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We study task assignment in online service platforms, where un-labeled clients arrive according to a stochas-

tic process and each client brings a random number of tasks. As tasks are assigned to servers, they produce

client/server-dependent random payo↵s. The goal of the system operator is to maximize the expected payo↵

per unit time subject to the servers’ capacity constraints. However, both the statistics of the dynamic client

population and the client-specific payo↵ vectors are unknown to the operator. Thus, the operator must design

task-assignment policies that integrate adaptive control (of the queueing system) with online learning (of the

clients’ payo↵ vectors). A key challenge in such integration is how to account for the non-trivial closed-loop

interactions between the queueing process and the learning process, which may significantly degrade system

performance. We propose a new utility-guided online learning and task assignment algorithm that seamlessly

integrates learning with control to address such di�culty. Our analysis shows that, compared to an oracle

that knows all client dynamics and payo↵ vectors beforehand, the gap of the expected payo↵ per unit time of

our proposed algorithm in a finite T horizon is bounded by �1/V +�2

p
logN/N +�3N(V +1)/T , where V

is a tuning parameter of the algorithm, and �1,�2,�3 only depend on arrival/service rates and the number of

client classes/servers. Through simulations, we show that our proposed algorithm significantly outperforms

a myopic matching policy and a standard queue-length based policy that does not explicitly address the

closed-loop interactions between queueing and learning.
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1. Introduction

Driven by advances in communication and computing, new generations of online service platforms

have emerged in many domains, from the online labor market of freelance work (e.g., Upwork

(Upw 2017)), online hotel rental (e.g., Airbnb (Air 2017)), online education (e.g., Coursera (Cou

2017)), crowd-sourcing (e.g., Amazon Mechanical Turk (Ipeirotis 2010)), to online advertising (e.g.,

AdWords (AdW 2017)), and many more. By bringing an unprecedented number of clients and

service providers together, these online service platforms greatly increase access to service, lower

the barrier-to-entry for competition, improve resource utilization, reduce cost and delay, and thus

have transformed or even disrupted the existing business models in many industries (Kenney and

Zysman 2016, Evans and Gawer 2016, van Dijck et al. 2018).

One of the key control decisions in operating such online service platforms is how to assign

clients to servers to attain the maximum system benefit. However, such decisions are challenging

because there often exists significant uncertainty in both client payo↵s and client dynamics. First,

there is significant uncertainty in the quality, i.e., payo↵, of a particular assignment between a

client (needing service) and a server (providing service). These true payo↵ parameters are often

unknown a priori and the online service platforms can only observe noisy payo↵ feedback from each

past assignment. Thus, the platforms face a fundamental exploration-exploitation trade-o↵. Should

the platforms “explore” to learn more about the payo↵ parameters from feedback, or “exploit”

existing knowledge to maximize payo↵s? Second, the population of clients is often highly dynamic.

The statistics of such arrivals and departures are often unknown beforehand, resulting in queueing

dynamics with unknown statistics. Further, when a new client arrives, it brings a new set of payo↵

parameters, which may need to be learned from scratch. As a result, the platform operator must not

only continuously learn the payo↵s associated with each new client, but also adaptively control the

assignment and resource allocation in response to the uncertain arrival/departure dynamics. As we

will demonstrate throughout the paper, this combination of uncertainty in payo↵ and uncertainty

in client arrival/departure statistics leads to unique challenges, complicating both learning and
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control. Thus, the goal (and main contribution) of this paper is to design new algorithms that

integrate both online learning (of uncertain payo↵s) and adaptive control (of queueing dynamics

with unknown statistics) in a unified framework to achieve provably-optimal performance in such

a dynamic and uncertain environment.

1.1. High-level Model

To address the aforementioned challenges in operating online service platforms, we study the fol-

lowing queueing system model similar to Johari et al. (2016, 2017) (although there are a number

of critical di↵erences between our model and that of Johari et al. (2016, 2017), which will be

explained shortly in Section 1.3 with additional details in Section EC.1). There are a fixed num-

ber of servers with known service rates. (This assumption of known service rates can be relaxed.

See Section EC.7.) Clients arrive at the system with unknown arrival rates. Each client brings a

random (unknown) number of tasks. Associated with each new client, there is a payo↵ vector over

all servers. We assume that this payo↵ vector is randomly chosen from a discrete set of possible

values according to a certain probability distribution. However, both the random payo↵ vector of a

new client and the distribution are unknown to the operator. As the tasks of a client are assigned

to di↵erent servers, they produce random payo↵ feedback with the mean given by the underlying

payo↵ vector. Thus, the operator has to learn the payo↵ vector of a new client from the random

payo↵ feedback, and then decide how to match clients with servers.

To illustrate our model, we provide three concrete examples:

1. Online shopping, e.g., Stitch Fix (Johari et al. 2016). Clients are customers who are interested

in buying clothes, and servers are stylists who suggest clothes for customers. Customers arrive and

depart constantly in the online shopping platforms. The payo↵ is the satisfaction of a customer when

clothing is recommended by a stylist. Di↵erent customers may have di↵erent tastes for clothing.

For example, some customers may prefer more formal attire, while others prefer more casual attire.

Similarly, a particular stylist may be good at recommending a specific type of clothing. On the

one hand, the features of new customers are unknown when they arrive. Thus, when a customer is
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assigned to a stylist, there will be significant uncertainty in the payo↵, i.e., whether a customer will

buy a piece of clothing suggested by a stylist. On the other hand, the successes (clothes bought)

or failures provide payo↵ feedback, which can only be observed after the customers are served and

can then be used for learning.

2. Online advertisement (Combes et al. 2015, Tan and Srikant 2012). Clients are advertisers,

and servers are keyword searches from di↵erent groups of users. Advertisers arrive and depart

constantly in online ad platforms. The payo↵ is the click-through rate when an ad from a particular

advertiser is displayed in response to a given keyword search request. An advertisement may have

di↵erent appeals to di↵erent groups of users, even if they are searching for the same keyword. On

the one hand, such an appeal may be unknown for a new advertisement. On the other hand, the

clicks provide the payo↵ feedback, which can only be observed after displaying the ads and can

then be used for learning.

3. Crowdsourcing (Karger et al. 2011a, 2013, 2011b, Khetan and Oh 2016). Clients are posted

jobs, and servers are workers. Posted jobs arrive and depart constantly in crowdsourcing platforms.

The payo↵ corresponds to the e�ciency of completing a particular task from a posted job by a

given worker. On the one hand, di↵erent jobs receive di↵erent completion e�ciency when assigned

to a group of workers. However, such completion e�ciency is unknown for new jobs. On the other

hand, the ratings/completion-times provide the payo↵ feedback, which can only be observed after

completing the tasks and can then be used for learning.

1.2. Main Results

The main contribution of this paper is the development of new schemes that integrate online learn-

ing with adaptive control to address uncertainty in both payo↵ parameters and client dynamics.

As we will explain shortly, a key finding is that the learning part and the control part of the

algorithm must be designed together. This is because of the non-trivial closed-loop interactions

between queueing and learning. Specifically, excessive queueing, which can be caused by both agent

arrivals/departures and task assignment/completion, delays the collection of payo↵ feedback, and
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consequently, delays the learning process of the uncertain payo↵s. Ine↵ective learning, in turn, leads

to suboptimal assignment decisions based on inaccurate payo↵ estimates, which increases queue-

ing delay and lowers system payo↵ under uncertain agent dynamics. As a result, simply putting

together an algorithm for online learning (such as UCB (Auer et al. 2002a)) and an algorithm

for control (such as queue-length based control) will not lead to good results because they fail to

account for such closed-loop interactions (see Section EC.1 for details).

Instead, in this paper, we propose a new utility-guided online learning and task assignment

algorithm that can achieve near-optimal system payo↵ even compared to an “oracle” that knows

the statistics of client dynamics and all clients’ payo↵ vectors beforehand. In particular, to address

the aforementioned closed-loop interactions, our new algorithm carefully controls the number of

tasks assigned to each server at each time to be no greater than the server capacity. As a result, it

eliminates server-side queues and thus eliminates the delay in collecting payo↵ feedback. Further, a

logarithmic utility function of the assignment probabilities of each client is added to the objective

function of the policy decision. Such a utility function not only promotes fairness so that every

client can learn, but also balances the current and future payo↵s so that the whole system can

adapt to unknown client dynamics. (Note that here we use the term “utility function” for the

purpose of defining the decision of the algorithm rather than treating clients as strategic. In other

words, it is independent of each client’s own valuation.)

Analytically, we prove that, by employing these two ideas (i.e., eliminating server-side queues and

adding a logarithmic utility function), our proposed algorithm successfully deals with the closed-

loop interactions between queueing and learning. First, we show that our algorithm stabilizes the

system in the sense that the mean number of backlogged clients in the system at any time is finite.

Second and more importantly, we show that the gap between the expected payo↵ per unit time

achieved by our proposed algorithm and that achieved by the “oracle” in a finite T horizon is at

most the sum of three terms with natural physical interpretations (see details in Section 3.2):

1. The first term is of the order 1/V , where V is a parameter of the proposed algorithm that

can be taken to a large value. This term is due to the uncertainty in client arrival process.
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2. The second term is of the order
p

logN/N , where N is the average number of tasks per client.

This term is related to the notion of “regret” in typical MAB problems and captures the payo↵

loss due to the uncertainty in payo↵s as a function of the total number of tasks per client, i.e., the

tradeo↵ between exploration and exploitation (Lai and Robbins 1985, Auer et al. 2002a).

3. The third one is of the order N(V +1)/T , which decreases as the time T increases. This term

accounts for the payo↵ loss incurred by the backlogged clients over a finite time horizon.

The above payo↵-gap bound is quite appealing as it separately captures the impact of the uncer-

tainty in client dynamics and the impact of the uncertainty in payo↵s for any finite time horizon

T . If N and T are known in advance, we can tune V to be min{T/N,
p
T/N}, so that the payo↵-

gap upper-bound is minimized and becomes of the order max{N/T,
p
N/T}+

p
logN/N . As a

consequence, as T increases, the payo↵ gap eventually gets saturated at
p

logN/N .

On the technical end, our proof builds upon the standard Lyapunov drift technique (Neely

et al. 2005, Lin et al. 2008, De Veciana et al. 2001, Bonald and Massoulie 2001) and finite-time

regret analysis (Auer et al. 2002a); however, we make two major innovations, which could be of

independent interest. First, to obtain
p
logN/N loss in payo↵ learning, we combine a martingale

argument and a comparison argument to capture both the impact of the payo↵ estimation errors

on the queueing dynamics and the impact of congestion on the rate of payo↵ learning. Second, to

derive the NV/T loss in a finite time horizon, we upper bound the mean number of backlogged

clients in the system by establishing a coupling between the current system and a Geom/Geom/m

queue.

Through simulations, we show that our proposed algorithm significantly outperforms a myopic

matching policy and a standard queue-length based policy that does not explicitly address the

aforementioned closed-loop interactions between queueing and learning. While this utility-guided

algorithm is designed for the case when the service time at each server is deterministic, we can

further derive a low-complexity and virtual-queue (dual) based algorithm (see Section EC.7 of the

e-companion), which performs well empirically even when the service time is random and the mean
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service time is unknown. This algorithm is particularly appealing from a practical standpoint: The

platforms only need to maintain a virtual queue for each server, and the task assignment and payo↵

learning for every client are completely decoupled given the virtual queues at the servers.

1.3. Comparison to Related Work

Note that our work deviates significantly from both classical online learning problems and adaptive

control problems in the literature. On the one hand, while online learning has often been studied

as a MAB (multi-armed bandit) problem, most existing studies ignore the client dynamics and

focus on either one client (Lai and Robbins 1985, Auer et al. 2002a, Gittins et al. 2011, Whittle

1988) or a fixed set of clients (Kalathil et al. 2014, Anandkumar et al. 2011, Lai et al. 2011,

Combes and Proutiere 2015, Buccapatnam et al. 2015). Our model is also di↵erent from open-bandit

processes (where arms are dynamic and follow a Markov chain with known statistics (Lai and Ying

1988)), and contextual bandits (which assume known label, i.e., context, for each incoming client

(Badanidiyuru et al. 2014)). On the other hand, although adaptive control and online matching

policies under uncertain dynamics have been provided, e.g., for online ads (Tan and Srikant 2012,

Feldman et al. 2009) or queueing networks in general (Tassiulas and Ephremides 1992, Neely et al.

2005, Lin et al. 2006, 2008), these studies usually assume that the payo↵ vectors of the clients

are known. In contrast, our work aims to integrate both online learning (of uncertain payo↵s) and

adaptive control (under uncertain dynamics).

There are a few recent studies in the literature that also attempt to integrate learning and

queueing (Johari et al. 2016, Massoulie and Xu 2016, Johari et al. 2017, Bimpikis and Markakis

2015, Shah et al. 2017). Compared to these related studies, our work makes a number of new

contributions. First, recall that a key challenge in integrating learning with queueing is the non-

trivial closed-loop interactions between the queueing process and the learning process, which,

if not properly managed, can produce a vicious cycle that severely degrades the overall system

performance (see further discussions in Section 2.1). While prior work in (Johari et al. 2016,

Massoulie and Xu 2016, Johari et al. 2017) attempts to deal with these closed-loop interactions,
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their policies explicitly divide exploration (where learning occurs) and exploitation (where queueing

and control occur) into two stages. In order to perform such an explicit division, these policies have

to assume perfect knowledge of the various uncertainties, such as the class-dependent payo↵ vectors,

the number of tasks per client, and/or the “shadow prices” (which in turn require knowledge of

the statistics of the client arrival dynamics). Although (Johari et al. 2017) provides a heuristic

policy that can replace the shadow prices with queue lengths (to learn underlying statistics and

class-dependent payo↵ vectors), no performance guarantees are provided. On the contrary, our

algorithm requires no such prior knowledge and seamlessly integrates exploration, exploitation,

and dynamic assignment at all times.

Second, the analyses in (Johari et al. 2016, 2017) focus exclusively on the stationary setting. In

contrast, our work carefully characterizes the transient behavior of the system and obtains a payo↵

gap that holds for any finite time horizon, providing important design insight when real systems

either operate at early phases or experience recent changes of statistics.

Finally, our proposed algorithm can scale to large systems with many clients and servers, which

is in sharp contrast to the previous work in both (Bimpikis and Markakis 2015) (which only deals

with two types of clients) and (Shah et al. 2017) (which uses an exponential number of virtual

queues).

1.4. Organization

The rest of the paper is organized as follows. The system model is defined and the main challenges

are highlighted in Section 2. We present our utility-guided algorithm and the main analytical results

in Section 3. The key proofs are sketched in Section 4. Simulation results of our utility-guided

algorithm are shown in Section 5. Finally, we conclude and discuss possible future directions. Due

to the page limits, we present our virtual-queue (dual) based algorithm, as well as other remaining

proofs, in the e-companion to this paper.
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2. System Model

We model an online service platform as a multi-server queueing system that can process tasks from

a dynamic population of clients, as shown in Fig. 1. Note that on many online service platforms,

the operator often has enough aggregate information on the servers’ features, and servers arrive

at and depart from the system at a slower time scale than clients (Johari et al. 2016, Massoulie

and Xu 2016, Johari et al. 2017). Thus, we focus on the setting where there are a fixed number

of servers with known service rates. (In Section EC.7, we extend our algorithm to more general

settings with unknown service rates.)

Time is slotted, and the system is empty at time 0. At the beginning of each time-slot t� 1, a

new client arrives with probability �/N < 1, independently of other time-slots. Upon arrival, the

client carries a random number of tasks that is geometrically distributed with mean N . Note that

in this way, the total rate of arriving tasks is �. A client leaves the system once all of her tasks

have been served. Let S = {1,2, . . . , J} denote the fixed set of servers. Each server j 2 S can serve

exactly µj tasks in a time-slot. Let µ=
PJ

j=1 µj and assume �<µ. We assume that each new client

l is associated with a payo↵ vector ~C l,⇤ = [C l,⇤
1 , . . . ,C l,⇤

J ], where C l,⇤
j is the expected payo↵ when a

task from client l is served by server j. However, this payo↵ vector is unknown to the operator.

Instead, we assume that ~C l,⇤ is chosen randomly from a finite set of possible values, ~C⇤
1 , . . . , ~C

⇤
I ,

where the probability of ~C l,⇤ = ~C⇤
i is ⇢i, i= 1, . . . , I, independently of other clients. However, the

operator does not know this probability distribution (nor the set of possible values). Further, the

operator does not know the o↵ered load � and the expected number N of tasks per client.

What does the system operator know? The system does know the identity of the servers and their

service rates µj. Another important quantity that the system can learn from is the noisy payo↵

feedback observed by the system after a task from a client is served by a server. Conditioned on

the client’s payo↵ vector being ~C l,⇤, this noisy payo↵ feedback is assumed to be a Bernoulli random

variable with mean ~C l,⇤, (conditionally) independent of other tasks and servers.

The goal of the system is then to use the noisy payo↵ feedback to learn the payo↵ vectors

of the clients and to assign their tasks to servers in order to maximize the total system payo↵.
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Such decisions must be adaptively made without knowing the statistics of the client arrivals and

departures. At each time-slot t, let n(t) be the total number of clients in the system (including

any new arrival at the beginning of the time-slot). (Note that n(0) = 0.) Let plj(t) be the expected

number of tasks from the l-th client that are assigned to server j in this time-slot, l = 1, ..., n(t).

Then, the decision at time t of a policy ⇧ maps the current state of the system (including all payo↵

feedback observed before time t) to the quantities plj(t). Such decisions lead to the evolution of the

following two types of queues.

Queueing dynamics: First, let qj(t) denote the number of tasks waiting to be served at server j

at the beginning of time-slot t. Let Y l
j (t) be the actual number of tasks from the l-th client that

are assigned to server j at time-slot t, with mean given by plj(t). The dynamics of the task-queue

qj(t) can then be described as

qj(t+1) =max

"
qj(t)+

n(t)X

l=1

Y l
j (t)�µj,0

#
. (1)

Second, let ni(t) be the number of clients in the system at the beginning of time t whose payo↵

vector is equal to ~C⇤
i . For ease of exposition, in the rest of paper we will say that a client is of

class i if its payo↵ vector is ~C⇤
i . Then, ni(t) is the number of class-i clients in the system at time t.

(We caution that, while the operator sees n(t), ni(t) cannot be directly observed because both the

payo↵ vectors and the class labels of the clients are unknown.) The dynamics of the client-queue

ni(t) can be described as

ni(t+1) = ni(t)+Ui(t+1)�Di(t), (2)

where Ui(t+ 1) is the number of client arrivals of class i at the beginning of time t+ 1 and is

Bernoulli with mean �i/N , and Di(t) is the number of client departures of class i at time-slot t.

(Recall that a client leaves the system once all of her tasks have been served. We again caution that,

while the operator sees the total number of departures D(t) =
PI

i=1Di(t), Di(t) cannot be directly

observed because the class labels of the clients are unknown.) Because the total number of tasks

per client is assumed to be geometrically distributed, conditioned on [Y l
j (t)] and the underlying



Hsu et al.: Integrate Online Learning and Adaptive Control

Article submitted to Operations Research; manuscript no. 11

class of the l-th client for l = 1, . . . , n(t), the departure [Di(t), i2 I] is independent of everything

else.

The expected payo↵ per unit time of such a policy ⇧ for a given time horizon T is defined as

RT (⇧) =
1

T

TX

t=1

JX

j=1

E
"

n(t)X

l=1

plj(t)C
⇤
i(l),j

#
, (3)

where i(l) denotes the underlying (but unknown) class of the l-th client. In contrast, if an “oracle”

knew in advance the statistics of the arrival and departure dynamics (i.e., �,⇢i and N), as well as

the class label and payo↵ vector of each client, one can formulate the following linear program:

R⇤ = max
[pij ]�0

�
IX

i=1

⇢i

JX

j=1

pijC
⇤
ij (4)

subject to �
IX

i=1

⇢ipij  µj for all servers j, (5)

JX

j=1

pij = 1 for all classes i, (6)

where pij is the probability that a task from a class-i client is assigned to server j. It is not di�cult

to show that R⇤ provides an upper bound for the expected payo↵ per unit time RT (⇧) under any

policy ⇧ (Johari et al. 2016, 2017). Thus, our goal is to achieve a provably small gap R⇤�RT (⇧)

for any given time T .

Remark 1. We note that our model assumes that the payo↵ vectors (and thus the class labels)

of new clients are completely unknown to the operator. In some applications (e.g., online adver-

tisement), the clients may possess known features that can be used to group the clients into types

(e.g., clothes ad vs. electronics ad). However, even in these cases, there will still be significant

uncertainty in the payo↵ vectors. Thus, our model captures the most challenging scenario where

the prior type-information is either unavailable or not informative in reducing the uncertainty in

the payo↵ vectors. On the other hand, we expect that our algorithm can also be extended to the

scenarios when the type of a new client is known, while its payo↵ vector is randomly chosen from

a set that is dependent on the type. We leave this extension for future work.
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Remark 2. When there are both client dynamics and payo↵ uncertainty, a key new challenge for

our algorithm design and analysis is the closed-loop interactions between the queueing dynamics

and learning dynamics:

1. In one direction, queueing degrades learning in at least two ways. First, because the operator

only learns the noisy payo↵ of a task after the task is served, excessive task-queues at servers not

only delay the service of the tasks, but also delay the payo↵ feedback. As a result, the learning of

the clients’ uncertain payo↵ vectors is also delayed. (We will refer to this e↵ect as the “learning

delay.”) Second, because all clients compete for the limited server capacity, the learning process of

some clients will inevitably be slowed down, which also results in a poor estimate of their payo↵

vectors. (We will refer to this second e↵ect as the “learning slow-down.”)

2. In the opposite direction, ine↵ective learning in turn a↵ects queueing because assignment

decisions have to be made based on delayed or inaccurate payo↵ estimates. Such sub-optimal

decisions not only lower system payo↵, but also increase queueing delay.

Together, the above closed-loop interactions between queueing and learning may produce com-

plex system dynamics that can severely degrade system performance. (See also the discussions in

Section EC.1 under “Queue-Length Based Control.”) Our main contribution is thus to develop

new algorithms and proof techniques to address such interactions. (See also the discussions at the

beginning of Section 3 and Section 4.)

2.1. Limitations of myopic matching and queue-length based control policies

Before we present our solution to this problem, we outline the limitations of some related approaches

in order to motivate our new algorithm. We first illustrate that a myopic-matching strategy, where

clients and servers are matched to maximize the instantaneous system payo↵, is sub-optimal even

when the system payo↵ vectors are known in advance.

Example (Myopic matching is suboptimal): Assume two servers, each of service rate µj = 1 as

shown in Fig. 2. There are two classes, and a new client belongs to one of the two classes with an

equal probability of 0.5. The payo↵ vectors of the two classes are [0.9 0.1] and [0.9 0.3], respectively.
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Assume N = 100 and �/N = 1.2/N . It is easy to see that the optimal solution should assign all

class-1 tasks to server 1, 2/3 of class-2 tasks to server 1, and the rest 1/3 of class-2 tasks to server

2. The resulting optimal payo↵ is 0.6⇤0.9+0⇤0.1+0.4⇤0.9+0.2⇤0.3 = 0.96. However, if a myopic

matching strategy is used, with close-to-1 probability two tasks will be assigned at each time, one of

which will have to be assigned to server 2. Thus, the overall payo↵ is approximately upper-bounded

by 1.2 ⇤ (0.9 + 0.3)/2 = 0.72. As we can see, the myopic matching strategy focuses too much on

maximizing the current payo↵, and as a result sacrifices future payo↵ opportunities. Naturally, if

the class labels and payo↵ vectors are unknown and need to be learned, a similar ine�ciency will

incur.

Another type of algorithm that is closely related to our problem setting is the queue-length

based policy. When the payo↵ vector of each client is known in advance, the queue-length based

control policy can be shown to attain near-optimal system payo↵ (by building large server-side

queues) (Tan and Srikant 2012). However, when the payo↵ vector of each client is unknown, such

a queue-length based control will no longer produce high long-term payo↵. The underlying reason

is explained in Remark 2 above, where the large server-side queues leads to a vicious cycle between

queueing and learning. Indeed, as we will demonstrate in Section 5, a straightforward version of such

queue-length based control will lead to a lower system payo↵ when combined with online learning.

Readers can refer to Section EC.1 for more discussions of myopic matching and queue-length based

control policies in related work.

3. Dynamic Assignment with Online Learning under Uncertainties

In this section, we present a new algorithm that seamlessly integrates online learning with dynamic

task assignment to address the aforementioned closed-loop interactions. Unlike classical queue-

length based control policies that rely on the task-queues as the “shadow prices,” we instead

eliminate the task-queues at the servers, and thus eliminate the “payo↵-feedback delay” altogether.

This is achieved by controlling the number of tasks assigned to each server j at each time-slot to

be always no greater than its service rate µj. Therefore, the length of the server-side task-queue
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qj(t) given by (1) is trivially zero at all times. However, without the server-side task-queues or

“shadow prices,” we need another congestion indicator to guide us in the dynamic assignment of

tasks. Here, we propose to rely on the number of backlogged clients in the system. Specifically,

we use the solution to a utility-maximization problem (that is based on the current number of

backlogged clients in the system) to help us trade o↵ between the current and future payo↵s. The

parameters of the utility-maximization problem are carefully chosen to also control the learning

slow-down of all clients in a fair manner. We remark that while the structure of our proposed utility-

guided algorithm bears some similarity to that of flow-level congestion control in communication

networks (Lin et al. 2008, De Veciana et al. 2001, Bonald and Massoulie 2001), the focus therein

was only on the system stability (but not the system payo↵), and there was no online learning of

uncertain parameters. To the best of our knowledge, our work is the first in the literature that uses

utility-guided adaptive control policies with online learning to optimize system payo↵.

3.1. Utility-Guided Dynamic Assignment with Online Learning

We present our algorithm in Algorithm 1. At each time-slot t, the algorithm operates in three

steps. Step 1 generates an estimate [C l
j(t)] of the payo↵ vector for each client l based on previous

payo↵ feedback (Lines 4-7). Note that n(t) is the current number of clients in the system, including

any newly-arriving client. For each client l = 1, ..., n(t), if no task of this client has been assigned

to server j yet, we set C l
j(t) = 1 (Line 6); otherwise, we use a truncated Upper-Confidence-Bound

(UCB) estimate (Auer et al. 2002a) to generate C l
j(t) (Line 7):

C l
j(t) =min

(
C

l

j(t� 1)+

s
2 loghl(t� 1)

hl
j(t� 1)

, 1

)
, (9)

where hl
j(t� 1) is the number of tasks from client l that have previously been assigned to server j

before the end of the (t� 1)-th time-slot and hl(t� 1) =
PJ

j=1 h
l
j(t� 1); C

l

j(t� 1) is the empirical

average payo↵ of client l based on the received noisy payo↵ feedback for server j until the end of

the (t�1)-th time-slot. Since the true payo↵s C⇤
ij’s are within [0,1], we truncate the UCB estimate

at threshold 1 in (9). Then, Step 2 solves a maximization problem (Line 9), subject to the capacity
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Algorithm 1: Utility-Guided Dynamic Assignment with Online Learning

1 For every time slot t:

2 Update the total number of clients n(t) (including newly arriving clients)

3 Step 1: Form truncated UCB payo↵ estimates

4 for l= 1 : n(t) do

5 for j = 1 : J do

6 if hl
j(t� 1) = 0 or client l is new then C l

j(t) 1; hl
j(t) 0;

7 else Set C l
j(t) according to (9) ;

8 Step 2: Solve [plj(t)] for the optimization problem

max
[plj ]�0

n(t)X

l=1

⇢
1

V
log

 
JX

j=1

plj

!
+

JX

j=1

plj(C
l
j(t)� �)

�
(7)

sub to
n(t)X

l=1

plj  µj, for all servers j 2 S. (8)

9 Step 3: Assign tasks and obtain noisy payo↵ feedback

10 Initialize to zero the number of tasks from client l to be assigned to server j, i.e., Y l
j (t) = 0.

11 for j = 1 : J do

12 for ⌫ = 1 : µj do

13 Choose a client l⇤ randomly such that the probability of choosing client l is equal to

plj(t)/µj. Assign one task from client l⇤ to server j and let Y l⇤
j (t) Y l⇤

j (t)+ 1 ;

14 for l= 1 : n(t) do

15 for j = 1 : J do

16 Observe Y l
j (t) number of Bernoulli payo↵s X l

j(t,1), . . . ,X
l
j

�
t, Y l

j (t)
� i.i.d.⇠ Bern

⇣
C⇤

i(l),j

⌘
;

17 Update hl
j(t) and C

l

j(t) according to Y l
j (t) and X l

j(t, ·):
18 hl

j(t) = hl
j(t� 1)+

PJ
j=1 Y

l
j (t) ;

19 C
l

j(t) =
�
hl
j(t� 1)C

l

j(t� 1)+
PY l

j (t)

k=1 X l
j(t, k)

�
/hl

j(t) ;

20 hl(t) =
PJ

j=1 h
l
j(t) ;

21 Clients with no remaining tasks leave the system.

constraint of each server, to obtain the values of plj(t), which corresponds to the expected number

of new tasks of client l to be assigned to server j in time-slot t. The objective (7) can be viewed as

the sum of some utility functions over all clients. The parameter � in (7) is chosen to be strictly

larger than 1, and V is a positive parameter. Finally, Step 3 determines the exact number Y l
j (t)
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of tasks from client l that are assigned to server j (Lines 12-14). The values of Y l
j (t) are randomly

chosen in such a way that (i) each server j receives at most µj tasks, i.e.,
Pn(t)

l=1 Y
l
j (t) µj; and (ii)

the expected value of Y l
j (t) is equal to plj(t). The tasks are then sent to the servers, and new noisy

payo↵s are received (Lines 15-19).

Before we present our analytical results, we make several remarks on the design of our proposed

algorithm.

Seamless Integration of Learning and Control: First, recall that the policies in (Johari et al.

2016, Massoulie and Xu 2016, Johari et al. 2017) separate exploration and exploitation into distinct

stages by assuming perfect knowledge of class-dependent payo↵ vectors, the total number of tasks

per client, or “shadow prices.” In contrast, our algorithm does not require such prior knowledge at

all and seamlessly integrates exploration, exploitation, and dynamic assignment at all times.

Zero Payo↵-Feedback Delay: Second, note that by Step 3 of the algorithm, the number of assigned

tasks to each server j is no more than the service rate µj. Since server j can serve exactly µj

tasks per time-slot, there is no longer any “payo↵-feedback delay,” i.e., all payo↵ feedback will be

immediately revealed at the end of the time-slot.

The Importance of Fairness: Third, if we removed the logarithmic term in (7) and set � = 0, then

the maximization problem in (7) would have become a myopic matching policy that maximizes

the total payo↵ in time-slot t based on the current payo↵ estimates. However, such a myopic

matching policy focuses too much on the current payo↵, and as a result, underperforms in terms

of the long-term average payo↵. Instead, the logarithmic term in (7) serves as a concave utility

function that promotes fairness (Lin et al. 2008, De Veciana et al. 2001, Bonald and Massoulie

2001), so that even clients with low payo↵ estimates can still receive some service (i.e.,
PJ

j=1 p
l
j(t)

is always strictly positive). This fairness property is desirable in two ways. First, it has an eye for

the future (which is somewhat related to the fact that fair congestion-control ensures long-term

system stability (Bonald and Massoulie 2001)), so that we can strike the right balance between

current and future payo↵s. Second, it also controls the learning slow-down of all clients in a fair
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manner. Specifically, note that the rate with which tasks of client l are assigned to the servers at

time t is given by
PJ

j=1 p
l
j(t), which determines how quickly (or slowly) the system can receive

payo↵ feedback for client l and improve her payo↵ estimate. We can thus refer to this value as the

“learning rate” of client l. Thanks to the aforementioned fairness property, we can show that the

“learning rate” of each client based on imprecise payo↵ estimates will not be too far o↵ from the

“learning rate” of the client based on its true payo↵ vector, which constitutes a crucial step in our

analysis (see Section 4.4 and the first paragraph in Appendix EC.2.4).

Parameter Choice: Fourth, the choice � > 1 in (7) and the truncation of the UCB estimates in

(9) also play a crucial role in achieving near-optimal system payo↵. If � = 0, then the system will

tend to increase
PJ

j=1 p
l
j(t) for every client l by utilizing as many available servers as possible, even

when the payo↵ from the server is low. Such an aggressive approach typically leads to suboptimal

performance because, in many settings, the optimal policy must assign some clients to only the

high-payo↵ servers. Instead, by choosing � > 1� C l
j(t), the second term inside the summation in

(7) becomes negative. As a result, the operator assigns clients to low-payo↵ servers only if the

derivative of the logarithmic term, which is equal to 1/[V
PJ

j=1 p
l
j(t)], is su�ciently large. This

feature leads to an inherent “conservativeness” of our algorithm in choosing low-payo↵ servers. As

the parameter V increases, on the one hand, our algorithm becomes more and more conservative

in choosing low-payo↵ servers, which benefits the long-term payo↵. On the other hand, the number

of clients backlogged in the system increases, leading to extra payo↵ loss for a finite time horizon

T . Our theoretical results below will capture this trade-o↵.

Complexity: Last but not least, the maximization problem in Step 2 is a convex program and can

be e↵ectively solved. Thus, our proposed algorithm can scale to large systems with many clients

and servers, which is in contrast to the work in both (Bimpikis and Markakis 2015) (which only

deals with two types of clients) and (Shah et al. 2017) (which uses an exponential number of virtual

queues).
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3.2. Main Results

We now present our main results for the performance guarantees of the proposed algorithm. For sim-

plicity, we denote �i = �⇢i, and hence �=
PI

i=1 �i. Recall that µ=
PJ

j=1 µj and n(0) =
PI

i=1 ni(0) =

0. Further, the service rates are assumed to be fixed and independent of the client classes. Our first

result is regarding the stability of the system. Note that even if we assume that the arrival rate � is

strictly less than the total service capacity µ, the stability of our proposed policy is not automatic.

This is because our proposed policy is not work-conserving. In particular, it may not use some

low-payo↵ servers even if they are available. Indeed, as shown by the Example in Section 2, such

avoidance of low-payo↵ servers is essential for achieving low regret in the long run. Fortunately,

Theorem 1 below shows that our policy, albeit not always work-conserving, still maintains the sys-

tem stability. In fact, the result directly gives an upper bound on the average number of backlogged

clients in the system at any time t under our proposed Algorithm 1. A key idea underlying our

proof is to show that, when the number of backlogged clients in the system is large enough, our

policy indeed becomes work-conserving, i.e., all servers must be busy (See Lemma EC.3).

Theorem 1. Suppose that the arrival rate � is strictly less than the total service capacity, i.e.,

�<µ. Then for any time t,

E [n(t)] 2µ

µ��

✓
1+

µ2�

�� 1

◆
+µ�V. (10)

Theorem 1 immediately implies the system is stable in the mean (Kumar and Meyn 1995). i.e.,

lim
T!1

1

T

TX

t=1

E[n(t)]<1.

The upper bound in (10) characterizes the e↵ect of V . As V increases, our algorithm becomes more

conservative in choosing low-payo↵ servers, leading to more clients backlogged in the system.

Departing from the standard Lyapunov technique in proving system stability (Lin et al. 2008,

De Veciana et al. 2001, Bonald and Massoulie 2001), our proof of Theorem 1 relies on a careful

coupling between n(t) and a Geom/Geom/µ queue with Bernoulli arrivals and Binomial departures

(details in Appendix EC.3).
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The second result below further characterizes the payo↵ gap of the proposed algorithm compared

to the oracle.

Theorem 2. Suppose N logN � 1. The gap between the upper bound (4) and the expected payo↵

of Algorithm 1 at any time horizon T is bounded by:

IX

i=1

JX

j=1

�ip
⇤
ijC

⇤
ij �

1

T

TX

t=1

JX

j=1

E
"

n(t)X

l=1

plj(t)C
⇤
i(l),j

#
 �1

V
+�2

r
logN

N
+�3

N(V +1)

T
, (11)

where [p⇤ij] is the optimal solution to (4), and

�1 =
I

2
+

µ2

2

✓
1+

�2

(�� 1)2

◆ IX

i=1

1

�i
,

�2= 4
p
2�
⇣p

J +µ
⌘
+3�

✓
1+

J�2

(1� �)2

◆
µ,

�3 =
2µ�

µ��
+

2µ3�2

(µ��)(�� 1)
+µ�2. (12)

To the best of our knowledge, this is the first result in the literature that characterizes the payo↵

gap for this type of utility-guided adaptive controller under payo↵ uncertainty. The above result

is quite appealing as it separately captures the impact of the uncertainty in client dynamics and

the impact of the uncertainty in payo↵s for any finite time horizon T . In (11), the first term on

the right-hand-side is of the order 1/V , capturing the impact of the uncertainty in client dynamics

(e.g., we do not know what the values of �i and N are). The second term in (11) is of the order

p
logN/N and related to the notion of “regret” in typical MAB problems. It captures the payo↵

loss due to the uncertainty in payo↵s as a function of the total number of tasks per client, i.e.,

the trade-o↵ between exploration and exploitation (Lai and Robbins 1985, Auer et al. 2002a). The

third term in (11) is of the order N(V + 1)/T , characterizing the payo↵ loss incurred by clients

backlogged in the system. Given T , the first term and the third term reveal an interesting tradeo↵

as V increases. On the one hand, the first term will approach zero at the speed of 1/V , indicating

that the policy adapts to the unknown client dynamics; on the other hand, the third term will

increase linearly with V due to the payo↵ loss incurred by clients backlogged in the system. If N
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and T are known in advance, we can tune V to be min{T/N,
p

T/N}, so that the payo↵-gap upper-

bound is minimized and becomes of the order max{N/T,
p
N/T}+

p
logN/N . As a consequence,

as T increases, the payo↵ gap first decreases at a rate of T�1 for T N and then at a rate of T�1/2

for N  T N 2/ logN and finally gets saturated at
p

logN/N for T �N 2/ logN.

The
p
logN/N regret here may seem inferior compared to the logN/N regret in (Johari et al.

2016, 2017). However, the regret in (Johari et al. 2016, 2017) only holds under the stationary

setting T !1 and assuming knowledge of various uncertainty, such as the class-dependent payo↵

vectors (being given and fixed), the number of tasks per client, or “shadow prices” (which in

turn require knowledge of the statistics of the client arrival dynamics). In contrast, our payo↵ gap

characterizes the transient behavior of the system and holds for any finite time T and finite N � 2

without any such prior knowledge. Moreover, our payo↵ gap holds in the minimax setting, where

the payo↵ vector can be adversarially chosen from any distribution with a finite support. In fact,

our payo↵ reget
p
logN/N matches the optimal minimax regret bound

p
1/N up to a

p
logN

factor (Auer et al. 2002b). It remains open whether our
p
logN/N regret can be further reduced

to logN/N in the instance-dependent setting where the payo↵ vector is chosen from a given and

fixed distribution.

In addition, we remark that our proof of Theorem 2 (see eq. (24)) in fact derives a smaller �2

than that reported in Theorem 2, i.e.,

�2 = 4�
p
2J +4

p
2�µ

1p
N

+3�

✓
1+

J�2

(1� �)2

◆
µ

1p
N logN

.

(The value of �2 reported in Theorem 2 follows from invoking N logN � 1.) As a consequence,

when N is large, �2 is dominated by 4�
p
2J , and hence our regret bound �2

p
logN/N grows as

the square root of the number of servers/arms, which coincides with the dependency of the optimal

minimax regret bound
p
J/N on J (Auer et al. 2002b).

Our proof of Theorem 2 builds upon the standard Lyapunov drift technique (Neely et al. 2005, Lin

et al. 2008, De Veciana et al. 2001, Bonald and Massoulie 2001) and finite-time regret analysis (Auer

et al. 2002a); however, our proof employs new techniques to carefully account for the closed-loop

interactions between the queueing dynamics and the learning processes (see Section 4).
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4. Main Proofs

Due to the space constraint, here we sketch the proof of Theorem 2. The omitted details, along

with the proof of Theorem 1, will be given in the e-companion to this paper.

We first give an overview of the main steps of our proof, highlighting the key innovations:

1. Use Lyapunov drift plus payo↵ gap analysis to show that the payo↵ gap of Algorithm 1 is

upper bounded by roughly 1/V +N(V +1)/T + 1
TV

PT
t=1E [A1(t)] (cf. Lemma 1 and (23)). While

similar Lyapunov drift analysis has been used for other stochastic optimization problems, the rest

of the steps will focus on bounding E [A1(t)], which is our new contribution.

2. Use the concavity of the objective function in Algorithm 1 to show A1(t)  A2(t) + A3(t),

where A2(t) captures the payo↵ loss due to the payo↵ estimation errors, and A3(t) captures the

payo↵ loss due to the task assignment errors (cf. Lemma 2).

3. Show that 1
TV

PT
t=1E [A2(t)] is upper bounded by roughly

p
logN/N (cf. Lemma 3 and (31)).

This part extends the finite-time regret analysis for a standard MAB problem, but with a key

di↵erence. In standard MAB problems, exactly one arm is pulled at each time. In our setting, the

servers/arms are randomly chosen according to probabilities, which themselves are random and

depend on the system states. Therefore, we have to use a new and delicate martingale argument

to obtain the regret bound.

4. Show that 1
TV

PT
t=1E [A3(t)] is upper bounded by roughly 1/N (cf. Lemma 4 and (32)). Com-

pared to step (c), this step is even more di�cult because the rate with which regret is accumulated

is di↵erent from the rate with which the servers are chosen (see Remark 3 in Section 4.4). The

key to resolve this di�culty is to exploit the fairness property of Algorithm 1: no client’s task

assignment probabilities can be heavily skewed by UCB payo↵ estimates (cf. Lemma EC.2).

4.1. Equivalent Reformulation

We will use a Lyapunov-drift analysis with special modifications to account for the learning of

uncertain payo↵s. Note that for the purpose of this drift analysis, we can use the underlying class

label of each client to keep track of the system dynamics, even though our algorithm does not know
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this underlying class label. Thus, we re-label the n(t) clients at time-slot t as follows. Recall that

ni(t) is the number of clients at time-slot t whose underlying class is i. Let I(t) = {i : ni(t)� 1}.

We have
P

i2I(t) ni(t) = n(t). For each class i 2 I(t), we use k = 1, ..., ni(t) to index the clients of

this class at time t. Similar to the notations C⇤
i(l),j,C

l

j(t) and C l
j(t), we denote C

⇤
ij,C

k

ij(t) and Ck
ij(t)

as the true expected value, empirical average of past payo↵s at time t, and the UCB estimate at

time t, respectively, for the payo↵ of server j serving tasks from the k-th client of the underlying

class i. We also define hk
ij(t), h

k
i (t) =

PJ
j=1 h

k
ij(t), and pkij(t) analogously to hl

j(t), h
l(t) and plj(t).

Thus, the UCB estimate (9) in Step 1 of our proposed Algorithm 1 is equivalent to

Ck
ij(t) min

⇢
C

k

ij(t� 1)+

s
2 loghk

i (t� 1)

hk
ij(t� 1)

, 1

�
, (13)

and the maximization problem (7) in Step 2 of our proposed Algorithm 1 is equivalent to:

max
[pkij ]�0

X

i2I(t)

ni(t)X

k=1

⇢
1

V
log

 
JX

j=1

pkij

!
+

JX

j=1

pkij
�
Ck

ij(t)� �
��

(14)

s.t.
X

i2I(t)

ni(t)X

k=1

pkij  µj, for all j 2 S. (15)

Our proof below will use these equivalent forms of the proposed Algorithm 1.

In the rest of the analysis, we will use boldface variables (e.g., n, p, and C) to denote vectors, and

use regular-font variables (e.g., ni, pkij, and Ck
ij) to denote scalars. A list of notations is provided

in Table 1.

4.2. Handling Uncertain Client Dynamics

Recall that �i = �⇢i, �=
PI

i=1 �i and µ=
PJ

j=1 µj. Define the vector n(t) = [ni(t),1 i I] and

p(t) = [pkij(t), i2 I(t),1 j  J,1 k ni(t)]. Define the Lyapunov function L(n(t)) as

L(n(t)) =
1

2

IX

i=1

n2
i (t)

�i
. (16)

Recall that [p⇤ij] is the optimal solution of the upper bound in (4). Note that if we replace each

C⇤
ij in (4) by C⇤

ij � �, this will result in the same optimal solution. Thus, [p⇤ij] is also the optimal

solution to the following optimization problem:

max
[pij ]�0

IX

i=1

�i

JX

j=1

pij(C
⇤
ij � �), subject to (5) and (6). (17)
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Next, we will add a properly-scaled version of the following term to the drift of the Lyapunov

function L(n(t+1))�L(n(t)):

�(t) =
IX

i=1

JX

j=1

�ip
⇤
ij(C

⇤
ij � �)�

X

i2I(t)

ni(t)X

k=1

JX

j=1

pkij(t)(C
⇤
ij � �). (18)

The value of �(t) captures the gap between the achieved payo↵ and the upper bound in (17), both

adjusted by �. The following lemma bounds the Lyapunov drift plus this payo↵ gap.

Lemma 1. The expected drift plus payo↵ gap is bounded by

E

L(n(t+1))�L(n(t))+

V

N
�(t) | n(t),p(t)

�

 A1(t)

N
+

V

N

X

i/2I(t)

JX

j=1

�ip
⇤
ij(C

⇤
ij � �)+

c1 + c2
N

, (19)

where c1 =
I
2
, c2 =

µ2

2

⇣
1+ �2

(��1)2N

⌘PI
i=1

1
�i
, and

A1(t),
X

i2I(t)

ni(t)X

k=1

JX

j=1

✓
ni(t)

�i
+V (C⇤

ij � �)

◆✓
�ip⇤ij
ni(t)

� pkij(t)

◆
. (20)

The proof is given in the e-companion to this paper.

4.3. Proof of Theorem 2

With Lemma 1, we are ready to present the proof of Theorem 2. Recall that in Step 2 of our

proposed algorithm, we have chosen � > 1 � C⇤
ij. Hence, the second term on the right-hand-side

of (19) is always less than 0. Then, taking expectations of (19) over n(t) and p(t), summing over

0 t T � 1, and divided by T , we have

1

T
E [L(n(T ))�L(n(0))]+

V

TN

T�1X

t=0

E [�(t)] 1

NT

T�1X

t=0

E [A1(t)] +
c1 + c2
N

.

Since the system at time t = 0 is empty, i.e., n(t) = 0, it follows that L(n(0)) = 0. In view of

L(n(T ))� 0, the last displayed equation gives

1

T

T�1X

t=0

E [�(t)] 1

TV

T�1X

t=0

E [A1(t)] +
c1 + c2
V

. (21)
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Let RT denote the expected payo↵ per unit time achieved by Algorithm 1 for a given time T as

defined in (3). By definitions of �(t), RT , and R⇤, we get that

1

T

T�1X

t=0

E [�(t)] =R⇤�RT � ��+
�

T

T�1X

t=0

JX

j=1

E

2

4
X

i2I(t)

ni(t)X

k=1

pkij(t)

3

5 . (22)

We show in Appendix EC.4 that the total number D(t) of departures at time t satisfies

E [D(t) | n(t),p(t)] 1

N

X

i2I(t)

JX

j=1

ni(t)X

k=1

pkij(t).

It follows that

�� 1

T

T�1X

t=0

JX

j=1

E

2

4
X

i2I(t)

ni(t)X

k=1

pkij(t)

3

5 �� N

T

T�1X

t=0

E [D(t)] =
N

T

T�1X

t=0

E [U(t+1)�D(t)]

=
N

T
E [n(T )] �3N(V +1)

�T
,

where U(t) denotes the total number of arrivals at time t, and the last inequality holds in view

of Theorem 1 and the definition of �3 in (12). By combining the last displayed equation with (22)

and (21), we get that

R⇤�RT 
�3N(V +1)

T
+

1

TV

TX

t=1

E [A1(t)] +
c1 + c2
V

. (23)

In the rest of this section, we show that for all T ,

1

TV

TX

t=1

E [A1(t)]
�

N


4
p
2JN logN +µ

�
4
p

2 logN +3+
3J�2

(1� �)2
��

= �2

r
logN

N
, (24)

where

�2 = 4�
p
2J +4

p
2�µ

1p
N

+3�

✓
1+

J�2

(1� �)2

◆
µ

1p
N logN

.

Substituting (24) into (23), we get that

R⇤�RT 
�3N(V +1)

T
+�2

r
logN

N
+

c1 + c2
V

.

Finally, invoking the assumption N logN � 1 and the fact that N � 1, the result of Theorem 2

readily follows. The remainder of the section focuses on proving (24).
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4.4. Bounding A1(t): Handling Payo↵ Uncertainty

As we will see soon, if there were no errors in the payo↵ estimates [Ck
ij(t)], we would have obtained

A1(t) 0 (see discussions after Lemma 2). Thus, the key in bounding A1(t) is to account for the

impact of the errors of the payo↵ estimates.

In the rest of this subsection, we fix n= n(t). Recall that I(t) = {i|ni(t)� 1}, and p(t) = [pkij(t)]

is the solution to the optimization problem (14). Denote vectors W= [W k
ij, i 2 I(t),1 j  J,1

k ni(t)] and ⇡= [⇡k
ij, i2 I(t),1 j  J,1 k ni(t)]. We define function

f(⇡|n,W),
X

i2I(t)

ni(t)X

k=1

"
log

 
JX

j=1

⇡k
ij

!
+V

JX

j=1

(W k
ij � �)⇡k

ij

#
. (25)

Let C(t) denote the vector [W k
ij] such that W k

ij =Ck
ij(t) for all i 2 I(t),1 j  J,k = 1, ..., ni(t).

Then f(⇡|n,C(t)) is the objective function of (14) multiplied by V , and hence p(t) is the maximizer

of f(⇡|n,C(t)) over the constraint (15).

Now, let C⇤ denote the vector [W k
ij] such that W k

ij =C⇤
ij for all i2 I(t),1 j  J,k= 1, ..., ni(t).

Denote bp(t) = [bpkij(t)] as the maximizer of f(⇡|n,C⇤) over the constraint (15).

Using the concavity of function f in ⇡k
ij, we can prove the following lemma.

Lemma 2. For each time-slot t, A1(t) given in (20) satisfies

A1(t) f(bp(t)|n,C⇤)� f(p(t)|n,C⇤) (26)

A2(t)+A3(t), (27)

where

A2(t) = V
X

i2I(t)

ni(t)X

k=1

JX

j=1

�
Ck

ij(t)�C⇤
ij

�
pkij(t),

A3(t) = V
X

i2I(t)

ni(t)X

k=1

JX

j=1

�
C⇤

ij �Ck
ij(t)

�
bpkij(t). (28)

The proof is given in the e-companion to this paper.

To appreciate the di↵erence between the two terms in (26), recall that bp(t) maximizes f(⇡|n,C⇤),

while p(t) maximizes f(⇡|n,C(t)). Clearly, if there were no errors in the payo↵ estimates C(t),
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i.e., if C(t) =C⇤, we would have obtained p(t) = bp(t) and A1(t) 0 follows immediately from (26).

Lemma 2 further bounds the di↵erence even when C(t) 6=C⇤.

It remains to upper bound (1/T )
PT

t=1E[A2(t)] and (1/T )
PT

t=1E[A3(t)] for a given time T. We

define ⇤ as a particular realization of the sequence of client arrival-times up to time slot T . We

use E⇤ to denote the conditional expectation given ⇤. Given ⇤, we slightly abuse notation and use

the index k now to denote the k-th client of class i that arrives to the system. Let t1(k) denote the

arrival time of this client, and t2(k) denote the minimum of her departure time and T .

Lemma 3. Suppose that the k-th arriving client of the underlying class i brings a total number ak

of tasks into the system. Then it holds that

E⇤

2

4
JX

j=1

t2(k)X

s=t1(k)

(Ck
ij(s)�C⇤

ij)p
k
ij(s)

3

5 4
p
2Jak logak +4µ

p
2 logak +3µ. (29)

Lemma 4. Suppose that the k-th arriving client of class i arrives at time t1(k). Then it holds that

E⇤

2

4
JX

j=1

t2(k)X

s=t1(k)

�
C⇤

ij �Ck
ij(s)

�
bpkij(s)

3

5 3J

✓
�

�� 1

◆2

µ. (30)

By summing (29) and (30), respectively, over all users k, we can then obtain that (See

Remark EC.2 for a detailed derivation):

1

TV

TX

t=1

E [A2(t)]
�

N

⇣
4
p
2JN logN +

⇣
4
p
2 logN +3

⌘
µ
⌘

(31)

1

TV

TX

t=1

E[A3(t)]
3�µJ

N

✓
�

1� �

◆2

. (32)

The proofs of Lemma 3 and Lemma 4 are given in the e-companion to this paper. Below, we

briefly illustrate the underlying intuition; see Remark EC.1 and Remark EC.3 for more detailed

explanation.

Remark 3. The proofs of both lemmas involve finite-time regret analysis for UCB (Auer et al.

2002a). However, there is a major innovation. In standard MAB problems, exactly one arm is pulled

at each time. In our system, the rate that servers are chosen is determined by pkij(t), which in turn

depends on previous values of Ck
ij(s), s < t. Our proofs use a delicate martingale argument to take
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care of such dependency. Between these two lemmas, the proof of Lemma 4 is even trickier. To see

this, note that the loss in Lemma 3 is accumulated at the same rate as the rate that each server

is chosen. Thus, we may view the time as being “slowed down” (compared to a standard MAB

problem), and expect Lemma 3 to hold. In contrast, the loss in Lemma 4 is accumulated at the rate

bpkij(s), which is di↵erent from the rate pkij(t) that each server is chosen. Thus, a direct “slowing-

down” argument will not work. Fortunately, by exploiting the fairness property of Algorithm 1, we

can show that
PJ

j=1 bpkij(t) and
PJ

j=1 p
k
ij(t) cannot di↵er by more than a constant factor. We can

then prove Lemma 4 using a similar martingale argument.

Finally, we remark that Lemma 3 is the main reason for the
p

logN/N regret in the second term

of (11). In the instance-dependent setting of the MAB problem in (Auer et al. 2002a), there is a

non-zero gap � between the best arm and the second-best arm. Thus, once the estimation error

is within �, which takes ⇥(logN) time slots, learning can stop. Hence, the regret is on the order

of logN/N . In contrast, in our problem, the notions of “best/second-best arms” are more fluid

because they depend on the number of clients in the system. Thus we do not have such a fixed gap

�, which is why we have a larger
p
logN/N loss due to learning. Also, our upper bound on the

payo↵ gap holds in the instance-independent (minimax) setting, where the payo↵ vector can be

adversarially chosen from any distribution with a finite support. In this setting, our payo↵ reget

p
logN/N matches the optimal minimax regret bound

p
1/N up to a

p
logN factor (Auer et al.

2002b).

5. Simulation Study of Algorithm 1

We first consider the same setup as described in the counterexample in Section 2.1 and illustrated

in Fig. 2. The code for Algorithm 1 implementation is publicly available on Github at https:

//github.com/waycan/QueueLearning. In particular, there are two servers and two classes of

clients. Define the key parameters as follows: µj = 1 for each server j = 1,2; �i = 0.6 for each class

i= 1,2, and hence �= �1 +�2 = 1.2. The expected number of tasks per client is initially set to be

N = 100, but we will vary the value later. The true payo↵ vectors for class 1 and class 2 are given

https://github.com/waycan/QueueLearning
https://github.com/waycan/QueueLearning
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by [0.9 0.1] and [0.9 0.3], respectively, although they are unknown to the operator. Note that server

1 has larger expected payo↵s for both class 1 and class 2. However, its service rate is insu�cient

to support all clients. Hence, this contention must be carefully controlled when the system aims

to maximize the payo↵. For a given policy ⇧ and simulation time T , we report the average system

payo↵ RT (⇧) per unit time.

5.1. Two Other Policies for Comparison

We compare our proposed Algorithm 1 with the myopic matching policy and a queue-length based

policy. These two policies also use UCB to estimate unknown payo↵ vectors. The myopic matching

policy aims at maximizing the total payo↵ for the current time-slot. Specifically, at each time slot

t, the policy solves a modified maximization problem of the form (7)–(8), but with the logarithmic

term removed and with � = 0. Then, based on the solution to this modified maximization problem,

the tasks are assigned to each server in the same way as described in Step 3 in Algorithm 1. We

expect that the myopic matching policy incurs a relatively large payo↵ loss because it does not

look at the future.

The queue-length based policy maintains a queue of tasks at each server j and uses the length

of this task-queue qj(t) at time-slot t to indicate the congestion level at server j. At each time-slot

t and for each client l, the operator finds the server j⇤(l) with the highest queue-adjusted payo↵,

i.e., j⇤(l) = argmaxj{C l
j(t)� qj(t)/V }. The operator then adds one task from each client l to the

end of the task queue at the server j⇤(l). Every server j then processes the µj = 1 task from the

head of its own queue and observes the random payo↵ generated. As discussed in Section EC.1,

one weakness of such a queue-length based policy is that, when tasks are waiting in the queues, the

system cannot observe their payo↵ feedback right away. Hence, there is significant payo↵ feedback

delay, which in turn leads to suboptimal assignment decisions for subsequent tasks.

5.2. Performance Comparisons

We fix � = 1.1 for our proposed Algorithm 1 in all experiments, but we may vary N and V . The

first set of experiments give a general feel of the dynamics of di↵erent policies. In Fig. 3(a), we
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fix N = 100 and plot the evolution of the time-averaged system payo↵ up to time T under the

three policies (with di↵erent V ), as the simulation time T advances. We can see that, even when

N is not very large (N = 100), the system payo↵ under our proposed Algorithm 1 with V = 21

(the solid curve with marker N) approaches the upper bound (4) (the horizontal dashed line).

Further, comparing V = 2 (marker N, dashed curve) with V = 21 (marker N, solid curve), we

observe significantly higher system payo↵ under Algorithm 1 when V increases. In comparison,

the payo↵ achieved by the myopic matching policy (the lowest dotted curve) is significantly lower.

The performance of the queue-length based policy (the two curves with marker H) also exhibits a

noticeable gap from that of the proposed Algorithm 1. Further, even when V increases from V = 2

(marker H, dashed curve) to V = 100 (marker H, solid curve), the improvement of the queue-length

based policy is quite limited. This result suggests that, due to the increase in payo↵-feedback delay,

controlling V is not e↵ective in improving the performance of the queue-length based policy.

In Fig. 3(b), we fix N = 100, increase V , and plot the payo↵ gap (compared to the upper bound

(4)) of our proposed Algorithm 1 over T = 7⇥105 time slots. Each plotted data point represents the

average of 5 independent runs. We can observe that initially, the payo↵ gap decreases significantly

with V , but eventually it saturates at V � 50. This is because the regret due to small N , i.e., the

second term of (11), eventually dominates the payo↵ gap when V is large.

In Fig. 3(c), we set V = N/ logN . In this way, the first term in (11) is of the order logN/N ,

and hence our payo↵ loss upper bound (11) is dominated by the second term, which is of the

order
p
logN/N when T is su�ciently large. Thus we vary N and simulate the payo↵ gap of our

Algorithm 1 versus N on a log-log scale. The result indicates that the payo↵ gap scales with a rate

between ⇥(
p
logN/N) and ⇥(logN/N), which agrees with our payo↵ loss upper bound.

5.3. Infinite Number of Classes

Although our analytical results have assumed that clients are from a finite number I of classes,

Algorithm 1 can be used even if the number of classes is infinite. In Fig. 3(d), we simulate the

performance of Algorithm 1 under such a setting. In particular, each client l has a payo↵ vector
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(C⇤
l,1,C

⇤
l,2) independently and uniformly distributed over the lower triangular part of the unit

square ⌦= {(x, y)2 [0,1]2 : x� y}. In other words, let X1 and X2 denote two independent random

variables uniformly distributed over [0,1]. Then (C⇤
l,1,C

⇤
l,2) has the same distribution as (X(1),X(2)),

where X(1) =max{X1,X2} and X(2) =min{X1,X2}. To maximize the total expected payo↵, it is

preferable to assign tasks from those clients l with a small gap C⇤
l,1�C⇤

l,2 to server 2. We show in

EC.6 that the oracle upper bound for the payo↵ is around 0.79, while the expected payo↵ under

myopic matching is approximately upper bounded by 0.6. As we can see from Fig. 3(d), Algorithm

1 outperforms myopic matching, achieving a higher expected payo↵ around 0.69.

6. Conclusion

In this paper, we propose a new utility-guided task assignment algorithm for queueing systems

with uncertain payo↵s. Our algorithm seamlessly integrates online learning and adaptive control,

without relying on any prior knowledge of the statistics of the client dynamics or the payo↵ vectors.

We show that, compared to an oracle that knows all client dynamics and payo↵ vectors beforehand,

the gap of the expected payo↵ per unit time of our proposed algorithm at any finite time T is on

the order of 1/V +
p
logN/N +N(V +1)/T, where V is a parameter controlling the weight of a

logarithmic utility function, and N is the average number of tasks per client. Our analysis carefully

accounts for the closed-loop interactions between the queueing and learning processes. Numerical

results indicate that the proposed algorithm outperforms a myopic matching policy and a standard

queue-length based policy that does not explicitly address such closed-loop interactions. Further,

we derive a virtual-queue heuristic from the proposed algorithm, which incurs low-complexity for

large systems and is capable of handling server-side uncertainty.

There are a number of future research directions. First, while our payo↵ regret bound
p

logN/N

matches the optimal minimax regret bound 1/
p
N up to a

p
logN factor (Auer et al. 2002b),

it remains open whether our
p
logN/N regret bound can be further reduced to logN/N (Auer

et al. 2002a) in the instance-dependent setting where the payo↵ vector is chosen from a given and

fixed distribution. Second, although our model does not assume any prior knowledge of the class-

dependent payo↵ vectors, it would be interesting to study whether the idea from this paper can be
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used to improve the policies in (Johari et al. 2016, Massoulie and Xu 2016, Johari et al. 2017) when

such knowledge is available. Third, although we show via simulation that Algorithm 1 works for

an infinite number of classes, our bound on the payo↵ gap established in Theorem 2 scales linearly

in the number of client classes I and thus blows up to infinity when I goes to infinity. It would be

of great interest to prove that Algorithm 1 achieves a payo↵ gap independent of I.
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7. Tables

Table 1 List of Notations

Symbol Meaning

Ck
ij(t) UCB estimate for server j by client k of class i

C l
j(t) UCB estimate for server j by client l

C⇤
ij True expected payo↵ for server j and class i

C
k

ij(t),C
l

j(t) Empirical payo↵ average

� > 1 Parameter in (7) and (14)

p⇤ij Solution to upper bounds (4) or (17)

pkij(t), p
l
j(t) Solution to (7) or (14) using UCB payo↵ estimates

bpkij(t) Solution to (14) with Ck
ij(t) replaced by C⇤

ij

8. Figures

1

1

=1. 0.9
Server 1

Server 2

1
𝑁

Class 1

0.1

0.3
0.9

1/2

1/2 

Clients

Class 2

Figure 1 Uncertain client dynamics and payo↵s.
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Figure 2 Myopic matching is suboptimal.
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Figure 3 Plot (a): The evolution of the time-averaged payo↵ under the three policies as simulation time advances.

The upper bound (4) is 0.96 (the horizontal line). Plot (b): With a fixed N = 100, the payo↵ gap of

Algorithm 1 decreases and eventually saturates as V increases. Plot (c):With V =N/ logN , the payo↵

gap of Algorithm 1 scales as ⇥(logN/N). Plot (d): Algorithm 1 applies to infinite number of client

classes and still achieves good performance.


