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Abstract—Greedy Maximal Matching (GMM) is an important
scheduling scheme for multi-hop wireless networks. It is am-
putationally simple, and has often been numerically shownd
achieve throughput that is close to optimal. However, to da
the performance limits of GMM have not been well understood.
In particular, although a lower bound on its performance has
been well known, this bound has been empirically found to be
quite loose. In this paper, we focus on the well-establishedode-
exclusive interference model and provide new analytical results
that characterize the performance ofGMM through a topological
notion called the local-pooling factor. We show that for a given
network graph with single-hop traffic, the efficiency ratio of
GMM (i.e., the worst-case ratio of the throughput of GMM to
that of the optimal) is equal to its local-pooling factor. Futher,
we estimate the local-pooling factor for arbitrary network graphs
under the node-exclusive interference model and show thathe
efficiency ratio of GMM is no smaller than #11 in a network
topology of maximum node-degreed*. Using these results, we
identify specific network topologies for which the efficieng ratio
of GMM is strictly less than 1. We also extend the results to
the more general scenario with multi-hop traffic, and show that
GMM can achieve similar efficiency ratios when a flow-regulator
is used at each hop.

I. INTRODUCTION

using Bluetooth or FH-CDMA networks [2], [13], [14]. Under
this model, the scheduling problem can be mapped to a
matching problem, i.e., any active set of linksmust form

a matchingof the nodes in the network. In this setting, there
exists a polynomial-time optimal solution called tiaximum
Weighted MatchindMWM) policy, which finds the matching
that maximizes the queue-weighted rate sum. However, the
complexity of MWM is roughly O(|V|?) [15], where|V| is

the total number of nodes in the network. Hence, it is stifl to
complex to implement in most practical scenarios.

To address this issue, a well-known solution called the
Greedy Maximal MatchindGMM) has been developed that
significantly reduces the scheduling complexity [2], [18]7].

Its schedule is the maximal matching obtained by selecting
links in decreasing order of queue-weighted rate. (Sed@ect

Il for more details.) We can characterize the performance of
GMM through its efficiency ratioy*, which is the largest
number~y such that for any offered load that the optimal
MWM policy can supporiGMM can supporﬁ/x. Itis relatively
straightforward to show that the efficiency ratio®@VM is at
Ieast% under the node-exclusive interference model, G&M

can sustain at least half of the throughput of the optikia/M
policy. In fact, simulation results suggest that the perfance

INK scheduling is an important problem in wireless netas GMM is often much better than this lower bound in most
works [2]-[12]. Since radio transmissions on & comMORenyork settings. Further, it has been shown that if the agéw
medium can mterfere Wlth each_other, it is often necessagy ology satisfies the so-callddcal pooling condition [18],
to schedule transmissions that interfere with each other[g ], thenGMM can in fact achieve the full capacity region.
different times. While the optimal scheduling aIgorithmshaHowever, realistic network topologies may not satisfy theal

been well-known [3], such algorithm is of high computatibng,ojing condition, thus sharp results on its efficiencyaratie
complexity, and is difficult to be deployed in real networksjesiraple.

Recently, several researchers have developed simplewdehed |, ihis paper, our main contribution is to provide new
ing solutions for an important class of interference mOde}ﬁalytical results on the achievable efficiency ratioGHM

called the node-exclusive(or primary) interference model.

for a large class of network topologies. Such an evaluagon i

Under this interference model, a node cannot simultangou%portam for the following reasons: i) It has been empitica
transmit or receive, and cannot simultaneously commuic@yserved in [4] that the throughput achieved BWM is

with two or more nodes in the network. The node-exclusivgose to the maximum achievable throughput in a variety
model is a good representation of practical wireless systegy networking scenarios. iilBMM can be implemented in a
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distributed manner [20], which is important from the point
of view of many multi-hop networking systems. Further, even
simpler constant-time-complexity random algorithms ca&n b
developed to approximate the performanc&dM as shown
in [4]. iii) Although many distributed scheduling schemes@

1A link is defined as a node pair, for which one of the nodes issimitter
and the other is a receiver. We say that a link is active if aenacthis node
pair transmits to the other node of the node pair. We assumeghout that
the links are bi-directional.



been recently developed [8], [10]-[12], the study ®MM satisfied: if a link{ is transmitting data, then no other links
continues to remain attractive because, empiricaBIM that share a common transmitter node or receiver node with
performs better than these schemes [9], either in termseof tink [ can transmit at the same time. Hence, any active set of
achievable throughput, or in terms of the resultant quepeilinks must form amatchingof the nodes inl/.
delay. Let My be amaximalmatching on¥, i.e., no more links can
Along this direction, we generalize the notion of locabe added td/; without violating the node-exclusive interfer-
pooling in [18], and derive an equivalent characterizaién ence constraint. We use a vector{in 1}!¥! to denote a maxi-
the efficiency ratio ofGMM through a topological property, mal matchingZ\Z/E such that thé:--th element is set ta if link
i.e., thelocal-pooling factor of the underlying network graph. k € E is included in the maximal matchinZg?E, and to0 oth-
In particular, we show that the efficiency ratio MM under erwise. LetM g be the set of all possible maximal matchings
a given network topology is equal to its local-pooling factoand letC'o(M g) denote its convex hull. We also define the set
We then estimate the local-pooling factor for arbitrarywaak  of link rates asC'o(R ) := {(5| ¢ = corpfory € Co(MEg)},
graphs under the node-exclusive interference model, whialhere the operator denotes component-wise multiplication
enable us to identify network topologies where the effigjendg.e., [z, 22,...] o [y1,y2,...] := [T191, 2Y2, . . . ]
ratio of GMM could be much less than 1. We first assume single-hop traffic, i.e., packets arrive thea
In related work [21], we have studied the Greedy Maximdink / and once they are served, they immediately leave the
Scheduling GMS policy for more general interference mod-system. This assumption will be relaxed later in Section V.
els, and have developed an iterative methodology to obh@in ¥Ve also assume that the packet arrivals follow a stationary
bounds on the local-pooling factor. However, the focus & thand ergodic process that satisfies the conditions for thd flui
paper is different, as described in the contributions below limits to exist. One such condition is that the inter-arrtiaes
« We focus on the node-exclusive interference model, unci€ i.i.d. The other alternate condition is that the number of
which we are able to derive far sharper bounds on ti@rivals at each time-slot arei.d. across time. Further, we
worst-case efficiency ratio than in [21]. More importantly@ssume that the dynamics of the system can be modeled as
we provide these bounds as a function of the maximughMarkov process Let 4,(t) denote the number of packet
node degree’ and find network t0p0|ogies where theggivals at link! at time slott. Let Sl(t) denote the number

bounds are tight. of packets that link can serve at time slat Note thatS;(¢)
« This paper allows for arbitrary link capacities, while ifakes the value; if link I is activated at time slot and is
[21] all links are assumed to have unit capacity. zero otherwise. Also lef);(t) denote the number of packets

« We also consider the scenario with multi-hop traffic. Foiueued at linkl at the beginning of time slot. The queue
given multi-hop traffic flows and their paths, we shovWength then evolves according to the following equations:

that GMM achieves similar efficiency ratios in multi-hop _ +

t+1) = t)+ A (1) — S; ()], 1
traffic scenarios as in the single-hop traffic case, when Qut+1) = [Qut) + At) 1l @
per-flow regulators are used at each hop. where[]™ denote the projection to non-negative real numbers.

« We explicitly provide the proof of Proposition 1 of [21], Definition 1: The network isstableif for the queue length
which was not presented in [21] because the focus of thatocess, we have
paper was on developing a methodology to estimate the T
local-pooling factor. _ _ _ lim sup 7 Zl{zzw Qutysmy — 0, asn — oo,  (2)
The rest of the paper is organized as follows. We first de- T—oo 445
scribe our model in Section Il. We then introduce the notibn here1, denotes an indicator function taking eitheor 1
local-pooling factor and show in Section Ill that the effit§ pased on the occurrence of specified event.
ratio of GMM under an arbitrary network topology is equal to | et ); denote the average arrival rate. Teapacity region
its local-pooling factor. In Section IV, by characterizithg set (or the stability regio) under a given scheduling policy is
of unstable links undeGMM, we estimate the local-pooling defined as the set of arrival rate vectars: [\, \s, . . ., A E|]
factors for arbitrary network graphs under the node-exetus sych that the system is stable. We define the optimal capacity
interference model. These results lead to the discovery @fion A as the union of the capacity region of all possible

network graphs where the efficiency ratio GMM is low. stationary scheduling policies. To characterize it, wertdet
Finally, we extend the results to the more general multi-hqgt
traffic scenarios in Section V, and we conclude in Section VI. , - -

A :={X| for some¢ € Co(REg),

3
A < ¢ if ¢y >0, and\; = 0 otherwisé, ®)

Il. NETWORK MODEL
We model a wireless network by a gragh{V, E), where 2and its closure

V is the set of nodes, anfl is the set of undirected links. We N :={X | X = ¢, for someg € Co(RE)}, (4)
assume a time-slotted system, where the length of each time _ _
slot is of unit length. Let; denote the capacity of each lilk Where Z =< y denotes that’ is component-wise less than
and let the column-vectat’ := [c1, co, . . ., ¢|p|]- We assume _ _ -
that in each time slot, a link can transmijtpackets provided ; For example, we can describe the states using queue lengthaining

. ) ; - Itp p VIUEY interarrival times, and remaining service times under tssumption ofi.i.d.
that the following node-exclusive interferenceonstraint is interarrival and service times [22].



or equal to byy. The optimal capacity regiom can be
characterized [3] as

N cAcCA. (5)

It is well-known that the Maximal Weighted Matching
(MWM) policy can achieve this optimal capacity region undefig. 1. Triangular network topology with three nodes ana¢hlinks.
the node-exclusive interference model. However, its compu
tational complexity Q(|V|?)) is high. In this paper, we are
interested in a simpler policy call&greedy Maximal Matching  In this paper, we are interested in arbitrary network topolo
(GMM). GMM operates as follows: At each time slot, it firsgies that may not satisfy local pooling. We now generalize th
picks the linki with the largest weight;c;, whereq; is the notion of local pooling to that of the local-pooling factor.
backlog size of linki; it then discards all links that interfere Definition 5: A set of links L satisfieso-local pooling if
with link 7; it then picks the linkk with the largestyci, from  oji % 7 for all /i,7 € Co(Ry). In other words, for alli, 7 €
the remaining links; and this process continues until nkslin Co(R 1), there must exist some € L such thatopy, < vg.
are left. As we discussed in the introduction, in this paper w Note thato cannot be greater thah since we can take

are interested in characterizing the efficiency ratioGWIM [ = 7. In addition, if a graph, e.g., the triangular net-
under arbitrary network topologies. We formally define th@ork topology, satisfies local pooling of Definition 4, then i
notion of the efficiency ratio as follows. must satisfyo-local pooling for anyc < 1. We can prove

Definition 2: For a scheduling policy, e.gGMM, we say this by contradiction. Suppose that there exist two convex
that it achieves &action~y (0 < y < 1) of the capacity region combinationsé;, . and s < 1 such thatod; — ¢ = 0.
under a given network topology if it can keep the system stat$ince the graph satisfies local pooling, there exists @uch
for any offered load\ € yA. that @”¢; = aT¢y > 0. Multiplying & on both sides of

Definition 3: The efficiency ratioy* of a scheduling policy 0(51 - 52 > 0, we obtaino — 1 > 0, which contradicts the
under a given network topology is the supremum ofyaduch assumption.

that the policy can achieve a fractignof the capacity region,  Definition 6: The local-pooling factorof a graphG(V, E)

i.e., is the supremum of ali such that every subsétc E satisfies
v* := sup{v | the system is stable under all offered o-local pooling. In other words,
load vectors such that\ < ~v¢ (6) o =sup{o|oji viorall Landalljive Co(Rr)}
for some¢ € Co(Rp)}. =inf{o| oji = ¥ for someL and somei, 7 € Co(R.)}.
)

By definition, if the local-pooling factor of a graph is*,
then every subset ¢ E must satisfyo*-local pooling. Note

) ) ) ) ~_that Definition 4 of local pooling correspondsd&d = 1. The
In this section, we derive an equivalent characterizatibn pagits of [18] imply that if the local-pooling factor of the

the efficiency ratio ofGMM under arbitrary network topolo- graph is1, then the efficiency ratio o6MM will be 1. We
gies. We first recall the following definition décal pooling [ oxt generalize this result to the case when< 1. We start
from [18]: . . with two lemmas.

Definition 4: Given a network grapti(V, £), a setof links | emma 1:1f the local-pooling factor of a grapti(V, E) is
L‘LC‘ B sat|sf|eslclc.al poollljg if there exists a nonzerd & o*, then the efficiency ratio,* of GMM under this network
R such thati’ ¢ is a positive constant fqr alh € Co(Ryp). topology is no smaller than*, i.e., v* > o*.

The graphG:(V; E) satisfieslocal poolingif every L C E Proof: We need to show that for any offered loadtrictly

satisfies local pooling. within o*A, the network is stable undeBMM. We prove

“An example of graphs that satisfy local pooling is theipijity by finding a Lyapunov function with negative drift
triangular network topology with three nodes and threedink . 1o fiuid limit model of the system.

of unit capacity as shown in Fig. 1. In this graph, we have
three maximal matching§:l,0,0], [0,1,0], and [0, 0,1]. For
any convex combinatio of these three vectors, we hav

~T 7 Hh & —
& ¢=1 W't,h a=[L 1_’ 1] - ) t, and that@,(t) denotes the number of queued packets at
Note that if a set of linkd. satisfies local pooling, no vector o beginning of time slot and it evolves according to (1).

in C’o(RL) is strigtly (com_ponent-wise) greater than anothq;Ve interpolate the values ofl;(f) and Si(¢) to all non-
vector in Co(RrL)>. Dlmakl_s _and Walrand_[18] have _Shownnegative real numbers by setting 4,(t) = A;(|¢]) and
that if a network graph satisfies local poolifgMM achieves Si(t) = Si(|t]), where|t] denotes the largest integer smaller

the full capacity region. than or equal tor. We also interpolate the values 6f;(¢)

3We can prove this by contradiction. Suppose that there e&listizg S by linear _InterpOIatlon betweettJ and LtJ +1. Then, using
Co(R 1) such thaids = éo. Multiplying & to both sides, we obtaia? ¢, > the techniques of Theorem 4.1 of [22], we can show that, for

a7 s, which contradicts the assumption. almost all sample paths and for all positive sequergce- oo,

Il1. AN EQUIVALENT CHARACTERIZATION OF THE
EFFICIENCY RATIO OF GMM

We first define the fluid limit model of the system as in [5],
[22]. We recall thatA4;(t) and S;(¢t) denote the number of
epacket arrivals and available service, respectively,naé tslot



there exists a subsequencg; with z,,; — oo such that the  Since the local-pooling factor is*, and X falls strictly
following convergence holds uniformly over compact intdsv  within o*A (i.e., A\ € o*A’), there must exist & € L(t)
of time ¢: For alll € E, there exist limits\;, ¢;(¢), andm;(t) such that\, < m(t). Define

such that
Tt €y 1= inf max - A . 11
wij Jo 0 Au(s)ds — it $eCo(RL),LcE{k€L(¢k k)} (11)
= fow"jt Si(s)ds — [3 m(s)ds, (8) Note that since falls strictly within o* A and the local pooling
Ty ; : factor is o*, we must havee, > 0. Hence, by the earlier
Ele(x’” ) = a®). argument, there existskac L(t) such that\, — 7 (¢) < —e,.
SR h .
Moreover, for alll € E, the limits ¢;(t) andm(¢) satisfy This implies thatgq(t)e; = gar(t)er < —e. forall l €

_ L(t). This result contradicts our assumption and implies that
iql(t) _ { Av—=m(t), i A —m(t) =0, orq(t) >0,  the largest queue-weighted rate must decrease.
dt 0, otherwise Therefore, we can pick the Lyapunov function @st) :=

) :
and7(t) should be a convex combination of maximal matc maxien @ (t)e. We have, ifV(t) > 0,

ings chosen byaMM, which will be further explained in the D" - d _da -
following. Any such limit[g(t), #(t)] is called afluid imit of gz () = 2% Zrait)e = Zrax(t)ex e
the system.

where %V(t) = lims)o w Since the above in-

We now use the idea from [18] and show that for angquality holds for almost every it implies that the fluid limit
offered load\ strictly within o* A, the largest queue-weightedmodel of the system is stable. Hence, by Theorem 4.2 of [22],
ratemax; ¢;c; of the fluid limit model always decreases undethe original system is also stable. [ |
GMM. Note thatg(t) is absolutely continuous, and hence its | emma 1 shows that the efficiency ratio 8VM under an
derivative exists almost everywhere. Consider those time%rbitrary network graph is no smaller than the local-paplin
when the derivativel ¢;(¢) exists for alll € E. Let Lo(t) factor, i.e.,y* > o*.
denote the set of links with the largest queue-weightedatte

timet, i.e., The next lemma shows that* < o*.
Lemma 2:If there exist a subset of links C F, a positive
Lo(t) == {l €Ll ’ q(t)e = max Qk(t)ck} . numbero, and two vectorgi, v € Co(Ry) such thatrji = 7,

. . ~ then, for arbitrarily smalk > 0, there exists a traffic pattern
Let L(¢) denote the set of links with the largest derivative afjith offered load# + &, such that the system is unstable
the queue-weighted rate among the linksZin(t), underGMM, whereé, is a vector withe, = L for I € L and

d d ee=0foril ¢ L.
L(t) = {l € Lo(?) ‘ @ql(t)cl T el Eqk(t)ck} Remark:Since” € oA, Lemma 2 implies that the efficiency

. ) . ratio of GMM under this network topology is no greater than
Next, we show by contradiction that there cannot exist a li

rthe local-pooling factor, i.eqy* < o*
d ey < o”.
L€ L(t) such thatZq(t)e; > 0 andg(t) > 0. Proof: We will construct a traffic pattern with offered load

Suppose that we hav@(t) as a result of scheduling unde” * €€ based onv, and show that under this traffic pattern,
GMM, and there exists a linke L(t) with %qz (t)e; > 0 and the queue length will increase to |nf|_n|ty unc@l\/_lM;
q(t) > 0. Then by the definition of.(t), all links in L(t) have ~_ LetR denote the number of all maximal matchints on L.
the same non-negative derivative. Since linkd.it) have the Sincer is a convex combination of these maximal matchings,
largest derivative among links ifg(t) at timet and ¢(t)'s It can be written as
are continuous, there exists a smalt> 0 such that for all R-1 .
T € (t,t+4], V=) wicoM,;), (12)

i

Il
o

min q;(7)¢; > max  qg(7T)ck. . K1
lEL(t) kEE\L(t) wherew; >0 forall 0 <i<N—-1land)  Jw; =1.
Since GMM finds a maximal matching in decreasing order We now construct a traffic pattern with offered load=
of queue-weighted rate, links if(¢) should be chosen first 7 + e, such that the system is unstable un@vIM. We
during the interval(¢, ¢ + 6]. Hence, each schedule GMM, assume that packets arrive to a ling&forea time slot and that
when projected to the sét(¢), should be a maximal matchingthe queue of all links in_ is empty at the beginning.
on L(t), and thus, the average service r&teduring (¢, ¢+ ¢] Let ¢ denote the least common multiple of ajls. At each
should satisfy tha&*|.;) € Co(Ry)), where-[L ) denote time slott, pick a matchingh; with probability w; for i =
the projection of a vector onta(t). Then, by lettings — 0, 0,1,...,8 — 1. Thenwith probability (1 — €'), we inject¢;
we obtain®* — 7(t), and hence, the limit must satisfy that packets to links included inZ;, andwith probability €', inject
R c1+ = packets to linkg included in)M; and =~ packets to all
T(®)le € CoRee) (10) other linksk in L. The arrival pattern repekats at every time
We refer readers to [23] for the complete proof of this partslot.



We can show by induction that all links ih have the same

gueue-weighted rates that keep increasing. Suppose that al ) : :
links in L have the same queue-weighted rates at the end o N v
time slott — 1. (Note that this is true at= 1 if the system is o O
initially empty.) At time slott, if we inject¢; packets to links ,

I in some maximal matchingZ;, then since the links with Ie o
new packet arrivals have the largest queue-weighted ratés a

they do not interfere with each other, these links will bevedr (a) Topology (b) Maximal (© Maximal
simultaneously undegeMM during the time slot. Hence, at the matching Mo matching Ms

end of time slott, all queue-weighted rates i will remain
the same. On the other hand, if we injexaH— < packet to Fig. 2. The 6-link cycle network and the instances of maximaltching.
c

. . . . .o : The solid lines in (b) and (c) are the active links.
links [ included in some maximal matching/; and £ to (0 and (©)

all other linksk in L, the links in]\7[j again have the largest

queue-weighted rates and will be served simultaneouslgund We now construct a traffic pattern with offered load=
GMM. As a result, at the end of the time slot, all linksin i + e¢ such that the system is unstable un@vIM, where
have the same queue-weighted rates, which however increase [1,1,1,1,1,1] ande is a small positive number. Assume
by ¢ from those in the previous time slot. Sindd; is an that all queues in the system are of the same length at time 0.
arbitrary maximal matching o, we can conclude that, at At each time slot, packets are injected to links finas

the end of each time slot, all queue-weighted rated iwill  follows: With probability% each, pick a maximal matching
be the same. However, with Qrobability the queue length from M, ]\7[3, and M,. Then,

of each linki € L increases by « with probability (1 — ¢), one packet is injected to links
The average arrival rate of this traffic pattern can be in the maximal matching.

estimated as « with probability ¢, two packets are injected to links in
R—1 ool . the maximal matching and one packet to all other links,
Z wi(l —¢€)-CoM;+ Z wie' - (Co M; +¢éép) = U+ eép, resulting in the overall packet arrivals ofy+ ¢, Ms+¢,

i=0 i=0 and M, + €, respectively.

wheree = ¢’¢. Hence, we have shown that the system wit@ver all links, the arrival rate i% + e and the queue length
offered loady + e€}, is unstable undeGMM. B increases by 1 with probability every time slot. Hence,

Note that the key to the proof is to construct a traffihe System with offered load + ¢ is unstable undeGMM.
pattern such that (i) it keeps all links ifi of the same However, the optimaMWM policy can support the offered
queue-weighted rate, and (i) it injects packets according 10ad /i = 57 in this example. Hence, the efficiency ratio of
the maximal matchings that form the vectorso that these GMM is no greater thag in this 6-link cycle network.

maximal matchings will be picked bsMM. In fact, for From Lemmas 1 and 2, it directly follows that:

any vector/ € Co(Rp), we can construct a traffic pattem  proposition 3: The efficiency ratioy* of GMM under a

with 77 + ey, such that the system is unstable un@M.  given network topology is equal to its local-pooling factor.

The following example shows that such a vecibris not

necessarily on the boundary of the optimal capacity region. Thjs result provides an equivalent characterization ofethe
Example: The following example illustrates how such #iciency ratio ofGMM through the topological properties (i.e.,

traffic pattern can be constructed in the 6-link cycle nekwothe local-pooling factor) of the given graph. Unfortungied

shown in Fig. 2. Assume that all links have unit capacity. Wean still be quite difficult to compute the local-pooling fiaic

number all links clockwise from O to 5. All possible maximafor an arbitrary network graph. We next estimate the local-

matchings under this network graph are listed below. pooling factors for arbitrary network graphs under the rode

. Mo = [1,0,1,0,1,0], AL — 0,1,0,1,0,1], exclusive interference model.

« My = [1,0,0,1,0,0], M3z = [0,0,1,0,0,1], My =

0,1,0,0,1,0]. IV. ESTIMATES OF THELOCAL-POOLING FACTOR FOR

ARBITRARY NETWORK GRAPHS
Note that the number of links included in a maximal matching | this section. we would like to answer the following

—

is three forM, and M, and is two forMs, Mz, and Mi.  guestions: (i) how do we estimate the local-pooling factor o
Figs. 2(b) and 2(c) show the two instances of the maximal given graph? and (ii) what types of graphs will have low
mat(ih'fgs' i.e.Moy and Ms. Note that if we choose two Vec-|oca)-pooling factors? We now argue that both questions are
torsi, 7 from the convex set of maximal matchings({Mi})  intimately related to the characterization of the possises

as of unstable links. Note that in order to clain® < o, we
Q= %MO + %M1 = [%, %, %, %, %, %] , musht and a subselt off Iink_s, arl]nd twofve;:tlf)rsﬁ, v EZCo(RLh)
a7 147 147 11111 1 such thatoji = v. In fact, in the proof of Lemma 2, we show
=z M sMz+sMy= |3,3,3,5,3> 3] i i i
=Mt gMs+ 5Ma=[3.5.5 5.5 3] that for anye > 0, there exists a traffic pattern with offered
then %ﬁ =T load 7+ €€, such that the queues of all links mincrease to



infinity together undeGGMM. Hence, a starting point to search

for ;i and 7 would be to find the subset of links that have \n /
gueue lengths increasing to infinity together un@M at Q n ’ ny
such an offered load = 7 + e€;, and under such a traffic o f

pattern.

To avoid confusion, we lel” denote the set of links in N o Ny
E whose queue lengths increase to infinity together under o
GMM at offered load\ = 7 + ecy, wherei? € Co(Ry ). " n'\ 7' n'\
By constructing the traffic pattern as in (1)-(3) earlier re t
proof of Lemma 2, we havé);(t)c; = 0 for all [ ¢ Y, and
there exists a sequen€g(t) such thatQ;(t)c; = Q(t) for all (a) A case that nodeo (b) Case that nodey is
~ is black white
l € Y andQ(t;) — oo for a subsequencg, ta, ..., 00}. We
refer to the links inY” as theunstable linksLet X' denote the g 3. Maximal matchings on an unstable network with a degreode
set of nodes connected to any of the linksYin We call the ny. Links are denoted by solid lines (when active) and dottedsli(when
graphU(X,Y) an unstable subgraplof G(V, E), We next inactive).
define the notion of ansolated unstabldink and anopen
unstablelink in the unstable subgraphi(X,Y). i _
Definition 7: A link [ € Y connecting two nodes; and Proof: We consider a node,, € X of degreed (in

ns is anisolated unstabléink if both n; andn, are of degree X) With neighbors{ny,ns, ..., na} C X. Letl; denote link
1 in the unstable subgraghi(X,Y). (ng,n;) and letZ,; denote the set of unstable links connected to

Definition 8: A link I € ¥ connecting two nodes; and "> €xcludingl;, i.e., L; =Y NE(ni)\{li}, wheref(n;) C £
ns is anopen unstabléink if either n, or n, is of degreel IS the set of links that are connected to nedeln the sequel,

e
e R

in the unstable subgraghi(X,Y). we study the_z activi_ty_ (_)f node, which can be interpreted as
We have the following two results. the sum of link activities of those connectedtp. We focus
Lemma 4:1f X = i/ + €&y is strictly within A, then under ON the node activity because the optimal capacity region can

GMM there is no isolated unstable link ¥A. be characterized by a set of constraints on the node aesviti

Proof: Suppose thal” includes an isolated link. By under the node-exclusive interference model (see thebset
assumption, link has no neighboring links i and should defined below). Through these constraints, we can undetstan

be included in all maximal matchings dn. As a result, link the property of the unstable subgraph.

I will be selected at all time slots b@MM. Since )\, < ¢, Observe that all maximal matchings ®hmust fall into one
the queue length of link cannot increase to infinity. This Of the following two cases:
contradicts the assumption that links unstable. [ ] 1) A maximal matching ony” includes a linkl;. In this

Lemma 5:1f X = 7 + eéy is strictly within A, there is no case, we say that node is black (see Fig. 3(a)).

open unstable link i’ underGMM. 2) A mgximal matching oY’ incIudes a_Iinkfrom _eaclﬁli.
Proof: Suppose that” includes an open unstable link In this case, we say that nodg is white (see Fig. 3(b)).

lo = (n1,n2). Without loss of generality, assume that node We first $hOW that the fraction of time thay is black (the
ny is shared by other unstable linkg,l»,...,1;} C Y, and first case) is no greater than Let A, := Zleg(ni:% denote

1

nodens is of degree 1 iny’. the weighted arrival rate at node and letS,, := -, ¢(,,) 2
Note that every maximal matching dn should include at denote the time-average of the weighted service rate at node
least one of the linkg), l1, . . ., l;; because, if none of the linksn, wherer; is the time-average of the service rate at link
l1,...,l; are included, linky should then be included in orderNote that the optimal capacity regionis bounded by
for the matching to be maximal ii. Hence, undeGMM, the
sum of the fraction of time that all of these Iinks_ are served g ._ )y Z Al <1, forallnekE
IS > pefion,... o = 1. Recall that all queue-weighted rate g &
Qi,c1, of links lg,l1,...,l; are the same at = t1,t9,....

SINCe yciio it i} ﬁ—f < 1, these links cannot be unstableBy assumptionk € vA, we have

This contradicts the assumption that the queues of theke lin A

increase to infinity together. [ ] Z — < Z — = Apn, <. (13)
The above two lemmas imply that any link¥hmust belong teemony & iee(no)

to a cycle formed by Iinks.irY. Note that it immediat_ely gives If the fraction of time thak is black is greater thas, then

us the result thaBMM achieves the full capacity region in r€&he arrival rate at node, will be smaller than the service rate

networks [18], [19]. at ng, which implies that the queues at the links incident to
In the following lemma, we characterize the property of theoden, cannot increase to infinity together. This contradicts

unstable subgraph when the arrival ratés within yA. our assumption.
Lemma 6:Suppose thay € (1/2,1] and that\ = /' + eey We next count the total (weighted) service rates over all
is strictly within vA, then the degree of every node= X in nodesng,ni,...,nq. Let 3 denote the fraction of time that

the unstable subgraphi(X,Y’) must be larger thag. nodeny is black,0 < 3 < ~. If noden, is black, then at least



two nodes (one is) are served. If node, is white, then all
nodes{ny,ns,...,nq} are served. Hence, we have

Sho Sne 228+ d(1—B) > 2y +d(1—7).  (14)
In the last inequality, we have usé 3 <~ andd > 2 (by
Lemma 5). - Fig. 4. Star-pentagon Topology
Using the assumption thakt falls strictly in y¥, we have
o An, < y(d+1). (15) — .
We must have Ny 4 \ ]
(@) Mo, weight = %

Z::O S"k S ZZ:O Ank’ (16)

since, otherwise, the queue lengths of these links cannot
increase to infinity together. Combining (14), (15), and)(16
we obtain

g
d> 1 a7
[ |
The above lemma immediately implies the second main
result of the paper.
Proposition 7: For a given network grapl*(V, E) where
the largest node degreeds, the efficiency ratioy* of GMM
must be no smaller thagd—.

Proof: Suppose that the efficiency ratio is smaller than T
%. Then, according to Proposition 3, we have< %. v—- :
Hence, from Definition 6, there must exist a subgsetC F RS DD
and i, 7 € Co(Ry) such thatoji > 7 for someos < 54 . "
Using Lemma 2, there exists a traffic pattern with- 7+ e, - , L _ , L

(e) M4, weight = (f) Ms, weight = &

such that the queue lengths of links Inincrease to infinity
together. By choosing small, we can have fall strictly in
%A. Then, using Lemma 6, the degree of every node fie- 5
the unstable graph must be larger th&in This contradicts the

assumption that the largest node-degreé*is | . - .
Note that the results of Proposition 7 cannot be directresult that provides thexact efficiency ratio for a network

extended to more gener&-hop interference models, underaraIOh where GMM cannot achieve the full capacity region

which two links within K-hop distance cannot transmit si-
multaneously. This is because the development of LemmaB6 An example network scenario withh = 3 and v* = %
is based on the node-exclusive interference constraintsita  \we consider the graph with node-degree three as shown in
appears to be difficult to generalize to thehop interference Fig. 4, where all links have unit capacity. We now find two
models. We refer the readers to [21] for techniques develo - = 3~ _ = [

[21] q Rectorsji, 7 € Co(Mg) such that?ji = . Fig. 5 shows

for estimating the efficiency ratio of the greedy maximaliy maximal matchings and their corresponding weights. The

Maximal matchings for constructing.

scheduling policy under thé&'-hop interference models. solid lines indicate active links. We choose vecforas a
According to Proposition 7, in order to find network topolo- L : - 5 117 )
. . ! . combination of these matchings, i.gi, = o (=M ).
gies where the efficiency ratio @MM is low, we must look gs, 1. 2i=o (g Mi

at those graphs where the maximum node-degree is hi&l,g. 6 illustrates another set of maximal matchings. We sboo

. . . 10 147
We have been able to find such graphs where the bound”irt'Sing these maichings as = >, (5MJ)' Note that
Proposition 7 is tight with?* = 2 andd* = 3. m = 5 andy; = £ for all links 1.
Since%ﬁ = 1, the local-pooling factos™ cannot be greater
A. An example network scenario with — 2 and»* — % than ¢, which m;plles that the_efﬁmency ratio dcBMM is
no greater thanz. However, since the node degree is 3,

We consider graphs with degree two. If the graph is a linyonosition 7 implies that the efficiency ratio is no smaller
then by Lemma 5GMM achieves the full capacity region. Lety, o3 Hence, the efficiency ratio is exactgl.
us instead consider the case when the graph forms a cycle. °
In the proof of Lemma 2, we show an example of a 6-link
cycle network, which hag* < % Since this graph has a
maximum node-degree of two, Lemma 6 implies that> % In this section, we extend our results to the case when each
Therefore, GMM has an efficiency ratig™* = % in the 6-link traffic flow can traverse multiple hops in the network. D&t
cycle network. To the best of our knowleddhis is the first denote the packet arrival rate of sessioand letS denote the

V. EFFICIENCY WITH MULTI-HOP TRAFFIC FLOWS



A+ (k—1)e

./’ e ° o (s) ¢ (s) (s)
: : ; IL;? Iy Hls
; o gt —_— Pl(s) O% Ql(s) Oé

Regulator Service queue

Fig. 7. Description of the network model with regulator a¢ #hth-hop of
sessions (k > 2).

(1) and P (1):

Q¥ (t+1) QW) -1 @) + R (), (18)
POt+1) = PP - R0 +12 1),  (19)

WhereRl(s)(t) denotes the number of packets proceeds from
: regulator to the queue up to time sloand Hl(s)(t) denotes
] the number of packets of sessienserved at linki up to
time slot¢. Note that for the first-hop link; of sessions,
we haveRl(f)(t) = AG)(t), where A®)(t) is the number of
packet arrivals of sessiofn up to time slott. We interpolate
the values of these functions to all real-numbdry setting
RO (t) = R ([t]) andTI{* (t) = TI¥)(|¢]), and by linearly
interpolating@ '™ () and P*)(t) for all .
Lemma 8:For a network graph with the local-pooling fac-
tor o*, if the multi-hop traffic rate vectok(®) is strictly within
o*Q, then there exists an> 0 such that the system is stable
set of sessions. The optimal capacity region with multi-hopynderGMM with the use of regulators described earlier.
flows is defined as Note that Lemma 8 can be extended to genéfahop inter-
0 .= {X(s) | Ns) < gg(s)’ for some[Y>, . Hz(s)¢(s)] € A}, ference models since the operations of the regulators do not
depend on the underlying interference constraints.
where Hl(s) is the routing matrix such thaHl(s) = 1 if the The main idea of the proof is similar to that of [24], [25].
path of session includes link, and H'*) = 0 otherwise. Our We use the following Lyapunov function, where bold letters
goal is to modifyGMM in such a way that it also guarantee#ndicates a vector.
the same efficiency ratio* for the multi-hop case.

(e) Mo, weight = 1

Fig. 6. Maximal matchings for constructing

V(P,Q) = &X(P,Q)+)(Q), (20)

To this end, we use the idea of regulators proposed in [24], here X (P o 1 H® (p® ()2 (21

[25]. At each link, there is a separate queue for each session where X (P, Q) = 2 %; ;9 v i @)%

Let Ql(s)_(t)_denot(_e the queue length of SeSSi@”E‘;)"”(E)Z at V(Q) = max(Qi¢)? (22)
the beginning of time slat, and letQ;(t) := >  H,;”'Q,” (t). leE

We add a regulator queue bef(‘@-i‘s)(t) as shown in Fig. 7. Note that)(Q) is the square of the Lyapunov function for the
This additional queue is called a regulator [24], [25] besausingle-hop case in Section Ill. The term (21) was introduced
its service rate is regulated as a function of the mean arriva [25] to account for the backlog’l(s) of the regulators¢

rate at the source. Hence, the burstiness of the traffic jgta small positive constant to be chosen later. As in (8), we
the down-stream links is reduced specifically. The regulatgefine the fluid |imitSql(S)(t), pl(S) (t), 7Tl(5) ®), andrl(s) (t) of
located at thek-th-hop link (¢ > 2), say !, of sessions Ql(s) (t), Pl(s)(t), Hl(s) (t), ande(s)(t), respectively. The fluid
moves accumulated packets to the quéﬁ@ (t) at the rate |imit version of (20) can also be written as

of A(®) + (k — 1) provided thatP™™) (1) > ¢;, wherec is a
small positive real number an#'*) (t) denotes the number V(p,q) =X (pa) + V(a). (23)

of accumulated packets at the regulator at the beginning ofwe can then show that whenis small, the Lyapunov
time slot¢. Specifically, if P*)(¢) > ¢, the regulator moves function (23) has a negative drift. We provide the proof in
¢, packets with probability*(S)““c(+1)€ at time slott. We note the Appendix.

that, at the first-hop link of each session (where exogenoudProposition 9: For a network graph with the local-pooling
packets arrive), the packets are directly applied to theicer factoro*, GMM along with regulators achieves the efficiency
queue. Lets andl® denote the next hop of linkfor session ratio of o™ under multi-hop traffic load.

s and the previous hop of linkfor sessions, respectively. We Proof: Lemma 8 ensures the system stability with traffic
then have the following equations that govern the evolutibn load PO strictly inside c*Q2 (i.e., the efficiency ratio is no



smaller tharo*). Hence, it suffices to show that for alt> 0, APPENDIX

there exists a scenario that the system is unstable Bl

with a traffic rate vectoR(®) € (o* + €)Q. _ . _
Note that we have shown in Lemma 2 that with single- We are going to prove that=V(p,q) < 0. We first con-

hop traffic, there exists a traffic pattern that the system $iler the original discrete-time system. We use the corwent

unstable undeGMM. Since the single-hop traffic scenarighat all Ql(s)(t)- Pl(s) (t), Rl(s)(t)- Hl(s) (t) are equal to zero if

can be considered as a special case of the multi-hop trafﬂés) = 0. From (21), we have

scenario, we can use the same technique. We first find a SUbSEE\’(P Q)

L and two vectorgi, 7 € Co(Ry) such thato*fi = 7. We

A. Proof of Lemma 8

build a traffic pattern from matchings @fwith X(*) = 7 + ¢, £ 1E {ZIGE Zses(ﬂ({) (t+1)+ Q" (t 4 1))2
as in the proof of Lemma 2, and make each session traverse s) (5) /ira
a single hop. Note that packets are injected at the Xéteat —2ien 2ses(By () + Q7 (1) [ P@), Q(t)}
each link inL, and are directly applied to the service queue. (s) (s) p®
Then, undeitGMM, the queues of all links in. increase to - B [Zl ZS(Pli (B + Q7 (®) (Pli (t+1)
infinity together as described in the proof of Lemma 2.1 +Ql(8)(t +1) - Pz(;) (t) — Ql(S)(t)) | P(), Q(t)}
VI. CONCLUSION +1E [Zz Zs(Pz(sf)(tJr 1)+ QW (t+1)
In this paper, we have provided new analytical results on the (5) (5) /n2
achievable performance &MM for a large class of network _Pzi (t) —Q;7 (1) | P(t), Q(t)}

topologies under the node-exclusive interference model. W (s) (s) (s)

derive our results via a topological approach that extehdst B [Zl ZS(Pli (8 + Qi (1)) - (Pli (t+1)

recently_ develqped notion of local pooling to a more ger_1era| +Ql(s>(t +1)— PZ(SS) (t) — QI(S)(t)) | P(t), Q(t)}

topological notion called-local pooling, and a corresponding +

notion called local-pooling factor. We show that for a given +iE [Zz ZS(Rl(S)(t) - Ré) ()2 | P(t), Q(t)} .

graph, the efficiency ratio ddMM is equal to its local-pooling (24)

factor. Thus, we are able to focus on the topological prgpert

of graphs to obtain the achievable performanceGNIM. Note thatE[R(*) ()] < A(*) + H*e where H* is the maximum

However, it turns out that estimating the local-poolingtéac number of hops of session. Letting; := |E|Y (A +

is non-trivial, and may require high complexity for arbiya H*¢)?, we obtain

network topologies. Nonetheless, by studying the progpedf AX(P,Q)

unstable networks, we can estimate the local-pooling faafto ’

arbitrary network graphs under the node-exclusive intefee =~ < E [Zl ZS(PI(?(Q +Q (1)) - (Pl(;) (t+1)

model and show that the local-pooling factor (and hence the (s) (s) (s)

efficiency ratioy* of GMM) of a graph with maximum node +Q(t+1) — Pli () = Q) [ P(@), Q(t)} +G

_degree;l* is no smaller tha@d‘f—*_l_. The tightness of the bound <3 ZS(PI(SS) (t) + Ql(s)(t))

is demonstrated through the 6-link cycle and the Star-pgmta +

topologies, wherd* = 2 andd* = 3, respectively. The results -E {Rl(s)(t) - Rl(f) (t) | P(2), Q(t)} +C

are also extended to the more general scenario with mugti-ho 5) B 5)

traffic. We show that when per-flow regulators are used at <2 ZS(PIi (t) + Q7 (1))

each hopGMM can also guarantee the samé fraction of (p), _ pls)

the optimal capacity region as in a single-hop traffic sdenar (B Lipo ey — Hlir I{Pz({>(t>201}) +
There remain many interesting open problems in these (25)

directions. It would be an interesting avenue for futureaesh _ o ) =(s) -

to determine whether the bound is tight wheén> 4, and wherel; , is an indicator function, anﬁl is the average de-

further research on the topological properties of graphgdco partu(rg rate of the regulator for §essmat -|Il’lkl cond|t|.oned

result in a better estimate of the performance limits. W& £ (t) > a, except at the first-hop link, of sessions,

also expect that different interference models will affdot whereRl(f) = Al?). Hence, we obtain

capacity region ofsMM. While our results on the relationship AX(P,Q)

between the performance MM and the local-pooling factor '

remain the same for a more general class of interference < 2 ZS(B(;)(t)—i-Ql(S)(t))

models than the node-exclusive interference model, mork wo

p(s) _ p(s)
needs to be done to evaluate the local-pooling factor for (B _Rli 'I{Pf{)(t)zcl})JrCl
general interference models [21]. Finally, the authors1@] [ <% Q(s) (t)e
show that, if the arrivals satisfy certain randomness ptgpe = el es ! B B
GMM may achieve the full capacity region even if the network +22s Pz(sf) (1R — R[(;) : I{Pl<§>(t)>cl}) +Ch
+

graph does not satisfy local pooling. It would be interestin ) )
study whether the results in this paper can be improved under = 22 Q) W —ed o, Pli (t) + O,
similar assumptions. (26)



where C; is some constant. Note that the last inequality
follows from the design of our regulator. Specifically, ®nc [1]
Rl(f) R + ¢, we have

(2]

PR - R -1

{P}?(t)ch})
+

which implies thatﬂgj)(t)(}_{l(s)

PR <, it PY(1) < a, 31

—eP{ (1), it P (1) = e

(27)

~ R g wyzay)

(5]
(6]

maxy, ¢ (cp + €) — ePl(iS)(t).

Inequality (26) holds for the original discrete-time syste
Now we take the fluid limit as in Section Ill. Using Theorem
4.1 of [22], we can show that, for almost all sample paths anfi,]
for all positive sequence,, — oo, there exists a subsequence
{xn,} such that the following holds uniformly over compact

|ntervals of timet. (8]

nj
Pt >(mn,.t)
< i (3, S gy BT G
Tny 0 " i [10]
= X a e — e X, 2,0 (1), i)
(28)

[12]

We next derive%y(q). Let Lo(t) :== {l € E | I
argmax,, qx(t)cp} and L(t) {l € Lot) | I (13]
argmaxy, %qk(t)ck}. Then there exists > 0 such that for [14
(t,t + 4], the links in L(¢t) have the largest queue-weighted
rate. Sincey (t) is continuous, we havé’t—iy(q) =2q(t)c?
%ql(t) foranyl € L(t) on the time intervalt, ¢+ ¢]. Choose
e > 0 sufficiently small so thaf>", ¢ H\VA®) + H*d is
strictly within o*A. Since GMM will always pick a service
vector inCo(R, t)) there exists a link € L(t) and a small
n > 0 such thatdt+ q.(t) < —n. Hence, we have

[15]

[16]

[17]

(18]

DoY(p,q) < —21g.(t)c? (29)

[19]
Combining (28) and (29), we obtain

DV(p,q) = 5 X (p, q>+;a—iy< ) (20]
<€ aler—e€ >y pi (1) = 2mqe(t)e? [21]

leE leE seS (30)
< —ge(t)ee - (2nee — E[B]) =€ 37 D pi (1), 122]

leFE seS

The last inequality holds becaugg(t)c; < g.(t)c. for all (23]

l € E ande € L(t). Hence, if we choos€ such that2y -
ming ¢, — §|E| > Cy for some constant, > 0, then we
have that, for allp(t) + q(t) # 0,

A
BV(p,q) < —Coqe(t) —e€ > D p (1) <.
lEE seS

Since (31) is true for almost evety the fluid limit model of
the system is stable. Then by Theorem 4.2 of [22], the origina
system is also stable.

[24]

31
(31) 251
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