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Utility Maximization for Communication Networks
with Multi-path Routing
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Abstract— In this paper, we study utility maximization prob-
lems for communication networks where each user (or class) can
have multiple alternative paths through the network. This type
of multi-path utility maximization problems appear naturally in
several resource allocation problems in communication networks,
such as the multi-path flow control problem, the optimal QoS
routing problem, and the optimal network pricing problem. We
develop a distributed solution to this problem that is amenable
to online implementation. We analyze the convergence of our
algorithm in both continuous-time and discrete-time, and with
and without measurement noise. These analyses provide us with
guidelines on how to choose the parameters of the algorithm to
ensure efficient network control.

Index Terms— Utility maximization, multi-path flow control,
multi-path routing, quality-of-service routing, proximal algo-
rithms.

I. INTRODUCTION

In this paper we are concerned with problems of the
following form:

max
xij ≥ 0, mi ≤

∑J(i)
j=1

xij ≤ Mi

i = 1, ..., I

I
∑

i=1

fi(

J(i)
∑

j=1

xij) (1)

subject to
I

∑

i=1

J(i)
∑

j=1

El
ijxij ≤ Rl, for all l = 1, ..., L. (2)

As we will describe in Section II, optimization problems
of this form appear in several resource allocation problems
in communication networks, when each user or (class of
users) can have multiple alternative paths through the network.
Generically, the problem (1) amounts to allocating resources
R1, ..., RL from network components l = 1, 2, ..., L to users
i = 1, 2, ..., I such that the total system “utility” is maximized.
The “utility” function fi(·) represents the performance, or level
of “satisfaction,” of user i when a certain amount of resource
is allocated to it. In practice, this performance measure can
be in terms of revenue, welfare, or admission probability, etc.,
depending on the problem setting. We assume throughout that
fi(·) is concave. Each user i can have J(i) alternative paths (a
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path consists of a subset of the network components). Let xij

denote the amount of resources allocated to user i on path j.
Then the utility fi(

∑J(i)
j=1 xij), subject to mi ≤

∑J(i)
j=1 xij ≤

Mi, is a function of the sum of the resources allocated to
user i on all paths. Hence, the resources on alternative paths
are considered equivalent and interchangeable for user i. The
constants El

ij represent the routing structure of the network:
each unit of resource allocated to user i on path j will consume
El

ij units of resource on network component l. (El
ij = 0

for network components that are not on path j of user i.)
The inequalities in (2) represent the resource constraints at
the network components (hence Rl can be viewed as the
capacity of network component l, and

∑I
i=1

∑J(i)
j=1 El

ijxij is
the total amount of resources consumed at network component
l summed over all users and all alternative paths). We assume
that Rl > 0, El

ij ≥ 0, mi ≥ 0 and Mi > 0 (Mi could possibly
be +∞).

We will refer to problem (1) as the multi-path utility
maximization problem. In this paper, we are interested in
solutions to this problem that are amenable to online imple-
mentation. In Section II, we will identify several resource
allocation problems in communication networks that can be
modeled as (1). Essentially, once the network can support
multi-path routing, the resource allocation problem changes
from a single-path utility maximization problem to a multi-
path utility maximization problem. As we will soon see, the
multi-path nature of the problem leads to several difficulties in
constructing solutions suitable for online implementation. One
of the main difficulties is that, once some users have multiple
alternative paths, the objective function of problem (1) is no
longer strictly concave, and hence the dual of the problem
may not be differentiable at every point. Note that this lack of
strict concavity is mainly due to the linearity

∑J(i)
j=1 xij . (The

objective function in (1) is still not strictly concave even if the
utility functions fi are strictly concave.) On the other hand, the
requirement that the solutions must be implementable online
also imposes a number of important restrictions on our design
space. We outline these restrictions below:

• The solution has to be distributed because these com-
munication networks can be very large and centralized
solutions are not scalable.

• In order to lower the communication overhead, the so-
lution has to limit the amount of information exchanged
between the users and different network components. For
example, a solution that can adjust resource allocation
based on online measurements is preferable to one that
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requires explicit signaling mechanisms to communicate
information.

• It is also important that the solution does not require
the network components to store and maintain per-user
information (or per-flow information, as it is referred to
in some of the networking literature). Since the number
of users sharing a network component can be large,
solutions that require maintaining per-user information
will be costly and will not scale to large networks.

• In the case where the solution uses online measurements
to adjust the resource allocation, the solution should
also be resilient to measurement noise due to estimation
errors.

In this paper, we develop a distributed solution to the multi-
path utility maximization problem. Our distributed solution has
the aforementioned attributes desirable for online implemen-
tation. The main technical contributions of the paper are as
follows:

1) We provide a rigorous analysis of the convergence of our
distributed algorithm. This analysis is done without requiring
the two-level convergence structure that is typical in standard
techniques in the convex programming literature for dealing
with the lack of strict concavity of the problem. Note that
algorithms based on these standard techniques are required to
have an outer level of iterations where each outer iteration
consists of an inner level of iterations. For the convergence of
this class of algorithms to hold, the inner level of iterations
must converge before each outer iteration can proceed. Such
a two-level convergence structure may be acceptable for off-
line computation, but not suitable for online implementation
because in practice it is difficult for the network to decide
in a distributive fashion when the inner level of iterations
can stop. A main contribution of this paper is to establish
the convergence of our distributed algorithm without requiring
such a two-level convergence structure.

2) By proving convergence, we are able to provide easy-
to-verify bounds on the parameters (i.e., step-sizes) of our
algorithm to ensure convergence. Note that when distributed
algorithms based on our solution are implemented online, a
practically important question is how to choose the parameters
of the algorithm to ensure efficient network control. Roughly
speaking, the step-sizes used in the algorithm should be small
enough to ensure stability and convergence, but not so small
such that the convergence becomes unnecessarily slow. The
main part of this paper addresses the question of parameter
selection by providing a rigorous analysis of the convergence
of the distributed algorithm.

3) We also study the convergence of the algorithm in the
presense of measurement noise and provide guidelines on
how to choose the step-sizes to reduce the disturbance in the
resource allocation due to noise.

4) Our studies reveal how the inherent multi-path nature
of the problem can potentially lead to such difficulties as
instability and oscillation, and how these difficulties should be
addressed by the selection of the parameters in the distributed
algorithm.

II. APPLICATIONS AND RELATED WORK

Before we develop the distributed solution to problem (1),
we first give a few examples of the networking contexts where
optimization problems of the form (1) appear.

Example 1: A canonical example is the multi-path flow
control problem in a wireline network (sometimes referred to
as the multi-path routing and congestion control problem) [2],
[3], [4], [5]. The network has L links and I users. The capacity
of each link l is Rl. Each user i has J(i) alternative paths
through the network. Let H l

ij = 1 if the path j of user i uses
link l, H l

ij = 0, otherwise. Let sij be the rate at which user
i sends data on path j. The total rate sent by user i is then
∑J(i)

j=1 sij . Let Ui(
∑J(i)

j=1 sij) be the utility received by the user
i at rate

∑J(i)
j=1 sij . The utility function Ui(·) characterizes how

satisfied user i is when it can transmit at a certain data rate.
We assume that Ui(·) is a concave function, which reflects the
“law of diminishing returns.” The flow control problem can be
formulated as the following optimization problem [2], [3], [4],
[5], which is essentially in the same form as (1):

max
[sij ]≥0

I
∑

i=1

Ui(

J(i)
∑

j=1

sij)

subject to
I

∑

i=1

J(i)
∑

j=1

H l
ijsij ≤ Rl for all l = 1, ..., L.

Example 2: We next consider the optimal routing problem,
which deals with a dynamic group of users instead of a static
set of users as in Example 1. The network has L links. The
capacity of each link l is Rl. There are I classes of users.
Users of class i arrive to the network according to a Poisson
process with rate λi. Each user of class i can be routed to one
of the J(i) alternative paths through the network. Let H l

ij = 1
if path j of class i uses link l, H l

ij = 0, otherwise. Each user
of class i, if admitted, will hold ri amount of resource on each
of the links along the path that it is routed to, and generate vi

amount of revenue per unit time. The service time distribution
for users of class i is general with mean 1/µi. The service
times are i.i.d. and independent of the arrivals. The objective
of the network is, by making admission and routing decisions
for each incoming user, to maximize the revenue collected
from the users that are admitted into the network.

The above optimal routing problem is important for net-
works that attempt to support users with rigid Quality of
Service (QoS) requirements [6], [7], [8]. While the optimal
routing policy is usually difficult to solve (e.g., the classical
Dynamic Programming approach for solving the optimal pol-
icy suffers from the “curse-of-dimensionality” as the number
of classes increases), it turns out that when the capacity of
the system is large, there exists a simple routing policy that
is asymptotically optimal. This asymptotically optimal routing
policy uses proportional routing, i.e., each user of class i will
be admitted with probability

∑J(i)
j=1 pij , and once admitted,

will be routed to path j with probability pij/
∑J(i)

j=1 pij . One
can show that the above policy will asymptotically achieve
the optimal long-term average revenue, as long as the routing
probabilities pij are chosen as the solution of the following
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optimization problem [9]:

max
pij ≥ 0,

∑J(i)
j=1

pij ≤ 1

i = 1, ..., I

I
∑

i=1

λi

µi

J(i)
∑

j=1

pijvi (3)

subject to
I

∑

i=1

J(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l.

Note that this result holds even if the service time distribution
is general, i.e., when the system is not Markovian. Thus,
the optimal routing problem reduces to a special case of (1)
where the utility function fi(·) is linear. It is also possible
to generalize the result to the case of strictly concave utility
functions [10].

Readers can refer to [1] for another application of the multi-
path utility maximization problem where the network uses
pricing to control the users’ behavior.

A. Related Work

The single-path utility maximization problem, i.e., when
each user (or class) has only one path, has been extensively
studied in the past, mainly in the context of Internet flow
control (see, for example, [2], [11], [12], [13], [14] and the ref-
erence therein). However, the multi-path utility maximization
problem has received less attention in the literature [2], [3], [4],
[5]. In [2], after studying the single-path utility maximization
problem, the authors briefly discuss the extension to the
multi-path case. They categorize the solutions into primal
algorithms and dual algorithms. Global convergence of the
primal algorithms is studied in [2] for the case when feedback
delays are negligible. (On the other hand, the dual algorithms
there have an oscillation problem as we will discuss soon).
Local stability of primal algorithms with feedback delays is
further studied in [5]. Since [2] and [5] use a penalty-function
approach, in general the algorithms there can only produce
approximate solutions to the original problem (1).

The method in [3] can be viewed as an extension of the
primal algorithms in [2] for computing exact solutions to
problem (1). It employs a (discontinuous) binary feedback
mechanism from the network components to the users: each
network component will send a feedback signal of 1 when the
total amount of resources consumed at the network component
is greater than its capacity, and it sends a feedback signal of
0 otherwise. The authors of [3] show that, if each network
component can measure the total amount of consumed re-
sources precisely, their algorithm will converge to the exact
optimal solution of problem (1). However, their algorithm
will not work properly in the presence of measurement noise:
if the network component can only estimate the amount of
consumed resources with some random error (we will see
in Section III-A how such situations arise), it could send a
feedback signal of 1 erroneously even if the true amount of
resources consumed is less than its capacity (or, a feedback
signal of 0 even if the true amount of resources consumed
exceeds its capacity). Therefore, the algorithm in [3] cannot
produce the exact optimal solution when there is measurement
noise. The AVQ algorithm [12], [15] is also worth mentioning

as an extension of the primal algorithms in [2] for computing
exact solutions. However, the literature on the AVQ algorithm
has focused on the single-path case. The extension to the multi-
path case has not been rigorously studied.

Dual algorithms that can produce exact solutions are devel-
oped in [11] for the single-path case. When extended to the
multi-path case, both this algorithm and the dual algorithm
in [2] share the same oscillation problem. That is, although
the dual variables in their algorithms may converge, the more
meaningful primal variables (i.e., the resource allocation xij)
will not converge. (We will illustrate this problem further in
Section III.) This difficulty arises mainly because the objective
function of problem (1) is not strictly concave in the primal
variables xij once some users have multiple paths. The authors
in [4] attempt to address the oscillation problem by adding
a quadratic term onto the objective function. Their approach
bears some similarities to the idea that we use in this paper.
However, they do not provide rigorous proofs of convergence
for their algorithms.

Another method that is standard in convex programming for
dealing with the lack of strict concavity is the Alternate Direc-
tion Method of Multipliers (ADMM) [16, p249, P253]. It has
known convergence property (when there is no measurement
noise) and can also be implemented in a distributed fashion.
However, when implemented in a network setting, the ADMM
algorithm requires substantial communication overhead. At
each iteration, the ADMM algorithm requires that each net-
work component divides the amount of unallocated capacity
equally among all users sharing the network component and
communicates the share back to each user. Each user not only
needs to know the cost of each path (as in the distributed
algorithm we will propose in this paper), but also needs
to know its share of unallocated capacity at each network
component. Further, in a practical network scenario where
the set of active users in the system keep changing, unless
the network has a reliable signaling mechanism, even keeping
track of the current number of active users in the system
requires maintaining per-user information. It is also unclear
how the ADMM algorithm would behave in the presence of
measurement noise. In this paper, we will study new solutions
that are specifically designed for online implementation, and
that do not require each network component to store and
maintain per-user information.

III. THE DISTRIBUTED ALGORITHM

As we have pointed out earlier, one of the main difficulties
in solving (1) is that, once some users have multiple alternative
paths, the objective function of (1) is not strictly concave.
As we go into the details of the analysis, we will see the
manifestation of this difficulty in different aspects. At a high
level, since the primal problem is not strictly concave, the dual
problem may not be differentiable at every point. In this paper,
we would still like to use a duality based approach, because
the dual problem usually has simpler constraints and is easily
decomposable. To circumvent the difficulty due to the lack
of strict concavity, we use ideas from Proximal Optimization
Algorithms [16, p232]. The idea is to add a quadratic term to
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the objective function. Let ~xi = [xij , j = 1, ..., J(i)] and

Ci = {~xi|xij ≥ 0 for all j and
J(i)
∑

j=1

xij ∈ [mi,Mi]},

i = 1, ..., I. (4)

Let ~x = [~x1, ..., ~xI ]
T and let C denote the Cartesian product

of Ci, i.e., C =
⊗I

i=1 Ci. We now introduce an auxiliary
variable yij for each xij . Let ~yi = [yij , j = 1, ..., J(i)] and
~y = [~y1, .., ~yI ]

T . The optimization then becomes:

max
~x∈C,~y∈C

I
∑

i=1

fi(

J(i)
∑

j=1

xij) −
I

∑

i=1

J(i)
∑

j=1

ci

2
(xij − yij)

2 (5)

subject to
I

∑

i=1

J(i)
∑

j=1

El
ijxij ≤ Rl for all l,

where ci is a positive number chosen for each i. It is easy to
show that the optimal value of (5) coincides with that of (1). In
fact, Let ~x∗ denote the maximizer of (1), then ~x = ~x∗, ~y = ~x∗

is the maximizer of (5). Note that although a maximizer of
(1) always exists, it is usually not unique since the objective
function is not strictly concave.

The standard Proximal Optimization Algorithm then pro-
ceeds as follows:

Algorithm P:
At the t-th iteration,

P1) Fix ~y = ~y(t) and maximize the augmented objective
function with respect to ~x. To be precise, this step solves:

max
~x∈C

I
∑

i=1

fi(

J(i)
∑

j=1

xij) −
I

∑

i=1

J(i)
∑

j=1

ci

2
(xij − yij)

2

subject to
I

∑

i=1

J(i)
∑

j=1

El
ijxij ≤ Rl for all l. (6)

Note that the maximization is taken over ~x only. With
the addition of the quadratic term

∑J(i)
j=1

ci

2 (xij − yij)
2,

for any fixed ~y, the primal objective function is now
strictly concave with respect to ~x. Hence, the maximizer
of (6) exists and is unique. Let ~x(t) be the solution to
this optimization.
P2) Set ~y(t + 1) = ~x(t).

It is easy to show that such iterations will converge to the
optimal solution of problem (1) as t → ∞ [16, p233].

Step P1 still needs to solve a global non-linear programming
problem at each iteration. Since the objective function in
(6) is now strictly concave, we can use standard duality
techniques. Let ql, l = 1, ..., L be the Lagrange Multipliers
for the constraints in (6). Let ~q = [q1, ..., qL]T . Define the

Lagrangian as:

L(~x, ~q, ~y)

=

I
∑

i=1

fi(

J(i)
∑

j=1

xij) −
L

∑

l=1

ql(

I
∑

i=1

J(i)
∑

j=1

El
ijxij − Rl)

−
I

∑

i=1

J(i)
∑

j=1

ci

2
(xij − yij)

2 (7)

=

I
∑

i=1







fi(

J(i)
∑

j=1

xij) −

J(i)
∑

j=1

xij

L
∑

l=1

El
ijq

l

−

J(i)
∑

j=1

ci

2
(xij − yij)

2







+

L
∑

l=1

qlRl.

Let qij =
∑L

l=1 El
ijq

l, ~qi = [qij , j = 1, ..., J(i)]. The
objective function of the dual problem is then:

D(~q, ~y) = max
~x∈C

L(~x, ~q, ~y) =

I
∑

i=1

Bi(~qi, ~yi) +

L
∑

l=1

qlRl, (8)

where

Bi(~qi, ~yi) = max
~xi∈Ci







fi(

J(i)
∑

j=1

xij) −

J(i)
∑

j=1

xijqij

−

J(i)
∑

j=1

ci

2
(xij − yij)

2







. (9)

The dual problem of (6), given ~y, then corresponds to mini-
mizing D over the dual variables ~q, i.e.,

min
~q≥0

D(~q, ~y).

Since the objective function of the primal problem (6) is
strictly concave, the dual is always differentiable. Let ~q =
~q(t′). The gradient of D is

∂D

∂ql
= Rl −

I
∑

i=1

J(i)
∑

j=1

El
ijx

0
ij(t

′),

where x0
ij(t

′) solves (9) for ~q = ~q(t′). The step P1 can then
be solved by gradient descent iterations on the dual variables
~q, i.e.,

ql(t′ + 1) =



ql(t′) + αl(

I
∑

i=1

J(i)
∑

j=1

El
ijx

0
ij(t

′) − Rl)





+

, (10)

where [·]+ denotes the projection to [0,+∞). It is again easy
to show that, given ~y, the dual update (10) will converge to the
minimizer of D(~q, ~y) as t′ → ∞, provided that the step-sizes
αl are sufficiently small [16, p214].

Remark (The Oscillation Problem Addressed): From (9)
we can observe the potential oscillation problem caused by the
multi-path nature of problem (1), and the crucial role played
by the additional quadratic term in dampening this oscillation.
Assume that there is no additional quadratic term, i.e., ci = 0.
Readers can verify that, when (9) is solved for any user i that
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has multiple alternative paths, only paths that have the least qij

will have positive xij . That is, qij > mink qik ⇒ xij = 0. This
property can easily lead to oscillation of xij when the dual
variables ~q are being updated. To see this, assume that a user
i has two alternative paths, and the sum of the dual variables on
these two paths, qi,1 =

∑L
l=1 El

i,1q
l and qi,2 =

∑L
l=1 El

i,2q
l,

are close to each other. At one time instant qi,1 could be greater
than qi,2, in which case the maximum point of (9) satisfies
xi,1 = 0 and xi,2 > 0. At the next time instant, since more
resources are consumed on network components on path 2, the
dual variables ~q could be updated such that qi,2 > qi,1 (see
the update equation (10)). In this case, the maximum point of
(9) will require that xi,1 > 0 and xi,2 = 0, i.e., the resource
allocation will move entirely from path 2 over to path 1. This
kind of flip-floping can continue forever and is detrimental
to network control. When ci > 0, however, the maximum
point ~xi of (9) is continuous in ~qi (shown later in Lemma 1).
Hence, the quadratic term serves a crucial role to dampen the
oscillation and stablize the system.

A. Towards Constructing Online Solutions

The algorithm P that we have constructed requires the two-
level convergence structure typical in proximal optimization
algorithms. The algorithm P consists of an outer level of
iterations, i.e., iterations P1 and P2, where each outer iteration
P1 consists of an inner level of iterations (10). For the con-
vergence of algorithm P to hold, the inner level of iterations
(10) must converge before each outer iteration can proceed
from step P1 to P2. Such a two-level convergence structure is
unsuitable for online implementation because in practice, it is
difficult for the network elements to decide in a distributive
fashion when the inner level of iterations should stop.

Despite this difficulty, the main building blocks (9) and
(10) of algorithm P have several attractive attributes desirable
for online implementation. In particular, all computation can
be carried out based on local information, and hence can be
easily distributed. More precisely, in the definition of the dual
objective function D(~q, ~y) in (8), we have decomposed the
original problem into I separate subproblems for each user
i = 1, ..., I . Given ~q, each subproblem Bi (9) can now be
solved independently. If we interpret ql as the implicit cost
per unit resource on network component l, then qij is the cost
per unit resource on path j of user i. We can call qij the
cost of path j of user i. Thus the costs qij , j = 1, ..., J(i),
capture all the information that each user i needs to know in
order to determine its resource allocation xij . Given qij , an
efficient algorithm can solve the subproblem (9) in at most
O[J(i) log J(i)] steps. (Please refer to [17] for details of the
algorithm.)

Further, according to (10), the implicit cost ql can be
updated at each network component l based on the dif-
ference between the capacity Rl and the aggregate load
∑I

i=1

∑J(i)
j=1 El

ijx
0
ij(t

′). In many applications, this aggregate
load can be measured by each network component directly. For
example, in the multi-path flow control problem (Example 1),
the aggregate load

∑I
i=1

∑J(i)
j=1 H l

ijsij is simply the aggregate
data rate going through link l, which can be estimated by

counting the total amount of data forwarded on the link over
a certain time window. Hence, no per-user information needs
to be stored or maintained. In some applications, there is yet
another reason why the measurement-based approach is ad-
vantageous. That is, by measuring the aggregate load directly,
the algorithm does not need to rely on prior knowledge of
the parameters of the system, and hence can automatically
adapt to the changes of these parameters. For example, in the
optimal routing problem (Example 2), each link l needs to
estimate the aggregate load

∑I
i=1

∑J(i)
j=1

λi

µi
ripijH

l
ij . Since the

probability that a user of class i is routed to path j is pij , the
arrival process of users of class i on link l is a Poisson process
with rate λipij . Assume that neither the mean arrival rate λi

nor the mean service time 1/µi are known a priori, but each
user knows its own service time in advance. Each link can
then estimate the aggregate load as follows: over a certain
time window W , each link l collects the information of the
arriving users from all classes to link l. Let w be the total
number of arrivals during W . Let rk, Tk, k = 1, ...w denote
the bandwidth requirement and the service time, respectively,
of the k-th arrival. (This information can be carried along with
the connection setup message when the user arrives.) Let

θ =

∑w
k=1 rkTk

W
.

Then, it is easy to check that

E[θ] =

I
∑

i=1

J(i)
∑

j=1

λi

µi

ripijH
l
ij ,

i.e., θ is an unbiased estimate of the aggregate load. Note
that no prior knowledge on the demand parameters λi and
µi is needed in the estimator. Hence, the algorithm can
automatically track the changes in the arrival rates and service
times of the users [10].

B. The New Algorithm
In the rest of the paper, we will study the following

algorithm that generalizes algorithm P .
Algorithm A:
Fix K ≥ 1. At the t-th iteration:

A1) Fix ~y = ~y(t) and use gradient descent iteration (10)
on the dual variable ~q for K times. To be precise, let
~q(t, 0) = ~q(t). Repeat for each k = 0, 1, ...K − 1:
Let ~x(t, k) be the primal variable that solves (9)
given the dual variable ~q(t, k), i.e., ~x(t, k) =
argmax

~x∈C

L(~x, ~q(t, k), ~y(t)). Update the dual variables by

ql(t, k + 1) =
[

ql(t, k)

+αl(

I
∑

i=1

J(i)
∑

j=1

El
ijxij(t, k) − Rl)





+

, for all l.

(11)

A2) Let ~q(t+1) = ~q(t,K). Let ~z(t) be the primal variable
that solves (9) given the new dual variable ~q(t + 1), i.e.,
~z(t) = argmax

~x∈C

L(~x, ~q(t + 1), ~y(t)). Set

yij(t+1) = yij(t)+βi(zij(t)−yij(t)), for all i, j, (12)
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where 0 < βi ≤ 1 for each i.
As discussed in Section III-A, in certain applications the

aggregate load
∑I

i=1

∑J(i)
j=1 El

ijxij(t, k) is estimated through
online measurement with non-negligible noises. The update
(11) should then be replaced by:

ql(t, k + 1) =
[

ql(t, k)

+αl(
I

∑

i=1

J(i)
∑

j=1

El
ijxij(t, k) − Rl + nl(t, k))





+

, (13)

where nl(t, k) represents the measurement noise at link l.
From now on, we will refer to (11) or (13) as the dual

update, and (12) as the primal update. A stationary point of
the algorithm A is defined to be a primal-dual pair ( ~y∗, ~q∗)
such that

~y∗ = argmax
~x∈C

L(~x, ~q∗, ~y∗),

I
∑

i=1

J(i)
∑

j=1

El
ijy

∗
ij ≤ Rl for all l,

ql,∗ ≥ 0, and ql,∗(
I

∑

i=1

J(i)
∑

j=1

El
ijy

∗
ij − Rl) = 0 for all l. (14)

These are precisely the complementary slackness conditions
for the problem (1). By standard duality theory, for any
stationary point ( ~y∗, ~q∗) of the algorithm A, ~x = ~y∗ solves
the problem (1).

The main components of algorithm A (i.e., the primal and
dual updates) are essentially the same as that of the standard
proximal optimization algorithm P . Therefore, our new algo-
rithm A inherits from algorithm P those attributes desirable
for online implementation. However, the main difference is
that, in algorithm A, only K number of dual updates are exe-
cuted at each iteration of step A1. If K = ∞, then algorithm
A and algorithm P will be equivalent, i.e., at each iteration of
step A1 the optimization (6) is solved exactly. As we discussed
earlier, such a two-level convergence structure is inappropriate
for online implementation because it would be impractical to
carry out an algorithm in phases where each phase consists
of an infinite number of dual updates. Further, because each
phase only serves to solve the augmented problem (6), such
a two-level convergence structure is also likely to slow the
convergence of the entire algorithm as too many dual updates
are wasted at each phase.

On the other hand, when K < ∞, at best an approximate
solution to (6) is obtained at each iteration of step A1. If
the accuracy of the approximate solution can be controlled
appropriately (see [18]), one can still show convergence of
algorithm A. However, in this case the number of dual updates
K in step A1 has to depend on the required accuracy and
usually needs to be large. Further, for online implementation,
it is also difficult to control the accuracy of the approximate
solution to (6) in a distributed fashion.

In this work, we take a different approach. We do not require
a two-level convergence structure and we allow an arbitrary
choice of K ≥ 1. Hence, our approach does not impose any
requirement on the accuracy of the approximate solution to
(6). As we just discussed, relaxing the algorithm in such a

way is a crucial step in making the algorithm amenable to
online distributed implementation. Somewhat surprisingly, we
will show in the next section that algorithm A will converge
for any K ≥ 11.

IV. CONVERGENCE WITHOUT MEASUREMENT NOISE

In this section, we study the convergence of algorithm A
when there is no measurement noise, i.e., when the dynamics
of the system are described by (11) and (12). The convergence
of algorithm A can be most easily understood by looking at
its continuous-time approximation as follows:

Algorithm AC:
A1-C) dual update:

d

dt
ql(t) =



























α̂l(
I
∑

i=1

J(i)
∑

j=1

El
ijxij(t) − Rl)

if ql(t) > 0 or
I
∑

i=1

J(i)
∑

j=1

El
ijxij(t) ≥ Rl,

0 otherwise,
(15)

where ~x(t) = argmax
~x∈C

L(~x, ~q(t), ~y(t)).

A2-C) primal update:

d

dt
yij(t) = β̂i(xij(t) − yij(t)). (16)

We will first provide the convergence proof of this
continuous-time algorithm, which is of independent interest.
Further, it will also provide some important insights to the
convergence of the original discrete-time algorithm. Note that
α̂l dt and β̂i dt would correspond to the step-sizes αl and
βi in the discrete-time algorithm A. Thus, the continuous-
time algorithm AC can be view as the functional limit of the
discrete-time algorithm by driving the step-sizes αl and βi to
zero and by appropriately rescaling time (see [17]).

We begin with a supporting lemma (Lemma 1), which
will also be used in later parts of the paper. For the sake
of brevity, we will use the following vector notation for the
rest of the paper. Let E denote the matrix with L rows
and

∑I
i=1 J(i) columns such that the (l,

∑i−1
k=1 J(k) + j)

element is El
ij . Let R = [R1, R2, ...Rl]T . Then the constraint

of problem (1) can be written as E~x ≤ R. Let V and
B̂ be

∑I
i=1 J(i) ×

∑I
i=1 J(i) diagonal matrices, where the

(
∑i−1

k=1 J(k) + 1)-th to (
∑i

k=1 J(k))-th diagonal elements
are ci and β̂i, respectively (i.e., each ci or β̂i is repeated
J(i) times). Let Â be the L × L diagonal matrix whose l-
th diagonal element is α̂l. It will also be convenient to view
the objective function in (1) as a concave function of ~x, i.e,

1We note that the idea of carrying out only a small number of steps before
terminating the inner iterations has appeared in other optimization methods.
For example, the short-step path-following interior-point method for linear
programming [19, p86] uses only one Newton step towards the central path
between successive reductions of the barrier parameter. Under appropriate
conditions, the short-step path-following method converges even though the
algorithm does not produce points that are exactly on the central path. By
a similar token, the Alternate Direction Method of Multipliers (ADMM)
[16, p253] uses only one iteration in minimizing the Augmented Lagrangian
before alternating the minimization variable, and is also shown to converge.
Nonetheless, the structure of our algorithm A is quite different from these
other methods in the literature, and hence requires a new convergence study.
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f(~x) =
∑I

i=1 fi(
∑J(i)

j=1 xij). Further, we can incorporate the
constraint ~x ∈ C into the definition of the function f by setting
f(~x) = −∞ if ~x /∈ C. Then the function f is still concave,
and the problem (1) can be simply rephrased as maximizing
f(~x) subject to E~x ≤ R. The Lagrangian (7) also becomes:

L(~x, ~q, ~y)

= f(~x) − ~xT ET ~q −
1

2
(~x − ~y)T V (~x − ~y) + ~qT R. (17)

The continuous time algorithm AC can then be viewed as
the projected forward iteration for solving the zeros of the
following monotone mapping [20]:

T : [~y, ~q] → [~u,~v], (18)

with

~u(~y, ~q) = −V ( ~x0(~y, ~q) − ~y), ~v(~y, ~q) = −(E ~x0(~y, ~q) − R),

where ~x0(~y, ~q) = argmax~x L(~x, ~q, ~y). Define the inner prod-
uct 〈 [~y, ~q], [~u,~v] 〉 = ~yT ~u + ~qT~v, and the following norms:

||~q||Â = ~qT Â−1~q, ||~y||V = ~yT V ~y, ||~y||B̂V = ~yT B̂−1V ~y.
(19)

Part 2 of the following Lemma shows that the mapping T is
monotone [20]. Note that a mapping T is monotone if

〈 X1 − X2, T X1 − T X2 〉 ≥ 0 for any X1 and X2. (20)

Lemma 1: Fix ~y = ~y(t). Let ~q1, ~q2 be two implicit cost
vectors, and let ~x1, ~x2 be the corresponding maximizers of
the Lagrangian (17), i.e., ~x1 = argmax~x L(~x, ~q1, ~y(t)) and
~x2 = argmax~x L(~x, ~q2, ~y(t)). Then,

1) (~x2 −~x1)
T V (~x2−~x1) ≤ (~q2 −~q1)

T EV −1ET (~q2 −~q1),
and

2) 〈 [~y1 − ~y2, ~q1 − ~q2], T [~y1, ~q1] − T [~y2, ~q2] 〉 ≥ 0 for any
(~y1, ~q1) and (~y2, ~q2).

Remark: Part 1 of Lemma 1 also shows that, given ~y, the
mapping from ~q to ~x is continuous.

Proof: We start with some additional notation. For ~x0 =
argmax~x L(~x, ~q, ~y), by taking subgradients (see [18]) of the
Lagrangian (17) with respect to ~x, we can conclude that there
must exist a subgradient ∇f( ~x0) of f at ~x0 such that

∇f( ~x0) − ET ~q − V ( ~x0 − ~y) = 0. (21)

Similarly, let ( ~y∗, ~q∗) denote a stationary point of algorithm A.
Then ~y∗ = argmax~x L(~x, ~q∗, ~y∗), and we can define ∇f( ~y∗)
as the subgradient of f at ~y∗ such that

∇f( ~y∗) − ET ~q∗ = 0. (22)

Applying (21) for ~q1 and ~q2, and taking difference, we have,

ET (~q2 − ~q1) = [∇f(~x2) −∇f(~x1)] − V (~x2 − ~x1).

The concavity of f dictates that, for any ~x1, ~x2 and ∇f(~x1),
∇f(~x2),

[∇f(~x2) −∇f(~x1)]
T

(~x2 − ~x1) ≤ 0. (23)

Hence,

(~q2 − ~q1)
T EV −1ET (~q2 − ~q1)

= [∇f(~x2) −∇f(~x1)]
T

V −1 [∇f(~x2) −∇f(~x1)]

−2 [∇f(~x2) −∇f(~x1)]
T

(~x2 − ~x1)

+(~x2 − ~x1)
T V (~x2 − ~x1)

≥ (~x2 − ~x1)
T V (~x2 − ~x1).

Part 2 of the Lemma can be shown analogously.
We can now prove the following result.
Proposition 2: The continuous-time algorithm AC will con-

verge to a stationary point ( ~y∗, ~q∗) of the algorithm A for any
choice of α̂l > 0 and β̂i > 0.

Proof: We can prove Proposition 2 using the following
Lyapunov function. Let

V(~y, ~q) = ||~q − ~q∗||Â + ||~y − ~y∗||B̂V , (24)

where the norms are defined in (19). It is easy to show that
(see [17]),

d

dt
V(~y(t), ~q(t))

≤ −2〈 [~y(t) − ~y∗, ~q(t) − ~q∗], T [~y(t), ~q(t)] − T [ ~y∗, ~q∗] 〉.

Hence, by Lemma 1, d
dt
V(~y(t), ~q(t)) ≤ 0. Therefore,

V(~y(t), ~q(t)) must converge to a limit V0 as t → ∞. We then
use LaSalle’s Invariance Principle [21, Theorem 3.4, p115] to
show that the limit cycle of (~y(t), ~q(t)) must contain a limit
point (~y0, ~q0) that is also a stationary point of algorithm AC
(see [17]). Replace ( ~y∗, ~q∗) in (24) by (~y0, ~q0), we thus have

lim
t→∞

||~q(t) − ~q0||Â + ||~y(t) − ~y0||B̂V = 0, as t → ∞.

We next study the convergence of the discrete-time algo-
rithm A. Since the continuous-time algorithm AC can be
viewed as an approximation of the discrete-time algorithm A
when the step-sizes are close to zero, we can then expect from
Proposition 2 that algorithm A will converge when the step-
sizes αl and βi are small. However, when these step-sizes
are too small, convergence is unnecessarily slow. Hence, in
practice, we would like to choose larger step-sizes, while still
preserving the convergence of the algorithm. Such knowledge
on the step-size rule can only be obtained by studying the
convergence of the discrete-time algorithm directly.

Typically, convergence of the discrete-time algorithms re-
quires stronger conditions on the associated mapping T de-
fined in (18), i.e., the mapping T needs to be strictly monotone
[20]. A mapping T is strictly monotone if and only if

〈 X1 − X2, T X1 − T X2 〉 ≥ d||T X1 − T X2|| (25)

for any vectors X1 and X2, where d is a positive constant
and || · || is an appropriately chosen norm. Note that strict
monotonicity in (25) is stronger than monotonicity in (20).
Such type of strict monotonicity indeed holds for the case
when K = ∞, which is why the convergence is much easier to
establish under the two-level convergence structure. However,
when K < ∞, strict monotonicity will not hold for the
mapping T defined in (18) whenever some users in the network
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have multiple paths. To see this, choose X2 = [ ~y∗, ~q∗] to be
a stationary point of algorithm A and assume that E ~y∗ = R.
Let X1 = [~y, ~q∗] such that

∑J(i)
j=1 yij =

∑J(i)
j=1 y∗

ij for all i.
Note that for a user i that has multiple paths, we can still
choose yij 6= y∗

ij for some j such that E~y 6= R. By comparing
with the complementary slackness conditions (14), we have
~x0(~y, ~q∗) , argmax~x L(~x, ~q∗, ~y) = ~y. Hence,

~u(~y, ~q∗) = 0, and ~v(~y, ~q∗) = −(E~y − R).

Further, since ~u( ~y∗, ~q∗) = 0 and ~v( ~y∗, ~q∗) = 0 by the
complementary slackness conditions (14), we have

〈 X1 − X2, T X1 − T X2 〉

= 〈 [~y − ~y∗, ~q∗ − ~q∗], T [~y, ~q∗] − T [ ~y∗, ~q∗] 〉

= [~y − ~y∗]T (~u(~y, ~q∗) − ~u( ~y∗, ~q∗))

+~0 T (~v(~y, ~q∗) − ~v( ~y∗, ~q∗)) = 0.

However, T X1 − T X2 = [0,−(E~y − R)] 6= 0. Hence, the
inequality (25) will never hold! As we have just seen, it is
precisely the multi-path nature of the problem that leads to
this lack of strict monotonicity. (One can indeed show that
(25) would have held if all users had one single path and the
utility functions fi(·) were strictly concave.)

This lack of strict monotonicity when K < ∞ forces us
to carry out a more refined convergence analysis than that
in the standard convex programming literature. We will need
the following key supporting result. Let ( ~y∗, ~q∗) denote a
stationary point of algorithm A. Using (23), we have

[

∇f(~x1) −∇f( ~y∗)
]T

(~x1 − ~y∗) ≤ 0. (26)

The following Lemma can be viewed as an extension of the
above inequality. The proof is very technical and is given in
the Appendix.

Lemma 3: Fix ~y = ~y(t). Let ~q1, ~q2 be two implicit cost
vectors, and let ~x1, ~x2 be the corresponding maximizers of
the Lagrangian (17). Then,

[

∇f(~x1) −∇f( ~y∗)
]T

(~x2 − ~y∗)

≤
1

2
(~q2 − ~q1)

T EV −1ET (~q2 − ~q1),

where ∇f(~x1) and ∇f( ~y∗) are defined in (21) and (22),
respectively.
Remark: If ~q2 = ~q1, then ~x2 = ~x1 and we get back to (26).
Lemma 3 tells us that as long as ~q1 is not very different from
~q2, the cross-product on the left hand side will not be far above
zero either.

We can then prove the following main result, which es-
tablishes the sufficient condition on the step-sizes for the
convergence of the discrete-time algorithm A.

Proposition 4: Fix 1 ≤ K ≤ ∞. As long as the step-size
αl is small enough, algorithm A will converge to a stationary
point ( ~y∗, ~q∗) of the algorithm, and ~x∗ = ~y∗ will solve the
original problem (1). The sufficient condition for convergence
is:

max
l

αl <







2
SL

mini ci if K = ∞
1

2SL
mini ci if K = 1

4
5K(K+1)SL

mini ci if K > 1
,

where L = max{
∑L

l=1 El
ij , i = 1, ..., I, j = 1, ...J(i)}, and

S = max{
∑I

i=1

∑J(i)
j=1 El

ij , l = 1, ..., L}.
Proposition 4 establishes the convergence of algorithm A

for any value of K (even K = 1 is good enough). Hence, the
typical two-level convergence structure is no longer required.
Further, we observe that the sufficient condition for conver-
gence when K = 1 differs from that of K = ∞ by only a
factor of 4. Note that for K = ∞, the sufficient condition
in fact ensures the convergence of the dual updates to the
solution of the augmented problem (6) during one iteration
of step A1. On the other hand, the sufficient condition for
K = 1 ensures the convergence of the entire algorithm A.
By showing that the sufficient conditions for the two cases
differ by only a factor of 4, we can infer that the convergence
of the entire algorithm when K = 1 is not necessarily much
slower than the convergence of one iteration of step A1 when
K = ∞. Hence, the algorithm A with K = 1 in fact converges
much faster. For K > 1, our result requires that the step-
size be inversely proportional to K2. This is probably not the
tightest possible result: we conjecture that the same condition
for K = 1 would work for any K. However, we leave this for
future work. We also note that ci appears on the right hand side
of the sufficient conditions. Hence, by making the objective
function more concave, we also relax the requirement on the
step-sizes αl. Finally, Proposition 4 indicates that convergence
will hold for any βi (the step-size in the primal update) that is
in (0, 1]. In summary, the discrete-time analysis allows much
wider choices of the step-sizes than those predicted by the
continuous-time analysis.

Proof: [of Proposition 4] Due to space constraints, we
will focus on the case when K = 1. The other cases can be
shown analogously (see [17] for details). Define matrices A
and B analogously to matrices Â and B̂, respectively, except
that their diagonal elements are now filled with the step-sizes
αl and βi of the discrete-time algorithm A. Define the norms
analogously to (19). When K = 1,

~q(t + 1) = [~q(t) + A(E~x(t) − R)]+. (27)

Let ( ~y∗, ~q∗) be any stationary point of algorithm A. We will
show that the Lyapunov function

V(~y(t), ~q(t)) = ||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV

is non-increasing in t. Using the property of the projection
mapping [16, Proposition 3.2(b), p211], we have

(~q(t + 1)− ~q∗)T A−1(~q(t + 1)− [~q(t) + A(E~x(t)−R)]) ≤ 0.

Hence,

||~q(t + 1) − ~q∗||A

= ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A

+2(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − ~q(t))

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A

+2(~q(t + 1) − ~q∗)T (E~x(t) − R)

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A

+2(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗), (28)
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where in the last step we have used the fact that E ~y∗−R ≤ 0

and ~q∗
T
(E ~y∗−R) = 0. On the other hand, since yij(t+1) =

(1 − βi)yij(t) + βizij(t), we have

(yij(t + 1) − y∗
ij)

2

≤ (1 − βi)(yij(t) − y∗
ij)

2 + βi(zij(t) − y∗
ij)

2,

||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV

≤ ||~z(t) − ~y∗||V − ||~y(t) − ~y∗||V . (29)

Hence, combining (28) and (29), we have,

||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV

−(||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV )

≤ −||~q(t + 1) − ~q(t)||A

+2(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗)

+||~z(t) − ~y∗)||V − ||~y(t) − ~y∗||V

≤ −||~q(t + 1) − ~q(t)||A

+
{

||~z(t) − ~y∗)||V − ||~y(t) − ~y∗||V

−2(~z(t) − ~y(t))T V (~x(t) − ~y∗)
}

(30)

+2
[

∇f(~z(t)) −∇f( ~y∗)
]T

(~x(t) − ~y∗), (31)

where in the last step we have used (21) and (22), and
consequently

ET (~q(t + 1) − ~q∗) = ∇f(~z(t)) −∇f( ~y∗) − V (~z(t) − ~y(t)).

By simple algebraic manipulation, we can show that the
second term (30) is equal to

||~z(t) − ~y∗||V − ||~y(t) − ~y∗||V

−2(~z(t) − ~y(t))T V (~x(t) − ~y∗)

= ||(~z(t) − ~x(t)||V − ||~y(t) − ~x(t)||V . (32)

Invoking Lemma 1, part 1,

||~z(t)−~x(t)||V ≤ (~q(t+1)−~q(t))T EV −1ET (~q(t+1)−~q(t)).
(33)

For the third term (31), we can invoke Lemma 3,

2
[

∇f(~z(t)) −∇f( ~y∗)
]T

(~x(t) − ~y∗)

≤ (~q(t + 1) − ~q(t))T EV −1ET (~q(t + 1) − ~q(t)). (34)

Therefore, by substituting (32-33) into (30), and substituting
(34) into (31), we have

V(~y(t + 1), ~q(t + 1)) − V(~y(t), ~q(t))

≤ −(~q(t + 1) − ~q(t))T C1(~q(t + 1) − ~q(t))

−||~y(t) − ~x(t)||V ,

where C1 = A−1 − 2EV −1ET . If C1 is positive definite,
then V(~y(t), ~q(t)) is non-increasing in t and hence must have
a limit, i.e.,

lim
t→∞

||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV = V0 ≥ 0. (35)

Therefore, the sequence {~y(t), ~q(t), t = 1, ...} is bounded, and
there must exist a subsequence {~y(th), ~q(th), h = 1, ...} that
converges to a limit point. Let (~y0, ~q0) be this limit. By taking
limits of (27) as h → ∞, it is easy to show that (~y0, ~q0) is

also a stationary point of algorithm A. Replace ( ~y∗, ~q∗) by
(~y0, ~q0) in (35) and thus,

lim
t→∞

||~q(t) − ~q0||A + ||~y(t) − ~y0||BV

= lim
h→∞

||~q(th) − ~q0||A + ||~y(th) − ~y0||BV = 0.

Hence (~y(t), ~q(t)) → (~y0, ~q0) as t → ∞. Finally, it is easy to
show that a sufficient condition for C1 to be positive definite
is maxl α

l < 1
2SL

mini ci (see [17]).

V. CONVERGENCE WITH MEASUREMENT NOISE

In this section, we will study the convergence of algorithm
A when there is measurement noise, i.e., when the dynamics
of the system are governed by (12) and (13). The convergence
of algorithm A will be established in the “stochastic approxi-
mation” sense, i.e., when the step-sizes are driven to zero in an
appropriate fashion. To be specific, we replace the step-sizes
αl and βi by

αl(t) = ηtα
l
0, βi(t) = ηtβi,0,

for some positive sequence {ηt, t = 1, 2, ...} that goes to zero
as t → ∞. For simplicity, we will focus on the case when K =
1 and we will drop the index k in (13). Let N(t) = [nl(t), l =
1, ..., L]T . Use the vector notation from the previous section
and define matrices A0 and B0 analogously as the matrices
A and B, respectively, except that the diagonal elements are
now filled with αl

0 and βi,0. We can then rewrite algorithm A
as:

Algorithm AN :
A1-N) Let ~x(t) = argmax~x L(~x, ~q(t), ~y(t)). Update the
dual variables by

~q(t + 1) = [~q(t) + ηtA0(E~x(t) − R + N(t))]+.

A2-N) Let ~z(t) = argmax~x L(~x, ~q(t + 1), ~y(t)). Update
the primal variables by

~y(t + 1) = ~y(t) + ηtB0(~z(t) − ~y(t)).

Proposition 5: If
∞
∑

t=1

ηt = ∞,

∞
∑

t=1

ηt
2 < ∞,

E[N(t)|~x(s), ~y(s), ~q(s), s ≤ t] = 0, and (36)
∞
∑

t=1

ηt
2E||N(t)||2 < ∞, (37)

then algorithm AN will converge almost surely to a stationary
point ( ~y∗, ~q∗) of algorithm A.

Assumption (36) simply states that the noise term N(t)
should be un-biased. Assumption (37) is also quite general.
For example, it will hold if the variance of the noise, i.e.,
E[(nl(t))2] is bounded for all l and t. We can prove Propo-
sition 5 by first extending the analysis of Proposition 4 to
show that, as t → ∞, V(~y(t), ~q(t)) converges almost surely
to a finite non-negative number. This implies that (~y(t), ~q(t))
is bounded almost surely. We can then use the ODE method
of [22] to show that, as t → ∞, the limiting behavior of the
stochastic approximation algorithm will converge to that of
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the ordinary differential equations defined by the continuous-
time algorithm AC in Section IV with Â = A0 and B̂ = B0.
Proposition 2 can then be invoked to show that (~y(t), ~q(t))
converges to a stationary point. Due to lack of space, the
details of the proof are available online in [17].

We now comment on the step-size rule used in Proposi-
tion 5. As is typical for stochastic approximation algorithms,
the convergence of algorithm AN is established when the
step-sizes are driven to zero. When this type of stochastic
approximation algorithms are employed online, we usually use
step-sizes that are away from zero (e.g., constants). In this
case, the trajectory (~y(t), ~q(t)) (or (~x(t), ~q(t))) will fluctuate
in a neighborhood around the set of stationary points, instead
of converging to one stationary point. In practice, we are
interested in knowing how to choose the step-sizes so that the
trajectory stays in a close neighborhood around the solutions.
Since Proposition 5 requires that both αl and βi be driven
to zero, we would expect that, if we were to choose both
αl and βi small enough (but away from zero), the trajectory
(~x(t), ~q(t)) will be kept in a close neighborhood around the
solutions. This choice of the step-sizes might seem overly
conservative at first sight. In particular, since the noise terms
nl(t) are only present in the dual update (13), it appears at first
quite plausible to conjecture that only αl needs to be driven to
zero in Proposition 5 (in order to average out the noise), while
βi can be kept away from zero. If this conjecture were true, it
would imply that, in order to keep the trajectory (~x(t), ~q(t)) in
a close neighborhood around the set of stationary points, only
αl needs to be small. However, our simulation results with
constant step-sizes seem to suggest the opposite. We observe
that, when there is measurement noise, the disturbance in the
primal variables ~x(t) cannot be effectively controlled by purely
reducing the step-sizes αl at the links. We will elaborate on
this observation in the next section with a numerical example,
and we will show that the required step-size rule (i.e., both αl

and βi needs to small) is again a consequence of the multi-path
nature of the problem.

VI. NUMERICAL RESULTS

In this section, we present some simulation results for
algorithm A. For all simulations, we have chosen K = 1,
i.e., we do not use the two-level convergence structure. We
will use the multi-path flow control problem as an example,
but the results here apply to other problems as well. We first
simulate the case when there is no measurement noise. We
use the “Triangle” network in Fig. 1. There are three users
(AB,BC,CA). For each user, there are two alternate paths,
i.e., a direct one-link path (path 1), and an indirect two-link
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Fig. 2. Evolution of the implicit costs and the data rates when there
is no measurement noise. αl = 0.1, βi = 1.0.
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Fig. 3. Evolution of the implicit costs and the data rates when there
is measurement noise. αl = 0.003, βi = 0.1.

path (path 2). For example, user AB can take the one-link
path A → B or the two-link path A → C → B. The utility
functions for all three users are of the form:

fi(

J(i)
∑

j=1

xij) = wi ln(

J(i)
∑

j=1

xij),

where wi is the “weight” of user i, and xij is the data rate of
user i on path j. We choose the weights as follows: wAB =
5.5, wBC = 2.5, wCA = 0.5. The capacity on each link is 10
units.

Fig. 2 demonstrates the evolution over time of the implicit
costs ql and the users’ data rates xij , respectively, for algo-
rithms A. We choose ci = 1.0 for all users. The step-sizes are
αl = 0.1 for all links, and βi = 1.0 for all users. We observe
that all quantities of interest converge to the optimal solution,
which is

qAB = 0.425, qBC = 0.354, qCA = 0.071,

xAB,1 = 10, xAB,2 = 2.94,

xBC,1 = xCA,1 = 7.06, xBC,2 = xCA,2 = 0.
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Note that at the stationary point, user AB will use both
alternative paths while users BC and CA will only use the
direct paths. Because the weight of the utility function of
user AB is larger than that of the other users, algorithm A
automatically adjusts the resource allocation of users BC and
CA to give way to user AB.

Fig. 3 demonstrates the evolution of algorithm A for the
same network when there is measurement noise. We assume
that an i.i.d. noise term uniformly distributed within [−2, 2]
is added to each xij when each link estimates the aggregate
load

∑I
i=1

∑J(i)
j=1 H l

ijxij . The step-sizes are αl = 0.003 for
all links, and βi = 0.1 for all users. We can observe that
all quantities of interest eventually fluctuate around a small
neighborhood of the solution.

We now investigate how the choice of the step-sizes αl and
βi affect the level of fluctuation on the implicit costs and the
users’ data rates when there is measurement noise. We use a
simpler “Two-Link” topology in Fig. 1. The capacity of the
two links is 10 and 5, respectively. There is only one user,
which can use both links. Its utility function is given by

fi(x) = 5.5 ln x.

The noise term nl(t) is i.i.d. and uniformly distributed within
[−2, 2].

Fig. 4 shows the evolution over time of the implicit costs
(top) and that of the users’ data rates (bottom) of algorithm
A for different choices of the step-sizes. In the first three
columns, we keep β unchanged and reduce the step-size α
from 0.01 to 0.0001. We observe that, although the fluctuation
in the implicit costs becomes smaller as the step-size α is
reduced, the fluctuation in the data rates decreases only a
little. Note that the unit on the x-axis becomes larger as
we move from the first column to the third column. These
figures indicate that, by reducing the step-size α alone, the
fluctuation in the data rates becomes slower, but the magnitude
of the fluctuation changes little. In the fourth column, we
decrease both β and α. The fluctuation in the data rates is
now effectively reduced.

Although somewhat counter-intuitive, these observations are
consistent with Proposition 5 where we require both α and
β to be driven to zero for the convergence of the stochastic
approximation algorithm to hold. As we will show next by
studying the linearized version of the system, this step-size
rule appears to be necessitated by the multi-path nature of the
problem. Assume that algorithm A has a unique stationary
point ( ~y∗, ~q∗). We can linearize the continuous-time system
(15)-(16) around this unique stationary point, and use Laplace
transforms to study the frequency response of the system in
the presence of noise N(t). Without loss of generality, we
can assume that xij(t) > 0 for all i, j and ql(t) > 0 for all
l. (Otherwise, we can eliminate the paths with xij(t) = 0 and
the links with ql(t) = 0 from the analysis because they do not
contribute to the dynamics of the linearized system.) Let X (s)
and N (s) denote the Laplace transform of the perturbation of
~x(t) and the noise N(t), respectively. We can then compute
the transfer function from N(t) to ~x(t) as (see [17] for the
detail)

X (s) = H(s)N (s)

with H(s) equal to

−

{

B̂−1sI + G + V −1(I − G)
ET ÂE

s
B̂−1(sI + B̂)

}−1

×B̂−1(sI + B̂)V −1(I − G)
ET Â

s
,

where the matrices E, Â, B̂ and V are defined as in Sec-
tion IV, I is the

∑I
i=1 J(i) ×

∑I
i=1 J(i) identity matrix,

G = diag{Gi, i = 1, ..., I} and each Gi is a J(i) × J(i)
matrix whose elements are all

gi =
f ′′

i (
∑J(i)

j=1 y∗
ij)

J(i)f ′′
i (

∑J(i)
j=1 y∗

ij) − ci

.

If the utility function fi(·) is strictly concave, gi will be
positive. However, since each Gi has all identical elements, the
matrix G is not invertible whenever some users have multiple
paths. Its presence in the denominator of H(s) turns out to be
a source of instability. To see this, we compute H(s) for the
above Two-Link example. Note that

E =

[

1 0
0 1

]

, G = g

[

1 1
1 1

]

for some g > 0,

Â = αI, B̂ = βI, and V = cI.

Let s = jω. We have,

H(jω) = −

{

jω

β
I + G +

α

c

jω + β

jωβ
(I − G)

}−1

×
α

c

jω + β

jωβ
(I − G). (38)

The terms in the denominator can be collected into
[

α

βc
+

jω

β
(1 −

αβ

cω2
)

]

I +

[

(1 −
α

βc
) + j

α

cω

]

G. (39)

Since the matrix G is not invertible, if the terms that are
associated with I is small, a “spike” in the transfer function
H(jω) will appear. This will happen when ω ≈ ω∗, where ω∗

is determined by 1 − αβ
c(ω∗)2 = 0, i.e.,

ω∗ =

√

αβ

c
. (40)

Substituting ω∗ into (38) and (39) and assuming that α � β,
we have

H(jω∗) ≈ −
α
c
( 1

β
+ 1

jω
)

α
βc

(I − G)

≈ j
α
ωc
α
βc

(I − G) ≈ j

√

cβ

α
(I − G). (41)

We can draw the following conclusions from equa-
tions (40) and (41). If we keep β fixed and reduce α alone,
the cutoff frequency ω∗ will decrease with α. However, the
gain H(jω∗) at the cutoff frequency will increase! In Fig. 5,
we plot ||H(jω)||2 with respect to ω for different values of
α and β. We can easily observe the increased spike when
α alone is reduced from 0.1 (the solid curve) to 0.001 (the
dotted curve). If we further assume that nl(t) is white noise
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with unit energy, then the total energy of the fluctuation of
~x can be estimated by the area under the curve ||H(jω)||2
in Fig. 5. Due to the increased spike, the total energy of the
fluctuation of ~x(t) will not decrease much when α alone is
reduced, even though the frequency of the fluctuation becomes
smaller. On the other hand, if we reduce β as well as α, the
gain at the cutoff frequency ω∗ will remain the same as the
cutoff frequency itself decreases (shown as the dashed curve
in Fig. 5 when β is also reduced to 0.001). Hence, the total
energy of the fluctuation in ~x(t) is effectively reduced. These
conclusions are thus consistent with our simulation results in
Fig. 4. Hence, the step-size rule (i.e., both αl and βi needs to
be reduced) is necessary to address the potential instability in
the system due to the multi-path nature of the problem.

VII. CONCLUDING REMARKS

In this work, we have developed a distributed algorithm for
the utility maximization problem in communication networks
that have the capability to allow multi-path routing. We have
studied the convergence of our algorithm in both continuous-
time and discrete-time, with and without measurement noise.
We have shown how the multi-path nature of the problem
can potentially lead to difficulties such as instability and
oscillation, and our analyses provide important guidelines on
how to choose the parameters of the algorithm to address these
difficulties and to ensure efficient network control. When there
is no measurement noise, our analysis gives easy-to-verify
conditions on how large the step-sizes of the algorithm can be
while still ensuring convergence. When there is measurement
noise, we find that the step-sizes in the updates of both the
user algorithm and the network component algorithm have to
decrease at the same time in order to reduce the fluctuation
of the resource allocation. Reducing only the step-sizes in the
update of the network component algorithm will reduce the
frequency of the fluctuation, but not necessarily its magnitude.
These guidelines are confirmed by our simulation results.

We briefly discuss possible directions for future work. The
analysis in this work has focused on the case when all
computation is synchronized. An interesting problem is to
study the convergence and stability of the algorithm when
the computation is asynchronous and when feedback delays
are non-negligible. Simulations suggest that our distributed
algorithm may still be used in those situations, however, the
step-size rules may need to change. Another direction is to
extend our solution to resource allocation problems in wireless
networks. In wireline networks, the resource constraints of
different network components are orthogonal to each other.
In wireless networks, however, the capacity of a link is a
function of the signal to interference ratio, which depends not
only on its own transmission power, but also on the power
assignments at other links. Hence, the resource constraints
in wireless networks are of a more complex form than that
of wireline networks. It would be interesting to see whether
the results of this paper can be extended to multi-path utility
maximization problems in wireless networks.

APPENDIX: PROOF OF LEMMA 3

We need to use the fact that f(~x) is of the form
∑I

i=1 fi(
∑J(i)

j=1 xij), and that the Lagrangian L(~x, ~q, ~y) is
given by (7). The maximization of the Lagrangian (in (8))
is taken over ~xi ∈ Ci for all i. Since Ci is of the form in
(4), we can incorporate the constraint

∑J(i)
j=1 xij ∈ [mi,Mi]

into the definition of the function fi by setting fi(x) = −∞
when x /∈ [mi,Mi]. Then the function fi is still concave, and
the maximization of the Lagrangian L(~x, ~q, ~y) can be taken
over all ~x ≥ 0. Given ~y and ~q, we associate a Lagrange
multiplier L0

ij for each constraint xij ≥ 0 in the maximization
of L(~x, ~q, ~y), and let ~x0 = argmax~x≥0 L(~x, ~q, ~y). Using the
Karush-Kuhn-Tucker condition, we can conclude that, for each
i, there must exist a subgradient ∂fi(

∑J(i)
j=1 xij,0) of fi at
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∑J(i)
j=1 xij,0 such that, for all j,

∂fi(

J(i)
∑

j=1

xij,0) −
L

∑

l=1

El
ijq

l − ci(xij,0 − yij) + L0
ij = 0, (42)

and L0
ijxij,0 = 0. Similarly, let ( ~y∗, ~q∗) denote a stationary

point of algorithm A. Then ~y∗ = argmax~x≥0 L(~x, ~q∗, ~y∗).
Associate a Lagrange multiplier L∗

ij for each constraint xij ≥

0 in the maximization of L(~x, ~q∗, ~y∗). Then, for all i, j,

∂fi(

J(i)
∑

j=1

y∗
ij) −

L
∑

l=1

El
ijq

l,∗ + L∗
ij = 0, (43)

and L∗
ijy

∗
ij = 0. Comparing (42) and (43) with (21) and (22),

we see that

[∇f( ~x0)]ij = ∂fi(

J(i)
∑

j=1

xij,0) + L0
ij for all i, j,

[∇f( ~y∗)]ij = ∂fi(

J(i)
∑

j=1

y∗
ij) + L∗

ij for all i, j,

where [·]ij is the element in [·] that corresponds to xij .
We can now proceed with the proof of Lemma 3. Let ~x1 =

argmax~x≥0 L(~x, ~q1, ~y) and ~x2 = argmax~x≥0 L(~x, ~q2, ~y).
Analogously to L0

ij and ∂fi(
∑J(i)

j=1 xij,0), define Lij,1,
∂fi(

∑J(i)
j=1 xij,1) and Lij,2, ∂fi(

∑J(i)
j=1 xij,2) for the case when

the implicit cost vectors are ~q1 and ~q2, respectively. Then,
[

∇f(~x1) −∇f( ~y∗)
]T

(~x2 − ~y∗)

=

I
∑

i=1



∂fi(

J(i)
∑

j=1

xij,1) − ∂fi(

J(i)
∑

j=1

y∗
ij)



 (

J(i)
∑

j=1

xij,2 −

J(i)
∑

j=1

y∗
ij)

(44)

+
I

∑

i=1

J(i)
∑

j=1

(Lij,1 − L∗
ij)(xij,2 − y∗

ij). (45)

Lemma 3 will follow if we can show that both
of the two terms (44) and (45) are bounded by
1

4ci

∑I
i=1

∑J(i)
j=1

[

∑L
l=1 El

ij(q
l
2 − ql

1)
]2

. We will first bound
the term (44). Apply equation (42) for ~q1 and ~q2, respectively,
and take difference. We have, for each i, j,

L
∑

l=1

El
ij(q

l
2 − ql

1) =



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1)





−ci(xij,2 − xij,1) + Lij,2 − Lij,1. (46)

Now fix i. Let Ji denote the set {j : xij,2 > 0 or xij,1 > 0}.
Note that if xij,2 > 0 and xij,1 = 0, then Lij,2 = 0 and
Lij,1 ≥ 0. Hence, xij,2 − xij,1 > 0 and Lij,2 −Lij,1 ≤ 0. Let

γij , −
Lij,2 − Lij,1

ci(xij,2 − xij,1)
≥ 0,

then,
L

∑

l=1

El
ij(q

l
2 − ql

1) =



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1)





−(1 + γij)ci(xij,2 − xij,1). (47)

Similarly, we can show that (47) holds for any j ∈ Ji with
some appropriate choice of γij ≥ 0. Multiplying (47) by
1/(1 + γij) and summing over all j ∈ Ji, we have, for all i,

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]

=
1

γ0
i



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1)





−ci(

J(i)
∑

j=1

xij,2 −

J(i)
∑

j=1

xij,1), (48)

where γ0
i , 1

∑

j∈Ji

1
1+γij

, and we have used the fact that

xij,2 = xij,1 = 0 for j /∈ Ji.
Let

a1 = ∂fi(

J(i)
∑

j=1

xij,1) − ∂fi(

J(i)
∑

j=1

y∗
ij),

a2 = ∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

y∗
ij),

b1 =

J(i)
∑

j=1

xij,1 −

J(i)
∑

j=1

y∗
ij , and b2 =

J(i)
∑

j=1

xij,2 −

J(i)
∑

j=1

y∗
ij .

Since the function fi is concave, we have a1b1 ≤ 0 and a2b2 ≤

0. Let γi , − ciγ
0
i b1

a1
≥ 0. (The term (44) will be bounded

by 1
4ci

∑I
i=1

∑J(i)
j=1

[

∑L
l=1 El

ij(q
l
2 − ql

1)
]2

trivially if a1 = 0.)
Then

(1 + γi)a1b2 = (a1 − ciγ
0
i b1)b2

= [(a1 − a2) − ciγ
0
i (b1 − b2)]b2 + (a2 − ciγ

0
i b2)]b2

≤ γ0
i

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]

b2 (by (48))

−ciγ
0
i b2

2 (by a2b2 ≤ 0)

≤
γ0

i

4ci







∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]







2

(by completing the square)

≤
γ0

i

4ci







∑

j∈Ji

(
1

1 + γij

)2













∑

j∈Ji

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2






(by Cauchy-Schwarz)

≤
1

4ci

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

,

where in the last inequality we have used

γ0
i







∑

j∈Ji

(
1

1 + γij

)2







=

∑

j∈Ji
( 1
1+γij

)2

∑

j∈Ji

1
1+γij

≤ 1.

Since 1 + γi ≥ 1, the term (44) (i.e., a1b2) is then bounded

by 1
4ci

∑I
i=1

∑J(i)
j=1

[

∑L
l=1 El

ij(q
l
2 − ql

1)
]2

.
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To bound the term (45), note that xij,2 ≥ 0, Lij,1 ≥ 0, L∗
ij ≥

0 and L∗
ijy

∗
ij = Lij,2xij,2 = Lij,1xij,1 = 0. Therefore,

(Lij,1 − L∗
ij)(xij,2 − y∗

ij) ≤ xij,2Lij,1

≤ xij,1Lij,2 + xij,2Lij,1

= −(Lij,2 − Lij,1)(xij,2 − xij,1).

We thus have,

J(i)
∑

j=1

(Lij,1 − L∗
ij)(xij,2 − y∗

ij)

≤−

J(i)
∑

j=1

(Lij,2 − Lij,1)(xij,2 − xij,1)

≤−

J(i)
∑

j=1



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1) + Lij,2 − Lij,1





× (xij,2 − xij,1) (by the concavity of ∂fi)

≤−

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1) + ci(xij,2 − xij,1)

]

× (xij,2 − xij,1) (by (46))

≤
1

4ci

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

(by completing the square).

The result of Lemma 3 then follows.
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