If the local-pooling factor of a graphG(V,E) is
σ∗, then the efficiency ratioγ∗ of GMM under this network
topology is no smaller thanσ∗, i.e., γ∗ ≥ σ∗.

Proof: We need to show that for any offered load~λ strictly
within σ∗Λ, the network is stable underGMM. We prove
stability by finding a Lyapunov function with negative drift
for the fluid limit model of the system.

We first define the fluid limit model of the system as in [5],
[22]. We recall thatAl(t) and Sl(t) denote the number of
packet arrivals and available service, respectively, at time slot
t, and thatQl(t) denotes the number of queued packets at
the beginning of time slott and it evolves according to (1).
We interpolate the values ofAl(t) and Sl(t) to all non-
negative real numberst by setting Al(t) = Al(⌊t⌋) and
Sl(t) = Sl(⌊t⌋), where⌊t⌋ denotes the largest integer smaller
than or equal tot. We also interpolate the values ofQl(t)
by linear interpolation between⌊t⌋ and ⌊t⌋ + 1. Then, using
the techniques of Theorem 4.1 of [22], we can show that, for
almost all sample paths and for all positive sequencexn → ∞,
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there exists a subsequencexnj
with xnj

→ ∞ such that the
following convergence holds uniformly over compact intervals
of time t: For all l ∈ E, there exist limitsλl, ql(t), andπl(t)
such that

1
xnj

∫ xnj
t

0 Al(s)ds → λlt,

1
xnj

∫ xnj
t

0 Sl(s)ds →
∫ t

0 πl(s)ds,

1
xnj

Ql(xnj
t) → ql(t).

(8)

Moreover, for alll ∈ E, the limits ql(t) andπl(t) satisfy

d

dt
ql(t) =

{

λl − πl(t), if λl − πl(t) ≥ 0, or ql(t) > 0,
0, otherwise,

(9)
and~π(t) should be a convex combination of maximal match-
ings chosen byGMM, which will be further explained in the
following. Any such limit [~q(t), ~π(t)] is called afluid limit of
the system.

We now use the idea from [18] and show that for any
offered loadλ strictly within σ∗Λ, the largest queue-weighted
ratemaxl qlcl of the fluid limit model always decreases under
GMM. Note thatql(t) is absolutely continuous, and hence its
derivative exists almost everywhere. Consider those timest
when the derivatived

dt
ql(t) exists for all l ∈ E. Let L0(t)

denote the set of links with the largest queue-weighted rateat
time t, i.e.,

L0(t) :=

{

l ∈ E
∣

∣

∣
ql(t)cl = max

k∈E
qk(t)ck

}

.

Let L(t) denote the set of links with the largest derivative of
the queue-weighted rate among the links inL0(t),

L(t) :=

{

l ∈ L0(t)
∣

∣

∣

d

dt
ql(t)cl = max

k∈L0(t)

d

dt
qk(t)ck

}

.

Next, we show by contradiction that there cannot exist a link
l ∈ L(t) such that d

dt
ql(t)cl ≥ 0 andql(t) > 0.

Suppose that we have~π(t) as a result of scheduling under
GMM, and there exists a linkl ∈ L(t) with d

dt
ql(t)cl ≥ 0 and

ql(t) > 0. Then by the definition ofL(t), all links inL(t) have
the same non-negative derivative. Since links inL(t) have the
largest derivative among links inL0(t) at time t and ql(t)’s
are continuous, there exists a smallδ > 0 such that for all
τ ∈ (t, t+ δ],

min
l∈L(t)

ql(τ)cl > max
k∈E\L(t)

qk(τ)ck.

Since GMM finds a maximal matching in decreasing order
of queue-weighted rate, links inL(t) should be chosen first
during the interval(t, t+ δ]. Hence, each schedule ofGMM,
when projected to the setL(t), should be a maximal matching
onL(t), and thus, the average service rate~π∗ during(t, t+ δ]
should satisfy that~π∗|L(t) ∈ Co(RL(t)), where·|L(t) denote
the projection of a vector ontoL(t). Then, by lettingδ → 0,
we obtain~π∗ → ~π(t), and hence, the limit must satisfy that

~π(t)|L(t) ∈ Co(RL(t)). (10)

We refer readers to [23] for the complete proof of this part.

Since the local-pooling factor isσ∗, and ~λ falls strictly
within σ∗Λ (i.e., ~λ ∈ σ∗Λ′), there must exist ak ∈ L(t)
such thatλk < πk(t). Define

ǫ∗ := inf
~φ∈Co(RL),L⊂E

{

max
k∈L

(φk − λk)

}

. (11)

Note that since~λ falls strictly withinσ∗Λ and the local pooling
factor is σ∗, we must haveǫ∗ > 0. Hence, by the earlier
argument, there exists ak ∈ L(t) such thatλk −πk(t) ≤ −ǫ∗.
This implies that d

dt
ql(t)cl = d

dt
qk(t)ck ≤ −ǫ∗ for all l ∈

L(t). This result contradicts our assumption and implies that
the largest queue-weighted rate must decrease.

Therefore, we can pick the Lyapunov function asV (t) :=
maxl∈E ql(t)cl. We have, ifV (t) > 0,

D+

dt+
V (t) ≤ max

l∈L0(t)

d

dt
ql(t)cl =

d

dt
qk(t)ck

∣

∣

∣

∣

k∈L(t)

≤ −ǫ∗,

where D+

dt+
V (t) = limδ↓0

V (t+δ)−V (t)
δ

. Since the above in-
equality holds for almost everyt, it implies that the fluid limit
model of the system is stable. Hence, by Theorem 4.2 of [22],
the original system is also stable.

Lemma 1 shows that the efficiency ratio ofGMM under an
arbitrary network graph is no smaller than the local-pooling
factor, i.e.,γ∗ ≥ σ∗.

The next lemma shows thatγ∗ ≤ σ∗.
Lemma 2: If there exist a subset of linksL ⊂ E, a positive

numberσ, and two vectors~µ, ~ν ∈ Co(RL) such thatσ~µ � ~ν,
then, for arbitrarily smallǫ > 0, there exists a traffic pattern
with offered load~ν + ǫ~eL such that the system is unstable
underGMM, where~eL is a vector withel = 1

cl
for l ∈ L and

el = 0 for l /∈ L.
Remark:Since~ν ∈ σΛ, Lemma 2 implies that the efficiency
ratio of GMM under this network topology is no greater than
the local-pooling factor, i.e.,γ∗ ≤ σ∗.

Proof: We will construct a traffic pattern with offered load
~ν + ǫ~eL based on~ν, and show that under this traffic pattern,
the queue length will increase to infinity underGMM.

Letℵ denote the number of all maximal matchings~Mi onL.
Since~ν is a convex combination of these maximal matchings,
it can be written as

~ν =

ℵ−1
∑

i=0

wi(~c ◦ ~Mi), (12)

wherewi ≥ 0 for all 0 ≤ i ≤ ℵ − 1 and
∑ℵ−1

i=0 wi = 1.

We now construct a traffic pattern with offered load~λ =
~ν + ǫ~eL such that the system is unstable underGMM. We
assume that packets arrive to a linkbeforea time slot and that
the queue of all links inL is empty at the beginning.

Let c̃ denote the least common multiple of allcl’s. At each
time slot t, pick a matching~Mi with probabilitywi for i =
0, 1, . . . ,ℵ − 1. Then with probability (1 − ǫ′), we inject cl
packets to links included in~Mi, andwith probabilityǫ′, inject
cl +

c̃
cl

packets to linksl included in ~Mi and c̃
ck

packets to all
other linksk in L. The arrival pattern repeats at every time
slot.
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We can show by induction that all links inL have the same
queue-weighted rates that keep increasing. Suppose that all
links in L have the same queue-weighted rates at the end of
time slott− 1. (Note that this is true att = 1 if the system is
initially empty.) At time slott, if we inject cl packets to links
l in some maximal matching~Mj, then since the links with
new packet arrivals have the largest queue-weighted rates and
they do not interfere with each other, these links will be served
simultaneously underGMM during the time slot. Hence, at the
end of time slott, all queue-weighted rates inL will remain
the same. On the other hand, if we injectcl + c̃

cl
packet to

links l included in some maximal matching~Mj and c̃
ck

to

all other linksk in L, the links in ~Mj again have the largest
queue-weighted rates and will be served simultaneously under
GMM. As a result, at the end of the time slot, all links inL
have the same queue-weighted rates, which however increase
by c̃ from those in the previous time slot. Since~Mj is an
arbitrary maximal matching onL, we can conclude that, at
the end of each time slot, all queue-weighted rates inL will
be the same. However, with probabilityǫ′, the queue length
of each linkl ∈ L increases byc̃

cl
.

The average arrival rate of this traffic pattern can be
estimated as
ℵ−1
∑

i=0

wi(1− ǫ′) ·~c ◦ ~Mi +
ℵ−1
∑

i=0

wiǫ
′ · (~c ◦ ~Mi + c̃~eL) = ~ν + ǫ~eL,

whereǫ = ǫ′c̃. Hence, we have shown that the system with
offered load~ν + ǫ~eL is unstable underGMM.

Note that the key to the proof is to construct a traffic
pattern such that (i) it keeps all links inL of the same
queue-weighted rate, and (ii) it injects packets accordingto
the maximal matchings that form the vector~ν so that these
maximal matchings will be picked byGMM. In fact, for
any vector~ν ∈ Co(RL), we can construct a traffic pattern
with ~ν + ǫ~eL such that the system is unstable underGMM.
The following example shows that such a vector~ν is not
necessarily on the boundary of the optimal capacity region.

Example: The following example illustrates how such a
traffic pattern can be constructed in the 6-link cycle network
shown in Fig. 2. Assume that all links have unit capacity. We
number all links clockwise from 0 to 5. All possible maximal
matchings under this network graph are listed below.

• ~M0 = [1, 0, 1, 0, 1, 0], ~M1 = [0, 1, 0, 1, 0, 1],
• ~M2 = [1, 0, 0, 1, 0, 0], ~M3 = [0, 0, 1, 0, 0, 1], ~M4 =

[0, 1, 0, 0, 1, 0].

Note that the number of links included in a maximal matching
is three for ~M0 and ~M1, and is two for ~M2, ~M3, and ~M4.
Figs. 2(b) and 2(c) show the two instances of the maximal
matchings, i.e.,~M0 and ~M2. Note that if we choose two vec-
tors~µ, ~ν from the convex set of maximal matchingsCo({ ~Mi})
as

~µ = 1
2
~M0 + 1

2
~M1 =

[

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

]

,

~ν = 1
3
~M2 + 1

3
~M3 + 1

3
~M4 =

[

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3

]

,

then 2
3~µ � ~ν.

(a) Topology (b) Maximal
matching ~M0

(c) Maximal
matching ~M2

Fig. 2. The 6-link cycle network and the instances of maximalmatching.
The solid lines in (b) and (c) are the active links.

We now construct a traffic pattern with offered load~λ =
~ν + ǫ~e such that the system is unstable underGMM, where
~e = [1, 1, 1, 1, 1, 1] and ǫ is a small positive number. Assume
that all queues in the system are of the same length at time 0.

At each time slot, packets are injected to links inL as
follows: With probability 1

3 each, pick a maximal matching
from ~M2, ~M3, and ~M4. Then,

• with probability (1 − ǫ), one packet is injected to links
in the maximal matching.

• with probability ǫ, two packets are injected to links in
the maximal matching and one packet to all other links,
resulting in the overall packet arrivals of~M2+~e, ~M3 +~e,
and ~M4 + ~e, respectively.

Over all links, the arrival rate is13 + ǫ and the queue length
increases by 1 with probabilityǫ every time slot. Hence,
the system with offered load~ν + ǫ is unstable underGMM.
However, the optimalMWM policy can support the offered
load ~µ = 3

2~ν in this example. Hence, the efficiency ratio of
GMM is no greater than23 in this 6-link cycle network.

From Lemmas 1 and 2, it directly follows that:
Proposition 3: The efficiency ratioγ∗ of GMM under a

given network topology is equal to its local-pooling factorσ∗.

This result provides an equivalent characterization of theef-
ficiency ratio ofGMM through the topological properties (i.e.,
the local-pooling factor) of the given graph. Unfortunately, it
can still be quite difficult to compute the local-pooling factor
for an arbitrary network graph. We next estimate the local-
pooling factors for arbitrary network graphs under the node-
exclusive interference model.

IV. ESTIMATES OF THELOCAL-POOLING FACTOR FOR

ARBITRARY NETWORK GRAPHS

In this section, we would like to answer the following
questions: (i) how do we estimate the local-pooling factor of
a given graph? and (ii) what types of graphs will have low
local-pooling factors? We now argue that both questions are
intimately related to the characterization of the possiblesets
of unstable links. Note that in order to claimσ∗ ≤ σ, we
must find a subset of linksL, and two vectors~µ, ~ν ∈ Co(RL)
such thatσ~µ � ~ν. In fact, in the proof of Lemma 2, we show
that for anyǫ > 0, there exists a traffic pattern with offered
load~ν+ ǫ~eL such that the queues of all links inL increase to
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infinity together underGMM. Hence, a starting point to search
for ~µ and~ν would be to find the subset of linksL that have
queue lengths increasing to infinity together underGMM at
such an offered load~λ = ~ν + ǫ~eL and under such a traffic
pattern.

To avoid confusion, we letY denote the set of links in
E whose queue lengths increase to infinity together under
GMM at offered load~λ = ~ν + ǫ~eY , where~ν ∈ Co(RY ).
By constructing the traffic pattern as in (1)-(3) earlier in the
proof of Lemma 2, we haveQl(t)cl = 0 for all l /∈ Y , and
there exists a sequencẽQ(t) such thatQl(t)cl = Q̃(t) for all
l ∈ Y andQ̃(tk) → ∞ for a subsequence{t1, t2, . . . ,∞}. We
refer to the links inY as theunstable links. LetX denote the
set of nodes connected to any of the links inY . We call the
graphU(X,Y ) an unstable subgraphof G(V,E), We next
define the notion of anisolated unstablelink and anopen
unstablelink in the unstable subgraphU(X,Y ).

Definition 7: A link l ∈ Y connecting two nodesn1 and
n2 is an isolated unstablelink if both n1 andn2 are of degree
1 in the unstable subgraphU(X,Y ).

Definition 8: A link l ∈ Y connecting two nodesn1 and
n2 is an open unstablelink if either n1 or n2 is of degree1
in the unstable subgraphU(X,Y ).

We have the following two results.
Lemma 4: If ~λ = ~ν + ǫ~eY is strictly within Λ, then under

GMM there is no isolated unstable link inY .
Proof: Suppose thatY includes an isolated linkl. By

assumption, linkl has no neighboring links inY and should
be included in all maximal matchings onY . As a result, link
l will be selected at all time slots byGMM. Sinceλl < cl,
the queue length of linkl cannot increase to infinity. This
contradicts the assumption that linkl is unstable.

Lemma 5: If ~λ = ~ν + ǫ~eY is strictly within Λ, there is no
open unstable link inY underGMM.

Proof: Suppose thatY includes an open unstable link
l0 = (n1, n2). Without loss of generality, assume that node
n1 is shared by other unstable links{l1, l2, . . . , li} ⊂ Y , and
noden2 is of degree 1 inY .

Note that every maximal matching onY should include at
least one of the linksl0, l1, . . . , li; because, if none of the links
l1, . . . , li are included, linkl0 should then be included in order
for the matching to be maximal inY . Hence, underGMM, the
sum of the fraction of time that all of these links are served
is
∑

k∈{l0,l1,...,li}
πk

ck
= 1. Recall that all queue-weighted rate

Qlicli of links l0, l1, . . . , li are the same att = t1, t2, . . . .
Since

∑

k∈{l0,l1,...,li}
λk

ck
< 1, these links cannot be unstable.

This contradicts the assumption that the queues of these links
increase to infinity together.

The above two lemmas imply that any link inY must belong
to a cycle formed by links inY . Note that it immediately gives
us the result thatGMM achieves the full capacity region in tree
networks [18], [19].

In the following lemma, we characterize the property of the
unstable subgraph when the arrival rate~λ is within γΛ.

Lemma 6:Suppose thatγ ∈ (1/2, 1] and that~λ = ~ν + ǫ~eY

is strictly within γΛ, then the degree of every nodev ∈ X in
the unstable subgraphU(X,Y ) must be larger than γ

2γ−1 .

n0

n1

n2

n3

n4

n5

n6

...

nd

(a) A case that noden0

is black
(b) Case that noden0 is
white

Fig. 3. Maximal matchings on an unstable network with a degree-d node
n0. Links are denoted by solid lines (when active) and dotted lines (when
inactive).

Proof: We consider a noden0 ∈ X of degreed (in
X) with neighbors{n1, n2, . . . , nd} ⊂ X . Let li denote link
(n0, ni) and letLi denote the set of unstable links connected to
ni, excludingli, i.e.,Li = Y ∩E(ni)\{li}, whereE(ni) ⊂ E
is the set of links that are connected to nodeni. In the sequel,
we study the activity of noden0, which can be interpreted as
the sum of link activities of those connected ton0. We focus
on the node activity because the optimal capacity region can
be characterized by a set of constraints on the node activities
under the node-exclusive interference model (see the setΨ
defined below). Through these constraints, we can understand
the property of the unstable subgraph.

Observe that all maximal matchings onY must fall into one
of the following two cases:

1) A maximal matching onY includes a linkli. In this
case, we say that noden0 is black (see Fig. 3(a)).

2) A maximal matching onY includes a link from eachLi.
In this case, we say that noden0 is white (see Fig. 3(b)).

We first show that the fraction of time thatn0 is black (the
first case) is no greater thanγ. Let An :=

∑

l∈E(n)
λl

cl
denote

the weighted arrival rate at noden, and letSn :=
∑

l∈E(n)
πl

cl

denote the time-average of the weighted service rate at node
n, whereπl is the time-average of the service rate at linkl.
Note that the optimal capacity regionΛ is bounded by

Λ ⊂ Ψ :=







~λ
∣

∣

∣

∑

l∈E(n)

λl

cl
≤ 1, for all n ∈ E







.

By assumption~λ ∈ γΛ, we have
∑

l∈E(n0)∩Y

λl

cl
≤

∑

l∈E(n0)

λl

cl
= An0 ≤ γ. (13)

If the fraction of time thatn0 is black is greater thanγ, then
the arrival rate at noden0 will be smaller than the service rate
at n0, which implies that the queues at the links incident to
noden0 cannot increase to infinity together. This contradicts
our assumption.

We next count the total (weighted) service rates over all
nodesn0, n1, . . . , nd. Let β denote the fraction of time that
noden0 is black,0 ≤ β ≤ γ. If noden0 is black, then at least



7

two nodes (one isn0) are served. If noden0 is white, then all
nodes{n1, n2, . . . , nd} are served. Hence, we have

∑d
k=0 Snk

≥ 2β + d(1 − β) ≥ 2γ + d(1 − γ). (14)

In the last inequality, we have used0 ≤ β ≤ γ andd ≥ 2 (by
Lemma 5).

Using the assumption that~λ falls strictly in γΨ, we have
∑d

k=0Ank
< γ(d+ 1). (15)

We must have
∑d

k=0 Snk
≤
∑d

k=0 Ank
, (16)

since, otherwise, the queue lengths of these links cannot
increase to infinity together. Combining (14), (15), and (16),
we obtain

d >
γ

2γ − 1
. (17)

The above lemma immediately implies the second main
result of the paper.

Proposition 7: For a given network graphG(V,E) where
the largest node degree isd∗, the efficiency ratioγ∗ of GMM
must be no smaller than d∗

2d∗−1 .
Proof: Suppose that the efficiency ratio is smaller than

d∗

2d∗−1 . Then, according to Proposition 3, we haveσ∗ < d∗

2d∗−1 .
Hence, from Definition 6, there must exist a subsetL ⊂ E
and ~µ, ~ν ∈ Co(RL) such thatσ~µ ≥ ~ν for someσ < d∗

2d∗−1 .

Using Lemma 2, there exists a traffic pattern with~λ = ~ν+ǫ~eL,
such that the queue lengths of links inL increase to infinity
together. By choosingǫ small, we can have~λ fall strictly in

d∗

2d∗−1Λ. Then, using Lemma 6, the degree of every node in
the unstable graph must be larger thand∗. This contradicts the
assumption that the largest node-degree isd∗.

Note that the results of Proposition 7 cannot be directly
extended to more generalK-hop interference models, under
which two links within K-hop distance cannot transmit si-
multaneously. This is because the development of Lemma 6
is based on the node-exclusive interference constraints, and it
appears to be difficult to generalize to theK-hop interference
models. We refer the readers to [21] for techniques developed
for estimating the efficiency ratio of the greedy maximal
scheduling policy under theK-hop interference models.

According to Proposition 7, in order to find network topolo-
gies where the efficiency ratio ofGMM is low, we must look
at those graphs where the maximum node-degree is high.
We have been able to find such graphs where the bound in
Proposition 7 is tight withd∗ = 2 andd∗ = 3.

A. An example network scenario withd∗ = 2 and γ∗ = 2
3

We consider graphs with degree two. If the graph is a line,
then by Lemma 5,GMM achieves the full capacity region. Let
us instead consider the case when the graph forms a cycle.
In the proof of Lemma 2, we show an example of a 6-link
cycle network, which hasγ∗ ≤ 2

3 . Since this graph has a
maximum node-degree of two, Lemma 6 implies thatγ∗ ≥ 2

3 .
Therefore,GMM has an efficiency ratioγ∗ = 2

3 in the 6-link
cycle network. To the best of our knowledge,this is the first

Fig. 4. Star-pentagon Topology

(a) ~M0, weight = 1

6
(b) ~M1, weight = 1

6

(c) ~M2, weight = 1

6
(d) ~M3, weight = 1

6

(e) ~M4, weight = 1

6
(f) ~M5, weight = 1

6

Fig. 5. Maximal matchings for constructing~µ.

result that provides theexact efficiency ratio for a network
graph where GMM cannot achieve the full capacity region.

B. An example network scenario withd∗ = 3 and γ∗ = 3
5

We consider the graph with node-degree three as shown in
Fig. 4, where all links have unit capacity. We now find two
vectors~µ, ~ν ∈ Co(ME) such that 3

5~µ = ~ν. Fig. 5 shows
six maximal matchings and their corresponding weights. The
solid lines indicate active links. We choose vector~µ as a
combination of these matchings, i.e.,~µ =

∑5
i=0

(

1
6
~Mi

)

.
Fig. 6 illustrates another set of maximal matchings. We choose
~ν using these matchings as~ν =

∑10
j=6

(

1
5
~Mj

)

. Note that

µl = 1
3 andνl = 1

5 for all links l.
Since 3

5~µ = ~ν, the local-pooling factorσ∗ cannot be greater
than 3

5 , which implies that the efficiency ratio ofGMM is
no greater than3

5 . However, since the node degree is 3,
Proposition 7 implies that the efficiency ratio is no smaller
than 3

5 . Hence, the efficiency ratio is exactly35 .

V. EFFICIENCY WITH MULTI -HOP TRAFFIC FLOWS

In this section, we extend our results to the case when each
traffic flow can traverse multiple hops in the network. Letλ(s)

denote the packet arrival rate of sessions and letS denote the
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(a) ~M6, weight = 1

5
(b) ~M7, weight = 1

5

(c) ~M8, weight = 1

5
(d) ~M9, weight = 1

5

(e) ~M10, weight = 1

5

Fig. 6. Maximal matchings for constructing~ν.

set of sessionss. The optimal capacity region with multi-hop
flows is defined as

Ω := {~λ(s) | ~λ(s) � ~φ(s), for some[
∑

s∈S H
(s)
l φ(s)] ∈ Λ},

whereH(s)
l is the routing matrix such thatH(s)

l = 1 if the
path of sessions includes linkl, andH(s)

l = 0 otherwise. Our
goal is to modifyGMM in such a way that it also guarantees
the same efficiency ratioγ∗ for the multi-hop case.

To this end, we use the idea of regulators proposed in [24],
[25]. At each link, there is a separate queue for each session.
Let Q(s)

l (t) denote the queue length of sessions of link l at
the beginning of time slott, and letQl(t) :=

∑

s H
(s)
l Q

(s)
l (t).

We add a regulator queue beforeQ(s)
l (t) as shown in Fig. 7.

This additional queue is called a regulator [24], [25] because
its service rate is regulated as a function of the mean arrival
rate at the source. Hence, the burstiness of the traffic at
the down-stream links is reduced specifically. The regulator
located at thek-th-hop link (k ≥ 2), say l, of sessions
moves accumulated packets to the queueQ

(s)
l (t) at the rate

of λ(s) + (k − 1)ǫ provided thatP (s)
l (t) ≥ cl, whereǫ is a

small positive real number andP (s)
l (t) denotes the number

of accumulated packets at the regulator at the beginning of
time slot t. Specifically, ifP (s)

l (t) ≥ cl, the regulator moves

cl packets with probabilityλ
(s)+(k−1)ǫ

cl
at time slott. We note

that, at the first-hop link of each session (where exogenous
packets arrive), the packets are directly applied to the service
queue. Letls+ andls− denote the next hop of linkl for session
s and the previous hop of linkl for sessions, respectively. We
then have the following equations that govern the evolutionof

Regulator Service queue

Fig. 7. Description of the network model with regulator at the k-th-hop of
sessions (k ≥ 2).

Q
(s)
l (t) andP (s)

l (t):

Q
(s)
l (t+ 1) = Q

(s)
l (t) − Π

(s)
l (t) +R

(s)
l (t), (18)

P
(s)
l (t+ 1) = P

(s)
l (t) −R

(s)
l (t) + Π

(s)
ls
−

(t), (19)

whereR(s)
l (t) denotes the number of packets proceeds from

regulator to the queue up to time slott and Π
(s)
l (t) denotes

the number of packets of sessions served at linkl up to
time slot t. Note that for the first-hop linkl1 of sessions,
we haveR(s)

l1
(t) = A(s)(t), whereA(s)(t) is the number of

packet arrivals of sessions up to time slott. We interpolate
the values of these functions to all real-numbert by setting
R

(s)
l (t) = R

(s)
l (⌊t⌋) andΠ

(s)
l (t) = Π

(s)
l (⌊t⌋), and by linearly

interpolatingQ(s)
l (t) andP (s)

l (t) for all t.
Lemma 8:For a network graph with the local-pooling fac-

tor σ∗, if the multi-hop traffic rate vector~λ(s) is strictly within
σ∗Ω, then there exists anǫ > 0 such that the system is stable
underGMM with the use of regulators described earlier.
Note that Lemma 8 can be extended to generalK-hop inter-
ference models since the operations of the regulators do not
depend on the underlying interference constraints.

The main idea of the proof is similar to that of [24], [25].
We use the following Lyapunov function, where bold letters
indicates a vector.

V(P,Q) := ξX (P,Q) + Y(Q), (20)

whereX (P,Q) :=
1

2

∑

l∈E

∑

s∈S

H
(s)
l (P

(s)
ls+

+Q
(s)
l )2,(21)

Y(Q) := max
l∈E

(Qlcl)
2. (22)

Note thatY(Q) is the square of the Lyapunov function for the
single-hop case in Section III. The term (21) was introduced
in [25] to account for the backlogP (s)

l of the regulators.ξ
is a small positive constant to be chosen later. As in (8), we
define the fluid limitsq(s)l (t), p(s)

l (t), π(s)
l (t), andr(s)l (t) of

Q
(s)
l (t), P (s)

l (t), Π
(s)
l (t), andR(s)

l (t), respectively. The fluid
limit version of (20) can also be written as

V(p,q) = ξX (p,q) + Y(q). (23)

We can then show that whenǫ is small, the Lyapunov
function (23) has a negative drift. We provide the proof in
the Appendix.

Proposition 9: For a network graph with the local-pooling
factorσ∗, GMM along with regulators achieves the efficiency
ratio of σ∗ under multi-hop traffic load.

Proof: Lemma 8 ensures the system stability with traffic
load ~λ(s) strictly insideσ∗Ω (i.e., the efficiency ratio is no
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smaller thanσ∗). Hence, it suffices to show that for allǫ > 0,
there exists a scenario that the system is unstable underGMM
with a traffic rate vector~λ(s) ∈ (σ∗ + ǫ)Ω.

Note that we have shown in Lemma 2 that with single-
hop traffic, there exists a traffic pattern that the system is
unstable underGMM. Since the single-hop traffic scenario
can be considered as a special case of the multi-hop traffic
scenario, we can use the same technique. We first find a subset
L and two vectors~µ, ~ν ∈ Co(RL) such thatσ∗~µ � ~ν. We
build a traffic pattern from matchings of~ν with ~λ(s) = ~ν + ǫ,
as in the proof of Lemma 2, and make each session traverse
a single hop. Note that packets are injected at the rateλ(s) at
each link inL, and are directly applied to the service queue.
Then, underGMM, the queues of all links inL increase to
infinity together as described in the proof of Lemma 2.

VI. CONCLUSION

In this paper, we have provided new analytical results on the
achievable performance ofGMM for a large class of network
topologies under the node-exclusive interference model. We
derive our results via a topological approach that extends the
recently developed notion of local pooling to a more general
topological notion calledσ-local pooling, and a corresponding
notion called local-pooling factor. We show that for a given
graph, the efficiency ratio ofGMM is equal to its local-pooling
factor. Thus, we are able to focus on the topological property
of graphs to obtain the achievable performance ofGMM.
However, it turns out that estimating the local-pooling factor
is non-trivial, and may require high complexity for arbitrary
network topologies. Nonetheless, by studying the properties of
unstable networks, we can estimate the local-pooling factor of
arbitrary network graphs under the node-exclusive interference
model and show that the local-pooling factor (and hence the
efficiency ratioγ∗ of GMM) of a graph with maximum node
degreed∗ is no smaller than d∗

2d∗−1 . The tightness of the bound
is demonstrated through the 6-link cycle and the Star-pentagon
topologies, whered∗ = 2 andd∗ = 3, respectively. The results
are also extended to the more general scenario with multi-hop
traffic. We show that when per-flow regulators are used at
each hop,GMM can also guarantee the sameγ∗ fraction of
the optimal capacity region as in a single-hop traffic scenario.

There remain many interesting open problems in these
directions. It would be an interesting avenue for future research
to determine whether the bound is tight whend ≥ 4, and
further research on the topological properties of graphs could
result in a better estimate of the performance limits. We
also expect that different interference models will affectthe
capacity region ofGMM. While our results on the relationship
between the performance ofGMM and the local-pooling factor
remain the same for a more general class of interference
models than the node-exclusive interference model, more work
needs to be done to evaluate the local-pooling factor for
general interference models [21]. Finally, the authors of [18]
show that, if the arrivals satisfy certain randomness property,
GMM may achieve the full capacity region even if the network
graph does not satisfy local pooling. It would be interesting to
study whether the results in this paper can be improved under
similar assumptions.

APPENDIX

A. Proof of Lemma 8

We are going to prove thatD
+

dt+
V(p,q) < 0. We first con-

sider the original discrete-time system. We use the convention
that allQ(s)

l (t), P (s)
l (t), R(s)

l (t), Π
(s)
l (t) are equal to zero if

H
(s)
l = 0. From (21), we have

∆X (P,Q)

, 1
2E
[

∑

l∈E

∑

s∈S(P
(s)
ls+

(t+ 1) +Q
(s)
l (t+ 1))2

−
∑

l∈E

∑

s∈S(P
(s)
ls+

(t) +Q
(s)
l (t))2 | P(t),Q(t)

]

= E
[

∑

l

∑

s(P
(s)
ls+

(t) +Q
(s)
l (t)) · (P

(s)
ls+

(t+ 1)

+Q
(s)
l (t+ 1) − P

(s)
ls+

(t) −Q
(s)
l (t)) | P(t),Q(t)

]

+ 1
2E
[

∑

l

∑

s(P
(s)
ls+

(t+ 1) +Q
(s)
l (t+ 1)

−P
(s)
ls+

(t) −Q
(s)
l (t))2 | P(t),Q(t)

]

= E
[

∑

l

∑

s(P
(s)
ls+

(t) +Q
(s)
l (t)) · (P

(s)
ls+

(t+ 1)

+Q
(s)
l (t+ 1) − P

(s)
ls+

(t) −Q
(s)
l (t)) | P(t),Q(t)

]

+ 1
2E

[

∑

l

∑

s(R
(s)
l (t) −R

(s)
ls+

(t))2 | P(t),Q(t)
]

.

(24)

Note thatE[R
(s)
l (t)] ≤ λ(s) +H∗ǫ whereH∗ is the maximum

number of hops of session. LettingC1 := |E|
∑

s(λ
(s) +

H∗ǫ)2, we obtain

∆X (P,Q)

≤ E
[

∑

l

∑

s(P
(s)
ls+

(t) +Q
(s)
l (t)) · (P

(s)
ls+

(t+ 1)

+Q
(s)
l (t+ 1) − P

(s)
ls+

(t) −Q
(s)
l (t)) | P(t),Q(t)

]

+ C1

≤
∑

l

∑

s(P
(s)
ls+

(t) +Q
(s)
l (t))

· E
[

R
(s)
l (t) −R

(s)
ls+

(t) | P(t),Q(t)
]

+ C1

≤
∑

l

∑

s(P
(s)
ls+

(t) +Q
(s)
l (t))

· (R̄
(s)
l ·I

{P
(s)
l

(t)≥cl}
− R̄

(s)
ls+

· I
{P

(s)

ls
+

(t)≥cl}
) + C1,

(25)

whereI{·} is an indicator function, and̄R(s)
l is the average de-

parture rate of the regulator for sessions at link l conditioned
on P (s)

l (t) ≥ cl, except at the first-hop linkl1 of sessions,
whereR̄(s)

l1
= λ(s). Hence, we obtain

∆X (P,Q)

≤
∑

l

∑

s(P
(s)
ls+

(t) +Q
(s)
l (t))

· (R̄
(s)
l − R̄

(s)
ls+

· I
{P

(s)

ls
+

(t)≥cl}
) + C1

≤
∑

l

∑

sQ
(s)
l (t)cl

+
∑

l

∑

s P
(s)
ls+

(t)(R̄
(s)
l − R̄

(s)
ls+

· I
{P

(s)

ls
+

(t)≥cl}
) + C1

≤
∑

l

∑

sQ
(s)
l (t)cl − ǫ

∑

l

∑

s P
(s)
ls+

(t) + C2,

(26)
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where C2 is some constant. Note that the last inequality
follows from the design of our regulator. Specifically, since
R̄

(s)
ls+

= R̄
(s)
l + ǫ, we have

P
(s)
ls+

(t)(R̄
(s)
l − R̄

(s)
ls+

· I
{P

(s)

ls
+

(t)≥cl}
)

=

{

P
(s)
ls+

(t)R̄
(s)
l < c2l , if P (s)

ls+
(t) < cl,

−ǫP
(s)
ls+

(t), if P (s)
ls+

(t) ≥ cl,
(27)

which implies thatP (s)
ls+

(t)(R̄
(s)
l − R̄

(s)
ls+

· I
{P

(s)

ls
+

(t)≥cl}
) ≤

maxk ck(ck + ǫ) − ǫP
(s)
ls+

(t).

Inequality (26) holds for the original discrete-time system.
Now we take the fluid limit as in Section III. Using Theorem
4.1 of [22], we can show that, for almost all sample paths and
for all positive sequencexn → ∞, there exists a subsequence
{xnj

} such that the following holds uniformly over compact
intervals of timet.
D+

dt+
X (p,q) = lim

xnj
→∞

1
xnj

∆X (P(xnj
t),Q(xnj

t))

≤ lim
xnj

→∞

(

∑

l

∑

s

Q
(s)
l

(xnj
t)cl

xnj

− ǫ
∑

l

∑

s

P
(s)

ls
+

(xnj
t)

xnj

+ C2

xnj

)

=
∑

l

∑

s q
(s)
l (t)cl − ǫ

∑

l

∑

s p
(s)
ls+

(t).

(28)

We next deriveD+

dt+
Y(q). Let L0(t) := {l ∈ E | l =

argmaxk qk(t)ck} and L(t) := {l ∈ L0(t) | l =

argmaxk
D+

dt+
qk(t)ck}. Then there existsδ > 0 such that for

(t, t + δ], the links inL(t) have the largest queue-weighted
rate. Sinceql(t) is continuous, we haveD

+

dt+
Y(q) = 2ql(t)c

2
l ·

D+

dt+
ql(t) for anyl ∈ L(t) on the time interval(t, t+δ]. Choose

ǫ > 0 sufficiently small so that[
∑

s∈S H
(s)
l λ(s) + H∗ǫ] is

strictly within σ∗Λ. SinceGMM will always pick a service
vector inCo(RL(t)), there exists a linke ∈ L(t) and a small
η > 0 such thatD

+

dt+
qe(t) < −η. Hence, we have

D+

dt+
Y(p,q) ≤ −2ηqe(t)c

2
e. (29)

Combining (28) and (29), we obtain

D+

dt+
V(p,q) = ξD+

dt+
X (p,q) + D+

dt+
Y(q)

≤ ξ
∑

l∈E

ql(t)cl − ǫξ
∑

l∈E

∑

s∈S

p
(s)
ls+

(t) − 2ηqe(t)c
2
e

≤ −qe(t)ce · (2ηce − ξ|E|) − ǫξ
∑

l∈E

∑

s∈S

p
(s)
ls+

(t).

(30)

The last inequality holds becauseql(t)cl ≤ qe(t)ce for all
l ∈ E and e ∈ L(t). Hence, if we chooseξ such that2η ·
mink ck − ξ|E| ≥ C0 for some constantC0 > 0, then we
have that, for allp(t) + q(t) 6= 0,

D+

dt+
V(p,q) ≤ −C0qe(t) − ǫξ

∑

l∈E

∑

s∈S

p
(s)
ls+

(t) < 0. (31)

Since (31) is true for almost everyt, the fluid limit model of
the system is stable. Then by Theorem 4.2 of [22], the original
system is also stable.
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