
e-companion to Hsu et al.: Integrate Online Learning and Adaptive Control ec1

Supplementary Materials

EC.1. Further Discussion on the Limitations of Existing Approaches

In addition to the discussions in Section 2.1, we provide an additional overview of related problems

in the literature and discuss why they cannot be used to solve the problem that we introduced in

Section 2.

First, the work in (Johari et al. 2016, 2017) also studies how to maximize the average payo↵ for a

system with unknown client types. (The notion of “type” in (Johari et al. 2016, 2017) is comparable

to “class” in this paper, while “worker” is comparable to “client” in this paper.) However, there

are a number of crucial di↵erences. The main policies proposed in (Johari et al. 2016, 2017) assume

that the system operator knows the “shadow prices,” which captures the long-term congestion level

of each server. This shadow price is the solution to an optimization problem that depends on a

number of system parameters, such as the payo↵ vector of each type, the probability distribution of

the types, the arrival rate of each type, and the expected number of tasks of each client. Thus, the

model in (Johari et al. 2016, 2017) has to assume that all of these system parameters are known

in advance.

In contrast, in our model, neither the payo↵ vector for each type (i.e., each “class” in this paper)

nor the client arrival/departure statistics are known to the system. As a result, the theoretic policies

in (Johari et al. 2016, 2017) cannot be used or easily adapted in our setting. Although (Johari

et al. 2017) also provides a heuristic policy that uses queue length to replace the shadow price,

no theoretical performance guarantee is proved. Moreover, this heuristic policy requires that the

unused service of the servers can be queued and utilized later. Since our model does not allow such

queueing of unused service, we cannot use this heuristic policy either. One could argue that, after

the system has been operated in a stationary setting for a long time, the operator may eventually

be able to learn the arrival/departure statistics and the class-dependent payo↵ vectors, in which

case the theoretic policies in (Johari et al. 2016, 2017) could then be used (although acquiring such
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knowledge would require highly non-trivial learning procedures for estimating both the clients’

payo↵ vectors and their underlying classes.) However, this argument will become problematic when

the system runs only for a limited amount of time. In contrast, in this paper, we will develop

analytical results that hold for a finite time-horizon. As a result, the setting studied in this paper,

as well as the adaptive algorithm that we will develop, will be useful both for the early phase of

the system operation, and when the class composition or arrival/departure statistics experience

recent changes. Finally, note that the work in (Massoulie and Xu 2016) also addresses uncertainty

in both client features and client arrival rates. However, it still assumes the knowledge of the

payo↵ vectors for all types in advance and divides exploration and exploitation into distinct stages.

Further, (Massoulie and Xu 2016) does not aim to maximize the system payo↵ as in this paper.

Thus, it is unclear how the approach there can be used in our setting.

Myopic Matching: The second line of related work is the multi-player MAB formulation in

(Kalathil et al. 2014, Nayyar et al. 2016, Gai et al. 2012, Anandkumar et al. 2011, Lai et al. 2011,

Lelarge et al. 2013, Combes and Proutiere 2015, Shahrampour et al. 2017, Buccapatnam et al.

2015), which is also a common way in the literature to study online learning in a two-sided system,

where clients and servers with unknown payo↵s need to be matched to maximize the system payo↵.

However, this class of work assumes that both the client population and the server population are

fixed. In contrast, in our model, the client population is constantly changing. Thus, the multi-player

MAB solution can at best be viewed as a myopic solution for a snapshot of our system in time.

Indeed, as illustrated at the end of Section 2, such a myopic matching strategy (for each snapshot

in time) is sub-optimal in the long run even when the payo↵ vectors are known in advance.

Queue-Length Based Control: The above example clearly illustrates the need to cater to uncertain

client dynamics in the system. In the literature, there is a third body of work based on max-weight

algorithms to handle uncertainty in client dynamics (Tassiulas and Ephremides 1992, Neely et al.

2005, Chiang 2004, Eryilmaz and Srikant 2005, Lin et al. 2006). While some of them aim for

throughput-optimality (i.e., to stabilize the system at the maximum-possible o↵ered load), others
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aim for maximizing the long-term payo↵ as in our problem. However, this line of work usually

assumes that each client’s payo↵ vector is known. As a result, we may not be able to use many of

these algorithms when the payo↵ vectors are unknown (e.g., algorithms that define weights as the

number of clients of each class cannot be used when the class index of each client is unknown). One

particular algorithm that is closely related to our problem setting is the following queue-length

based policy. By building up queues of unserved tasks at the servers, one can use the queue length

qj at server j as a “shadow price” that captures the congestion level at the server. The system

operator then adjusts each client’s payo↵ parameter C⇤
ij to C⇤

ij � qj/V with a proper choice of V

and assigns the next task to the server with the highest adjusted payo↵. When the payo↵ vector

of each client is known in advance, this type of queue-length based control can be shown to attain

near-optimal system payo↵ when the parameter V is large (Tan and Srikant 2012), although the

length of the server-side queues also grows with V .

However, when the payo↵ vector of each client is unknown, such a queue-length based control will

no longer produce high long-term payo↵ (see simulation results in Fig. 3(a) and Section 5.2). The

underlying reason is that, when V is large, such a queue-length based policy produces large queues,

which leads to a vicious cycle between queueing and learning. (See also Remark 2 in Section 2.)

Indeed, as we will demonstrate in Section 5, a straightforward version of such queue-length based

control will lead to a lower system payo↵ when combined with online learning.

Online Matching: There is a fourth line of related work on online matching that also aims to

address uncertainty in future client dynamics (albeit in an adversarial setting) (Alaei et al. 2013,

Chakrabarty et al. 2008, Feldman et al. 2009, Zheng et al. 2013). However, similar to queue-length

based control, such studies typically do not deal with payo↵ uncertainty either.

Finally, although (Bimpikis and Markakis 2015) and (Shah et al. 2017) also study the inte-

gration of learning and control, they either allow only a small system with two types of clients

and two servers (Bimpikis and Markakis 2015), or have to use an exponential number of virtual

queues to approach optimality (Shah et al. 2017). In contrast, in this work, we aim to develop

computationally-e�cient algorithms that can be implemented even for large systems.
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In summary, it remains an open question how to seamlessly integrate online learning with adap-

tive control when there is uncertainty in both client dynamics and payo↵ vectors, and how to

account for the complex closed-loop interactions between queueing and learning. Below, we will

propose our new algorithm and analytical techniques that address these di�culties.

EC.2. Missing Proof of Theorem 2

EC.2.1. Proof of Lemma 1

We first note that

ni(t+1) = ni(t)+Ui(t+1)�Di(t),

where Ui(t+1) and Di(t) are the number of client arrivals at the beginning of time t+1 and the

number of departures at the end of time t, respectively, of class i. Note that Ui(t) is a Bernoulli

random variable with mean �i/N . For i /2 I(t), i.e., ni(t) = 0, we have Di(t) = 0 and ni(t+ 1) =

Ui(t+1). It follows that
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. (EC.1)

For i2 I(t), the expected time-di↵erence of n2
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where in the last step we have used the following bounds shown in Lemma EC.7 in Appendix EC.4:

E [Di(t)|n(t),p(t)]�
1

N

ni(t)X
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JX
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pkij(t)�
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, (EC.3)

and E [D2
i (t) | n(t),p(t)] µ2

N
.
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Combining (EC.1) and (EC.2), the expected Lyapunov drift is then bounded by

E [L((n(t+1)))�L(n(t)) | n(t),p(t)]

 1
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where c1 and c2 are defined in the lemma, and we use N � 1 in the inequality. Adding V
N
�(t) in

(18), the result then follows. Note that we need to single out the first term of (18) corresponding

to ni(t) = 0, which produces the second term of (19).

EC.2.2. Proof of Lemma 2

Let ep(t) denote the vector [epkij(t)] such that

epkij(t) =
�ip⇤ij
ni(t)

for all i 2 I(t), j = 1, ..., J and k = 1, ..., ni(t). Using the concavity of the function f and the fact

that ni(t)
�i

+ V (W k
ij � �) is the partial derivative of f at ep(t), we can prove the following auxiliary

lemma.

Lemma EC.1. For any W= [W k
ij] and ⇡= [⇡k

ij], it holds that

X
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 f(ep(t)|n,W)� f(⇡|n,W). (EC.5)

Proof of Lemma EC.1. For any given n and W= [W k
ij], the gradient of f(⇡|n,W) (defined in

(25)) with respect to ⇡ is given by rf(⇡|n,W) =


@f

@⇡k
ij

�
with

@f

@⇡k
ij

=
1

PJ
j=1 ⇡

k
ij

+V (W k
ij � �). (EC.6)

Since the function f is concave in ⇡k
ij, we thus have, for any ep,

f(⇡|n,W)� f(ep|n,W) [rf(ep|n,W)]0(⇡� ep). (EC.7)
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Using the value of ep(t) given in the lemma, the partial derivative of f at ep(t) is equal to

@f

@⇡k
ij

����
⇡k
ij=

�ip
⇤
ij

ni(t)

=
ni(t)

�i
+V (W k
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Therefore, for any ⇡, we have,

f(⇡|n,W)� f(ep(t)|n,W)
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The result of the lemma then follows. ⇤

The significance of this lemma is as follows. Let C⇤ denote the vector [W k
ij] such that W k

ij =C⇤
ij

for all i2 I(t), j = 1, ..., J and k= 1, ..., ni(t). If we choose W=C⇤ and ⇡= p(t) in Lemma EC.1,

then A1(t) given in (20) is simply the left-hand-side of (EC.5). Applying Lemma EC.1, we then

have

A1(t) f(ep(t)|n,C⇤)� f(p(t)|n,C⇤). (EC.9)

Next, recall that bp(t) =

bpkij(t)

�
is the maximizer of f(⇡|n,C⇤) over the constraint (15). Since ep(t)

also satisfies the constraint (15), we have f(ep(t)|n,C⇤) f(bp(t)|n,C⇤). Combining with (EC.9),

we get the desired (26):

A1(t) f(bp(t)|n,C⇤)� f(p(t)|n,C⇤).

Finally, recalling the definition of A2(t) and A3(t) given in (28), we have

f(bp(t)|n,C⇤) = f(bp(t)|n,C(t))+A3(t)

 f(p(t)|n,C(t))+A3(t) (by the optimality of p(t))

= [f(p(t)|n,C⇤)+A2(t)] +A3(t). (EC.10)

Combining (26) and (EC.10), we thus have A1(t)  A2(t) + A3(t), completing the proof of

Lemma 2.
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EC.2.3. Proof of Lemma 3

In this subsection, we bound 1
T

PT
t=1E[A2(t)] for a given T. Recall that ⇤ is a particular realization

of the sequence of client arrival-times up to time slot T . We use E⇤ to denote the conditional

expectation given ⇤. Given ⇤, we slightly abuse notation and use the index k now to denote the

k-th client of class i that arrives to the system. Let t1(k) denote the arrival time of this client, and

t2(k) denote the minimum of her departure time and T .

Before the proof, we first give an intuitive interpretation of Lemma 3.

Remark EC.1. The result of Lemma 3 can be interpreted as follows. Suppose that pkij(s) = 1

for all time s. Then, after s time-slots, the gap Ck
ij(s)� C⇤

ij is within the order of ⇥(
p
log s/s)

with high probability by the Cherno↵-Hoe↵ding bound (see Lemma EC.8 in Appendix EC.5).

Summing over all 1 s ak, we get an expression on the order of the first term in (29). Of course,

under our algorithm pkij(t) is random. Fortunately, here the loss given by the left-hand-side of (29)

accumulates at the same rate as the probability pkij(t) of choosing a server (which will not be the

case for the proof of Lemma 4 in Appendix EC.2.4). Thus, we may view the time as being slowed

down at the rate of
PJ

j=1 p
k
ij(t), and expect the bound in (29) to hold. However, the tricky part is

that the value of pkij(t) also depends on previous values of Ck
ij(s), s < t. Our proof uses a delicate

martingale argument to take care of such dependency.

Next we explain how to derive the upper bound to E [A2(t)] in (31) from Lemma 3.

Remark EC.2. First, given a sequence of arrival times ⇤, by re-indexing the clients in the order

of their arrival times, we have

TX

t=1

A2(t) = V
IX

i=1

mi(T )X

k=1

t2(k)X

t=t1(k)

JX

j=1

�
Ck

ij(t)�C⇤
ij

�
pkij(t),

where mi(T ) is the total number of arrivals of class i up to time slot T. Since Lemma 3 holds for

any client k, we have

TX

t=1

E⇤ [A2(t)] V
IX

i=1

mi(T )X

k=1

⇣
4
p
2Jak logak +

⇣
4
p
2 logak +3

⌘
µ
⌘
.



ec8 e-companion to Hsu et al.: Integrate Online Learning and Adaptive Control

Note that ak has mean N , and further both
p
x logx and

p
logx are concave functions. Moreover,

E [mi(T )] = �iT/N . Taking the expectation of ak and then ⇤ over both sides of the last displayed

equation and applying Jensen’s inequality, we get the desired (31):

1

TV

TX

t=1

E [A2(t)]
�

N

⇣
4
p

2JN logN +
⇣
4
p
2 logN +3

⌘
µ
⌘
.

Finally, we present the proof of Lemma 3.

Proof of Lemma 3. Fix k, i. Without loss of generality, we can take t1(k) = 1, i.e., we label

the first time-slot as the time-slot when this particular client arrives to the system. Recall that

hk
ij(t) is the number of tasks from this particular client that have been assigned to server j by

the end of time t, and hk
i (t) =

PJ
j=1 h

k
ij(t). For t= 0, we take hk

ij(0) = hk
i (0) = 0. In the definition

of the event Fj(t) below, in order to avoid the di�culty of division by zero, we further define

bhk
ij(t) =max{hk

ij(t),1} and bhk
i (t) =max{hk

i (t),1}. Then, for each j = 1, . . . , J , define the event

Fj(t) =

8
<

:C
k

ij(t� 1)�C⇤
ij 

vuut2 logbhk
i (t� 1)

bhk
ij(t� 1)

9
=

; ,

where C
k

ij(t� 1) is the empirical average of the received payo↵s at the end of time slot t� 1. We

let Qk
ij(t) =Ck

ij(t)�C⇤
ij  1. Then

t2(k)X

s=1

Qk
ij(s)p

k
ij(s)

t2(k)X

s=1

Qk
ij(s)p

k
ij(s)1Fj(s) +

t2(k)X

s=1

pkij(s)1F c
j (s)

. (EC.11)

We first bound the expectation of the first term in (EC.11). By the definition of the event Fj(t)

and the definition of the UCB estimate Ck
ij(t),

t2(k)X

s=1

Qk
ij(s)p

k
ij(s)1Fj(s) 

t2(k)X

s=1

2

vuut2 logbhk
i (s� 1)

bhk
ij(s� 1)

pkij(s)

 2
p
2 logak

t2(k)X

s=1

s
1

bhk
ij(s� 1)

pkij(s). (EC.12)

Recall that Y k
ij(t) is the actual number of tasks served by server j at time slot t. We now show that

E⇤

"
t2(k)X

s=1

s
1

bhk
ij(s� 1)

Y k
ij(s)

#
=E⇤

"
t2(k)X

s=1

s
1

bhk
ij(s� 1)

pkij(s)

#
. (EC.13)
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To see this, let Ft denote the filtration (which contains all the system information) up to the end

of time-slot t. In particular, Y k
ij(s) and pkij(s) are measurable with respect to Ft for all s t. Let

Mt ,

tX

s=t1(k)

s
1

bhk
ij(s� 1)

(Y k
ij(s)� pkij(s)).

Since E⇤[Y k
ij(s+1)|pkij(s+1)] = pkij(s+1), we have E⇤[Y k

ij(s+1)�pkij(s+1)|Fs] = 0. It then follows

that Mt is martingale. Further, note that t2(k) is the minimum between T and the first time that

hk
i (t) exceeds ak. Hence, t2(k) is a stopping time with respect to the filtration Ft and is upper

bounded by T. Invoking the Optional Stopping Theorem (Hajek 2015, Section 10.4), we then have

E[Mt2(k)] = 0, which is precisely (EC.13).

By definition, Y k
ij(t) = hk

ij(t)�hk
ij(t� 1). It follows that

t2(k)X

s=1

s
1

bhk
ij(s� 1)

Y k
ij(s) =

t2(k)X

s=1

s
1

bhk
ij(s� 1)

�
hk
ij(s)�hk

ij(s� 1)
�

 2µj +

Z hk
ij(t2(k))�1

1

1p
x
dx

 2µj +2
q
hk
ij(t2(k)),

where the second-to-last step follows because whenever hk
ij(t) = 0, we must have hk

ij(t)�hk
ij(t�1) =

0 and we always have hk
ij(t)�hk

ij(t�1) µj. Therefore, summing the last displayed equation from

j = 1 to j = J , we get that

JX

j=1

t2(k)X

s=1

s
1

bhk
ij(s� 1)

Y k
ij(s) 2µ+2

JX

j=1

q
hk
ij(t2(k)) 2µ+2

vuutJ
JX

j=1

hk
ij(t2(k)) = 2µ+2

p
Jak,

where the second inequality holds due to the Cauchy–Schwarz inequality.

Combining the last displayed equation with (EC.12) and (EC.13), we have

E⇤

"
JX

j=1

t2(k)X

s=1

Qk
ij(s)p

k
ij(s)1Fj(s)

#
 4

p
2Jak logak +4µ

p
2 logak. (EC.14)

To bound the expected value of the second term in (EC.11), we first note that

E⇤

"
t2(k)X

s=1

Y k
ij(s)1F c

j (s)

#
=E⇤

"
t2(k)X

s=1

pkij(s)1F c
j (s)

#
, (EC.15)
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which can be derived similarly to (EC.13). For each integer 0 a ak, define

⌧a =min
�
T +1, inf

�
s� 1 | hk

ij(s� 1)� a
  

.

Note that 1 = ⌧0  ⌧1  · · · ⌧ak = t2(k)+ 1. Then,

t2(k)X

s=1

Y k
ij(s)1F c

j (s)
=

X

a2[0,ak�1]:⌧a+1>⌧a

⌧a+1�1X

s=⌧a

Y k
ij(s)1F c

j (s)

=
X

a2[0,ak�1]:⌧a+1>⌧a

Y k
ij(⌧a+1 � 1)1F c

j (⌧a+1�1)

 µj +µj

X

a2[1,ak�1]:⌧a+1>⌧a

1F c
j (⌧a+1�1), (EC.16)

where the second equality holds because across all s 2 [⌧a, ⌧a+1 � 1], the value of Y k
ij(s) can be

non-zero only at ⌧a+1� 1 (otherwise, hk
ij(s) will be at least a+1 before ⌧a+1� 1, contradicting the

definition of ⌧a+1). Combining (EC.15) and (EC.16) yields that

E⇤

"
t2(k)X

s=1

pkij(s)1F c
j (s)

#

 µj +µj

X

a2[1,ak�1]:⌧a+1>⌧a

P⇤

�
F c

j (⌧a+1 � 1)
 
. (EC.17)

Fix an integer a such that ⌧a+1 > ⌧a. It follows that the number hk
ij(⌧a�1) of tasks assigned to server

j by the end of time-slot ⌧a � 1 must be exactly equal to a. Note that ⌧a � 1 ⌧a+1 � 2< ⌧a+1 � 1.

Hence, we must also have hk
ij(⌧a+1 � 2) = a and thus the empirical average C

k

ij(⌧a+1 � 2) is the

average of exactly a i.i.d. Bernoulli random variables X(1), . . . ,X(a) with mean C⇤
ij. Moreover,

a hk
i (⌧a+1 � 2) ak. Therefore,

F c
j (⌧a+1 � 1)⇢[ak

⌘=a

(
1

a

aX

u=1

X(u)�C⇤
ij >

r
2 log ⌘

a

)
.

By the union bound,

P⇤

�
F c

j (⌧a+1 � 1)
 


akX

⌘=a

P
(Pa

u=1X(u)

a
�C⇤

ij >

r
2 log ⌘

a

)


akX

⌘=a

1

⌘4
 1

a4
+

Z 1

a

1

⌘4
d⌘ 4

3a3
,
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where the second inequality is due to Lemma EC.8. Substituting it into (EC.17), we then have

E⇤

"
t2(k)X

s=1

pkij(s)1F c
j (s)

#
 µj +µj

1X

a=1

4

3a3
= 3µj. (EC.18)

The final result follows by combining (EC.14) and (EC.18) with (EC.11). ⇤

EC.2.4. Proof of Lemma 4.

We now bound the contribution to 1
T

PT
t=1E[A3(t)] by the k-th arriving client of class i, using

similar ideas as Appendix EC.2.3. Here, however, we face a major new di�culty related to the

issue of “learning slow-down” discussed in Section EC.1. Note that the rate with which tasks of

this client are assigned to the servers at time t is given by
PJ

j=1 p
k
ij(t), which may decrease as

there are more clients in the system. We thus refer to this value as the “learning rate,” since

it determines how quickly (or slowly) the system can receive payo↵ feedback for this client and

improve her payo↵ estimate. However, the loss in A3(t) accumulates at a di↵erent rate bpkij(t). We

therefore refer to
PJ

j=1 bpkij(t) as the “loss-accummulation rate.” If the learning rate is small and the

loss-accummulation rate is large, it is possible that the total loss may grow unboundedly because

the system does not learn as quickly as it incurs losses. The following lemma thus becomes crucial.

It shows that, thanks to our choice in Algorithm 1 that all the UCB estimates are no greater

than 1 and � > 1, the learning rate for any client will be at most a constant factor away from the

loss-accummulation rate. We will then use this lemma to show that 1
T

PT
t=1E[A3(t)] must then be

upper-bounded by a constant.

Lemma EC.2. At any time t, suppose that [bpkij(t)] and [pkij(t)] are the maximizers of f(⇡|n(t),C⇤)

and f(⇡|n(t),C(t)) defined in (25), respectively, subject to the constraint (15). Then, for all clients

k of all classes i, the following holds:
PJ

j=1 bpkij(t)PJ
j=1 p

k
ij(t)


✓

�

�� 1

◆2

.

The main idea behind Lemma EC.2 is as follows. Note that for any W, the maximizer of

f(⇡|n(t),W) subject to server capacity constraint (15) must satisfy the KKT condition:

JX

j=1

⇡k
ij(t) =

1

V minj{qj(t)+ ��W k
ij}

,
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where qj(t) � 0 is the optimal dual variable corresponding to server j’s capacity constraint. For

either W =C⇤ or W =C(t), the value of W k
ij cannot di↵er by more than 1. Hence, the value of

qj(t)+ ��W k
ij cannot di↵er by more than a factor �

��1
. This implies that the value of

PJ
j=1 p

k
ij(t)

or
PJ

j=1 bpkij(t) across di↵erent clients cannot di↵er much either. The result of Lemma EC.2 can

then be readily shown. Below we give the formal proof.

Proof of Lemma EC.2. Fix t and client k of class i. Let n = n(t) and recall that Ck
ij(t)  1.

First, consider [bpkij(t)], which is the maximizer of f(p|n,C⇤)) over the constraint (15). Let qj(t)� 0

be the optimal dual variable corresponding to server j’s capacity constraint in (15). By the KKT

condition, for any client k of any class i, we have

JX

j=1

bpkij(t) =
1

V minj{qj(t)+ ��C⇤
ij}

 1

V (�� 1)
, (EC.19)

where the inequality holds because qj(t) � 0 and C⇤
ij  1. We now compare the pair (i, k) with

another pair (i0, k0) 6= (i, k). Note that for any c, c0 2 [0,1], we have

qj(t)+ �� c� qj(t)+ �� 1� �� 1

�
(qj(t)+ �� c0) . (EC.20)

Applying this relationship to the KKT condition (EC.19), we have

JX

j=1

bpkij(t) =
1

V minj{qj(t)+ ��C⇤
ij}

 �/(�� 1)

V minj{qj(t)+ ��C⇤
i0j}

=
�

�� 1

JX

j=1

bpk0i0j(t).

By the capacity constraint (15),

JX

j=1

bpkij(t)+
X

(i0,k0) 6=(i,k)

JX

j=1

bpk0i0j(t) µ,

where µ,

PJ
j=1 µj. Combining the above two inequalities, we have

JX

j=1

bpkij(t)
µ

1+ (n(t)� 1)(�� 1)/�
 �µ

(�� 1)n(t)
, PA,

where n(t) =
PI

i=1 ni(t). Combining the last displayed equation with (EC.19), we have

JX

j=1

bpkij(t)min

⇢
PA,

1

V (�� 1)

�
. (EC.21)
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Next, we consider [pkij(t)], which is the maximizer of f(p|n,C(t))) over the constraint (15). Let

qj(t) now denote the optimal dual variable for this optimization problem. Using the KKT condition

again, we have

JX

j=1

pkij(t) =
1

V minj{qj(t)+ ��Ck
ij(t)}

.

Combining the last displayed equation with (EC.20) again, we have that for any pairs (i, k) and

(i0, k0),

JX

j=1

pkij(t)�
(�� 1)/�

V �minj{qj(t)+ ��Ck0
i0j(t)}

=
�� 1

�

JX

j=1

pk
0

i0j(t).

Now, consider the following two sub-cases. In sub-case 1, suppose that qj(t) > 0 for all j, which

means that all servers are fully utilized. Then, we get

JX

j=1

µj =
JX

j=1

pkij(t)+
X

(i0,k0) 6=(i,k)

JX

j=1

pk
0

i0j(t).

Hence, it follows from the last two displayed equations that

JX

j=1

pkij(t)�
µ

1+ �(n(t)� 1)/(�� 1)
� (�� 1)µ

�n(t)
, PB.

In sub-case 2, suppose that there is some server j0 such that qj0(t) = 0. Then

JX

j=1

pkij(t) =
1

V minj{qj(t)+ ��Ck
ij(t)}

� 1

V (qj0(t)+ ��Ck
i,j0

)
� 1

V �
.

Combining these two sub-cases together, we have

JX

j=1

pkij(t)�min

⇢
PB,

1

V �

�
. (EC.22)

Combining (EC.21) and (EC.22), we have

PJ
j=1 bpkij(t)PJ
j=1 p

k
ij(t)


min{PA,

1
V (��1)

}
min{PB,1/(V �)} 

✓
�

�� 1

◆2

.

⇤
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Next, we give the intuition behind the proof of Lemma 4.

Remark EC.3. Recall that hk
ij(t� 1) is the number of tasks from this particular client that have

been assigned to server j by the end of time t� 1, and hk
i (t� 1) =

PJ
j=1 h

k
ij(t� 1). Further, let

hk
ij(0) = hk

i (0) = 0. For each time-slot s and 1 j  J , define the “good” event

Gj(s) =

(
hk
ij(s� 1)� 1,C⇤

ij �C
k

ij(s� 1)

s
2 loghk

i (s� 1)

hk
ij(s� 1)

)

[
�
hk
ij(s� 1) = 0

 
,

where C
k

ij(s � 1) is the empirical average of the received payo↵s at the end of time slot s � 1.

Let G(s) = \J
j=1Gj(s). Note that on the event G(s), the UCB estimates satisfy Ck

ij(s) � C⇤
ij and

thus the terms
�
C⇤

ij �Ck
ij(s)

�
bpkij(s) on the left hand side of (30) are negative. Hence, to prove the

lemma, it su�ces to bound the sum due to the probability of the “bad” event Gc(s) (i.e., the

complement of G(s)), which accumulates at the rate of
PJ

j=1 bpkij(s). Thanks to Lemma EC.2, this

loss-accumulation rate is upper bounded by a constant multiplied by the learning rate
PJ

j=1 p
k
ij(s).

Finally, using concentration bounds and a delicate martingale argument, we can show that the

probability of the bad event Gc(s) decreases polynomially fast as the learning rate accumulates,

resulting to the bound in (30).

Proof of Lemma 4. Without loss of generality, we take t1(k) = 1, i.e., we label the first time-slot

as the time-slot when this particular client arrives to the system. Let c� = �2/(� � 1)2. Let 1G(s)

denote the indicator variable which is 1 if G(s) holds and 0 otherwise. Then

t2(k)X

s=1

�
C⇤

ij �Ck
ij(s)

�
bpkij(s)

=
t2(k)X

s=1

�
C⇤

ij �Ck
ij(s)

�
bpkij(s)1G(s) +

t2(k)X

s=1

�
C⇤

ij �Ck
ij(s)

�
bpkij(s)1Gc(s)


t2(k)X

s=1

bpkij(s)1Gc(s),

where the last inequality holds because C⇤
ij  1 and C⇤

ij Ck
ij(s) on the event G(s). Summing over

all server j, we obtain

JX

j=1

t2(k)X

s=1

�
C⇤

ij �Ck
ij(s)

�
bpkij(s)

JX

j=1

t2(k)X

s=1

bpkij(s)1Gc(s)
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 c�

t2(k)X

s=1

1Gc(s)

JX

j=1

pkij(s),

where the last inequality holds because 1Gc(s) does not depend on the index j, and in view of

Lemma EC.2. Taking the conditional expectation given ⇤ (i.e., the realization of arriving times)

over both sides of the last displayed equation, we obtain

E⇤

"
JX

j=1

t2(k)X

s=1

�
C⇤

ij �Ck
ij(s)

�
bpkij(s)

#
 c�E⇤

"
t2(k)X

s=1

1Gc(s)

JX

j=1

pkij(s)

#
. (EC.23)

Similar to Y j
l (t) in Section 3, denote Y k

ij(t) as the actual number of tasks from client k of class

i served by server j at time slot t. We now show that

E⇤

"
t2(k)X

s=1

1Gc(s)

JX

j=1

pkij(s)

#
=E⇤

"
t2(k)X

s=1

1Gc(s)

JX

j=1

Y k
ij(s)

#
. (EC.24)

To see this, let Ft denote the filtration (which contains all the system information) up to the end

of time-slot t. In particular, Y k
ij(s) and 1Gc(s+1) are measurable with respect to Ft for all s  t.

Let Mt ,
Pt

s=1 1Gc(s)

PJ
j=1

�
Y k
ij(s)� pkij(s)

�
. Since E⇤[Y k

ij(s+1)� pkij(s+1)|Fs] = 0, it follows that

Mt is martingale. Further, note that t2(k) is the minimum between T and the first time that

hk
i (t) exceeds ak. Hence, t2(k) is a stopping time with respect to the filtration Ft and is upper

bounded by T. Invoking the Optional Stopping Theorem (Hajek 2015, Section 10.4), we then have

E[Mt2(k)] = 0, which is precisely (EC.24). In view of (EC.23) and (EC.24), to prove the lemma it

su�ces to show that

E⇤

"
t2(k)X

s=1

1Gc(s)

JX

j=1

Y k
ij(s)

#
 3Jµ. (EC.25)

Towards this end, for each integer a= 0,1, ..., ak, define

⌧a =min
�
T +1, inf

�
s� 1 | hk

i (s� 1)� a
  

.

In other words, ⌧a is the first time-slot s such that the number of client k’s tasks already assigned

to servers at the end of the previous time-slot s�1 is at least a. Note that 1 = ⌧0  ⌧1  · · · ⌧ak =

t2(k)+ 1. Then, we have

t2(k)X

s=1

1Gc(s)

JX

j=1

Y k
ij(s) =

X

a2[0,ak�1]:⌧a+1>⌧a

⌧a+1�1X

s=⌧a

1Gc(s)

JX

j=1

Y k
ij(s)
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=
X

a2[0,ak�1]:⌧a+1>⌧a

1Gc(⌧a+1�1)

JX

j=1

Y k
ij(⌧a+1 � 1)

 µ+µ
X

a2[1,ak�1]:⌧a+1>⌧a

1Gc(⌧a+1�1), (EC.26)

where the second equality holds because across all s2 [⌧a, ⌧a+1�1], the value of
PJ

j=1 Y
k
ij(s) can be

non-zero only at the last time-slot ⌧a+1 � 1 (otherwise, hk
i (s) will be at least a+1 before ⌧a+1 � 1,

contradicting the definition of ⌧a+1); and the last inequality holds because
PJ

j=1 Y
k
ij(s) µ and it

can also be non-zero at most once across all s2 [⌧0, ⌧1 � 1].

Now, fix an integer a such that ⌧a+1 > ⌧a. It follows that the number hk
i (⌧a�1) of tasks assigned

by the end of time-slot ⌧a � 1 must be exactly equal to a. Note that ⌧a � 1 ⌧a+1 � 2< ⌧a+1 � 1.

Hence, we must also have hk
i (⌧a+1 � 2) = a. By the union bound,

P⇤ {Gc(⌧a+1 � 1)}
JX

j=1

P⇤

�
Gc

j(⌧a+1 � 1)
 
. (EC.27)

Fix a 1  j  J . When hk
ij(⌧a+1 � 2) � 1, the empirical average C

k

ij(⌧a+1 � 2) is the average of

hk
ij(⌧a+1�2) i.i.d. Bernoulli random variables X(1),X(2), . . . with mean C⇤

ij. Although hk
ij(⌧a+1�2)

is random, it holds that hk
ij(⌧a+1 � 2) hk

i (⌧a+1 � 2) = a. Therefore,

P⇤

�
Gc

j(⌧a+1 � 1)
 

 P⇤

(
81 r a :

1

r

rX

u=1

X(u)�C⇤
ij <�

r
2 loga

r

)


aX

r=1

P
(
1

r

rX

u=1

X(u)�C⇤
ij <�

r
2 loga

r

)


aX

r=1

1

a4
 1

a3
, (EC.28)

where the second inequality is due to the Cherno↵-Hoe↵ding Bound (see Lemma EC.8 in

Appendix EC.5). Combining (EC.26)-(EC.28) yields

E⇤

"
t2(k)X

s=1

1Gc(s)

JX

j=1

Y k
ij(s)

#
 µ+µJ

1X

a=1

1

a3
 µ+3µJ/2 3µJ,

which is exactly (EC.25). The result of the lemma then follows. ⇤



e-companion to Hsu et al.: Integrate Online Learning and Adaptive Control ec17

EC.3. Proof of Theorem 1

To prove Theorem 1, we first show that when the number of users in the system is large enough,

all the servers must be busy (Lemma EC.3). Then, we show that when the number of users in the

system is su�ciently large, the total number of departures will first-order stochastically dominate

a Binomial random variable with mean (µ + �)/(2N) (Lemma EC.4). Finally, we construct a

coupling between the system and a Geom/Geom/µ queue to bound n(t) and obtain the final result

(Lemma EC.5 and Lemma EC.6).

Lemma EC.3. If n(t)� µV �, then for every server j,

X

i2I(t)

ni(t)X

k=1

pkij(t) = µj.

Proof of Lemma EC.3. We prove it by contradiction. Suppose that the conclusion does not

hold. Then there must exist a server j0 such that qj0(t) = 0. Since [pkij(t)] solves (14), it follows

from the KKT condition that for every user k of class i,

JX

j=1

pkij(t) =
1

V minj{qj(t)+ ��Ck
ij(t)}

� 1

V �
.

Hence, we have
X

i2I(t)

ni(t)X

k=1

JX

j=1

pkij(t)�
n(t)

V �
� µ=

JX

j=1

µj,

where the second inequality holds due to the assumption that n(t)� µV �. On the other hand, due

to the server capacity constraint,
X

i2I(t)

ni(t)X

k=1

pkij(t) µj.

Combining the last two displayed equations yields that

X

i2I(t)

ni(t)X

k=1

pkij(t) = µj

for all j, which leads to a contradiction. ⇤

Next, let

⌧ ⇤ = µ�max

⇢
V,

2µ2

(µ��)(�� 1)

�
. (EC.29)

We present the following lemma which is the key to bound Theorem 1.
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Lemma EC.4. When the number of clients in the system is su�ciently large, i.e., if

n(t)� ⌧ ⇤, (EC.30)

then the number of total departures at time t, D(t), first-order stochastically dominates W , where

W ⇠Binom

✓
µ,

µ+�

2Nµ

◆
,

i.e., P{D(t)� x}� P{W � x} for all x� 0.

Proof of Lemma EC.4. According to Algorithm 1 (lines 11 to 14), each server has µj capacity

and thus makes µj independent selections of users to serve. In total, there are µ such selections at

every time-slot. Let us index these selections by 1,2, . . . , µ. Note that di↵erent selections may select

the same user. Let S` denote the set of users (i, k) who has been selected before the `-th selection.

Let X` = 1 if the `-th selected user is not in S`, and X` = 0, otherwise. Suppose that server j makes

the `-th selection. Then, conditioned on S`, X`(t) is a Bernoulli random variable with mean

P{X`(t) = 1|S`}=
1

µj

X

i2I(t)

ni(t)X

k=1

pkij(t)1{(i,k)/2S`}

= 1� 1

µj

X

i2I(t)

ni(t)X

k=1

pkij(t)1{(i,k)2S`}

� 1�µmax
i2I(t)

max
1kni(t)

pkij(t),

where the second equality holds due to Lemma EC.3, and the last inequality holds because µj � 1

and |S`| µ. Using (EC.40) in the proof of Lemma EC.7, we have

JX

j=1

pkij(t)
�µ

(�� 1)n(t)
, 8(i, k).

Combining the last two displayed equations yields that

P{X`(t) = 1|S`}� 1� �µ2

(�� 1)n(t)

� µ+�

2µ
, (EC.31)
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where the last inequality holds due to the assumption (EC.30). Let

Y`
i.i.d.⇠ Bern

✓
µ+�

2µ

◆
, `= 1, . . . , µ. (EC.32)

Then we can couple X` and Y` such that X` � Y` for all 1 ` µ in the following way by starting

from `= 1.

If X` = 1, i.e., a user (i, k) /2 S` is chosen at the `-th selection, then independently of everything

else generate Y` = 1 with probability

µ+�

2µP{X` = 1|S`}
(EC.31)

 1

and Y` = 0 otherwise. If X` = 0, i.e., a user (i, k)2 S` is chosen at the `-th selection, then let Y` = 0.

Note that by construction,

P{Y` = 1|S`}= P{X` = 1|S`}
µ+�

2µP{X` = 1|S`}
=

µ+�

2µ
.

Hence, Y` is independent of S`. As a consequence,

P{Y` = 1|Y1, . . . , Y`�1, Y`+1, Yµ}

=ES`
[P{Y` = 1|S`, Y1, . . . , Y`�1, Y`+1, Yµ}]

=ES`
[P{Y` = 1|S`}] =

µ+�

2µ
.

Thus, Y`’s are independently and identically distributed as specified in (EC.32). Moreover, Y` X`.

Let Z`
i.i.d.⇠ Bern(1/N), which are independent of Y`’s. For each ` such that Y` = 1 or X` = 1, the user

selected at the `-th selection has not been selected before. Thus, it runs out of tasks and leaves the

system immediately with probability equal to 1/N , independently of everything else. Thus, we can

further construct a coupling such that the `-th selected user leaves the system immediately after

the `-th selection if and only if Z` = 1. Hence, the total number of departures D(t) satisfies that

D(t)�
µX

`=1

Y`Z`.

The proof is complete by letting

W ,

µX

`=1

Y`Z` ⇠Binom

✓
µ,

µ+�

2Nµ

◆
.

⇤
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To complete the proof of Theorem 1, we first establish a coupling between n(t) and m(t), which

is a Geom/Geom/µ queue with dynamics given by

m(t+1) = [m(t)+U(t+1)�D0(t)]+ , (EC.33)

where [x]+ =max{x,0} and

D0(t)⇠Binom

✓
µ,

µ+�

2µN

◆
.

Then, we prove that E [m(t)] is bounded and E [n(t)] E [m(t)] + ⌧ ⇤ +1 for all t in Lemma EC.5

and Lemma EC.6, respectively.

Lemma EC.5. The queue m(t) following (EC.33) is stable and satisfies

E [m(t)]E [m(1)] �+µ

µ��
.

where E [m(1)] denotes the mean queue length in steady state.

Proof of Lemma EC.5. We first show that m(t) is stable and bound E [m(1)] from the above.

Let

bj = P{D0(t) = j}, 8j � 0.

and b=E [D0(t)]. Note that m(t) is a discrete-time Markov chain with transition matrix given by

P =

2

66666666666664

1� a a

c1 d1 d0

c2 d2 d1 d0

c3 d3 d2 d1 d0

...
...

...
...

...
. . .

3

77777777777775

,

where

a= �/N, d0 = ab0, dj = abj +(1� a)bj�1, j � 1

cj = 1�
jX

k=0

dk, j � 1.
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Since a < b, it is shown in Neuts (1981) (also cf. (Alfa 2016, Section 4.8.1)) that P is positive

recurrent and the steady-state distribution is given by

⇡0 =
b0(1� r)

b0(1� r)+ r
, ⇡k =

rk(1� r)

b0(1� r)+ r
, 8k� 1,

where r is the unique solution in (0,1) of

1X

k=0

dkr
k�1 = 1.

Plugging in the expression of dk, we find that

1X

k=0

dkr
k�1 =

✓
1+ a

1� r

r

◆
E
h
rD

0(t)
i

=

✓
1+ a

1� r

r

◆✓
1� b(1� r)

µ

◆µ

,

where the last equality holds in view of the moment generating function of Binomial distribution.

Combining the last two displayed equations gives

✓
1+ a

1� r

r

◆✓
1� b(1� r)

µ

◆µ

= 1.

Using the expression 1+x ex for all x2R, we get that

ea(1�r)/r�b(1�r) � 1,

which further implies that r a/b. Hence, the mean queue length in steady state satisfies

E [m(1)] =
X

k�1

k⇡k =
r

(b0(1� r)+ r)(1� r)

 1

1� r
 b

b� a
=

�+µ

µ��
.

Finally, we complete the proof by showing that E [m(t)] is non-decreasing in t. Let Z(t � 1) =

U(t)�D0(t� 1). By recursively applying the Lindely’s recursion (Ganesh et al. 2004, Lemma1.1):

m(t) = [m(t� 1)+Z(t� 1)]+ ,
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we get that

m(t) =

"
t�1X

s=0

Z(s),
t�1X

s=1

Z(s), . . . ,Z(t� 1)

#

+

.

Let X(0) = 0 and X(s) =Z(0)+ . . .+Z(s� 1). Since Z(t) are i.i.d. across t,

m(t)
d
=[Z(0),Z(0)+ z(1), . . . ,Z(0)+ . . .+Z(t� 1)]+

(d)
= max

0st
{X(s)},

where
d
= means “equal in distribution.” Thus,

m(t+1)
(d)
= max

0st+1
{X(s)}

first-order stochastically dominates m(t). As a consequence, E [m(t+1)]�E [m(t)] . ⇤

Next, we construct the coupling between n(t) and m(t) and show that n(t) is upper bounded by

m(t) plus a constant. Recall that

n(t+1) = n(t)+U(t+1)�D(t),

where U(t)⇠Bern(�/N). In view of Lemma EC.4, when n(t)� ⌧ ⇤, we can couple D(t) and D0(t)

such that D(t)�D0(t). We than have the following lemma.

Lemma EC.6. For any time t, the total number of users n(t) in the system is bounded by

n(t)m(t)+ ⌧ ⇤ +1, (EC.34)

where m(t) is the Geom/Geom/µ queue defined in (EC.33).

Proof of Lemma EC.6. We prove this by induction. When t= 0, (EC.34) holds trivially. Sup-

pose (EC.34) holds for t, we prove that it also holds for t+ 1. In particular, if n(t)  ⌧ ⇤, since

U(t+1) 1, it holds that n(t+1) ⌧ ⇤+1 and thus (EC.34) holds. If n(t)� ⌧ ⇤, since D0(t)D(t),

it follows that

n(t+1) = n(t)+U(t+1)�D(t)

 n(t)+U(t+1)�D0(t)

m(t)+U(t+1)�D0(t)+ ⌧ ⇤ +1

m(t+1)+ ⌧ ⇤ +1.
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Therefore, (EC.34) holds for t+1 in all cases. ⇤

It immediately follows from Lemma EC.6 and Lemma EC.5 that

E [n(t)]E [m(t)] + ⌧ ⇤ +1

 �+µ

µ��
+ ⌧ ⇤ +1

=
2µ

µ��

✓
1+

µ2�

�� 1

◆
+µ�V,

where the last equality follows from (EC.29).

EC.4. Bounds on the Expected Number of Client Departures

Lemma EC.7. Given n(t) = [ni(t)], let p(t) = [pkij(t)] denote the vector of assignment probabilities

computed in Step 2 of the proposed Algorithm 1 at time-slot t. Fix a class i with ni(t)� 1. Let Di(t)

denote the number of client departures of class i at time-slot t. Conditioned on n(t) and p(t), the

expectation of Di(t) satisfies the following bounds:

E [Di(t)|n(t),p(t)]�
1

N

ni(t)X

k=1

JX

j=1

pkij(t)�
�2µ2

2(�� 1)2ni(t)N 2
, (EC.35)

E [Di(t)|n(t),p(t)]
1

N

ni(t)X

k=1

JX

j=1

pkij(t)
µ

N
, (EC.36)

and

E
⇥
D2

i (t) | n(t),p(t)
⇤
 µ2

N
, (EC.37)

where µ=
PJ

j=1 µj.

The intuition behind this lemma is as follows. Note that in Step 3 of the proposed Algorithm 1,

each unit service of server j has
Pni(t)

k=1 pkij(t)/µj probability to pick a client from class i. Hence, if

all units of the µj service rate of all servers j were fully used, the expected number of departures of

class i would have been 1
N

Pni(t)
k=1

PJ
j=1 p

k
ij(t), which appears in both (EC.35) and (EC.36). However,

note that if a client of class i already runs out of tasks after she is picked by one server, there will

be no additional departure when a subsequent server picks this client again. The additional term
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�2µ2

2(��1)2ni(t)N2 in the lower bound (EC.35) accounts for such descrepancy. We also note that this

additional term decreases with N and ni(t), which is true because the larger the values of N and

ni(t), the smaller the departure probability
PJ

j=1 p
k
ij(t)/(Nµj) of a particular client, and hence the

smaller the discrepancy.

Proof of Lemma EC.7. Denote Ek
i (t) as the event that client k of class i remains in the system

at the end of time t, k = 1, ..., ni(t). Recall that in Step 3 of our proposed Algorithm 1, each unit

service of server j has pkij(t)/µj probability of picking client k of class i, independently of other

units of service of the same or other servers. Thus, if this client has not run out of tasks yet, it has

pkij(t)/(Nµj) probability to leave the system. We then have

P[Ek
i (t)|n(t),p(t)] =

JY

j=1

✓
1�

pkij(t)

Nµj

◆µj

,

and

E[Di(t)|n(t),p(t)] =
ni(t)X

k=1

�
1�P[Ek

i (t)]
�
. (EC.38)

Next, we derive the desired lower and upper bounds. In order to derive a lower bound, we use the

inequality 1�x e�x  1�x+x2/2 for x� 0. We have

1�P[Ek
i (t)|n(t),p(t)]� 1� exp

 
�

JX

j=1

pkij(t)

N

!

� 1

N

JX

j=1

pkij(t)�
1

2N 2

 
JX

j=1

pkij(t)

!2

.

Hence,

E[Di(t)|n(t),p(t)]�
1

N

ni(t)X

k=1

JX

j=1

pkij(t)�
1

2N 2

ni(t)X

k=1

 
JX

j=1

pkij(t)

!2

. (EC.39)

To bound the second term of (EC.39), we now show that, for all k= 1, ..., ni(t),

JX

j=1

pkij(t)
�µ

(�� 1)n(t)
 �µ

(�� 1)ni(t)
. (EC.40)

To see this, recall that p(t) solves the maximization problem (14) subject to the capacity constraint

(15). Let qj(t)� 0 be the optimal dual variable corresponding to server j’s capacity constraint in
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(15). Then, consider any two di↵erent clients: client k of class i and client k0 of class i0, (i0, k0) 6= (i, k).

We have

qj(t)+ ��Ck
ij(t)� qj(t)+ �� 1� �� 1

�

⇣
qj(t)+ ��Ck0

i0j

⌘
,

where we have used Ck
ij(t) 1 and Ck0

i0j � 0. Hence, by the KKT condition, we have,

JX

j=1

pkij(t) =
1

V minj{qj(t)+ ��Ck
ij(t)}

 �/(�� 1)

V minj{qj(t)+ ��Ck0
i0j}

=
�

�� 1

JX

j=1

pk
0

i0j(t).

By the capacity constraint (15), we have

X

i2I(t)

ni(t)X

k=1

pkij(t) µj.

Thus, summing over all j, we have

µ=
JX

j=1

µj �
X

i2I(t)

ni(t)X

k=1

JX

j=1

pkij(t)

�
JX

j=1

pkij(t)+
X

i02I(t),k0=1,...,ni0 (t)
(i0,k0) 6=(i,k)

JX

j=1

pk
0

i0j(t)

� (�� 1)n(t)

�

JX

j=1

pkij(t).

The inequality (EC.40) then follows. Substituting (EC.40) into (EC.39), we then have,

E[Di(t)|n(t),p(t)]�
1

N

ni(t)X

k=1

JX

j=1

pkij(t)�
�2µ2

2(�� 1)2ni(t)N 2
.

This proves (EC.35).

On the other hand, in order to obtain an upper bound on (EC.38), we iteratively apply the

relationship (1�x)(1� y)� 1� (x+ y) for all x, y� 0. We then obtain

P[Ek
i (t)|n(t),p(t)]� 1�

JX

j=1

µj

pkij
Nµj

= 1� 1

N

JX

j=1

pkij.

Substituting into (EC.38), the inequality (EC.36) then follows.

Finally, to show (EC.37), we use Di(t)
PJ

j=1 µj = µ. Combining with (EC.36), we then have

E
⇥
D2

i (t) | n(t),p(t)
⇤
E [Di(t) | n(t),p(t)]µ µ2

N
.

⇤
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EC.5. Cherno↵-Hoe↵ding Bound

We cite the following lemma from Fact 1 in Auer et al. (2002a), which is simply the Cherno↵-

Hoe↵ding bound.

Lemma EC.8. Let X(s), s= 1,2, ... be a sequence of i.i.d. Bernoulli random variables with mean

C⇤
ij. For any given positive integer a and any real number t� 1, the followings hold:

P
(Pa

s=1X(s)

a
�C⇤

ij �
r

2 log t

a

)
 1

t4
,

and

P
(Pa

s=1X(s)

a
�C⇤

ij �
r

2 log t

a

)
 1

t4
.

EC.6. Derivation of the Continuous-Payo↵ Oracle Upper Bound

In this section, we derive the oracle upper bound under the following continuous payo↵ setting.

First, assume each client l has a payo↵ vector (C⇤
l,1,C

⇤
l,2) independently and uniformly distributed

over the lower triangular part of the unit square ⌦= {(x, y)2 [0,1]2 : x� y}. In other words, let X1

and X2 denote two independent random variables uniformly distribued over [0,1]. Then, (C⇤
l,1,C

⇤
l,2)

has the same distribution as (X(1),X(2)), where X(1) =max{X1,X2} and X(2) =min{X1,X2}.

Note that all clients prefer server 1. However, the total arrival rate of tasks is 1.2, while the server 1

has service rate 1. Thus, the system has to assign tasks from some clients to server 2. To maximize

the total expected payo↵, it is preferable to assign tasks from those clients l with a small gap

C⇤
l,1 �C⇤

l,2 to server 2. In particular, the optimal assignment is the following threshold policy. For

a threshold ⌧ to be determined, assign client l to server 2 if C⇤
l,1 �C⇤

l,2 < ⌧ ; otherwise assign client

l to server 1. In other words, assign client l to server 1 if and only if its payo↵ vector (C⇤
l,1,C

⇤
l,2)

falls into the region ⌦1 , {(x, y)2 [0,1]2 : x2 [⌧,1], y 2 [0, x� ⌧ ]}. Since the area of ⌦1 is (1� ⌧)2/2,

while the area of ⌦ is 1/2, it follows that according to this threshold policy, the fraction of tasks

assigned to server 1 is given by (1� ⌧)2. Thus, to satisfy the capacity constraint of server 1, we

need (1� ⌧)2 = 1/1.2. Next, we calculate the total expected payo↵ under this threshold policy.
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Note that since E
⇥
X(1)

⇤
= 2/3, if all tasks were assigned to server 1, the expected payo↵ per task

would be 2/3. Thus, it su�ces to calculate the expected payo↵ loss per task assigned to server 2,

which is given by

2

Z

⌦\⌦1

(x� y)dxdy,

where the factor of 2 is due to the fact that (X(1),X(2)) is uniformly distributed over ⌦ and hence

its probability density function is equal to 2. Note that

2

Z

⌦\⌦1

(x� y)dxdy= 2

Z ⌧

0

dx

Z x

0

(x� y)dy+2

Z 1

⌧

dx

Z x

x�⌧

(x� y)dy

=

Z ⌧

0

x2dx+

Z 1

⌧

⌧ 2dx

=
1

3
⌧ 3 + ⌧ 2(1� ⌧) = ⌧ 2 � 2

3
⌧ 3.

In conclusion, the total expected payo↵ is given by

1.2⇥
✓
2

3
� ⌧ 2 +

2

3
⌧ 3

◆
= 1.4� 5

9
⇥
p
1.2⇡ 0.7914.

In comparision, if a myopic matching strategy is used, with close-to-1 probability two tasks will

be assigned at each time, one of which will have to be assigned to server 2. Thus, the overall

expected payo↵ is approximately upper-bounded by

1.2⇥
�
E
⇥
X(1)

⇤
+E

⇥
X(2)

⇤�
/2 = 1.2⇥

✓
2

3
+

1

3

◆
/2 = 0.6,

which is consistent with simulation results in Fig. 3(d).

EC.7. Dealing with Server-Side Uncertainty

In the main body of the paper, we have assumed that the service at each server is deterministic.

Specifically, each server j serves exactly µj tasks per time-slot. While this assumption simplifies the

design of Algorithm 1, i.e., the deterministic service capacity µj directly goes into the constraint

(8), it may also limit the applicability of the algorithm in practical situations where the service

of each server may be random and the mean service rate of the server may be unknown. In this
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section, we propose a heuristic solution that extends Algorithm 1 to such more general settings

with server-side uncertainty.

The intuition behind the proposed heuristics is that, since Algorithm 1 is a convex program, we

can develop a dual-based solution, where dual-variables are updated based on the actual number of

tasks served in each time-slot. Thus, such an approach can be used even when the service is random

and the mean service rate is unknown. We start from the convex program (7) for Algorithm 1,

assuming that µj is given and C l
j(t) is fixed for all time t. We associate a dual variable qj for

the constraint (8). Let q= [qj, j 2 S]. It is easy to show that the following dual-based algorithm

will converge to the optimal dual solution as t!1. At each step t, based on ~q(t), each client l

determines its assignment probabilities so that they satisfy the following:

JX

j=1

plj(t) =
1

V minj2S{qj(t)+ ��C l
j(t)}

, (EC.41)

plj(t)� 0, if qj(t)+ ��C l
j(t) =min

j0
{qj0(t)+ ��C l

j0(t)}, (EC.42)

plj(t) = 0, otherwise. (EC.43)

Then, the dual variables are updated by:

qj(t+1) =

"
qj(t)+↵

 
n(t)X

l=1

plj(t)�µj

!#+

, (EC.44)

where ↵ is a positive step-size, and plj(t) is the primal variable computed according to (EC.41)-

(EC.43). For details of the derivation, see Appendix EC.8.

Clearly, the only part of the above iteration that depends on µj is (EC.44). To model the setting

with server-side uncertainty, we assume that the number of tasks that server j can complete in

time-slot t is a random variable dj(t) with mean µj =E[dj(t)]. We assume that dj(t) is independent

across servers and i.i.d. in time. Thus, we replace (EC.44) by the following noisy version:

qj(t+1) =

"
qj(t)+↵

 
n(t)X

l=1

Y l
j (t)� dj(t)

!#+

, (EC.45)

where Y l
j (t) is the actual number of tasks sent from client l to server j at time-slot t (with E

⇥
Y l
j (t)

⇤
=

plj(t)). In this way, the dual update in (EC.45) can be applied even when the service is random and
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the mean service rate µj is unknown. Further, instead of solving the convex problem (7) exactly

(which requires running the dual iterations (EC.45) a large number of times within a time-slot t),

we can run only one iteration of (EC.45) per time-slot t, rendering the time complexity even lower.

This idea is inspired by the removal of time-scale separation in flow-level congestion control (Lin

et al. 2008). There, it was shown that the maximum flow-level stability can still be maintained

with only one iteration of the congestion control algorithm implemented in each time-slot. Here, we

show through simulations that a similar idea can be applied to task assignment without sacrificing

significant payo↵ loss.

Readers familiar with the discussions in Section EC.1 will immediately notice that the dual

variable qj(t) is closely related to the task queue length at server j. Specifically, if we let

Zj(t+1) =

"
Zj(t)+

n(t)X

l=1

Y l
j (t)� dj(t)

#+

, (EC.46)

then Zj(t) is precisely the length of the task queue at server j at time t. Thus, qj(t) and Zj(t)

are simply related by qj(t) = ↵Zj(t). Recall from Section EC.1 that this task queue also delays

the payo↵ feedback for learning, which leads to the potentially-detrimental closed-loop interaction

between queueing and learning. However, here this feedback delay is better controlled because,

whenever qj(t) gets large, the assignment probabilities plj(t) will become small according to (EC.41).

This negative feedback ensures that the delay for learning will likely not be very large. In order to

further control this delay, we propose the following “virtual queue” concept. At each time-slot, as

new tasks are being assigned from the clients to each server (according to the probabilities plj(t)),

whenever the task queue at a server reaches a limit Qmax, further tasks assigned to the server will

be declined and returned to the corresponding client. In this way, the actual task queue at each

server will never exceed Qmax. Let rlj(t) be the number of tasks returned to client l by server j in

time-slot t. Then, the “real” queue at each server evolves as

Qj(t+1) =

"
Qj(t)+

n(t)X

l=1

Y l
j (t)�

n(t)X

l=1

rlj(t)� dj(t)

#+

,

while Zj(t) can be thought of as the “virtual” queue. Note that the assign probabilities are still

computed in (EC.41)-(EC.43) based on qj(t) = ↵Zj(t), which corresponds to the virtual queue.
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EC.7.1. Simulation Studies of the Virtual-Queue Algorithm

Below, we will use simulation to demonstrate that the above virtual-queue algorithm is computa-

tionally e�cient and enjoys similar performance as Algorithm 1 for the case when the service is

deterministic. In addition, it can achieve comparable performance even when the service is random

and the mean service rate is unknown. For simplicity, we will use ↵= 1/V for the rest of the study

in this section.

Payo↵ Performance: We first evaluate the performance of the virtual-queue algorithm for

the case when the service of each server is deterministic, i.e., dj(t) = µj for all t. In this way, we

can directly compare the performance of the virtual-queue algorithm with that of Algorithm 1,

so that we can understand how the system performance is a↵ected by the learning delay (due to

task queues) and the fact that only one iteration of the dual update is executed in each time-

slot. Specifically, we use the same 2-class 2-server setup as in Section 5. For both algorithms, we

use N = 100, V = 21, � = 1.1. Further, for the virtual-queue algorithm, we use Qmax = 100. In

Fig. EC.1(a), we show the average payo↵ of both Algorithm 1 and the virtual queue algorithm. We

observe that the virtual-queue algorithm has a slightly smaller average payo↵ than Algorithm 1.

However, the di↵erence is small, which suggests that the impact of learning delay and one-iteration-

per-slot is not significant. We also plot the queue histogram and the feedback delay of the system,

and observe that they are not very large under the virtual-queue algorithm. See Fig. EC. 2(a) and

more discussions later.

We then simulate the virtual-queue algorithm when the service of each server is random and

the mean service rate is unknown to the operator. To simulate random service, we assume that

the number of tasks completed by server j in time-slot t is a discrete i.i.d. uniform random vari-

able taken values from {0,1,2}. Fig. EC.1(b) shows the payo↵ performance of the virtual-queue

algorithm when the service is random. For comparisons, we also show the performance of the

virtual-queue algorithm when the service is deterministic and is equal to the mean 1 at all times.

Further, we simulate a simple extension of Algorithm 1 that replaces µj in (8) by the current
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amount of service dj(t). We observe a small performance degradation for the virtual-queue algo-

rithm when the service changes from deterministic to random. However, with random service, the

virtual-queue algorithm still achieves a slightly higher expected payo↵ than the simple extension

of Algorithm 1, while at the same time enjoys much lower computational complexity and applies

to even distributed settings.
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Figure EC.1 Plot (a): The virtual-queue algorithm only incurs slight performance degradation compared to Algo-

rithm 1. Plot (b): With random service, the virtual-queue algorithm slightly outperforms a simple

extension of Algorithm 1 that uses the current amount of service at time t. Plot (c): The pro-

posed low-complexity algorithm can be easily applied to large systems without increasing runtime

complexity.

Feedback Delay and Queue Backlog: To further observe the e↵ect of the learning delay,

we plot the histogram of the server queue lengths in Fig. EC.2(a). Note that under the oracle

algorithm (with exact payo↵ vectors revealed), server 1 (with higher payo↵) and server 2 should

be utilized 100% and 20% of the time, respectively. Thus, one may be concerned that the busier

server 1 may have a large task queue under the virtual-queue algorithm. From Fig. EC.2(a), we can

observe that the length of the task queue at server 1 is not large at all, which limits the feedback

delay for learning.

In fact, the queue-occupation probability decays quickly with the queue length. We believe that

the reason behind this behavior is the negative feedback introduced by (EC.41)-(EC.43). That is,

when the queue at a server increases, the likelihood that more tasks are routed to it also decreases.

As a result, the task-queue length at the server can be self-regulated to keep the learning delay
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Figure EC.2 Plot (a): The queue histogram shows that the preferred server 1 does not become very large, which

helps to limit feedback delay. Plot (b):The feedback delay in terms of the number of samples waiting

for completion for all clients (averaged over time) saturates as Qmax is increased.

of each client to be small. To capture the feedback delay of the system, we collect the number of

tasks of a given client queued at the servers at time t. We take the maximum across all clients,

and then averaged over all time t. The result is shown in Fig. EC.2(b) with di↵erent Qmax. The

result suggests that the UCB estimates used for task assignment are only delayed by 4 samples on

average. Thus, we expect that the task assignment decisions are close to the centralized solution

Algorithm 1.

A Larger Example: Finally, note that the virtual-queue algorithm incurs significantly lower

complexity than Algorithm 1, which allows us to easily evaluate it for large systems. Here, we

simulate a 10-class and 10-server system, where each class has a unique payo↵ distribution profile for

the servers. We assume that tasks arrive at the system with rate 6 (i.e., �= 6), and each server has

the service capacity µj = 1. The probability that a client belongs to each class is equiprobable, and

the di↵erent classes have di↵erent underlying payo↵ vectors [C⇤
ij] associate with servers. Specifically,
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we use

[C⇤
ij] =

2

666666666666666666666666666666664

0.9 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3 0.3

0.9 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.1

0.9 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9 0.3

0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.3 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9 0.9

0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0.0 0.0 0.0 0.0 0.0 0.9 0.9 0.9 0.9 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3

777777777777777777777777777777775

.

Assuming that the system information is known, we can obtain the payo↵ upper-bound of 4.8 by

solving (4)-(6). This upper bound is shown as the dashed line in Fig. EC.1(c).

The payo↵ performance of the virtual-queue algorithm is shown in Fig. EC.1(c) for varying N .

With N = 100, the algorithm can only achieve 68% of the upper bound performance, while in

contrast, the 2-class 2-server case studied earlier can achieve 91% of the upper bound under the

same parameter V = 21 (see Fig. EC.3(a)). The gap from the upper bound becomes much smaller

when N = 500 and N = 1000. This is because, when there are more servers and classes, more tasks

are needed for “exploration” before the operator can distinguish between di↵erent classes of clients

with high confidence.

EC.8. Derivation of the Dual Updates

In order to derive the dual-based heuristics, we start from the convex program (7) for Algorithm 1,

assuming that µj is given and C l
j(t) is fixed for all time t. We associate a dual variable qj for the

constraint (8). Letting q= [qj, j 2 S], the Lagrangian can then be written as

L(p,q) =
n(t)X

l=1

(
1

V
log

 
JX

j=1

plj

!
+

JX

j=1

plj(C
l
j � �)

)
�

JX

j=1

qj

 
n(t)X

l=1

plj �µj

!

=
n(t)X

l=1

1

V
log

 
JX

j=1

plj

!
�

n(t)X

l=1

JX

j=1

plj(qj �C l
j + �)+

JX

j=1

qjµj. (EC.47)
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Given the current set of dual variables q(t) = [qj(t)], maximizing the Lagrangian over the primal

variables p� 0 yields the objective D(q(t)) of the dual problem. The solution to this maximization

step has the following simple structure:

JX

j=1

plj(t) =
1

V minj2S{qj(t)+ ��C l
j(t)}

, (EC.48)

plj(t)� 0, if qj(t)+ ��C l
j(t) =min

j0
{qj0(t)+ ��C l

j0(t)}, (EC.49)

plj(t) = 0, otherwise. (EC.50)

Note that given q(t), each user ` can determine its assignment probabilities independently. The

corresponding primal solution may not be unique. Specifically, for each user `, if there is more than

one server j satisfying the condition in (EC.49), the assigned probabilities break arbitrarily so that

(EC.48) is satisfied. Finally, to minimize the dual D(q(t)), we can use the following dual update:

qj(t+1) =

"
qj(t)+↵

 
n(t)X

l=1

plj(t)�µj

!#+

, (EC.51)

where ↵ is a positive step-size, and plj(t) is the primal variable computed according to (EC.48)-

(EC.50). It is well-known that, for a fixed instance of the optimization problem (7), i.e., if the

set of clients and their payo↵-estimates C l
j(t) were fixed for all time t, the above iteration would

converge to the optimal dual solution as t!1.


