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ABSTRACT
Motivated by edge computing with artificial intelligence, in this

paper we study a bandit-learning problem with switching costs. Ex-

isting results in the literature either incur Θ(𝑇
2

3 ) regret with bandit

feedback, or rely on free full-feedback in order to reduce the regret

to𝑂 (
√
𝑇 ). In contrast, we expand our study to incorporate two new

factors. First, full feedback could incur a cost. Second, the player

may choose 2 (or more) arms at a time, in which case she is free

to use any one of the chosen arms to calculate loss, and switching

costs are incurred only when she changes the set of chosen arms.

For the setting where the player pulls only one arm at a time, our

new regret lower-bound shows that, even when costly full-feedback

is added, the Θ(𝑇
2

3 ) regret still cannot be improved. However, the

dependence on the number of arms may be improved when the

full-feedback cost is small. In contrast, for the setting where the

player can choose 2 (or more) arms at a time, we provide a novel

online learning algorithm that achieves a lower 𝑂 (
√
𝑇 ) regret. Fur-

ther, our new algorithm does not need any full feedback at all. This

sharp difference therefore reveals the surprising power of choosing

2 (or more) arms for this type of bandit-learning problems with

switching costs. Both our new algorithm and regret analysis involve

several new ideas in choosing the primary and secondary arms,

tuning the weight decay parameter within and across episodes, and

using the loss differences in the weight updates, which may be of

independent interest.

KEYWORDS
Bandit learning, switching costs, regret analysis, edge computing

with artificial intelligence

1 INTRODUCTION
In this paper, we are interested in bandit learning with switching

costs, which can be used to model many practical decision-making

problems that not only face significant uncertainty, but also incur

costs for changing decisions. Consider edge computing with artifi-

cial intelligence (Edge AI) [7] as an example, where an edge server

close to the end users downloads machine learning (ML) models

from the cloud to process incoming inference requests. As the un-

derlying ground-truth model of the data changes in uncertain ways

(which is often referred to as concept drift [13]), the best ML model

also changes in time. However, because of the limited capability

of the edge server, it can often only accommodate a small number

of ML models. Thus, the edge server needs to learn which subset

of ML models should be used, based on the feedback (e.g., infer-

ence losses) observed. Further, downloading an ML model (which

is not currently on the edge server) from the cloud incurs commu-

nication overhead, which can be modelled by a switching cost 𝛽1.

Hence, the edge server has to carefully select the ML models to

reduce the total inference losses and switching costs in the long

run, which thus corresponds to a bandit-learning problem with

switching costs. Other examples of such problems can be found in

transportation networks [2], data-center networks [19], wireless

communication [4] and cyber-physical systems [15], etc.

In the online learning literature, it is well-known that the ex-

istence of switching costs significantly changes the nature of the

regret. Specifically, in an adversarial setting (which we will focus

on in this paper), for bandit learning without switching costs, the
Exp3 algorithm can attain 𝑂 (

√
𝑇 ) regret over a time-horizon 𝑇 [3].

However, once the switching cost is added, the regret (for the set-

ting where only one arm can be pulled at each time) increases

substantially to Θ(𝑇
2

3 ) [1]. A matching lower bound in [10] sug-

gests that such an increased regret is unavoidable. While this result

may be somewhat discouraging, it leaves many important open

questions, as we explained below. Note that since ML models in

Edge AI corresponds to arms in bandit learning, we use the word

“model” and “arm” interchangeably in the rest of the paper.

First, in practice, in addition to pulling one arm, there are often

other ways to obtain feedback. For example, in Edge AI, the edge

server could send the data to the cloud for analysis. In this case, the

feedback from all ML models can be obtained, beyond the model

already deployed on the edge server. This is somewhat analogous

to the full-feedback setting studied in [14]. Reference [14] shows

that, if the full feedback can be obtained with zero costs, the regret

for bandit learning with switching costs will remain at 𝑂 (
√
𝑇 ),

which would have been much lower than that of [1] where only

bandit feedback is available. However, in practice, feedback from

the cloud also incurs non-negative costs due to multiple reasons,

e.g., communication costs, latency and privacy issues [7]. Thus, the
regret for bandit learning with both switching costs and full-feedback
costs remains an open problem.

Second, instead of holding only one ML model at each time, in

Edge AI, the edge server can usually accommodate 𝑀 ≥ 2 ML

models at each time. In this setting, using any of these𝑀 models

for inference does not incur a switching/downloading cost, and at

each time the feedback from all these𝑀 models (currently on the

edge server) can be observed. This setting is thus most similar to

a bandit-learning problem with limited advice [18], where𝑀 ≥ 2

arms can be chosen at each time. However, [18] only studied the

case without switching costs, where the regret is𝑂 (
√
𝑇 ) regardless

of whether one (𝑀 = 1) or more (𝑀 ≥ 2) arms are chosen at each

time. Our setting is also related to bandit-learning problems with

semi-bandit feedback [8] and side information [2]. The studies for

semi-bandit feedback [8] typically do not consider switching costs

either. Although the side-information setting [2] has been studied

with switching costs, it is somewhat different from ours because

switching within the𝑀 ≥ 2 arms also incur switching costs there.

Partly due to this difference, the regret [2] remains at Θ(𝑇
2

3 ). In



Technical report, Purdue University, March 2022 Ming Shi, Xiaojun Lin, and Lei Jiao

summary, it remains an open problem whether in our setting, choosing
𝑀 ≥ 2 arms can improve the regret.

In this paper, we provide new answers to the above-mentioned

two open problems. First, we study the case when𝑀 = 1, i.e., only

one arm can be pulled at each time, and there is a switching cost 𝛽1

to change the arm and a full-feedback cost 𝛽2 to obtain feedback

from all arms. As we discussed earlier, the latter action corresponds

to the edge server sending data to the cloud for analysis. We provide

a lower bound of the regret, which grows as Θ(𝑇
2

3 ). In other words,

when only one arm can be pulled (𝑀 = 1), adding costly full-

feedback will not fundamentally change how regret depends on 𝑇 .

However, our lower bound does suggest that utilizing costly full-

feedback may change the multiplication factor in front of 𝑇
2

3 . In

some settings, this factor can be reduced from𝑂 (𝐾
1

3 ) to𝑂 ((ln𝐾)
1

3 ),
where 𝐾 is the total number of arms. This lower bound is obtained

by constructing two new type of adversaries (please see Sec. 3.2)

that forces any online learning algorithm to either switch arms

or use costly full-feedback for at least Ω(𝑇
2

3 ) number of times, in

order to obtain a loss no greater than the optimal static loss plus

𝑂 (𝑇
2

3 ). The proof of the lower bound involves an analysis of the

Kullback-Leibler (KL) divergence (i.e., relative entropy) on a hidden

Markov model, which is of independent interest. Moreover, we

provide an algorithm called Randomized Online Learning With

Costly Full-Feedback (ROCF) that achieves a regret that matches

the lower bound (please see Sec. 3.3).

Second, we study the setting when 𝑀 ≥ 2, i.e., more than one

arm can be chosen at each time and one of them is used to incur the

loss, while there are still switching costs and full-feedback costs.

Surprisingly, here we provide a new online learning algorithm,

called Randomized Online Learning With Working Groups (ROW),

that can achieve a regret of𝑂 (
√
𝑇 ) without even using full feedback

(see Theorem 4.1), which significantly improves the Θ(𝑇
2

3 ) regret
for 𝑀 = 1. In other words, having the flexibility to accommodate

one additional model (i.e.,𝑀 = 2) almost brings comparable benefit

as having free full-feedback [14]. To the best of our knowledge, this
sharp transition from𝑀 = 1 to𝑀 ≥ 2 has never be reported in the lit-
erature for bandit learning with switching costs1. This may be seen as

somewhat analogous to the “power-of-2” routing in load balancing

[16] (where sampling two queues can attain comparable reduction

to delay as sampling all queues), which is why we refer to it as

the “power-of-2-arms”. As𝑀 increases, the regret of ROW further

decreases. Using a trivial lower bound for bandit learning with free

full-feedback [5, 14], we conclude that the dependence of the regret

of ROW on 𝑇 must be optimal.

To achieve the improved 𝑂 (
√
𝑇 ) regret, ROW employs several

new ideas. First, since𝑀 ≥ 2 arms can be chosen at each time, in

addition to choosing the “best” arm that has been observed so far

(which we refer to as the primary arm), ROW also has the flexibility

to choose 𝑀 − 1 other arms (which we refer to as the secondary

arms). We refer to the union of primary and secondary arms as the

working group. In order to fully utilize such flexibility at minimal

switching costs, the first idea of ROW is to fix a primary arm over

𝑂 (
√
𝑇 ) time-slots (which we refer to as an episode), and switch

1
Note that for bandit learning without switching costs, choosing 𝑀 ≥ 2 arms will

improve the regret, but it cannot alter the dependence on𝑇 [18].

the secondary arms

⌈
𝐾−1

𝑀−1

⌉
times during an episode, each time to

a new subset of secondary arms that have not yet been chosen in

this episode. In other words, each episode is divided into

⌈
𝐾−1

𝑀−1

⌉
number of sub-episodes, and switching only occurs at the end of

each sub-episode. In this way, ROW only makes a constant number

of switches within each episode (and Θ(
√
𝑇 ) switches for all the

time), but it can obtain not only the feedback of the primary arm

for the entire episode, but also the feedback of every other arms

for
1⌈
𝐾−1

𝑀−1

⌉ fraction of the episode. Intuitively, this way of obtaining

feedback incurs much lower costs than using costly full-feedback

to obtain the same amount of feedback (for any 𝐾 and 𝛽2 > 0

independent of𝑇 ), which is also the reason that ROW does not use

costly full-feedback at all. Note that such saving is only possible

when 𝑀 ≥ 2. As we have discussed earlier, for 𝑀 = 1, either the

switching cost or the full-feedback cost has to be Ω(𝑇
2

3 ) to attain

low losses.

However, just using the above idea alone is insufficient to pro-

duce the 𝑂 (
√
𝑇 ) regret. The reason is that the feedback obtained is

highly correlated in time. This is because each subset of secondary

arms is retained for the whole sub-episode (whose length is also

𝑂 (
√
𝑇 )). It is known that such correlation tends to increase the

regret. Indeed, we can construct two counter-examples (please see

Sec. 4.1) to show that, if we merely use episodic versions of existing

bandit-learning algorithms, e.g., Exp3 [3], the regret will still be very

high. ROW utilizes a second crucial idea to overcome this difficulty.

Our key observation is that, whenever such a sub-episode with

highly-correlated feedback occurs, one of arms in the current work-

ing group (either the primary arm or a secondary arm) will likely be

consistently better than other arms. Then, ROW will try to switch

to the better arm more quickly within the sub-episode, and thus

improve the regret. Specifically, recall that in Exp3 [3], each new

feedback
˜𝑙 (𝑡) reduces the weight of an arm by a factor 𝑒−𝜂

˜𝑙 (𝑡 )
. The

parameter 𝜂 thus determines how fast Exp3 responds to new feed-

back information, and it must be set to a particular value to achieve

the minimum 𝑂 (
√
𝑇 ) regret (for bandit learning without switching

costs). To accomplish this faster switching within a sub-episode, our

proposed ROW algorithm will use a larger weight-decay parameter

𝜂2 within each sub-episode, while using a smaller parameter 𝜂1

across episodes. However, 𝜂2 cannot be too large either. Otherwise,

the regret will be poor for sub-episodes where the feedback is not

correlated in time. In Sec. 4.2.2, we give a sufficient condition on

howmuch𝜂2 should be larger than𝜂1 to strike the right balance.We

note that this idea of using two different weight-decay parameters

is new and may be of independent interest.

Finally, since in each episode the primary arm will receive much

more feedback than the secondary arms, this creates a bias in the

overall quality of feedback at the end of each episode. This bias

issue is resolved by using instead the loss differences between the

primary and secondary arms (please see our Idea 3 in Sec. 4.1). Our

proof for the𝑂 (
√
𝑇 ) regret carefully captures the effect of the above

ideas by utilizing several new techniques (please see Sec. 4.2 for

details).
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2 PROBLEM FORMULATION
In this section, we provide the problem formulation for our bandit-

learning problem with switching costs and full-feedback costs.

Moreover, we present a motivating example based on edge com-

puting with artificial intelligence (Edge AI), which has received

extensive attention recently [7, 23]. Finally, we introduce the per-

formance metric.

2.1 Bandit Learning With Switching Costs and
Full-Feedback Costs

A player interacts with the adversary/environment sequentially in

time. Let K ≜ {1, 2, ..., 𝐾} denote the set of all arms and let 𝑀 be

an integer, 1 ≤ 𝑀 < 𝐾 . In each time-slot 𝑡 = 1, ...,𝑇 , first the player

chooses𝑀 arms among all 𝐾 arms. Let
ˆk(𝑡) denote the set of the𝑀

arms chosen at time 𝑡 . The player uses one of the arms in
ˆk(𝑡) as the

active arm, which is denoted by k(𝑡). The loss of this arm, 𝑙
k(𝑡 ) (𝑡),

will be used to calculate the loss and regret later. In addition, the

losses 𝑙𝑘 (𝑡) of all arms 𝑘 ∈ ˆk(𝑡) are observed by the player. The loss
𝑙𝑘 (𝑡) can be any arbitrary value in [0, 1]. In this paper, we study

both the cases when 𝑀 = 1 and 2 ≤ 𝑀 < 𝐾 . When 𝑀 = 1,
ˆk(𝑡)

only contains the active arm k(𝑡) and only the loss of this arm is

observed. In this case, we simply say that the player “pulls” the

single arm k(𝑡) at time 𝑡 . On the other hand, when 2 ≤ 𝑀 < 𝐾 , in

addition to the loss of the active arm k(𝑡), the losses of other𝑀 − 1

arms in
ˆk(𝑡) are also observed.

Next, for every arm that is newly added to the set
ˆk(𝑡), a switch-

ing cost 𝛽1 > 0 will be incurred. Thus, the switching cost at time

𝑡 is 𝛽1

∑
𝑘∈ ˆk(𝑡 ) 1{𝑘∉ˆk(𝑡−1) } , where 1𝐸 is an indicator function (i.e.,

1𝐸 = 1 if the event 𝐸 is true, and 1𝐸 = 0 otherwise). As typically

assumed in bandit-learning problems [2, 3, 10, 14, 21], we assume

that
ˆk(0) = Φ is empty. In addition to the feedback from the𝑀 arms

in
ˆk(𝑡), at each time 𝑡 , the player can choose to obtain full feedback

of time 𝑡 for all the arms (including those not in
ˆk(𝑡)) at a cost 𝛽2.

Let 𝑧 (𝑡) = 1 if the player chooses to obtain the full feedback at time

𝑡 , and 𝑧 (𝑡) = 0 otherwise. Therefore, the total cost is

Cost(1 : 𝑇 ) ≜
𝑇∑︁
𝑡=1

𝑙k(𝑡 ) (𝑡) + 𝛽1

∑︁
𝑘∈ ˆk(𝑡 )

1{𝑘∉ˆk(𝑡−1) } + 𝛽2𝑧 (𝑡)
 .
(1)

2.2 An Example Motivated by Edge AI
We consider an Edge AI setting where an edge server collaborates

with a remote cloud. The edge server runs machine learning (ML)

models on an online stream of input data to predict their labels.

(For example, in an E-commerce recommendation system, the input

data at each time contains the customer data, item data and web

shop transactions, etc. The input data will be used by the edge

server to return the recommendations, i.e., the predicted labels of

what the customer is interested in.) We assume that 𝐾 ML models

are already trained and available in the remote cloud. However,

due to the limited capability of the edge server, only𝑀 models can

be deployed at the edge server at each time. Since it is unknown

which ML model works best, the edge server needs to use the

feedback (e.g., the actual product picked by the customer) to learn

which subset of ML models it should deploy. (In practice, both the

underlying distribution of the input data and the mapping from

data to labels change in time due to the so-called concept drift [13].

Therefore, the best model(s) also changes in time. As a result, this

learning process may be performed again after a concept drift.)

This learning process can be modelled as the bandit-learning

problem described above. Each arm corresponds to one of the 𝐾

ML models. At each time 𝑡 , the edge server chooses the subset ˆk(𝑡)
of 𝑀 models, which correspond to the 𝑀 arms chosen in bandit

learning. This subset
ˆk(𝑡) may be the same as the subset

ˆk(𝑡 − 1)
chosen at last time 𝑡 − 1, or it may differ, in which case a switching

cost 𝛽1

∑
𝑘∈ ˆk(𝑡 ) 1{𝑘∉ˆk(𝑡−1) } for downloading the ML models that

are not currently on the edge server will be incurred. Note that this

switching cost is assumed to be proportional to the number of ML

models (which are not currently on the edge server) downloaded

at time 𝑡 . Then, the input data ®𝑋 (𝑡) is revealed. The edge server
will use the models in

ˆk(𝑡) to infer the label of ®𝑋 (𝑡). Further, it will
use the result ®𝑌 ′

k(𝑡 ) (𝑡) of one of the models k(𝑡) ∈ ˆk(𝑡), to return

to the end user. This model k(𝑡) then corresponds to the active

arm in bandit learning. Next, the true label ®𝑌 (𝑡) of ®𝑋 (𝑡) is revealed.
The edge server can then calculate the inference loss 𝑙𝑘 (𝑡) for each
ML model 𝑘 ∈ ˆk(𝑡), based on the difference between the inferred

label ®𝑌 ′

𝑘
(𝑡) and the true label ®𝑌 (𝑡), e.g., using the squared loss (i.e.,

𝑙𝑘 (𝑡) = ∥ ®𝑌 (𝑡) − ®𝑌 ′

𝑘
(𝑡)∥2

) [11].

At the end of time 𝑡 , the edge server may also choose to consult

the cloud for the quality of all ML models. In that case, it sends the

data ®𝑋 (𝑡) to the cloud. After the cloud processes this data with all

ML models 𝑘 ∈ K , the edge server can retrieve the inference-loss

𝑙𝑘 (𝑡) of all the ML models. Clearly, it incurs additional computa-

tion/communication overhead to obtain such feedback from the

cloud, which we model by the full-feedback cost 𝛽2.

2.3 Performance Metric
We use the regret [1, 3, 10, 14, 20] as the performance metric. For

an online learning algorithm 𝜋 , its total cost Cost𝜋 (1 : 𝑇 ) is given
by (1), which includes both switching costs and full-feedback costs.

For the optimal static solution OPT, it knows the future losses in

advance, and hence can choose only one arm/model throughout the

time-horizon. The cost of OPT is then given by Cost
OPT (1 : 𝑇 ) =

min

𝑘∈K

∑𝑇
𝑡=1

𝑙𝑘 (𝑡)+𝛽1, where there is only one switching cost 𝛽1 at the

beginning of the time-horizon, and there is no full-feedback cost.

The regret of algorithm 𝜋 is defined to be the worst-case difference

between the expected total cost of algorithm 𝜋 and the total cost of

OPT, i.e.,

𝑅𝜋 (𝑇 ) ≜ sup

𝑙1:𝐾 (1:𝑇 )

{
E𝜋

[
Cost

𝜋 (1 : 𝑇 )
]
− Cost

OPT (1 : 𝑇 )
}
, (2)

where the expectation is taken over the possible randomness of

the algorithm 𝜋 , and 𝑙1:𝐾 (1 : 𝑇 ) denotes the losses 𝑙𝑘 (𝑡) of all arms

𝑘 ∈ [1, 𝐾] for all time 𝑡 ∈ [1,𝑇 ]. Our goal is to design an online

learning algorithm with a regret as low as possible.

3 THE CASE OF𝑀 = 1

In this section, we focus on the case when 𝑀 = 1, i.e., the player

(e.g., edge-server) can pull only one arm (e.g., model) at each time.

We are interested in studying whether adding full feedback with a
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cost 𝛽2 can alter the regret of bandit learning with switching costs.

Recall that in this case, the active arm k(𝑡) is the only arm in
ˆk(𝑡).

As we mentioned in the introduction, when full feedback is free,

it has been shown in [14] that using full feedback will improve

the regret from Θ(𝑇
2

3 ) to 𝑂 (
√
𝑇 ). However, since in our model the

full feedback incurs a cost, it is no longer clear whether the regret

can still be improved. In this section, we first give a lower bound

on the regret when the cost of full feedback is considered. Second,

we provide an algorithm called Randomized Online Learning With

Costly Full-Feedback (ROCF), which attains a regret that matches

the lower bound. Our main conclusion is that adding costly full-

feedback will not change the dependence of the regret on 𝑇 , but

may change the multiplication factor as a function of 𝐾 .

3.1 A Lower Bound on the Regret (M=1)
We first present a lower bound on the regret of any online algorithm.

Theorem 3.1. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When𝑀 = 1, the regret of
any online algorithm 𝜋 must be lower-bounded as follows,

𝑅𝜋 (𝑇 ) ≥ 𝑅𝜋 (𝑇 ) ≜ max

{
𝐶1𝛽

1

3

𝑎

(
log

2
𝐾
) 1

3 𝑇
2

3 ,𝐶2𝛽
1

3

𝑏
𝑇

2

3

}
, (3)

where

𝛽𝑎 = min

{
3

2

𝛽1, 𝛽2

}
, 𝛽𝑏 = min

{
3

4

𝐾𝛽1, 𝛽2

}
,

𝐶1 =
3

√︂
4

9 ln 2

· 1

72

(
log

2
𝑇 − log

2
log

2
𝐾
) , and

𝐶2 =
3

√︂
4

9 ln 2

· 1

72 log
2
𝑇
.

We can see from Theorem 3.1 that, even when the costly full-

feedback is added, as long as 𝑀 = 1, Θ(𝑇
2

3 ) is still the optimal

regret for bandit learning with switching costs. This is in sharp

contrast to the case of free full-feedback [14], where the regret

can be improved to 𝑂 (
√
𝑇 ). While this result may be somewhat

discouraging, the costly full-feedback does play some role in the

multiplication factor in front of 𝑇
2

3 , which depends on the relative

magnitude of 𝛽1 and 𝛽2. Intuitively, when the full-feedback cost 𝛽2

is large, the online learning algorithmwould rather switch to obtain

feedback than using costly full-feedback. On the other hand, when

𝛽2 is small, the online learning algorithm should avoid switching

and obtain feedback from costly full-feedback. Thus, we expect that

costly full-feedback will be more useful in the latter case than in the

former case. The conclusion of Theorem 3.1 shows this difference

precisely. Specifically, we can make the following observations.

(i) When 𝛽2 ≥ 3

4
𝐾𝛽1, the lower bound 𝑅

𝜋 (𝑇 ) in (3) is equal to

max

{
𝐶1

(
3

2

𝛽1

) 1

3 (
log

2
𝐾
) 1

3 𝑇
2

3 ,𝐶2

(
3

4

𝛽1

) 1

3

𝐾
1

3𝑇
2

3

}
. (4)

As 𝐾 increases, the second term in (4) quickly dominates. This

means that, when the full-feedback cost 𝛽2 is high, the regret of any

online learning algorithm 𝜋 will at least increase as 𝛽
1

3

1
𝐾

1

3𝑇
2

3 . Note

that this expression is the same as the regret (for bandit learning

with switching costs) when there is no full feedback at all [10]. This

Algorithm 1 The Multivariate Hidden Markov (MHM) adversary

Parameters: Choose 𝜖 and 𝜎 according to (12).

Initialization: Choose 𝑘∗ uniformly from K .

for 𝑡 = 1 : 𝑇 do
Step 1: Generate the value of 𝐺 (𝑡) according to (7).

Step 2: Generate the losses of each arm 𝑘 ∈ K as follows,

𝑙𝑘 (𝑡) = 𝐺 (𝑡) + 1

2

− 𝜖 · 1{𝑘=𝑘∗ } + 𝛾𝑘 (𝑡), (6)

where 𝛾𝑘 (𝑡) ∼ N (0, 𝜎2) are i.i.d. Gaussian random variables

with zero-mean and 𝜎2
-variance.

end for

observation is consistent with our intuition that, when 𝛽2 is large,

the online algorithm cannot benefit from costly full-feedback.

(ii) When 𝛽2 < 3

4
𝐾𝛽1, the lower bound 𝑅

𝜋 (𝑇 ) in (3) is equal to

max

{
𝐶1𝛽

1

3

𝑎

(
log

2
𝐾
) 1

3 𝑇
2

3 ,𝐶2𝛽
1

3

2
𝑇

2

3

}
. (5)

As 𝐾 increases, the first term in (5) quickly dominates. This means

that, when the full-feedback cost 𝛽2 is not high, the regret of any

online algorithm 𝜋 will at least increase as 𝛽
1

3

𝑎 (ln𝐾)
1

3 𝑇
2

3 . If in

addition 𝛽2 ≤ 3

2
𝛽1, we have 𝛽

1

3

𝑎 (ln𝐾)
1

3 𝑇
2

3 = 𝛽
1

3

2
(ln𝐾)

1

3 𝑇
2

3 , which

is smaller than 𝛽
1

3

1
𝐾

1

3𝑇
2

3 . Compared with the earlier case (with large

𝛽2), our regret expression here has the same dependence on 𝑇 , but

now increases more slowly as a function of the total number 𝐾 of

arms. This observation is also consistent with our intuition that,

when 𝛽2 is small, the online algorithm can benefit from costly

full-feedback more.

Finally, we note that the division of the two cases depends on

the value of 𝐾𝛽1 and 𝛽2. The intuition is that, with 𝐾 switches,

an online algorithm may also attain the feedback from all 𝐾 arms.

Thus, it makes sense to compare 𝐾𝛽1 with 𝛽2 to determine which

type of feedback is more effective.

3.2 Lower Bound Analysis
To prove Theorem 3.1, we design two important adversaries, which

are shown in Sec. 3.2.1 and Sec. 3.2.2. The first adversary captures

the dependence of the regret on 𝑇 . The second adversary uses the

first adversary as a building block, which allows us to refine the

dependence of the regret on 𝐾 . For both adversaries, we make use

of Yao’s principle [22] that the worst-case expected regret 𝑅𝜋 (𝑇 )
of a randomized online algorithm 𝜋 is lower-bounded by the ex-

pected regret of the best deterministic online algorithm against a

randomized adversary. Thus, in the following we focus on designing

randomized adversaries, and studying the regret of deterministic

online algorithms. Recall that K = {1, ..., 𝐾}.

3.2.1 Multivariate Hidden Markov (MHM) Adversary. In this sec-

tion, we provide the first randomized adversary, called Multivari-

ate Hidden Markov (MHM) adversary, which generalizes the idea

in [10]. Please see Algorithm 1.

Specifically, Step 1 in Algorithm 1 is the same as that used by

the adversary introduced in [10]. That is, for each time 𝑡 , define the

parent time of 𝑡 as 𝜌 (𝑡) ≜ 𝑡 − 2
𝛿 (𝑡 )

, where 𝛿 (𝑡) ≜ max{𝛿 | 𝑡 ≡ 0
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(mod 2
𝛿 )}. The main reason that the parent time 𝜌 (𝑡) is 2

𝛿 (𝑡 )
time-

slot ahead of time 𝑡 is to guarantee that with high probability, the

generated losses 𝑙𝑘 (𝑡) are in [0, 1]. Please see Appendix E for the

concrete proof of this guarantee. Then, Step 1 of MHM generates a

Gaussian process 𝐺 (𝑡) in the following way,

𝐺 (𝑡) = 𝐺 (𝜌 (𝑡)) + 𝜉 (𝑡), for all time 𝑡 ∈ [1,𝑇 ], (7)

where 𝐺 (0) = 0, and 𝜉 (𝑡) ∼ N (0, 𝜎2) are i.i.d. Gaussian random

variables with zero-mean and 𝜎2
-variance. As in [10], this process

𝐺 (𝑡) creates a common uncertainty across all arms. As a result, if

an online algorithm does not switch arms, it will have a difficult

time figuring out whether the losses experienced on the chosen

arms are due to this common process 𝐺 (𝑡), or due to the chosen

arms being inferior to other arms. In Step 2, the first three terms
2

in (6) are also the same as that used in [10]. However, (6) differs

from the adversary of [10] in the fourth term. This additional term

adds a Gaussian noise 𝛾𝑘 (𝑡) to the loss 𝑙𝑘 (𝑡) of each arm at each

time. This additional noise is critical because our online algorithm

𝜋 can use costly full-feedback, which is not considered in [10].

Intuitively, without this noise 𝛾𝑘 (𝑡), by using one round of costly

full-feedback, the online algorithm can know the losses of all arms

in the same time-slot. Then, the online algorithm will immediately

know which arm is the optimal one (i.e., the arm with a loss that

is 𝜖 lower). In contrast, the additional noise in (6) eliminates the

possibility for such a trivial solution. We refer to this adversary

as Multivariate Hidden Markov (MHM) because the hidden loss

𝑙hi (𝑡) ≜ 𝑙
k(𝑡 ) (𝑡) − 𝛾k(𝑡 ) (𝑡) satisfies the Markov property.

As we explain below, this additional noise 𝛾𝑘 (𝑡) causes new dif-

ficulties in the proof of the lower bound. We follow the approach

in [10] to derive the regret lower-bound of any deterministic online

algorithm 𝜋 against the MHM adversary. Specifically, let P𝑘∗ (·)
denote the probability measure under the setting where one opti-

mal arm 𝑘∗ incurs 𝜖 lower cost than other arms, as in (6). Let P0 (·)
denotes the probability measure when 𝜖 = 0, i.e., the arm 𝑘∗ is

statistically the same as other arms. In addition, let 𝑙ob (·) denote
the observed losses of the online learning algorithm. Then, the

analysis in [10] focuses on estimating the Kullback-Leibler (KL)

divergence 𝐷KL (P𝑘∗ (𝑙ob (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 )), which then leads

to the lower bound on the regret. However, for our MHM adversary,

the additional noise 𝛾𝑘 (𝑡) incurs a new difficulty. Recall that 𝜌 (𝑡) is
the parent (time) of 𝑡 , and thus 𝑡 is the child (time) of 𝜌 (𝑡). Let 𝜌 (𝑡)
denote the set of the predecessors of time 𝑡 , i.e. its parent, parent’s

parent, etc. Similarly, let 𝜌 (𝑡) denote the set of the descendants

of time 𝑡 . Note that without 𝛾𝑘 (𝑡), the observed loss 𝑙ob (𝑡) would
have been a Gaussian process𝐺 (𝑡) plus a fixed constant 1

2
or

1

2
− 𝜖 .

Thus, 𝑙ob (𝑡) would have satisfied a form of Markov property [12,

p. 235], i.e., conditioned on current observed losses, the conditional

probability distribution of future losses at a descendant time in 𝜌 (𝑡)
is independent of past losses at any predecessor time in 𝜌 (𝑡). Then,
the proof could use the chain rule of KL divergence [9, p. 23]. In

contrast, with the additional noise 𝛾𝑘 (𝑡), the observed loss 𝑙ob (𝑡)
does not satisfy the Markov property any more. This is because,

conditioned on the observed losses at time 𝑡 , past observed losses

still provide information for the statistics of the future losses. For

2
The first three terms in (6) guarantees that the expected values of the losses are

1

2

and
1

2
− 𝜖 for the sub-optimal arms 𝑘 ≠ 𝑘∗ and the optimal arm 𝑘∗ , respectively.

example, by taking the average of the losses observed at all pre-

decessors in 𝜌 (𝑡), we can average out 𝛾𝑘 (𝑡) across time, and thus

estimate the mean value of the loss at a descendant time in 𝜌 (𝑡)
with a higher accuracy. Therefore, we cannot use the chain rule

directly, and must find a new way to bound the KL divergence.

To overcome this new difficulty, we develop a result on the KL

divergence of hidden Markov models [9, p. 69]. Specifically, notice

that the hidden loss 𝑙hi (𝑡) ≜ 𝑙
k(𝑡 ) (𝑡) − 𝛾k(𝑡 ) (𝑡), i.e., the loss in (6)

but with 𝛾
k(𝑡 ) (𝑡) removed, satisfies the Markov property. Then,

using the chain rule of probability, we can show that

𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 ))

)
= 𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))

)
+ 𝐷KL

(
P𝑘∗ (𝑙hi (1 : 𝑇 ))∥P0 (𝑙hi (1 : 𝑇 ))

)
, (8)

where the conditional KL divergence is defined to be [9, p. 22]

𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))

)
≜ EP𝑘∗ (𝑙hi (1:𝑇 ) )

[
EP𝑘∗ (𝑙ob (1:𝑇 ) |𝑙hi (1:𝑇 ) )[

ln

P𝑘∗ (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))
P0 (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))

���𝑙hi (1 : 𝑇 )
] ]
.

(9)

Similarly, we can show that

𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 ))

)
= 𝐷KL

(
P𝑘∗ (𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 ))∥P0 (𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 ))

)
+ 𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ))

)
≥ 𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ))

)
(10)

where the inequality is because the KL divergence is always non-

negative [9, p. 26]. Combining (8) and (10), we have that

𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ))

)
≤ 𝐷KL

(
P𝑘∗ (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))∥P0 (𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 ))

)
+ 𝐷KL

(
P𝑘∗ (𝑙hi (1 : 𝑇 ))∥P0 (𝑙hi (1 : 𝑇 ))

)
. (11)

The first term on the right-hand-side of (11) can be easily calcu-

lated at each time, since conditioned on the hidden loss 𝑙hi (𝑡), the
observed loss 𝑙ob (𝑡) is only due to i.i.d. Gaussian variables 𝛾𝑘 (𝑡).
The second term on the right-hand-side of (11) can be calculated

by using the chain rule of the KL divergence, since the hidden loss

𝑙hi (𝑡) satisfies the Markov property. We can then obtain Lemma 3.2

below for the regret lower-bound against the MHM adversary.

Lemma 3.2. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When𝑀 = 1, by choosing

𝜖 =
3

√︂
4

9 ln 2

· 1

9 log
2
𝑇

· 𝛽
1

3

𝑏
𝑇 − 1

3 and 𝜎 =
1

9 log
2
𝑇
, (12)
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Algorithm 2 The Dividing Set (DS) adversary

Initialization: A strictly positive integer 𝑛 ∈ Z++, the total

number of arms 𝐾 = 2
𝑛
, and the set

ˆk∗ of optimal arms that

begins with all arms, i.e.,
ˆk∗ (0) = K .

for 𝑗 = 1 : 𝑛 do
Step 1: Shrink the set of optimal arms randomly by half. Specif-

ically, form the universe of the optimal arm set (with half size)

as follows,

Λ( 𝑗) ≜
{

ˆk∗
���ˆk∗ ⊆ ˆk∗ ( 𝑗 − 1), | ˆk∗ | = | ˆk∗ ( 𝑗 − 1) |

2

}
, (14)

where | ˆk∗ | denotes the cardinality of the set
ˆk∗, Then, choose

ˆk∗ ( 𝑗) uniformly from Λ( 𝑗).
Step 2: Restart and run a subroutine Ψ(𝐾, ˆk∗ ( 𝑗), 𝑇𝑛 ) to generate
the losses in the 𝑗-th episode..

end for

the regret of any online learning algorithm 𝜋 against the MHM ad-
versary is lower-bounded as follows: for 𝑇 ≥ max {𝛽𝑏 , 6𝐾},

𝑅𝜋 (𝑇 ) ≥ 3

√︂
4

9 ln 2

· 1

72 log
2
𝑇

· 𝛽
1

3

𝑏
𝑇

2

3 , (13)

where 𝛽𝑏 = min

{
3

4
𝐾𝛽1, 𝛽2

}
.

Please see Appendix A for the complete proof of Lemma 3.2.

From Lemma 3.2, we can see that the regret lower-bound produced

byMHMcorresponds to the second term in (3). Note that it correctly

captures the dependence of the regret on 𝑇 , but the dependence on

𝐾 still needs to be refined.

3.2.2 The Dividing Set (DS) Adversary. To further refine the de-

pendence on 𝐾 , in this section we provide the second randomized

adversary, called Dividing Set (DS). Please see Algorithm 2. We

note that this “dividing set” idea could be used to produce sharper

regret lower-bounds (in terms of their dependence on 𝐾 ) for other

bandit-learning problems, and thus may also be of independent

interest.

Specifically, the DS adversary starts with 𝐾 = 2
𝑛
arms, where 𝑛

is a strictly positive integer. DS initializes the set of optimal arms

to be
ˆk∗ (0) = K . Next, DS divides the entire time-horizon into 𝑛

episodes, each with
𝑇
𝑛 time-slots

3
. At the beginning of the 𝑗-th

( 𝑗 = 1, ..., 𝑛) episode, the DS adversary uniformly chooses half of

the arms from the last optimal-arm set
ˆk∗ ( 𝑗 − 1) to form the new

optimal-arm set
ˆk∗ ( 𝑗) (i.e., Step 1 in Algorithm 2). Then, DS restarts

and runs a subroutine Ψ(𝐾, ˆk∗ ( 𝑗), 𝑇𝑛 ) (i.e., Step 2 in Algorithm 2)

with 𝐾 = 2 (treating the two halves of the arms as 𝐾 = 2 arms).

This subroutine generates adversarial losses for 𝐾 = 2 arms over

𝑇
𝑛 time-slots, and it uses the arms in

ˆk∗ ( 𝑗) as the optimal arms.

In particular, we will use the MHM adversary for this sub-routine

later. Suppose that the subroutine adversary Ψ(𝐾, ˆk∗ ( 𝑗), 𝑇𝑛 ) incurs
a regret lower-bound of 𝑂 (𝑇 𝜁 ) for each episode. Lemma 3.3 below

provides a regret lower-bound for the entire time.

3
For ease of exposition, we assume that𝑇 is divisible by 𝑛. All results can trivially be

extended to the case when𝑇 is not divisible by 𝑛.

Lemma 3.3. Suppose that a subroutine Ψ(𝐾, ˆk∗,𝑇 ) can generate
adversarial losses over 𝑇 time-slots for a bandit problem with 𝐾 arms
and the set of optimal arms given by ˆk∗. Further, suppose that for any
online algorithm 𝜋 , Ψ(𝐾, ˆk∗,𝑇 ) can produce a regret lower-bound of
𝑓 (log

2
𝑇 ) ·𝑇 𝜁 (0 < 𝜁 < 1). Then, the DS adversary guarantees that

the regret of any online algorithm 𝜋 is lower-bounded as follows,

𝑅𝜋 (𝑇 ) ≥ 𝑓

(
log

2

𝑇

log
2
𝐾

) (
log

2
𝐾
)
1−𝜁

𝑇 𝜁 . (15)

Please see Appendix F for the complete proof of Lemma 3.3.

As we discussed earlier, for our setting we will simply use the

MHMadversary as the subroutine for DS. In particular, MHMplaces

all arms into two categories. All arms in the optimal-arm set
ˆk∗ are

viewed as a single optimal arm, i.e., 𝑙𝑘 (𝑡) = 𝐺 (𝑡) + 1

2
− 𝜖 +𝛾1 (𝑡) for

all 𝑘 ∈ ˆk∗, and all arms outside the optimal-arm set
ˆk∗ are viewed

as a single sub-optimal arm, i.e., 𝑙𝑘 (𝑡) = 𝐺 (𝑡) + 1

2
+ 𝛾2 (𝑡) for all

𝑘 ∉ ˆk∗. In other words, effectively there are only two arms, 𝐾 = 2,

for MHM in each episode of DS. In this case, 𝛽𝑏 in (13) is equal to

𝛽𝑎 ≜ min

{
3

2
𝛽1, 𝛽2

}
. Thus, combining Lemma 3.2 and Lemma 3.3,

we then get the regret lower-bound as

𝑅𝜋 (𝑇 ) ≥ 3

√︂
4

9 ln 2

· 1

72 log
2

(
𝑇

log
2
𝐾

) · 𝛽
1

3

𝑎

(
log

2
𝐾
) 1

3 𝑇
2

3 , (16)

The result of Theorem 3.1 then follows by combining (13) and (16).

3.3 Randomized Online Learning With Costly
Full-Feedback (ROCF)

According to our discussion in Sec. 3.1, to match the lower bound

𝑅𝜋 (𝑇 ) in Theorem 3.1, we should achieve a regret 𝑅𝜋 (𝑇 ), such that

𝑅𝜋 (𝑇 ) ≤
 𝑎1𝛽

1

3

1
𝐾

1

3𝑇
2

3 , if 𝛽2 ≥ 3

4
𝐾𝛽1,

𝑎2𝛽
1

3

2
(ln𝐾)

1

3 𝑇
2

3 , if 𝛽2 < 3

4
𝐾𝛽1,

(17)

where 𝑎1 and 𝑎2 are positive constants. In this section, we provide

an algorithm called Randomized Online Learning With Costly Full-

Feedback (ROCF). Please see Algorithm 3. ROCF divides time into⌈
𝑇
𝜏

⌉
episodes of length 𝜏 . One arm is chosen at the beginning of an

episode, and is kept throughout the episode. Across episodes, de-

pending on the values of 𝛽1 and 𝛽2, ROCF either apply the decision

of Exp3 [3] without asking for costly full-feedback, or use the costly

full-feedback in one random time-slot within each episode and ap-

ply the decision of the “shrinking dartboard” algorithm of [14].

Specifically, (i) when the full-feedback cost 𝛽2 is large, i.e., 𝛽2 ≥
3

4
𝐾𝛽1, ROCF applies the Exp3 algorithm [3] across episodes. More

specifically, at the end of the last time-slot of the 𝑢-th episode,

ROCF computes the losses as follows,

𝐿̃ROCF
𝑘

[𝑢] =
{

𝐿𝑘 [𝑢 ]
𝑝ROCF
𝑘

[𝑢 ] , if 𝑘 = k
ROCF [𝑢],

0, if 𝑘 ≠ k
ROCF [𝑢],

(18)

where 𝐿𝑘 [𝑢] ≜
∑𝑡𝑢+𝜏−1

𝑡=𝑡𝑢
𝑙𝑘 (𝑡), and k

ROCF [𝑢] is the active arm used

in the𝑢-th episode. Next, using the computed losses, ROCF updates
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Algorithm 3 Randomized Online Learning With Costly Full-

Feedback (ROCF)

Parameters: Choose 𝜂 and 𝜏 according to (22).

Initialization:𝑤ROCF

𝑘
[1] = 1 and 𝑝ROCF

𝑘
[1] = 1

𝐾
, for all 𝑘 ∈ K .

for 𝑢 = 1 :

⌈
𝑇
𝜏

⌉
(The 𝑢-th episode starts from 𝑡𝑢 = (𝑢 − 1)𝜏 + 1 to

𝑡𝑢 + 𝜏 − 1.) do
Step 1: At the beginning of the first time-slot 𝑡𝑢 , pick an arm

for the entire episode as follows.

if 𝑢 == 1 (i.e., the first episode) then
Pick an arm k

ROCF [1] from all arms 𝑘 ∈ K according to the

probability 𝑝ROCF
𝑘

[1].
else
if 𝛽2 ≥ 3

4
𝐾𝛽1 then

Pick an arm k
ROCF [𝑢] from all arms 𝑘 ∈ K according to

the probability 𝑝ROCF
𝑘

[𝑢].
else

With probability 𝑝ns [𝑢] =
𝑤ROCF

k(𝑢−1) [𝑢 ]
𝑤ROCF

k[𝑢−1] [𝑢−1] , keep the previ-

ous arm, i.e., k
ROCF [𝑢] = k

ROCF [𝑢 − 1]. With probability

1 − 𝑝ns [𝑢], pick an arm k
ROCF [𝑢] from all arms 𝑘 ∈ K

according to the probability 𝑝ROCF
𝑘

[𝑢].
end if

end if
Step 2: Uniformly choose a time 𝑡 [𝑢] from [𝑡𝑢 , 𝑡𝑢 + 𝜏 − 1].
Step 3: (Inside each episode.)

for 𝑡 = 𝑡𝑢 : 𝑡𝑢 + 𝜏 − 1 do
Pull the arm k

ROCF [𝑢] and use it as the active arm.

if 𝛽2 < 3

4
𝐾𝛽1 and 𝑡 == 𝑡 [𝑢] then

Ask for full feedback.

end if
end for
Step 4: At the end of the last time-slot of the 𝑢-th episode,

compute the losses for all arms 𝑘 ∈ K according to (18) (if

𝛽2 ≥ 3

4
𝐾𝛽1) or (21) (if 𝛽2 < 3

4
𝐾𝛽1). Then, update the weights

𝑤ROCF

𝑘
[𝑢 + 1] and probabilities 𝑝ROCF

𝑘
[𝑢 + 1] according to (19)

and (20), respectively.

end for

the weights and probabilities for all arms 𝑘 ∈ K as follows,

𝑤ROCF

𝑘
[𝑢 + 1] = 𝑤ROCF

𝑘
[𝑢] · 𝑒−𝜂𝐿̃

ROCF

𝑘
[𝑢 ] , (19)

𝑝ROCF
𝑘

[𝑢 + 1] =
𝑤ROCF

𝑘
[𝑢 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢 + 1]

, (20)

where 𝜂 is a tunable parameter (i.e., Step 4 in Algorithm 3). Then,

at the beginning of the first time-slot of the (𝑢 + 1)-th episode,

according to the updated probabilities 𝑝ROCF
𝑘

[𝑢 +1], ROCF picks an
arm k

ROCF [𝑢 + 1] from all arms 𝑘 ∈ K (i.e., Step 1 in Algorithm 3).

(ii) When the full-feedback cost 𝛽2 is small, i.e., 𝛽2 < 3

4
𝐾𝛽1,

ROCF asks for the costly full-feedback in one random time-slot

within each episode and applies the decision of the “shrinking

dartboard” algorithm of [14]. More specifically, in the 𝑢-th episode,

ROCF asks for full feedback at time 𝑡 [𝑢], which is uniformly chosen

in the episode (i.e., Step 2 and Step 3 in Algorithm 3). Then, at the

end of the last time-slot of the 𝑢-th episode, ROCF computes the

losses using only the full feedback, i.e.,

𝐿̃ROCF
𝑘

[𝑢] = 𝑙𝑘 (𝑡 [𝑢]), for all arm 𝑘 ∈ K . (21)

Next, ROCF updates the weights and probabilities according to

(19) and (20), while using (21) for the loss 𝐿̃ROCF
𝑘

[𝑢] (i.e., Step 4

in Algorithm 3). Further, at the beginning of the first time-slot of

the (𝑢 + 1)-th episode, with probability 𝑝ns [𝑢 + 1] =
𝑤ROCF

k[𝑢 ] [𝑢+1]
𝑤ROCF

k(𝑢) [𝑢 ] ,

ROCF keeps the arm k
ROCF [𝑢], i.e., kROCF [𝑢 +1] = k

ROCF [𝑢]. With

probability 1−𝑝ns [𝑢 + 1], ROCF picks an arm k
ROCF [𝑢 + 1] from all

arms 𝑘 ∈ K according to the updated probabilities 𝑝ROCF
𝑘

[𝑢 + 1].
For both cases, ROCF keeps using the arm k

ROCF [𝑢 + 1] as the
active arm for all time-slots in the (𝑢 + 1)-th episode (i.e., Step 3 in

Algorithm 3).

3.4 Regret Analysis
In Theorem 3.4 below, we show the upper bound of the regret

attained by ROCF.

Theorem 3.4. Consider bandit learning with switching costs and
costly full-feedback introduced in Sec. 2.1. Choose

𝜂 =

(
min

{
3

4

𝐾𝛽1, 𝛽2

})− 1

3

(ln𝐾)
2

3 𝑇 − 2

3 , and (22a)

𝜏 =

⌊
(𝑓 (𝛽1, 𝛽2))

1

3 (ln𝐾)−
1

3 𝑇
1

3

⌋
, (22b)

where 𝑓 (𝛽1, 𝛽2) =
9𝛽2

1

16𝐾
, if 𝛽2 ≥ 3

4
𝐾𝛽1, and 𝑓 (𝛽1, 𝛽2) = 𝛽2

2
, otherwise.

For𝑇 ≥ max

{
128𝐾 ln𝐾

9𝛽2

1

, 8 ln𝐾

𝛽2

2

}
, the regret of ROCF is upper-bounded

as follows,

𝑅ROCF (𝑇 ) ≤
 𝑏1𝛽

1

3

1
(𝐾 ln𝐾)

1

3 𝑇
2

3 , if 𝛽2 ≥ 3

4
𝐾𝛽1,

7

2
𝛽

1

3

2
(ln𝐾)

1

3𝑇
2

3 + 𝑏2, if 𝛽2 < 3

4
𝐾𝛽1,

(23)

where 𝑏1 =

(
3

2

3

√︃
3

4
+ 2

3

√︃
16

9

)
and 𝑏2 = 𝛽1 ln𝐾 (1 + 2/𝛽2).

By comparing (17) and Theorem 3.4, we can see that the regret

of ROCF matches the lower bound 𝑅𝜋 (𝑇 ) up to a (ln𝐾)
1

3 factor. In

particular, when the full-feedback cost 𝛽2 is small, i.e., 𝛽2 < 3

4
𝐾𝛽1,

the regret is indeed improved from 𝑂 (𝐾
1

3𝑇
2

3 ) to 𝑂 ((ln𝐾)
1

3 𝑇
2

3 ).
Please see Appendix G for the complete proof of Theorem 3.4.

4 THE POWER-OF-2-ARMS (𝑀 ≥ 2)
In this section, we proceed to the case when 𝑀 ≥ 2. In contrast

to the previous section where we show that adding costly full-

feedback does not change the Θ(𝑇
2

3 ) regret, here we provide a new
algorithm that utilizes the flexibility of having 2 (or more) arms and

successfully improves the regret to 𝑂 (
√
𝑇 ).

4.1 Randomized Online Learning With Working
Groups (ROW)

We call our new algorithm Randomized Online Learning With

Working Groups (ROW). Please see Algorithm 4. We start with de-

scribing the high-level skeleton of ROW. Recall that K = {1, ..., 𝐾}.
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Algorithm 4 Randomized Online Learning With Working Groups

(ROW)

Parameters: Choose 𝜂2, 𝜏2, 𝜂1 and 𝜏1 according to (46).

Initialization:𝑤ROW

𝑘
[1] = 1 and 𝑝ROW

𝑘
[1] = 1

𝐾
, for all 𝑘 ∈ K .

for 𝑢 = 1 :

⌈
𝑇
𝜏1

⌉
(The 𝑢-th episode starts from 𝑡𝑢 = (𝑢 − 1)𝜏1 + 1

to 𝑡𝑢 + 𝜏1 − 1.) do
Step 1: At the beginning of the first time-slot 𝑡𝑢 , according to

probability 𝑝ROW
𝑘

[𝑢] calculated in (24), choose a primary arm

𝑘ROW
0

[𝑢] from all arms 𝑘 ∈ K for the entire episode.

for 𝑣 = 1 :
𝜏1

𝜏2

(The 𝑣-th sub-episode starts from 𝑡𝑢,𝑣 = (𝑢 −
1)𝜏1 + (𝑣 − 1)𝜏2 + 1 to 𝑡𝑢,𝑣 + 𝜏2 − 1.) do

Step 2: At the beginning of the first time-slot 𝑡𝑢,𝑣 ,

uniformly choose the set
ˆkROW
𝑀−1

[𝑢, 𝑣] of 𝑀 − 1 sec-

ondary arms from the not-yet-been-chosen arms in K −(
𝑣−1⋃
𝑣′=1

ˆkROW
𝑀−1

[𝑢, 𝑣 ′] ⋃{𝑘ROW
0

[𝑢]}
)
. Then, form the work-

ing group by the primary arm and secondary arms, i.e.,

ˆkROW [𝑢, 𝑣] =
{
𝑘ROW

0
[𝑢]

} ⋃
ˆkROW
𝑀−1

[𝑢, 𝑣].
Step 3: Initialize the weights 𝑤̂ROW

𝑘
(𝑡𝑢,𝑣) and probabilities

𝑝ROW
𝑘

(𝑡𝑢,𝑣) of all arms 𝑘 ∈ ˆkROW [𝑢, 𝑣] according to (25)

and (26), respectively.

for 𝑡 = 𝑡𝑢,𝑣 : 𝑡𝑢,𝑣 + 𝜏2 − 1 do
Step 4: Use an arm 𝑘 ∈ ˆkROW [𝑢, 𝑣] as the active arm

according to the updated probability 𝑝ROW
𝑘

(𝑡).
Step 5: Update the weights 𝑤̂ROW

𝑘
(𝑡) and probabilities

𝑝ROW
𝑘

(𝑡) of all arms 𝑘 ∈ ˆkROW [𝑢, 𝑣] according to (27)

and (26), respectively.

end for
end for
Step 6: At the end of the last time-slot of the 𝑢-th episode,

update the weights𝑤ROW

𝑘
[𝑢+1] and probabilities 𝑝ROW

𝑘
[𝑢+1]

of all arms 𝑘 ∈ K according to (29) and (24), respectively.

end for

Idea 1: Note that in order to obtain the 𝑂 (
√
𝑇 ) regret, we can

switch or use costly full-feedback at most 𝑂 (
√
𝑇 ) number of times.

The first idea of ROW is thus to design an effective way to rotate a

working group (of 𝑀 arms) through all 𝐾 arms, so that plenty of

feedback can be obtained for all the arms, while incurring 𝑂 (
√
𝑇 )

switching costs and zero full-feedback costs. Specifically, ROW di-

vides the entire time-horizon into 𝑈 =

⌈
𝑇
𝜏1

⌉
episodes, each with

𝜏1 = Θ(
√
𝑇 ) time-slots. In the first time-slot 𝑡𝑢 = (𝑢 − 1)𝜏1 + 1

of the 𝑢-th (𝑢 = 1, ...,𝑈 ) episode, ROW chooses a primary arm

𝑘ROW
0

[𝑢]. This primary arm 𝑘ROW
0

[𝑢] will be fixed for all 𝜏1 time-

slots in the 𝑢-th episode. In addition, ROW divides each episode

into 𝑉 =
⌈
𝐾−1

𝑀−1

⌉
sub-episodes, each with 𝜏2 =

𝜏1

𝑉
time-slots. In

the rest of this paper, we refer to the 𝑣-th sub-episode in the 𝑢-th

episode as sub-episode (𝑢, 𝑣). At the beginning of the first time-slot

𝑡𝑢,𝑣 = (𝑢−1)𝜏1 + (𝑣 −1)𝜏2 +1 of sub-episode (𝑢, 𝑣), ROW uniformly

chooses 𝑀 − 1 secondary arms from the arms that have not yet

been chosen in the 𝑢-th episode
4
(i.e., Step 2 in Algorithm 4). We let

4
When 𝐾 − 1 is not divisible by𝑀 − 1, the number of the remaining unchosen arms

in the last (i.e.,𝑉 -th) sub-episode may be less than𝑀 − 1. In this case, after choosing

ˆkROW
𝑀−1

[𝑢, 𝑣] denote the set of the𝑀 − 1 secondary arms chosen in

sub-episode (𝑢, 𝑣). Let ˆkROW [𝑢, 𝑣] =
{
𝑘ROW

0
[𝑢]

} ⋃
ˆkROW
𝑀−1

[𝑢, 𝑣] de-
note the working group formed by the primary arm and secondary

arms. The working group
ˆkROW [𝑢, 𝑣] will be fixed for the whole

sub-episode (𝑢, 𝑣).
Notice that by using this idea, ROW only switches at the bound-

aries of sub-episodes and never uses full feedback. Therefore, by

tuning 𝜏2 to be Θ(
√
𝑇 ), the total switching cost is guaranteed to be

Θ(
√
𝑇 ), and the total full-feedback cost is 0. More importantly, with

this idea, we not only have the feedback for the primary arm for the

entire episode, but also have the feedback for each secondary arm

for
1

𝑉
fraction of each episode. Intuitively, this way of obtaining

feedback incurs much lower costs than using costly full-feedback.

For example, if we want to obtain the same amount of feedback

by using costly full-feedback alone, we would have to incur a full-

feedback cost equal to Θ(
√
𝑇 ) in every episode! This is also the

reason that ROW does not use full feedback at all.

We now describe the rest of the details of ROW. At the beginning

of the first time-slot of the 𝑢-th (𝑢 = 1, ...,𝑈 ) episode, each arm

𝑘 ∈ K is associated with a weight𝑤ROW

𝑘
[𝑢], which is initialized to

be𝑤ROW

𝑘
[1] = 1 (we will describe how to update𝑤ROW

𝑘
[𝑢] from

𝑤ROW

𝑘
[𝑢 − 1] shortly). Then, from all arms 𝑘 ∈ K , ROW chooses a

primary arm 𝑘ROW
0

[𝑢] with probability (i.e., Step 1 in Algorithm 4)

𝑝ROW
𝑘

[𝑢] =
𝑤ROW

𝑘
[𝑢]∑𝐾

𝑘=1
𝑤ROW

𝑘
[𝑢]

. (24)

Then, at the beginning of the first time-slot of each sub-episode

(𝑢, 𝑣), the𝑀 − 1 secondary arms
ˆkROW
𝑀−1

[𝑢, 𝑣] are chosen uniformly

and rotated through all of the rest𝐾−1 arms as we described earlier

(i.e., Step 2 in Algorithm 4).

Further, within each sub-episode (𝑢, 𝑣)we solve a bandit-learning
problemwith the set of arms restricted to the chosen working group.

Note that this restricted version of the bandit-learning problem has

no switching cost (since any arm 𝑘 ∈ ˆkROW [𝑢, 𝑣] can be used as

the active arm without incurring switching costs), and also has full

feedback (from all the arms 𝑘 ∈ ˆkROW [𝑢, 𝑣]). Thus, we can directly

use the full-feedback version of the Exp3 algorithm inside each sub-

episode (𝑢, 𝑣). Specifically, in the first time-slot 𝑡𝑢,𝑣 of sub-episode

(𝑢, 𝑣), ROW initializes the weights of all the arms 𝑘 ∈ K as follows

(i.e., Step 3 in Algorithm 4),

𝑤̂ROW

𝑘
(𝑡𝑢,𝑣) = 𝑤ROW

𝑘
[𝑢], (25)

i.e., to be the values of the weights at the beginning of the entire

episode 𝑢. Then, for each time 𝑡 = 𝑡𝑢,𝑣, ..., 𝑡𝑢,𝑣 + 𝜏2 − 1, each arm

𝑘 ∈ ˆkROW [𝑢, 𝑣] is used as the active arm k
ROW (𝑡) with probability

(i.e., Step 4 and Step 5 in Algorithm 4)

𝑝ROW
𝑘

(𝑡) =
𝑤̂ROW

𝑘
(𝑡)∑

𝑘∈ ˆkROW [𝑢,𝑣 ] 𝑤̂
ROW

𝑘
(𝑡)
. (26)

After the losses 𝑙𝑘 (𝑡) of all the arms 𝑘 ∈ ˆkROW [𝑢, 𝑣] are obtained
for time 𝑡 , ROW updates their weights with a tunable parameter

all those unchosen arms, ROW uniformly chooses the secondary arms from the arms

that have not yet been chosen for the𝑉 -th sub-episode.
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(a) Trace in counter-example 1 (i.i.d. across
arms 𝑘 and sub-episodes [𝑢, 𝑣 ]).
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(c) Trace in counter-example 3 (repeats
every episode 𝑢).

Figure 1: One realization of the counter-example traces in one episode.

𝜂2 as follows (i.e., Step 5 in Algorithm 4),

𝑤̂ROW

𝑘
(𝑡 + 1) = 𝑤̂ROW

𝑘
(𝑡) · 𝑒−𝜂2𝑙𝑘 (𝑡 ) , (27)

and then proceeds to the next time-slot 𝑡 + 1. Note that the weights

𝑤̂ROW

𝑘
(𝑡) are reset by (25) in the first time-slot 𝑡 = 𝑡𝑢,𝑣 of each

sub-episode (𝑢, 𝑣).
Finally, at the end of the last time-slot of the entire episode 𝑢,

ROW collects all the feedback received during the episode. Next,

during the sub-episodes that arm 𝑘 was chosen for the working

group, ROW subtracts the loss of the primary arm from the cor-

responding loss of this arm 𝑘 . Then, the resulting value is divided

by the conditional probability that 𝑘 is chosen as a secondary arm

(conditioned on 𝑘 not being the primary arm), i.e.,
𝑀−1

𝐾−1
. Precisely,

we let 𝑣𝑢 (𝑘) ≜
{
𝑣 | 𝑣 = 1, ...,𝑉 , 𝑘 ∈ ˆkROW [𝑢, 𝑣]

}
denote the sub-

episodes (𝑢, 𝑣) when the arm 𝑘 was chosen in the working group.

Let 𝐿𝑘 [𝑢, 𝑣𝑢 (𝑘)] ≜
∑

𝑣∈𝑣𝑢 (𝑘 )

∑𝑡𝑢,𝑣+𝜏2−2

𝑡=𝑡𝑢,𝑣
𝑙𝑘 (𝑡) denote the sum of the

losses of arm 𝑘 in sub-episodes (𝑢, 𝑣) (except the last time-slot

𝑡 = 𝑡𝑢,𝑣 + 𝜏2 − 1) for all 𝑣 ∈ 𝑣𝑢 (𝑘). Then, ROW computes the loss

difference of each arm 𝑘 ∈ K as follows,

𝐿̃ROW
𝑘

[𝑢] =
𝐿𝑘 [𝑢, 𝑣𝑢 (𝑘)] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣𝑢 (𝑘)]

𝑀−1

𝐾−1

. (28)

Note that for the primary arm 𝑘ROW
0

[𝑢], the loss difference is

𝐿̃ROW
𝑘ROW

0
[𝑢 ] [𝑢] = 0, which is also consistent with (28). Then, ROW up-

dates the weights for all the arms 𝑘 ∈ K with a tunable parameter

𝜂1 as follows (i.e., Step 6 in Algorithm 4),

𝑤ROW

𝑘
[𝑢 + 1] = 𝑤ROW

𝑘
[𝑢] · 𝑒−𝜂1𝐿̃𝑘 [𝑢 ] , (29)

which becomes the initial weights for the next episode 𝑢 + 1. In (46),

we give the values of all parameters of ROW, i.e., 𝜂1, 𝜂2, 𝜏1 and 𝜏2.

Readers familiar with bandit-learning algorithms may have al-

ready noticed two other crucial differences in ROW. First, a different

weight-decay parameter 𝜂2 is used to update weights in (27) within

the episode, compared with the parameter 𝜂1 that is used in (29)

across episodes. Second, when updating the weights across episodes

in (29), we use the difference between the loss of an arm and that

of the primary arm, instead of using the absolute loss of the arm

directly. In the following, we explain why these two differences (i.e.,

our idea 2 and idea 3) are crucial for achieving the 𝑂 (
√
𝑇 ) regret.

Idea 2: Use different weight-decay parameters 𝜂2 and 𝜂1. Re-

call that in every episode, ROW can obtain at least
1

𝑉
fraction of

feedback from every arm. We would have hoped that this amount

of feedback is sufficient for attaining a low 𝑂 (
√
𝑇 ) regret. Indeed,

consider an alternate bandit-learning problem where the feedback

of each arm is obtained independently with probability
1

𝑉
in every

time-slot. It is not difficult to show that Exp3 [3] using this amount

of feedback will attain the 𝑂 (
√
𝑇 ) regret.

However, compared with the above alternate problem, the dif-

ficulty we are facing here is that in ROW the feedback becomes

highly correlated in time. Indeed, the secondary arms are fixed

during the whole sub-episode. Thus, we either have all feedback

of an arm, or have none for the whole sub-episode. Below, we con-

struct two counter-examples to illustrate the difficulties in dealing

with such correlation. For ease of exposition, we use 𝑙 (𝑡1 : 𝑡2) ≜
[𝑙 (𝑡), for all 𝑡 = 𝑡1, 𝑡1 + 1, ..., 𝑡2] to collect 𝑙 (𝑡) from 𝑡 = 𝑡1 to 𝑡 = 𝑡2.

Counter-example 1: Consider 𝐾 = 4 arms and 𝑀 = 2. For each

arm 𝑘 , in each sub-episode (𝑢, 𝑣), 𝑙𝑘 (𝑡𝑢,𝑣 : 𝑡𝑢,𝑣 + 𝜏2 − 1) = 0 with

probability
1

2
, and 𝑙𝑘 (𝑡𝑢,𝑣 : 𝑡𝑢,𝑣 + 𝜏2 − 1) = 1 with probability

1

2
.

The losses are independent across arms 𝑘 and across sub-episodes

[𝑢, 𝑣]. Please see Fig. 1a for this loss trace in one episode. Using this

counter-example, we show why existing bandit-learning method,

Exp3 [1], could lead to a poor regret. Let us consider the optimal

static loss. First, the expected total loss of each arm is trivially

E[𝐿] = 𝑇
2
. Second, let us estimate the variance of the total loss

of each arm. Since the loss is a constant within a sub-episode, the

higher correlation in time leads to a higher variance in the total

loss of each arm. Specifically, for each arm, the variance of its total

loss in a sub-episode
5
is Θ(𝜏2

2
). Thus the variance of its total loss

across 𝑇 time-slots is Var(𝐿) = 𝑇
𝜏2

· Θ(𝜏2

2
) = Θ(𝑇

3

2 ). Thus, one of
the𝐾 arms may incur a total loss that is smaller than the average by

Θ(
√︁
Var(𝐿)). As a result, the total loss of the optimal static decision

OPT is E[𝐿] −Θ(
√︁
Var(𝐿)) = 𝑇

2
−Θ(𝑇

3

4 ). (This estimate can also be

obtained by applying the random walk analysis [21, p. 111].) Next,

we consider the total loss of the episodic version of Exp3 [1]. Such

version of Exp3 picks an arm 𝑘0 at the beginning of an episode,

and use it as the active arm for the entire episode. Since the loss in

each episode is independent, the total loss of such Exp3 will be the

5
In contrast, if the losses were i.i.d. in time, the variance should have been Θ(𝜏2 ) .
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average loss of each arm in this counter-example, i.e.,
𝑇
2
. Therefore,

the regret would be Θ(𝑇
3

4 ).
Counter-example 1 clearly illustrates why the higher correlation

in time leads to a higher regret for the episodic version of Exp3.

To overcome this difficulty, we make an important observation. In

this setting with highly correlated losses, we observe that one arm

(with losses 0) will be consistently better than the other arms (with

losses 1) in each sub-episode. We may then beat the average loss

by switching to the better arm within a sub-episode. Indeed, with

𝑀 = 2, the chance that one of the two arms incurs zero loss is
3

4
.

Thus, if we can switch to the better arm (with losses 0) quickly

within a sub-episode, we may attain a total loss approximately

equals to
𝑇
4
, which would have beaten the optimal static decision

OPT. This counter-example thus suggests why it is important to use

Exp3 [3] inside each sub-episode (in addition to across episodes).

However, it is still highly non-trivial to choose the parameter 𝜂

of Exp3 within each sub-episode. One possible thought is that, we

can think of each sub-episode as a bandit-learning problem with

𝜏2 = Θ(
√
𝑇 ) time-slots. Then, if we view the better arm within

the sub-episode as the static optimal arm, we would have to use

𝜂 = Θ(𝑇 − 1

4 ) in order to attain the minimal regret against the better

arm. However, this choice of 𝜂 would have been too large, as can

be seen in the counter-example below.

Counter-example 2: Consider 𝐾 = 4 arms and 𝑀 = 2. For arms

𝑘 = 1, 2, 𝑙𝑘 (𝑡) = 0 for all odd time-slots 𝑡 , and 𝑙𝑘 (𝑡) = 1 for all even

time-slots 𝑡 . For arms 𝑘 = 3, 4, 𝑙𝑘 (𝑡) = 1 for all odd time-slots 𝑡 ,

and 𝑙𝑘 (𝑡) = 0 for all even time-slots 𝑡 . Please see Fig. 1b for this

loss trace in one episode. Using this counter-example, we can see

why using Exp3 [3] with a parameter 𝜂 = Θ(𝑇 − 1

4 ) could lead to

a poor regret. Let us consider the optimal static loss. Since the

total loss of every arm is
𝑇
2
, the optimal static loss is

𝑇
2
. Next, we

consider the total loss of Exp3. Notice that the probability of each

arm is initialized to be the same, i.e.,
1

𝐾
, at time 𝑡 = 1. Then, at

each time, suppose that all arms have been observed almost the

same number of times. Thus, the probabilities of all arms would be

about the same. However, whenever an arm with loss 𝑙𝑘1
(𝑡) = 0

and an arm with loss 𝑙𝑘2
(𝑡) = 1 are observed simultaneously, at the

next time 𝑡 + 1 Exp3 will use the arm 𝑘1 as the active arm with a

probability higher by approximately Θ(𝜂). According to counter-
example 2, 𝑙𝑘1

(𝑡 + 1) = 1. Thus, Exp3 will suffer an additional loss

Θ(𝜂) approximately at each time. Hence, the total loss of Exp3 will

be
𝑇
2
+Θ(𝜂𝑇 ) = 𝑇

2
+Θ(𝑇

3

4 ). Therefore, the regret would be Θ(𝑇
3

4 ).
Counter-example 2 clearly indicates that, in order to attain the

𝑂 (
√
𝑇 ) regret, the parameter 𝜂2 should be no larger than 𝑂 (𝑇 − 1

2 ).
However, since a sub-episode is of length much smaller than 𝑇 ,

we conjecture that 𝜂2 still needs to be larger than 𝜂1 (the latter is

used across episodes), so that ROW converges fast to the better

arm inside the chosen working group. Lemma 4.4 in Sec. 4.2.2 will

provide the exact condition on how 𝜂2 and 𝜂1 should be tuned to

obtain the 𝑂 (
√
𝑇 ) regret.

Idea 3: Use the loss difference from the primary arm to update

weights across episodes. We next describe why it is also crucial to

use the loss difference in (28) instead of the absolute loss of each arm.

Recall that at the end of each episode, we receive 𝜏1 feedback from

the primary arm, but only 𝜏2 =
𝜏1

𝑉
feedback from each secondary

arm. Intuitively, this bias will also increase the variance of the total

losses accumulated in the past, which again leads to a higher regret.

The following counter-example illustrates this difficulty.

Counter-example 3: Consider 𝐾 = 4 arms and𝑀 = 2. In the first

sub-episode of each episode, the loss of each arm at each time is 0.

For all subsequent sub-episodes of each episode, the loss of each

arm at each time is 1. Please see Fig. 1c for this loss trace in one

episode. In the literature, the standard way to deal with this bias

in the amount of feedback is to divide the observed loss by the

probability that the arm is observed [1, 3, 5]. For each arm, this

probability is 𝑝𝑘 [𝑢]+(1−𝑝𝑘 [𝑢])𝑀−1

𝐾−1
, where 𝑝𝑘 [𝑢] is the probability

that arm 𝑘 is chosen as the primary arm, and (1 − 𝑝𝑘 [𝑢])𝑀−1

𝐾−1
is

the probability that arm 𝑘 is chosen as the secondary arm in a sub-

episode. With this mechanism, the estimated losses will be 𝐿̃𝑘 [𝑢] =
2𝜏2

𝑝𝑘 [𝑢 ]+(1−𝑝𝑘 [𝑢 ] ) 𝑀−1

𝐾−1

when 𝑘 is the primary arm, 𝐿̃𝑘 [𝑢] = 0 when 𝑘

is a secondary arm that is chosen in the first (𝑣 = 1) sub-episode,

and 𝐿̃𝑘 [𝑢] = 𝜏2

𝑝𝑘 [𝑢 ]+(1−𝑝𝑘 [𝑢 ] ) 𝑀−1

𝐾−1

when 𝑘 is a secondary arms that

is chosen in the subsequent (𝑣 = 2, 3) sub-episodes. Suppose that

𝑝𝑘 [𝑢] = 1

𝐾
is the same across all arms. Then, the denominator is

actually the same across all arms, but the numerator will still lead

to a significant variance. Indeed. since the primary arm is chosen

randomly with probability 𝑝𝑘 [𝑢] = 1

𝐾
, it is not hard to verify that

the total estimated loss of each arm over an episode will have a

variance of Θ(𝜏2

2
). In contrast, if full feedback was available, all

arms would have a total loss equal to 2𝜏2 in an episode, and the

variance would have been zero. It is easy to show that, with this

additional Θ(𝜏2

2
) gap in the variance, the regret of Exp3 [1] is still

𝑂 (𝑇
2

3 ), which is much larger than 𝑂 (
√
𝑇 ).

Counter-example 3 thus suggests that, instead of dividing the

loss by the probability of observing an arm, we need some newways

to deal with the above bias issue. Precisely, in (28), ROW updates

the estimated loss by the difference of the loss of each secondary

arm and that of the primary arm. In addition, the loss difference of

the primary arm is simply 0. Returning to counter-example 3, the

new estimated loss will then be 𝐿̃𝑘 [𝑢] = 0 for all the arms 𝑘 ∈ K .

Thus, the additional varianceΘ(𝜏2

2
) of the estimated losses has been

eliminated, which is also crucial for attaining the 𝑂 (
√
𝑇 ) regret.

4.2 Regret Analysis
In Theorem 4.1 below, we show the upper bound of the regret

attained by ROW. For ease of exposition, we focus on the case

when 𝐾 − 1 is divisible by𝑀 − 1. (It is not difficult to extend to the

case when 𝐾 − 1 is not divisible by𝑀 − 1. Please see Appendix L

for details.)

Theorem 4.1. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When𝑀 ≥ 2, the regret of

ROW can be upper-bounded as follows, for 𝑇 ≥ 448(𝐾−1)2
ln𝐾

5

2
+2𝛽1

,

𝑅ROW (𝑇 ) ≤ 8𝑏1

𝐾 − 1

𝑀 − 1

√
ln𝐾

√
𝑇 + 𝑏2, (30)

where 𝑏1 =

√︃
5

2
+ 2𝑏3𝛽1, 𝑏2 = 𝑏3𝛽1 + 1 and 𝑏3 = min {𝑀,𝐾 −𝑀}.
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In Sec. 3 when 𝑀 = 1, the optimal regret is Θ(𝑇
2

3 ) for bandit
learning with switching costs and full-feedback costs. In sharp con-

trast, now with𝑀 ≥ 2, ROW achieves a significantly lower regret

equals to𝑂 (
√
𝑇 ). Moreover, ROW never uses full feedback. Further,

as𝑀 increases, the regret of ROWcan be further reduced. To the best
of our knowledge, this is the first result in the literature to utilize the
flexibility of choosing𝑀 ≥ 2 arms to improved the regret to 𝑂 (

√
𝑇 )

for bandit learning with switching costs. Furthermore, using a trivial

lower bound for bandit learning with free full-feedback [5, 14], we

can conclude that the 𝑂 (
√
𝑇 ) regret cannot be further improved.

The rest of this section is devoted to the proof of Theorem 4.1.

Due to the three new ideas in ROW, new analytical techniques are

needed to capture the evolution of the weights, which are also of

independent interest. In order to relate the loss of ROW to that of

the optimal static loss, our analysis below is carried out in three

steps. First, inside each sub-episode, we relate the total loss of

ROW in each sub-episode to a log-sum-exp function 𝑔2 [𝑢, 𝑣] of the
parameter 𝜂2 and the feedback from the chosen working group.

Second, at the end of each episode, we relate 𝑔2 [𝑢, 𝑣] of all sub-
episodes to another log-sum-exp function 𝑔1 [𝑢] of the parameter

𝜂1 and the loss difference 𝐿̃ROW
𝑘

[𝑢]. Third, across all episodes, we
relate 𝑔1 [𝑢] to the optimal static loss. Combining these three steps,

the total loss of ROW will then be related to the optimal static loss.

In the following, we let H[𝑢 − 1] denotes the 𝜎-algebra generated
by the observation of ROW from time 𝑡 = 1 to 𝑡 = (𝑢 − 1)𝜏1. Let

𝐿𝑘 [𝑢, 𝑣] ≜
∑𝑡𝑢,𝑣+𝜏2−2

𝑡=𝑡𝑢,𝑣
𝑙𝑘 (𝑡).

4.2.1 Inside each sub-episode. We start by relating the expected

loss of ROW inside each sub-episode (𝑢, 𝑣) to a log-sum-exp func-

tion 𝑔2 [𝑢, 𝑣] (see Lemma 4.2). This function 𝑔2 [𝑢, 𝑣] will then be

further related to the variance of the feedback from the chosen

working group
ˆkROW [𝑢, 𝑣] in the sub-episode (see Lemma 4.3). Re-

call that in (25), the weights 𝑤̂ROW

𝑘
(𝑡𝑢,𝑣) in the first time-slots of

all sub-episodes are initialized to be the weights𝑤ROW

𝑘
[𝑢] at the

beginning of the episode 𝑢. Thus, given a same working group, the

probabilities 𝑝ROW
𝑘

(𝑡𝑢,𝑣) are also the same at the beginning of all

sub-episode 𝑣 in an episode 𝑢. We let

𝑝ROW
𝑘

[𝑢] ≜
𝑤ROW

𝑘
[𝑢]∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤ROW

𝑘
[𝑢]

(31)

denote this common probability.

Lemma 4.2. For each sub-episode (𝑢, 𝑣), given the historyH[𝑢−1]
and the chosen working group ˆk[𝑢, 𝑣], we have

𝑡𝑢,𝑣+𝜏2−1∑︁
𝑡=𝑡𝑢,𝑣

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑙𝑘 (𝑡) ≤ 𝑔2 [𝑢, 𝑣] +
1

2

𝜂2𝜏2 + 1, (32)

where

𝑔2 [𝑢, 𝑣] ≜ − 1

𝜂2

ln

©­­«
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]𝑒−𝜂2𝐿𝑘 [𝑢,𝑣 ]
ª®®¬ . (33)

On the left-hand-side of (32), the probability 𝑝ROW
𝑘

(𝑡) is the
probability of using arm 𝑘 as the active arm. Thus, the left-hand-

side of (32) represents the conditional (conditioned on the working

group
ˆkROW [𝑢, 𝑣] and history H[𝑢 − 1]) expected loss of ROW in

sub-episode (𝑢, 𝑣). Hence, (32) upper-bounds the conditional ex-
pected loss of ROW by a log-sum-exp function 𝑔2 [𝑢, 𝑣] and the

term
1

2
𝜂2𝜏2 + 1. We make two important comments. First, the value

of 𝑔2 [𝑢, 𝑣] is approximated dominated by the arm with the smallest

loss 𝐿𝑘 [𝑢, 𝑣] (whenever the corresponding probability 𝑝ROW
𝑘

[𝑢]
is non-zero). (32) thus confirms that ROW is trying to switch to

the “better” arm in the working group. Second, the gap
1

2
𝜂2𝜏2 is

much smaller than the gap
1

2
𝜂𝜏2

2
incurred by the episodic version

of Exp3 [1]. Note that the above-mentioned two conclusions pre-

cisely capture our ideas 1 and 2, which together allow ROW to

converge quickly to the better arm in the working group. Please

see Appendix H for the complete proof of Lemma 4.2.

The following lemma then relates 𝑔2 [𝑢, 𝑣] to the expectation and

variance of the feedback from the chosen working group in the

sub-episode, which will be useful when we move to the second-step

of studying the weight updates at the end of each episode.

Lemma 4.3. For each sub-episode (𝑢, 𝑣), given the historyH[𝑢−1]
and the chosen working group ˆkROW [𝑢, 𝑣], if 𝜂2𝜏2 ≤ ln 2, we have

𝑔2 [𝑢, 𝑣] ≤ E
[
𝐿[𝑢, 𝑣]

��H[𝑢 − 1], ˆkROW [𝑢, 𝑣]
]

− 𝜂2

8

· Var
(
𝐿[𝑢, 𝑣]

��H[𝑢 − 1], ˆkROW [𝑢, 𝑣]
)
, (34)

where the expectation is taken with regard to the randomness in
𝑝ROW
𝑘

[𝑢], i.e.,

E
[
𝐿[𝑢, 𝑣]

��H[𝑢 − 1], ˆkROW [𝑢, 𝑣]
]
≜

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]𝐿𝑘 [𝑢, 𝑣],

Var
(
𝐿[𝑢, 𝑣]

��H[𝑢 − 1], ˆkROW [𝑢, 𝑣]
)
≜

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]

·
(
𝐿𝑘 [𝑢, 𝑣] − E

[
𝐿[𝑢, 𝑣]

��H[𝑢 − 1], ˆkROW [𝑢, 𝑣]
] )

2

.

Notice that the expectation and variance on the right-hand-side

of (34) are for the feedback from the working group
ˆkROW [𝑢, 𝑣].

Thus, Lemma 4.3 shows that the log-sum-exp function 𝑔2 [𝑢, 𝑣] can
be related to the expectation and variance of the feedback from

the chosen working group. Given the working group
ˆkROW [𝑢, 𝑣],

Lemma 4.3 is proved by applying the Taylor expansion of the 𝑒−𝑥

function to 𝑔2 [𝑢, 𝑣]. Please see Appendix I for the complete proof

of Lemma 4.3.

4.2.2 Relating the loss upper-bound at the end of a sub-episode to
the weights across episodes. Lemma 4.2 provides an upper bound

on the loss of ROW at the end of each sub-episode (𝑢, 𝑣). Note that
this upper bound depends on 𝜂2. On the other hand, at the end of

each episode 𝑢, we calculate the weights according to (29). Notice

that not only is 𝐿̃ROW
𝑘

[𝑢] in (29) different from 𝐿𝑘 [𝑢, 𝑣] in (33), the

parameter 𝜂2 is also different from 𝜂1. Thus, we need a way to

convert the loss upper-bound in Lemma 4.2 for each sub-episode

to a form that depends on the weights calculated by (29). This is

accomplished by Lemma 4.4 below. Further, this lemma gives a

sufficient condition on how to tune the parameters 𝜂2 and 𝜂1.

Specifically, notice that the loss difference 𝐿̃ROW
𝑘

[𝑢] calculated
in (28) is a difference from the loss of the primary arm 𝑘ROW

0
[𝑢].

We let 𝑔2 [𝑢] denote the sum of 𝑔2 [𝑢, 𝑣] for all sub-episodes 𝑣 , minus
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a term that corresponds to the loss of the primary arm, i.e.,

𝑔2 [𝑢] ≜
𝑉∑︁
𝑣=1

𝑔2 [𝑢, 𝑣] −
𝑉∑︁
𝑣=1

𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣]

= − 1

𝜂2

𝑉∑︁
𝑣=1

ln

©­­«
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]𝑒−𝜂2LROW

𝑘
[𝑢,𝑣 ]ª®®¬ , (35)

where LROW

𝑘
[𝑢, 𝑣] = 𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣].

Lemma 4.4. If the parameters 𝜂2, 𝜏2, 𝜂1 and 𝜏1 satisfy that

𝜂2 ≥ 16

(
𝐾 − 1

𝑀 − 1

)
2

· 𝜂1, 𝜂2𝜏2 ≤ ln 2 and 𝜂1𝜏1 ≤ ln 2, (36)

we have

E
ˆkROW [𝑢,1:𝑉 ]

[
𝑔2 [𝑢]

���H[𝑢 − 1]
]

≤ E
ˆkROW [𝑢,1:𝑉 ]

[
𝑔1 [𝑢]

���H[𝑢 − 1]
]
, (37)

where the expectation is taken with respect to the randomness in the
working groups, and

𝑔1 [𝑢] ≜ − 1

𝜂1

ln

(
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝑒−𝜂1𝐿̃
ROW
𝑘

[𝑢 ]
)
. (38)

The log-sum-exp function 𝑔2 [𝑢] on the left-hand-side of (37) is

related to 𝑔2 [𝑢, 𝑣] through (35), which is then related to the loss of

ROW in each sub-episode through (32). The log-sum-exp function

𝑔1 [𝑢] on the right-hand-side of (37) is related to the weights cal-

culated at the end of the episode. Thus, Lemma 4.4 relates the loss

upper-bound at the end of each sub-episode to the weights across

episodes, and (36) confirms our conjecture that 𝜂2 should be larger

than 𝜂1.

Please see Appendix M for the complete proof of Lemma 4.4. In

the following, we sketch the key steps (Step 1 - Step 3 below) for

proving Lemma 4.4, which may also be of independent interest.

Sketch of proof of Lemma 4.4:
Step-1: Similar to Lemma 4.3, we can derive a lower bound of

𝑔1 [𝑢] by relating it to the expectation and variance of the loss

differences.

Lemma 4.5. For each episode 𝑢, given the history H[𝑢 − 1] and
the chosen working groups ˆkROW [𝑢, 1 : 𝑉 ], if 𝜂1𝜏1 ≤ ln 2, we have

𝑔1 [𝑢] ≥ E
[
𝐿̃ROW [𝑢]

���H[𝑢 − 1], ˆkROW [𝑢, 1 : 𝑉 ]
]

− 𝜂1 · Var
(
𝐿̃ROW [𝑢]

���H[𝑢 − 1], ˆkROW [𝑢, 1 : 𝑉 ]
)
, (39)

where the expectation is taken with regard to the randomness in
𝑝ROW
𝑘

[𝑢], i.e.,

E
[
𝐿̃ROW [𝑢]

���H[𝑢 − 1], ˆkROW [𝑢, 1 : 𝑉 ]
]
≜

𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝐿̃ROW [𝑢],

Var
(
𝐿̃ROW [𝑢]

���H[𝑢 − 1], ˆkROW [𝑢, 1 : 𝑉 ]
)
≜

𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]

·
(
𝐿̃ROW [𝑢] − E

[
𝐿̃ROW [𝑢]

���H[𝑢 − 1], ˆkROW [𝑢, 1 : 𝑉 ]
] )

2

.

Please see Appendix J for the complete proof of Lemma 4.5.

Step-2: Lemma 4.4 is then proved by mainly comparing the

expectations of (34) and (39) with regard to the randomness in the

working groups. Here, we use the help of a fictitious “full feedback”

system, where we assume that there is an oracle who knows the

losses from all arms in all time-slots during the episode. Further, this

oracle assigns the probability distribution 𝑝ROW
𝑘

[𝑢] on the arms.

It is easy to show that the expectations of both working-group

feedback and the loss differences are related to the expectation of the

fictitious “full feedback”. Further, Lemma 4.6 and Lemma 4.7 below

show that the variances of both the working-group feedback and

loss differences can also be related to the variance of full feedback,

given by Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1]) in the lemma below.

Lemma 4.6. For each sub-episode (𝑢, 𝑣), given the historyH[𝑢−1],
we have

E
ˆkROW [𝑢,𝑣 ]

[
Var

(
𝐿[𝑢, 𝑣]

��ˆkROW [𝑢, 𝑣]
) ���H[𝑢 − 1]

]
≥ 𝑀 − 1

𝐾 − 1

· Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1]) , (40)

where

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1])

≜
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]
(
𝐿[𝑢, 𝑣] −

𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝐿[𝑢, 𝑣]
)2

.

The variance on the left-hand-side of (40) is for the losses from

the feedback in the working group
ˆkROW [𝑢, 𝑣]. The outside ex-

pectation is taken over all possible working groups. The variance

on the right-hand-side of (40) is for the fictitious “full feedback”.

Intuitively, if the right-hand-side of (40) is strictly positive, there

must be some difference among the losses of the arms. Then, even

when a random subset of arms is chosen into the working group,

we should still see some variance. That is the intuition why the

left-hand-side of (40) must also be strictly positive, which is the

conclusion in Lemma 4.6. Moreover, as𝑀 increases, the constant

factor
𝑀−1

𝐾−1
increases to be closer to 1. This is one of the reasons

that the regret of ROW decreases with𝑀 . In sharp contrast, when

𝑀 = 1, we have
𝑀−1

𝐾−1
= 0. Indeed, in this case, no matter how large

the variance of full feedback is, the variance on the left-hand-side

of (40) will always be equal to 0. This is one of the reasons for the

sharp transition from the 𝑂 (𝑇
2

3 ) regret when𝑀 = 1 to the 𝑂 (
√
𝑇 )

regret when𝑀 ≥ 2. Please see Appendix K for the complete proof

of Lemma 4.6.

Step-3: However, the fictitious “full feedback” is not available to
the online learning algorithm. Hence, Lemma 4.6 is not very useful

unless we can related the full feedback to the loss difference that

we design in (28). This is exactly the purpose of Lemma 4.7 below.

Lemma 4.7. For each episode 𝑢, given the history H[𝑢 − 1], we
have
𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1]) ≥ 𝑀 − 1

2(𝐾 − 1)

· E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
.

(41)
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Different from Lemma 4.6, Lemma 4.7 focuses on the variance

of the loss differences 𝐿̃ROW [𝑢], as in the right-hand-side of (41).

Moreover, the expectation is taken over all possible sequences of

the working groups for the whole episode. Thus, the variance of

full feedback on the left-hand-side of (41) is also summed over all

sub-episodes 𝑣 . Intuitively, if the right-hand-side of (41) is strictly

positive, there must exist some difference across the secondary

arms when comparing with the common primary arm. Then, the

differences among the secondary arms cannot all be 0. This means

there must be some variance of the full feedback. This is the intu-

ition why the left-hand-side of (41) must also be strictly positive,

which is the conclusion in Lemma 4.7. Similar to that in (40), as

𝑀 increases, the constant factor
𝑀−1

2(𝐾−1) increases to be closer to 1.

This is another reason that the regret of ROW decreases with 𝑀 .

In sharp contrast, when𝑀 = 1, we have
𝑀−1

2(𝐾−1) = 0, which again

implies a sharp transition from𝑀 = 1 to𝑀 ≥ 2. By comparing the

constant factors in (34) and (40) with that in (39) and (41), we can

see that to obtain (37), 𝜂2 needs to be larger than 16

(
𝐾−1

𝑀−1

)
2

· 𝜂1.

Please see Appendix L for the complete proof of Lemma 4.7.

Remark 1. Lemma 4.7 is the result of using our idea 3. In other
words, without our idea 3 for constructing the loss differences 𝐿̃ROW

𝑘
[𝑢]

in (28), Lemma 4.7 may not hold. For example, in the counter-example
3 that we introduced in Sec. 4.1, the variance of full feedback is 0.
Without our idea 3, the variance of the absolute loss from the feedback
in all sub-episodes will be Θ(𝜏2

2
), which would have made Lemma 4.7

invalid. In contrast, with our idea 3, the loss difference is the difference
from the loss of the primary arm, which will be 0 for all arms. Thus,
the variance of the loss differences of ROW in each episode is 0, which
is the same as the variance of full feedback.

Combining Lemma 4.3, Lemma 4.5, Lemma 4.6, and Lemma 4.7,

we can then prove Lemma 4.4. The detailed proof is available in

Appendix M.

Up to now, by combining (32), (35) and (37) for all sub-episode

𝑣 and episode 𝑢, we can relate the total loss of ROW to 𝑔1 [𝑢] as
follows,

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

ˆkROW [𝑢,1:𝑉 ]

[
𝑉∑︁
𝑣=1

𝑡𝑢,𝑣+𝜏2−1∑︁
𝑡=𝑡𝑢,𝑣

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)

· 𝑙𝑘 (𝑡) −
𝑉∑︁
𝑣=1

𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣]
���H[𝑢 − 1]

]}
≤

𝑈∑︁
𝑢=1

EH[𝑢−1]
{
E

ˆkROW [𝑢,1:𝑉 ]
[
𝑔1 [𝑢]

��H[𝑢 − 1]
]}

+ 1

2

𝜂2𝑇 +𝑉𝑈 .

(42)

In the next section, we show how to relate the first term on the

right-hand-side of (42) to the optimal static loss.

4.2.3 Relating the upper-bound of the total loss of ROW to the
optimal static loss. Lemma 4.8 below relates the sum of 𝑔1 [𝑢] on
the right-hand-side of (42) to the optimal static loss of OPT.

Lemma 4.8. We have the following inequality,

𝑈∑︁
𝑢=1

EH[𝑢−1]
{
E

ˆkROW [𝑢,1:𝑉 ]

[
𝑔1 [𝑢]

���H[𝑢 − 1]
]}

≤ CostOPT (1 : 𝑇 ) + ln𝐾

𝜂1

−
𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

[
𝑉∑︁
𝑣=1

𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣]
��H[𝑢 − 1]

]}
. (43)

In (43), the term on the left-hand-side is one of the terms in the

upper bound of the total loss of ROW, i.e., the first term on the

right-hand-side of (42). The first term on the right-hand-side is the

optimal static loss. The second term on the right-hand-side of (43)

can be obtained by following the Exp3 analysis [3]. The third term

on the right-hand-side of (43) is because the loss of the primary

arm is subtracted in 𝑔2 [𝑢] (see (35)). This term also appears on the

left-hand-side of (42), which will eventually be cancelled. Please

see Appendix N for the complete proof of Lemma 4.8.

4.2.4 The final regret. Since ROW only switches at the boundaries

of the sub-episodes, the total switching cost of ROW can be upper-

bounded as follows,

𝑇∑︁
𝑡=1

∑︁
𝑘∈ ˆkROW (𝑡 )

𝛽11{𝑘∉ˆkROW (𝑡−1) } ≤ min {𝑀,𝐾 −𝑀} · 𝛽1

⌈
𝑇

𝜏2

⌉
.

(44)

Next, since ROWnever asks for full feedback, the total full-feedback

cost of ROW is 0. Combining (42), (43) and (44), we can see that the

regret of ROW is upper-bounded as follows,

𝑅ROW (𝑇 ) ≤ ln𝐾

𝜂1

+ 1

2

𝜂2𝑇 + min {𝑀,𝐾 −𝑀} · 𝛽1

⌈
𝑇

𝜏2

⌉
+

⌈
𝑇

𝜏2

⌉
.

(45)

Then, by choosing
𝜂2 =

𝑐1𝑐2√
𝑇
, 𝜏2 =

⌊
ln 2

𝑐1𝑐2

√
𝑇

⌋
,

𝜂1 =
𝑐1

𝑐2

√
𝑇
, 𝜏1 =

⌈
𝐾−1

𝑀−1

⌉ ⌊
ln 2

𝑐1𝑐2

√
𝑇

⌋
,

(46)

where 𝑐1 =

√︂
ln𝐾

5

2
+min{𝑀,𝐾−𝑀 } ·2𝛽1

and 𝑐2 =
4(𝐾−1)
𝑀−1

, we have

𝑅ROW ≤ 8(𝐾 − 1)
𝑀 − 1

√︂
5

2

+ min {𝑀,𝐾 −𝑀} · 2𝛽1

√
ln𝐾

√
𝑇

+ min {𝑀,𝐾 −𝑀} · 𝛽1 + 1, (47)

for 𝑇 ≥ 448(𝐾−1)2
ln𝐾

5

2
+2𝛽1

. The result of Theorem 4.1 then follows.

Please see Appendix O for the complete proof of Theorem 4.1.

5 NUMERICAL RESULTS
In this section, we present numerical results comparing our new

algorithms ROCF introduced in Sec. 3.3 (for 𝑀 = 1) and ROW in-

troduced in Sec. 4.1 (for𝑀 ≥ 2) with the episodic version of Exp3

proposed in [1]. According to [1], the theoretical regret of the

episodic version of Exp3 is Θ(𝐾
1

3𝑇
2

3 ).
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Figure 2: Compare the regrets of ROCF and the episodic ver-
sion of Exp3.

5.1 The Case of𝑀 = 1

In the case with 𝑀 = 1, we compare the regret of ROCF (that we

proposed in Sec. 3.3) with that of the episodic version of Exp3

(proposed in [1]). As we discussed in Sec. 3.1, when 𝛽2 < 3

4
𝐾𝛽1,

ROCF improves the dependence of the regret on the number 𝐾 of

arms from 𝐾
1

3 to (ln𝐾)
1

3 . Thus, here we focus on the case when

the full-feedback cost 𝛽2 is smaller than the switching cost 𝛽1.

Specifically, we let the switching cost and full-feedback cost be

𝛽1 = 10 and 𝛽2 = 1, respectively. We use the lower-bound trace

that we designed in Sec. 3.2, where the DS adversary runs the

MHM adversary as the subroutine. We consider 𝑇 = 10
6
time-slots.

We compare how the regret increases with the number of arms 𝐾 .

Please see Fig. 2. From Fig. 2, we can see that the regret of ROCF is

much smaller than that of Exp3, especially when 𝐾 is large. For

example, when 𝐾 = 512, the regret of Exp3 is around 3.32 × 10
5
. In

contrast, the regret of ROCF is only about 2.83 × 10
4
.

5.2 The case of𝑀 ≥ 2

In the case with 𝑀 ≥ 2, we compare the regret of ROW (that

we proposed in Sec. 4.1) with that of ROCF (that we proposed in

Sec. 3.3) and the episodic version of Exp3 (proposed in [1]). We

consider ROW with 𝑀 = 2 and ROW with 𝑀 = 3. In Fig. 3, we

use both the lower-bound trace that we designed in Sec. 3.2 and

the three counter-example traces that we designed in Sec. 4.1. We

consider𝐾 = 4 arms, the full-feedback cost 𝛽2 = 1 and the switching

cost 𝛽1 = 1. We compare how the regret increases with the time

length 𝑇 . From Fig. 3, we can see that for all 4 traces, the regret

of ROW (with 𝑀 = 2 and with 𝑀 = 3) is much smaller than that

of Exp3 (and ROCF). For example, when using counter-example 3

and 𝑇 =
√

10 × 10
6
, the regret of Exp3 is around 2.61 × 10

4
. In

contrast, the regret of ROW with 𝑀 = 2 is only about 3.22 × 10
3
,

confirming the power of using 2 arms. Moreover, we can see that

when 𝑀 increases, the gap between the regret of ROW and that

of Exp3 further increases. Specifically, take the case when using

counter-example 3 and 𝑇 =
√

10 × 10
6
as an example. When 𝑀

increases from 2 to 3, the regret of ROW further decreases from

about 3.22 × 10
3
to 945.85.

In Fig. 3, the regret of ROCF (for𝑀 = 1) is also smaller than that

of Exp3. This is because the choice of 𝛽1 = 1 and 𝛽2 = 1 for Fig. 3

satisfies 𝛽2 ≤ 3

4
𝐾𝛽1. As we show in (3) and (23), this is the range

where costly full-feedback is helpful for reducing the regret when

𝑀 = 1. In Fig. 4, we present a different set of results when 𝛽1 = 0.1.

(The other parameters are the same as in Fig. 3.) When 𝛽1 decreases

to 0.1, i.e., 𝛽2 > 3

4
𝐾𝛽1, using costly full-feedback is no longer that

helpful for 𝑀 = 1. Thus, we can observe that the gap between

the regret of ROCF and that of Exp3 diminishes. In contrast, since

ROW does not use full feedback, it still shows significant reduction

in regret compared with other algorithms.

6 CONCLUSION
In this paper, we investigate bandit-learning problems with switch-

ing costs and full-feedback costs. First, when only 𝑀 = 1 arm is

pulled at each time, we provide a lower bound (and a matching

upper bound) of the regret. Our new bounds show that adding

costly full-feedback will not alter theΘ(𝑇
2

3 ) regret for𝑀 = 1, while

the dependence on 𝐾 could be improved when the full-feedback

cost 𝛽2 is small. Second, when𝑀 ≥ 2 arms can be chosen at each

time, we provide a novel online learning algorithm ROW that im-

proves the regret to 𝑂 (
√
𝑇 ) without even using full feedback. Our

result thus reveals that having 2 (or more) arms is surprisingly as

powerful as having free full-feedback, for obtaining a low regret

in bandit-learning problems with switching costs. Our algorithm

ROW and regret analysis involve several new ideas, e.g., using dif-

ferent weight-decay parameters inside and across episodes. Our

numerical results confirm that the regret of our algorithm ROW is

much smaller than that of the episodic version of Exp3.

There are several interesting directions of future work. First,

notice that we study the static regret. It would be interesting to

extend our study to the dynamic regret, where the optimal arm

changes in time. Second, ROW assumes the knowledge of the time

length 𝑇 . It would be useful to extend ROW to the setting where 𝑇

is not known in advance.
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A PROOF OF LEMMA 3.2
First of all, according to Yao’s principle [6, 17, 22], we have

𝑅𝜋 (𝑇 ) ≥ E𝑙1:𝐾 (1:𝑇 )
[
E𝜋

[
Cost

𝜋 (1 : 𝑇 )
]
− Cost

OPT (1 : 𝑇 )
]

= E𝜋

[
E𝑙1:𝐾 (1:𝑇 )

[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

] ]
≥ min

𝜋 ′

{
E𝑙1:𝐾 (1:𝑇 )

[
Cost

𝜋 ′
(1 : 𝑇 ) − Cost

OPT (1 : 𝑇 )
]}
, (48)

i.e., the worst-case expected regret 𝑅𝜋 (𝑇 ) of a randomized online

algorithm 𝜋 against an oblivious adversary is lower-bounded by

the expected regret of the best deterministic online algorithm 𝜋 ′

against a randomized adversary. Thus, the regret lower-bound that

the MHM adversary provides is a lower bound of 𝑅𝜋 (𝑇 ).
In the following, we prove Lemma 3.2, the lower bound provided

by the MHM adversary. We first provide some notations in Sec. A.1,

followed by some supporting lemmas in Sec. A.2 that will be used

in the final proof in Sec A.3.

A.1 Notations
In the following, we useP𝑘∗ (·) to denote the conditional probability-
measure given the optimal arm 𝑘∗, i.e.,

P𝑘∗ (·) ≜ 𝑃𝑟
{
·|𝑘∗

}
, 𝑘∗ = 1, ..., 𝐾 . (49)

We useP0 (·) to denote an auxiliary conditional probability-measure

given that there is no optimal arm (i.e., the expected losses of all

arms are the same), i.e.,

P0 (·) ≜ 𝑃𝑟
{
·|𝑘∗ = 0

}
. (50)

We use 𝑙ob (𝑡) to denote the observed loss by the online algorithm

𝜋 , i.e.,

𝑙ob (𝑡) ≜
{
𝑙
k(𝑡 ) (𝑡), if 𝑧 (𝑡) = 0,

𝑙1:𝐾 (𝑡), if 𝑧 (𝑡) = 1.
(51)
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We use 𝑙hi (𝑡) to denote the hidden loss of the pulled arm k(𝑡), i.e.,

𝑙hi (𝑡) ≜ 𝑙
k(𝑡 ) (𝑡) − 𝛾k(𝑡 ) (𝑡) . (52)

A.2 Intermediate Steps
In this subsection, we relate the expected cost-difference (between

𝜋 and OPT) to the total variation distance (between P0

(
𝑙ob (1 : 𝑇 )

)
and P𝑘∗

(
𝑙ob (1 : 𝑇 )

)
).

First, we characterize the KL divergence between P0

(
𝑙ob (1 : 𝑇 )

)
andP𝑘∗

(
𝑙ob (1 : 𝑇 )

)
in LemmaA.1 below.We use𝐷KL (𝑄1 (·)∥𝑄2 (·))

to denote the Kullback-Leibler (KL) divergence (i.e., relative entropy)

between two probability measures 𝑄1 (·) and 𝑄2 (·), i.e.,

𝐷KL (𝑄1 (·)∥𝑄2 (·)) ≜ E𝑄1

[
ln

(
𝑄1 (·)
𝑄2 (·)

)]
.

Lemma A.1. The KL divergence between the probability mea-

sure P0

(
𝑙ob (1 : 𝑇 )

)
and P𝑘∗

(
𝑙ob (1 : 𝑇 )

)
of the entire observed loss-

sequence 𝑙ob (1 : 𝑇 ) is upper-bounded as follows: for 𝑇 ≥ 2,

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

log
2
𝑇 · 𝜖2

2𝜎2

·
{
2EP0

[
N𝑠
𝑘∗

]
+ 2EP0

[
Nck | ≠ 𝑘∗

]
+ 𝐾EP0

[
Nck | = 𝑘∗

]}
,

(53)

where EP0

[
N𝑠
𝑘∗

]
denotes the expected number (under the probability

measure P0) of times that the algorithm switches from or to the

optimal arm 𝑘∗, EP0

[
Nck | ≠ 𝑘∗

]
denotes the expected number (under

the probability measure P0) of times the algorithm asks for costly full-

feedback when the optimal arm 𝑘∗ is not pulled, and EP0

[
Nck | = 𝑘∗

]
denotes the expected number (under the probability measure P0) of
times the algorithm asks for costly full-feedback when the optimal
arm 𝑘∗ is pulled.

Please see Appendix B for the complete proof of Lemma A.1.

From Lemma A.1, we can then characterize the total variation dis-

tance between P0

(
𝑙ob (1 : 𝑇 )

)
and P𝑘∗

(
𝑙ob (1 : 𝑇 )

)
, averaged over

all 𝑘∗, in Lemma A.2 below. We use 𝐷TV (𝑄1 (·)∥𝑄2 (·)) to denote

the total variation distance between two probability measures𝑄1 (·)
and 𝑄2 (·),

𝐷TV (𝑄1 (·)∥𝑄2 (·)) ≜ sup

𝐴∈F
|𝑄1 (𝐴) −𝑄2 (𝐴) | ,

where F denotes the 𝜎-algebra of the sample space.

Lemma A.2. The average total-variation-distance between the

probability measure P0

(
𝑙ob (1 : 𝑇 )

)
and P𝑘∗

(
𝑙ob (1 : 𝑇 )

)
of the en-

tire observed loss-sequence 𝑙ob (1 : 𝑇 ) is upper-bounded as follows: for
𝑇 ≥ 2,

1

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

√
ln 2 · 𝜖
2𝜎

·
√︁

log
2
𝑇 ·

√︂
4

𝐾
· EP0

[N𝑠 ] + 3 · EP0

[
Nck

]
, (54)

where EP0
[N𝑠 ] denotes the expected number (under the probability

measure P0) of times that the algorithm switches, and EP0

[
Nck

]
denotes the expected number (under the probability measure P0) of
times that the algorithm asks for costly full-feedback.

Please see Appendix C for the complete proof of Lemma A.2. The

above bound on total variation distance then allows us to lower-

bound the regret in Lemma A.3 below.

Lemma A.3. The expected regret of any deterministic online algo-
rithm 𝜋 is lower-bounded as follows,

E
[
Cost𝜋 (1 : 𝑇 ) − CostOPT (1 : 𝑇 )

]
≥ 𝜖𝑇

2

− 𝜖𝑇

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
+ 𝛽1E

[
N𝑠

]
+ 𝛽2E

[
Nck

]
, (55)

where the expectation E is with respect to both P𝑘∗ (·) and the ran-
domness of choosing the optimal arm 𝑘∗.

Please see Appendix D for the complete proof of Lemma A.3. In

Lemma A.4 below, we take care of the possibility that adversary

inputs 𝑙𝑘 (𝑡) generated by MHM may exceed the admitted range

[0, 1].

Lemma A.4. Let 𝑙 ′
𝑘
(𝑡) denote the clipped loss of 𝑙𝑘 (𝑡), i.e.,

𝑙 ′
𝑘
(𝑡) = min{max{𝑙𝑘 (𝑡), 0}, 1}.

Next, we use Reg′ to denote the regret of the decision sequence k(1 : 𝑇 )
made by the online algorithm under the clipped loss 𝑙 ′

𝑘
(𝑡), i.e.,

Reg′ ≜
𝑇∑︁
𝑡=1

𝑙 ′
k(𝑡 ) (𝑡) + 𝛽1N𝑠 −

𝑇∑︁
𝑡=1

𝑙 ′
𝑘∗ (𝑡) − 𝛽1 .

Similarly, we use Reg to denote the regret of the same decision sequence
k(1 : 𝑇 ) but under the unclipped loss 𝑙𝑘 (𝑡), i.e.,

Reg ≜
𝑇∑︁
𝑡=1

𝑙
k(𝑡 ) (𝑡) + 𝛽1N𝑠 −

𝑇∑︁
𝑡=1

𝑙𝑘∗ (𝑡) − 𝛽1 .

Then, we have

E[Reg′] ≥ E[Reg] − 𝜖𝑇

6

, (56)

where the expectation E is with respect to both P𝑘∗ (·) and the ran-
domness of choosing the optimal arm 𝑘∗.

Please see Appendix E for the complete proof of Lemma A.4.

A.3 Final Steps
Proof. In this subsection, by using Lemma A.1-Lemma A.4, we

derive the lower-bound of the regret. In the following, we first

focus on analyzing the regret of any deterministic online algorithm

satisfying the following two conditions for any loss sequence: (Ci)

the total switching-cost is less than or equal to 𝜖𝑇 , (Cii) the total

full-feedback-cost is less than or equal to 𝜖𝑇 . We will relax this as-

sumption at the end of the proof (please see the end of this section).
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First, for any deterministic online algorithm satisfying conditions

(Ci) and (Cii), we have

EP0

[
N𝑠

]
− E

[
N𝑠

]
=

1

𝐾

𝐾∑︁
𝑘∗=1

{
EP0

[
N𝑠

]
− EP𝑘∗

[
N𝑠

]}
≤ 𝜖𝑇

𝛽1𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
, (57)

where the inequality holds because, under condition (Ci) above,

N𝑠 ≤ 𝜖𝑇
𝛽1

. In addition, we have

EP0

[
Nck

]
− E

[
Nck

]
=

1

𝐾

𝐾∑︁
𝑘∗=1

{
EP0

[
Nck

]
− EP𝑘∗

[
Nck

]}
≤ 𝜖𝑇

𝛽2𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
, (58)

where the inequality holds because, under condition (Cii) above,

Nck ≤ 𝜖𝑇
𝛽2

.

Next, combining (55)-(58), we have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

��𝑙𝑘 (𝑡) ∈ [0, 1],

for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]
]

≥ 𝜖𝑇

2

− 𝜖𝑇

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
+ 𝛽1E

[
N𝑠

]
+ 𝛽2E

[
Nck

]
− 𝜖𝑇

6

≥ 𝜖𝑇

3

− 3𝜖𝑇

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
+ 𝛽1EP0

[
N𝑠

]
+ 𝛽2EP0

[
Nck

]
, (59)

where the first inequality is because of (55) and (56), the second

inequality is because of (57) and (58). Then, according to (54), we

have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

��𝑙𝑘 (𝑡) ∈ [0, 1],

for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]
]

≥ 𝜖𝑇

3

−
3

√
ln 2

√︁
log

2
𝑇 ·𝑇𝜖2

2𝜎

√︂
4

𝐾
· EP0

[N𝑠 ] + 3 · EP0

[
Nck

]
+ 𝛽1EP0

[
N𝑠

]
+ 𝛽2EP0

[
Nck

]
. (60)

Finally, according to (48), to get the lower bound of 𝑅𝜋 (𝑇 ), we
only need to derive the minimal value of the right-hand-side of (60)

over all possible values of EP0
[N𝑠 ] and EP0

[Nck], for a carefully
chosen set of 𝜖 and 𝜎 . We first focus on the second to fourth terms

on the right-hand-side of (60). Consider a function

𝑓 (𝑥,𝑦) = −𝑎
√︂

4

𝐾
𝑥 + 3𝑦 + 𝛽1𝑥 + 𝛽2𝑦,

where 𝑎 =
3

√
ln 2

√
log

2
𝑇 ·𝑇𝜖2

2𝜎 and 𝑥,𝑦 ≥ 0.

(I) If 𝛽2 ≥ 3

4
𝐾𝛽1, we have

𝑓 (𝑥,𝑦) = −𝑎
√︂

4

𝐾
𝑥 + 3𝑦 + 𝛽1

𝐾

4

(
4

𝐾
𝑥 + 3𝑦

)
+

(
𝛽2 −

3𝐾

4

𝛽1

)
𝑦

𝑧= 4

𝐾
𝑥+3𝑦
= −𝑎

√
𝑧 + 𝛽1

𝐾

4

𝑧 +
(
𝛽2 −

3𝐾

4

𝛽1

)
𝑦.

Then, 𝑓 (𝑥,𝑦) is minimized at 𝑦 = 0. Thus, we have, if 𝛽2 ≥ 3

4
𝐾𝛽1,

𝑓 (𝑥,𝑦) ≥ −𝑎
√
𝑧 + 𝛽1

𝐾

4

𝑧

≥ − 𝑎2

𝛽1𝐾
, (61)

where the last inequality becomes an equality when 𝑧 = 4𝑎2

𝛽2

1
𝐾2

. Then,

combining (60) and (61), we have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

��𝑙𝑘 (𝑡) ∈ [0, 1],

for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]
]

≥ 𝜖𝑇

3

− 𝑎2

𝛽1𝐾

=
𝜖𝑇

3

−
9 ln 2 · log

2
𝑇 ·𝑇 2

4𝛽1𝐾𝜎
2

𝜖4 .

Using our choice of 𝜖 and 𝜎 in (12), we have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

��𝑙𝑘 (𝑡) ∈ [0, 1],

for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]
]

≥ 3

√︂
1

3 ln 2

· 1

36 log
2
𝑇

· 𝛽
1

3

1
𝐾

1

3𝑇
2

3 .

(II) If 𝛽2 < 3

4
𝐾𝛽1, similarly, we have

𝑓 (𝑥,𝑦)
𝑧= 4

𝐾
𝑥+3𝑦
= −𝑎

√
𝑧 +

(
𝛽1 −

4

3𝐾
𝛽2

)
𝑥 + 𝛽2

3

𝑧

≥ −𝑎
√
𝑧 + 𝛽2

3

𝑧

≥ − 3𝑎2

4𝛽2

, (62)

where the last inequality becomes an equality when 𝑧 = 9𝑎2

4𝛽2

2

. Then,

combining (60) and (62), we have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

��𝑙𝑘 (𝑡) ∈ [0, 1],

for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]
]

≥ 𝜖𝑇

3

− 3𝑎2

4𝛽2

=
𝜖𝑇

3

−
27 ln 2 · log

2
𝑇 ·𝑇 2

16𝛽2𝜎
2

𝜖4 .
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Using our choice of 𝜖 and 𝜎 in (12), we have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

��𝑙𝑘 (𝑡) ∈ [0, 1],

for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]
]

≥ 3

√︂
4

9 ln 2

· 1

36 log
2
𝑇

· 𝛽
1

3

2
𝑇

2

3 .

Up to this point, we have proved the lower bound of the regret for

any deterministic online algorithm satisfying the two conditions:

(Ci) the total switching-cost is less than or equal to 𝜖𝑇 , (Cii) the total

full-feedback-cost is less than or equal to 𝜖𝑇 . For any algorithm not

satisfying these two conditions, similar to the conclusion in [10],

its regret can be lower-bounded by the regret of a modified version

of this algorithm that satisfies these two conditions. Specifically,

for any online algorithm 𝜋 that violates conditions (Ci) and/or (Cii)

for some loss sequence, we can construct the modified version 𝜋 ′

of 𝜋 as follows: 𝜋 ′ follows 𝜋 until the time when 𝜋 has already

incurred a total switching-cost or full-feedback-cost equal to 𝜖𝑇 .

For all subsequent time-slots, 𝜋 ′ uses a fixed decision. Let us now

demonstrate the relation between the expected regret of 𝜋 and that

of 𝜋 ′. For any loss sequence, if 𝜋 satisfies condition (Ci) and (Cii),

the regret of 𝜋 ′ is equal to that of 𝜋 . Otherwise, notice that the

expected difference between the loss of the optimal arm and that

of any other arm for each time-slot is at most 𝜖 , conditioned on all

decisions that occur before time 𝑡 . Thus, the regret of 𝜋 ′ is upper-
bounded by the regret of 𝜋 plus 𝜖𝑇 , which is further upper-bounded

by twice of the regret of 𝜋 (since the regret of 𝜋 in this case must be

no smaller than either the switching cost or feedback cost, which

is at least 𝜖𝑇 ). Combining these two cases together, we can draw

the conclusion that the expected regret of 𝜋 must be lower-bound

by half of that of 𝜋 ′ (the latter satisfies both condition (Ci) and

condition (Cii) for any loss sequence).

□

B PROOF OF LEMMA A.1
For the convenience of the reader, we re-state Lemma A.1 below.

Lemma A.1. The KL divergence between the probability mea-

sure P0

(
𝑙ob (1 : 𝑇 )

)
and P𝑘∗

(
𝑙ob (1 : 𝑇 )

)
of the entire observed loss-

sequence 𝑙ob (1 : 𝑇 ) is upper-bounded as follows: for 𝑇 ≥ 2,

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

log
2
𝑇 · 𝜖2

2𝜎2

·
{
2EP0

[
N𝑠
𝑘∗

]
+ 2EP0

[
Nck | ≠ 𝑘∗

]
+ 𝐾EP0

[
Nck | = 𝑘∗

]}
,

(63)

where EP0

[
N𝑠
𝑘∗

]
denotes the expected number (under the probability

measure P0) of times that the algorithm switches from or to the

optimal arm 𝑘∗, EP0

[
Nck | ≠ 𝑘∗

]
denotes the expected number (under

the probability measure P0) of times the algorithm asks for costly full-

feedback when the optimal arm 𝑘∗ is not pulled, and EP0

[
Nck | = 𝑘∗

]
denotes the expected number (under the probability measure P0) of
times the algorithm asks for costly full-feedback when the optimal
arm 𝑘∗ is pulled.

We now present the proof in steps.

B.1 Initial Steps
First, we prove that (see discussion in Sec. 3 why related to the

hidden loss sequence 𝑙hi is essential)

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤ 𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

))
+ 𝐷KL

(
P0

(
𝑙hi (1 : 𝑇 )

) 

P𝑘∗ (
𝑙hi (1 : 𝑇 )

))
. (64)

(Please see (9) for the definition of the conditional KL divergence.)

This is because (i)

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

))
= EP0

log

©­­«
P0

(
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

)
P𝑘∗

(
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

) ª®®¬


= EP0

log

©­­«
P0

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

)
· P0

(
𝑙hi (1 : 𝑇 )

)
P𝑘∗

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

)
· P𝑘∗

(
𝑙hi (1 : 𝑇 )

) ª®®¬


= EP0

log

©­­«
P0

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

)
P𝑘∗

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

) ª®®¬


+ EP0

log

©­­«
P0

(
𝑙hi (1 : 𝑇 )

)
P𝑘∗

(
𝑙hi (1 : 𝑇 )

) ª®®¬


= 𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

))
+ 𝐷KL

(
P0

(
𝑙hi (1 : 𝑇 )

) 

P𝑘∗ (
𝑙hi (1 : 𝑇 )

))
, (65)

where the second equality is because of the linearity of the expec-

tation, and (ii)

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

))
= EP0

log

©­­«
P0

(
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

)
P𝑘∗

(
𝑙ob (1 : 𝑇 ), 𝑙hi (1 : 𝑇 )

) ª®®¬


= EP0

log

©­­«
P0

(
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

)
· P0

(
𝑙ob (1 : 𝑇 )

)
P𝑘∗

(
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

)
· P𝑘∗

(
𝑙ob (1 : 𝑇 )

) ª®®¬


= EP0

log

©­­«
P0

(
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

)
P𝑘∗

(
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

) ª®®¬


+ EP0

log

©­­«
P0

(
𝑙ob (1 : 𝑇 )

)
P𝑘∗

(
𝑙ob (1 : 𝑇 )

) ª®®¬


= 𝐷KL

(
P0

(
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

))
+ 𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≥ 𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
, (66)
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where the last inequality is because

𝐷KL

(
P0

(
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙hi (1 : 𝑇 ) |𝑙ob (1 : 𝑇 )

))
≥ 0.

(This is because the KL divergence is always non-negative, i.e.,

𝐷KL ≥ 0 [9, p. 26].) Combining (65) and (66), we get (64).

According to (64) we have

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

)
∥P𝑘∗

(
𝑙ob (1 : 𝑇 )

))
≤ EP0

log

©­­«
P0

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

)
P𝑘∗

(
𝑙ob (1 : 𝑇 ) |𝑙hi (1 : 𝑇 )

) ª®®¬


+ EP0

log

©­­«
P0

(
𝑙hi (1 : 𝑇 )

)
P𝑘∗

(
𝑙hi (1 : 𝑇 )

) ª®®¬


= EP0

log

©­­«
𝑇∏
𝑡=1

P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

)
P𝑘∗

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) ª®®¬


+ EP0

log

©­­«
𝑇∏
𝑡=1

P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

)
P𝑘∗

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) ª®®¬


=

𝑇∑︁
𝑡=1

{
EP0

log

©­­«
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

)
P𝑘∗

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) ª®®¬


+ EP0

log

©­­«
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

)
P𝑘∗

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) ª®®¬

}

=

𝑇∑︁
𝑡=1

{
𝐷KL

(
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) 

P𝑘∗ (
𝑙ob (𝑡) |𝑙hi (𝑡)

))
+ 𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

)) }
,

(67)

where the first equality is because (i) given 𝑙hi (𝑡), 𝑙ob (𝑡) is condi-
tionally independent of 𝑙ob (𝑡 ′) for all 𝑡 ′ ≠ 𝑡 , (ii) of the chain rule,

and given 𝑙hi (𝜌 (𝑡)), 𝑙hi (𝑡) is conditionally independent of 𝑙hi (𝑡 ′)
for all 𝑡 ′ ≠ 𝜌 (𝑡) and 𝑡 ′ < 𝑡 . The second equality is because of the

linearity of the expectation.

B.2 Intermediate Steps
In this subsection, we calculate the conditional KL divergence

𝐷KL

(
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) 

P𝑘∗ (
𝑙ob (𝑡) |𝑙hi (𝑡)

))
and

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
for each time 𝑡 . We useN(𝜖, 𝜎2) to denote the Gaussian distribution
with mean 𝜖 and variance 𝜎2

. We useN𝐾 ( ®𝜇,Σ) to denote the multi-

variate Gaussian distribution with𝐾 dimensions, mean vector equal

to ®𝜇, and covariance matrix equal to Σ. We use ®𝜇𝑎 (𝑏) to denote the

mean vector with all entries equal to 𝑏 but the 𝑘∗-th entry equal to

𝑎. We use Σ(𝜎2) to denote the covariance matrix with all entries not

on the diagonal equal to 0, and all entries on the diagonal equal to

𝜎2
. We consider two cases one-by-one: the case 1 when the online

algorithm does not ask for costly full-feedback at time 𝑡 and the

case 2 when the online algorithm asks for costly full-feedback at

time 𝑡 .

Before we elaborate on case 1, we state a standard result that,

for two Gaussian distributions N(𝜇1, 𝜎
2

1
) and N(𝜇2, 𝜎

2

2
), we have

𝐷KL

(
N(𝜇1, 𝜎

2

1
)


N(𝜇2, 𝜎

2

2
)
)
= 𝐷KL

(
N(0, 𝜎2

1
)


N(𝜇2 − 𝜇1, 𝜎

2

2
)
)
.

(68)

This is because the KL divergence between two Gaussian distribu-

tions N(𝜇1, 𝜎
2

1
) and N(𝜇2, 𝜎

2

2
) is

𝐷KL

(
N(𝜇1, 𝜎

2

1
)


N(𝜇2, 𝜎

2

2
)
)
= log

(
𝜎2

𝜎1

)
+
𝜎2

1
+ (𝜇1 − 𝜇2)2

2𝜎2

2

− 1

2

,

(69)

which depends on the relative difference between the means, but

not the absolute values of the means.

(i) Case 1: If the online algorithm does not ask for costly full-

feedback, i.e., 𝑧 (𝑡) = 0, the observed loss 𝑙ob (𝑡) = 𝑙
k(𝑡 ) (𝑡) is a scalar.

Then, we have

𝐷KL

(
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) 

P𝑘∗ (
𝑙ob (𝑡) |𝑙hi (𝑡)

))
= 𝐷KL

(
N(0, 𝜎2)∥N (0, 𝜎2)

)
= 0,

where the first equality is because of (68) and the fact that, condi-

tioned on 𝑙hi (𝑡), 𝑙ob (𝑡) follows a Gaussian distribution with mean

𝑙hi (𝑡) and variance 𝜎2
(due to the noise 𝛾

k(𝑡 ) (𝑡)) under both proba-

bility measures P0 (·) and P𝑘∗ (·).
(i.a) If k(𝑡) = k(𝜌 (𝑡)), i.e., the arm pulled at time 𝑡 is the same as

the arm pulled at time 𝜌 (𝑡), we have

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (0, 𝜎2)

)
= 0,

where the first equality is because of (68) and the fact that, con-

ditioned on 𝑙hi (𝜌 (𝑡)), 𝑙hi (𝑡) follows a Gaussian distribution with

mean 𝑙hi (𝜌 (𝑡)) and variance 𝜎2
(due to the noise 𝜉 (𝑡)) under both

probability measures P0 (·) and P𝑘∗ (·).
(i.b) If k(𝑡) ≠ 𝑘∗ and k(𝜌 (𝑡)) = 𝑘∗, i.e., the arm pulled at time 𝑡 is

not the optimal arm 𝑘∗ but the arm pulled at time 𝜌 (𝑡) is 𝑘∗, we
have,

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (𝜖, 𝜎2)

)
=
𝜖2

2𝜎2
.

Compared with case (i.a), the difference here is that, under P𝑘∗ (·),
there is an additional gap 𝜖 (due to the additional −𝜖 when gen-

erating 𝑙𝑘∗ (𝜌 (𝑡)) in (6)) in the mean of 𝑙hi (𝑡). As a result, the KL
divergence is not 0 any more.

(i.c) If k(𝑡) = 𝑘∗ and k(𝜌 (𝑡)) ≠ 𝑘∗, similar to case (i.b), we have

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (−𝜖, 𝜎2)

)
=
𝜖2

2𝜎2
.
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(i.d) If k(𝑡) ≠ 𝑘 (𝜌 (𝑡)), k(𝑡) ≠ 𝑘∗ and k(𝜌 (𝑡)) ≠ 𝑘∗, i.e., the arms

pulled at time 𝑡 and 𝜌 (𝑡) are not the optimal arm and are different,

we have

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (0, 𝜎2)

)
= 0,

where the first equality is because of (68) and the fact that, con-

ditioned on 𝑙hi (𝜌 (𝑡)), 𝑙hi (𝑡) follows a Gaussian distribution with

mean 𝑙hi (𝜌 (𝑡)) and variance 𝜎2
(due to the noise 𝜉 (𝑡)) under both

probability measures P0 (·) and P𝑘∗ (·).
Having checked case 1, we now move on to case 2. Before we

start, we state a standard result that, for two multi-variate Gaussian

distributions N𝐾 ( ®𝜇1,Σ1) and N𝐾 ( ®𝜇2,Σ2), we have

𝐷KL

(
N(®𝜇1,Σ1)



N(®𝜇2,Σ2)
)
= 𝐷KL

(
N(0,Σ1)



N(®𝜇2 − ®𝜇1,Σ2)
)
.

(70)

This is because the KL divergence between two multi-variate Gauss-

ian distributions N𝐾 ( ®𝜇1,Σ1) and N𝐾 ( ®𝜇2,Σ2) is

𝐷KL

(
N𝐾 ( ®𝜇1,Σ1)



N𝐾 ( ®𝜇2,Σ2)
)

=
1

2

[
log

|Σ2 |
|Σ1 |

− 𝐾 + tr

(
Σ−1

2
Σ1

)
− (®𝜇2 − ®𝜇1)𝑇Σ−1

2
( ®𝜇2 − ®𝜇1)

]
,

(71)

which again depends on the relative difference between the means,

but not the absolute values of the means.

(ii) Case 2: If the online algorithm asks for costly full-feedback,

i.e., 𝑧 (𝑡) = 1, the observed loss 𝑙ob (𝑡) = 𝑙1:𝐾 (𝑡) is a 𝐾-dimension

vector. Further, note that even though 𝑙hi (𝑡) is defined based only

on the chosen arm k(𝑡), we can immediately infer the hidden loss

of all other arms. Indeed, under P0, the hidden losses of all arms

are the same. Under P𝑘∗ , there is only a −𝜖 difference between the

hidden losses of the optimal arm and that of all other arms.

(ii.a) If k(𝑡) ≠ 𝑘∗ and k(𝜌 (𝑡)) ≠ 𝑘∗, i.e., the arms pulled at both

time 𝑡 and time 𝜌 (𝑡) are not the optimal arm, we have

𝐷KL

(
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) 

P𝑘∗ (
𝑙ob (𝑡) |𝑙hi (𝑡)

))
= 𝐷KL

(
N𝐾

(
0,Σ(𝜎2)

)
∥N𝐾

(
®𝜇−𝜖 (0),Σ(𝜎2)

))
=
𝜖2

2𝜎2
,

where the first equality is because of (70) and the fact that, (I) condi-

tioned on 𝑙hi (𝑡), under the probability measure P0 (·), 𝑙ob (𝑡) follows
a multi-variate Gaussian distribution with mean ®𝜇𝑙hi (𝑡 ) (𝑙hi (𝑡)) and
covariance matrix Σ(𝜎2) (due to the noise 𝛾𝑘 (𝑡)), and (II) condi-

tioned on 𝑙hi (𝑡), under the probability measure P𝑘∗ (·), 𝑙ob (𝑡) fol-
lows amulti-variate Gaussian distributionwithmean ®𝜇𝑙hi (𝑡 )−𝜖 (𝑙hi (𝑡))
and covariance matrix Σ(𝜎2) (due to the noise 𝛾𝑘 (𝑡) and the addi-

tional term −𝜖 in (6) for arm 𝑘∗). In addition, similar to case (i.d),

we have

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (0, 𝜎2)

)
= 0,

(ii.b) If k(𝑡) = k(𝜌 (𝑡)) = 𝑘∗, i.e., the arms pulled at both time 𝑡 and

time 𝜌 (𝑡) are the optimal arm, we have

𝐷KL

(
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) 

P𝑘∗ (
𝑙ob (𝑡) |𝑙hi (𝑡)

))
= 𝐷KL

(
N𝐾

(
0,Σ(𝜎2)

)
∥N𝐾

(
®𝜇0 (𝜖),Σ(𝜎2)

))
=

(𝐾 − 1)𝜖2

2𝜎2
,

where the first equality is because of (70) and the fact that, (I) condi-

tioned on 𝑙hi (𝑡), under the probability measure P0 (·), 𝑙ob (𝑡) follows
a multi-variate Gaussian distribution with mean ®𝜇𝑙hi (𝑡 ) (𝑙hi (𝑡)) and
covariance matrix Σ(𝜎2) (due to the noise 𝛾𝑘 (𝑡)), and (II) condi-

tioned on 𝑙hi (𝑡), under the probability measure P𝑘∗ (·), 𝑙ob (𝑡) fol-
lows amulti-variate Gaussian distributionwithmean ®𝜇𝑙hi (𝑡 ) (𝑙hi (𝑡)+
𝜖) and covariance matrix Σ(𝜎2) (due to the noise 𝛾𝑘 (𝑡) and the ad-

ditional term −𝜖 in (6) for arm 𝑘∗). In addition, similar to case (i.a),

we have

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (0, 𝜎2)

)
= 0.

(ii.c) If k(𝑡) ≠ 𝑘∗ and k(𝜌 (𝑡)) = 𝑘∗, similar to case (ii.a), we have

𝐷KL

(
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

)
∥P𝑘∗

(
𝑙ob (𝑡) |𝑙hi (𝑡)

))
= 𝐷KL

(
N𝐾

(
0,Σ(𝜎2)

)
∥N𝐾

(
®𝜇−𝜖 (0),Σ(𝜎2)

))
=
𝜖2

2𝜎2
.

In addition, similar to case (i.b), we have

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (𝜖, 𝜎2)

)
=
𝜖2

2𝜎2
.

(ii.d) If k(𝑡) = 𝑘∗ and k(𝜌 (𝑡)) ≠ 𝑘∗, similar to case (ii.b), we have

𝐷KL

(
P0

(
𝑙ob (𝑡) |𝑙hi (𝑡)

) 

P𝑘∗ (
𝑙ob (𝑡) |𝑙hi (𝑡)

))
= 𝐷KL

(
N𝐾

(
0,Σ(𝜎2)

)
∥N𝐾

(
®𝜇0 (𝜖),Σ(𝜎2)

))
=

(𝐾 − 1)𝜖2

2𝜎2
,

In addition, similar to case (i.c), we have

𝐷KL

(
P0

(
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

) 

P𝑘∗ (
𝑙hi (𝑡) |𝑙hi (𝜌 (𝑡))

))
= 𝐷KL

(
N(0, 𝜎2)∥N (−𝜖, 𝜎2)

)
=
𝜖2

2𝜎2
.

B.3 Final Steps
Now, based on the results that we obtained in Sec. B.1 and Sec B.2,

we provide the final proof of Lemma A.1.

Proof. First, we use Is (𝑡) to indicate whether the online algo-

rithm switches from or to the optimal arm 𝑘∗ from time 𝜌 (𝑡) to
𝑡 . That is, Is (𝑡) = 1 if the online algorithm switches from or to

the optimal arm 𝑘∗ from time 𝜌 (𝑡) to 𝑡 , and Is (𝑡) = 0 otherwise.

Moreover, we use Ick (𝑡) to indicate whether the online algorithm

asks for costly full-feedback at time 𝑡 . Next, combining all above
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cases and (67), we have

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

𝑇∑︁
𝑡=1

[
P0

(
Ick (𝑡) = 0,Is (𝑡) = 1

)
· 𝜖

2

2𝜎2

(due to cases (i.b) and (i.c))

+ P0

(
Ick (𝑡) = 1, k(𝑡) ≠ 𝑘∗

)
· 𝜖

2

𝜎2

(due to cases (ii.a) and (ii.c))

+ P0

(
Ick (𝑡) = 1, k(𝑡) = 𝑘∗

)
· 𝐾𝜖

2

2𝜎2

]
(due to cases (ii.b) and (ii.d))

≤ 𝜖2

2𝜎2
· EP0

[
𝑇∑︁
𝑡=1

1{Is (𝑡 )=1}

]
+ 𝜖2

𝜎2
· EP0

[
𝑇∑︁
𝑡=1

1{Ick (𝑡 )=1,k(𝑡 )≠𝑘∗ }

]
+ 𝐾𝜖

2

2𝜎2
· EP0

[
𝑇∑︁
𝑡=1

1{Ick (𝑡 )=1,k(𝑡 )=𝑘∗ }

]
, (72)

where 1𝐸 is an indicator function (i.e., 1𝐸 = 1 if the event 𝐸 is true,

and 1𝐸 = 0 otherwise). Recall that the event {Is (𝑡) = 1} means

that there is a switch from or to 𝑘∗ between time 𝜌 (𝑡) and 𝑡 . In
contrast, N𝑠

𝑘∗
counts the number of switches from or to 𝑘∗ between

adjacent times. To relate

𝑇∑
𝑡=1

1{Is (𝑡 )=1} to N𝑠
𝑘∗
, we follow the proof

in [10]. First, the event {Is (𝑡) = 1} implies that there exists at least

one switch from or to 𝑘∗ in some adjacent time-slots between time

𝜌 (𝑡) and 𝑡 . Next, we use {𝑆𝑖 }𝑖=1:N𝑠
𝑘∗

to denote the time-slots from 1

to 𝑇 that each switching between adjacent time-slots occurs. Then,

we have

𝑇∑︁
𝑡=1

1{Is (𝑡 )=1} ≤
N𝑠
𝑘∗∑︁
𝑖=1

∑︁
𝑡 ∈[1,𝑇 ]:𝜌 (𝑡 )<𝑆𝑖≤𝑡

1{Is (𝑡 )=1}

≤
N𝑠
𝑘∗∑︁
𝑖=1

|{𝑡 ∈ [1,𝑇 ] : 𝜌 (𝑡) < 𝑆𝑖 ≤ 𝑡}|

≤
(
log

2
𝑇 + 1

)
· N𝑠

𝑘∗ ,

where | · | denotes the cardinality of a set, and the last inequality is

because of Lemma 2 in [10]. Since 𝑇 ≥ 2, we have

𝑇∑︁
𝑡=1

1{Is (𝑡 )=1} ≤ 2 log
2
𝑇 · N𝑠

𝑘∗ .

Moreover, we have (I)

𝑇∑
𝑡=1

1{Ick (𝑡 )=1,k(𝑡 )≠𝑘∗ } is equal to the number

of times using full-feedback Nck
when 𝑘∗ is not pulled, and (II)

𝑇∑
𝑡=1

1{Ick (𝑡 )=1,k(𝑡 )=𝑘∗ } is equal to the number of times using full-

feedback Nck
when 𝑘∗ is pulled. Hence, we have

𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤ log

2
𝑇 ·

{
𝜖2

𝜎2
· EP0

[
N𝑠
𝑘∗

]
+ 𝜖2

𝜎2
· EP0

[
Nck | ≠ 𝑘∗

]
+ 𝐾𝜖

2

2𝜎2
· EP0

[
Nck | = 𝑘∗

] }
,

which concludes the proof.

□

C PROOF OF LEMMA A.2
For the convenience of the reader, we re-state Lemma A.2 below.

Lemma A.2. The average total-variation-distance between the

probability measure P0

(
𝑙ob (1 : 𝑇 )

)
and P𝑘∗

(
𝑙ob (1 : 𝑇 )

)
of the en-

tire observed loss-sequence 𝑙ob (1 : 𝑇 ) is upper-bounded as follows: for
𝑇 ≥ 2,

1

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

√
ln 2 · 𝜖
2𝜎

·
√︁

log
2
𝑇 ·

√︂
4

𝐾
· EP0

[N𝑠 ] + 3 · EP0

[
Nck

]
, (73)

where EP0
[N𝑠 ] denotes the expected number (under the probability

measure P0) of times that the algorithm switches, and EP0

[
Nck

]
denotes the expected number (under the probability measure P0) of
times that the algorithm asks for costly full-feedback.

Proof. According to Pinsker’s inequality (Theorem 12.6.1 in [9]),

we have

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

√︂
ln 2

2

·
√︃
𝐷KL

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

) )
.

Then, according to Lemma A.1, we have

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

√
ln 2

2

·
√︁

log
2
𝑇 · 𝜖

𝜎

·
√︂

2EP0

[
N𝑠
𝑘∗

]
+ 2EP0

[
Nck | ≠ 𝑘∗

]
+ 𝐾EP0

[
Nck | = 𝑘∗

]
.
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Thus, according to Jensen’s inequality, we have

1

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

√
ln 2

2

·
√︁

log
2
𝑇 · 𝜖

𝜎
· 1

𝐾

·
𝐾∑︁
𝑘∗=1

√︂
2EP0

[
N𝑠
𝑘∗

]
+ 2EP0

[
Nck | ≠ 𝑘∗

]
+ 𝐾EP0

[
Nck | = 𝑘∗

]
≤

√
ln 2

2

·
√︁

log
2
𝑇 · 𝜖

𝜎
·
{

2

𝐾

𝐾∑︁
𝑘∗=1

EP0

[
N𝑠
𝑘∗

]
+ 2

𝐾

𝐾∑︁
𝑘∗=1

EP0

[
Nck | ≠ 𝑘∗

]
+

𝐾∑︁
𝑘∗=1

EP0

[
Nck | = 𝑘∗

] } 1

2

.

Finally, we have

1

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
≤

√
ln 2

2

·
√︁

log
2
𝑇 · 𝜖

𝜎
·
√︂

4

𝐾
EP0

[N𝑠 ] + 3EP0

[
Nck

]
,

where the inequality is because, when we sum over all 𝑘∗, (I) the
event for switching from or to each 𝑘∗ at time 𝑡 are counted twice

(i.e., when 𝑘∗ = k(𝑡) and 𝑘∗ = k(𝑡 −1)), and (II) the event for asking
for costly full-feedback when k(𝑡) ≠ 𝑘∗ are counted 𝐾 − 1 times

(i.e., when 𝑘∗ ∈ [1, 𝐾] − {k(𝑡)}).
□

D PROOF OF LEMMA A.3
For the convenience of the reader, we re-state Lemma A.3 below.

Lemma A.3. The expected regret of any deterministic online algo-
rithm 𝜋 is lower-bounded as follows,

E
[
Cost𝜋 (1 : 𝑇 ) − CostOPT (1 : 𝑇 )

]
≥ 𝜖𝑇

2

− 𝜖𝑇

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
+ 𝛽1E

[
N𝑠

]
+ 𝛽2E

[
Nck

]
, (74)

where the expectation E is with respect to both P𝑘∗ (·) and the ran-
domness of choosing the optimal arm 𝑘∗.

Proof. First, we let N𝑘∗ denote the number of times that the

algorithm pulls the optimal arm 𝑘∗. Then, we have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

]
=

1

𝐾

𝐾∑︁
𝑘=1

E
[
𝜖 (𝑇 − N𝑘∗ ) + 𝛽1E

[
N𝑠

]
+ 𝛽2E

[
Nck

] ���𝑘∗ = 𝑘]
= 𝜖𝑇 − 𝜖

𝐾

𝐾∑︁
𝑘∗=1

EP𝑘∗ [N𝑘∗ ] + 𝛽1E
[
N𝑠

]
+ 𝛽2E

[
Nck

]
.

Next, since N𝑘∗ ≤ 𝑇 , we have

EP𝑘∗ [N𝑘∗ ] − EP0
[N𝑘∗ ]

≤ 𝑇 · 𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
.

Thus, we have

𝐾∑︁
𝑘∗=1

EP𝑘∗ [N𝑘∗ ] ≤ 𝑇
𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
+

𝐾∑︁
𝑘∗=1

EP0
[N𝑘∗ ]

= 𝑇

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
+𝑇 .

Hence, we have

E
[
Cost

𝜋 (1 : 𝑇 ) − Cost
OPT (1 : 𝑇 )

]
≥ 𝜖𝑇 − 𝜖𝑇

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
− 𝜖𝑇

𝐾
+ 𝛽1E

[
N𝑠

]
+ 𝛽2E

[
Nck

]
≥ 𝜖𝑇

2

− 𝜖𝑇

𝐾

𝐾∑︁
𝑘∗=1

𝐷TV

(
P0

(
𝑙ob (1 : 𝑇 )

) 

P𝑘∗ (
𝑙ob (1 : 𝑇 )

))
+ 𝛽1E

[
N𝑠

]
+ 𝛽2E

[
Nck

]
,

where the last inequality is because 𝐾 ≥ 2.

□

E PROOF OF LEMMA A.4
For the convenience of the reader, we re-state Lemma A.4 below.

Lemma A.4. Let 𝑙 ′
𝑘
(𝑡) denote the clipped loss of 𝑙𝑘 (𝑡), i.e.,

𝑙 ′
𝑘
(𝑡) = min{max{𝑙𝑘 (𝑡), 0}, 1}.

Next, we use Reg′ to denote the regret of the decision sequence k(1 : 𝑇 )
made by the online algorithm under the clipped loss 𝑙 ′

𝑘
(𝑡), i.e.,

Reg′ ≜
𝑇∑︁
𝑡=1

𝑙 ′
k(𝑡 ) (𝑡) + 𝛽1N𝑠 −

𝑇∑︁
𝑡=1

𝑙 ′
𝑘∗ (𝑡) − 𝛽1 .

Similarly, we use Reg to denote the regret of the same decision sequence
k(1 : 𝑇 ) but under the unclipped loss 𝑙𝑘 (𝑡), i.e.,

Reg ≜
𝑇∑︁
𝑡=1

𝑙
k(𝑡 ) (𝑡) + 𝛽1N𝑠 −

𝑇∑︁
𝑡=1

𝑙𝑘∗ (𝑡) − 𝛽1 .

Then, we have

E[Reg′] ≥ E[Reg] − 𝜖𝑇

6

, (75)

where the expectation E is with respect to both P𝑘∗ (·) and the ran-
domness of choosing the optimal arm 𝑘∗.

To prove Lemma A.4, we first prove Lemma E.1 below.
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Lemma E.1. With a probability larger than 5

6
, the loss 𝑙1:𝐾 (1 :

𝑇 ) generated by the MHM adversary is in the feasible range [0, 1].
Specifically, for 𝑇 ≥ max{𝛽𝑏 , 6𝐾},

𝑃𝑟 {𝑙𝑘 (𝑡) ∈ [0, 1] , for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]} ≥ 5

6

. (76)

Proof. (Proof of Lemma E.1.)

First, we upper-bound of the variance of the generated loss 𝑙𝑘 (𝑡).
Notice that the parent time in (7) is defined in a same way as that

in [10]. Moreover, similar to definition 1 in [10], we define the depth

of the Gaussian process 𝐺 (1 : 𝑇 ) to be

𝑑𝜌 (𝐺) ≜ max

𝑡 ∈[1,𝑇 ]

{
|𝜌 (𝑡) | + |𝜌 (𝑡) | + 1

}
,

i.e., the maximum number of the precedents and the descendants

plus 1 (for time 𝑡 itself). According to Lemma 2 in [10], the depth

𝑑𝜌 (𝐺) is upper-bounded by
⌊
log

2
𝑇
⌋
+1. Thus, the variance of𝐺 (𝑡)

is upper-bound by

( ⌊
log

2
𝑇
⌋
+ 1

)
· 𝜎2

. Remember that MHM adds a

new Gaussian noise 𝛾𝑘 (𝑡) with 𝜎2
variance. Therefore, the variance

of 𝐺 (𝑡) + 𝛾𝑘 (𝑡) is upper-bounded by

( ⌊
log

2
𝑇
⌋
+ 2

)
· 𝜎2

, which is

less than or equal to 2 log
2
𝑇 · 𝜎2

when 𝑇 ≥ 6𝐾 .

Next, we can lower-bound the probability in (76). Since a stan-

dard Gaussian variable 𝑥 satisfies that 𝑃𝑟 {|𝑥 | ≥ 𝑦} ≤ 𝑒−
𝑦2

2 , we

infer that

𝑃𝑟

{
|𝐺 (𝑡) + 𝛾𝑘 (𝑡) | ≥

√︃
4 · 2 log

2
𝑇 · 𝜎2 · ln𝑇

}
=𝑃𝑟

{����� 𝐺 (𝑡) + 𝛾𝑘 (𝑡)√︁
2 log

2
𝑇 · 𝜎2

����� ≥ √
4 ln𝑇

}
≤𝑒−2 ln𝑇

=
1

𝑇 2
.

According to the union bound, we have that for all 𝑇 ≥ 6𝐾 ,

𝑃𝑟

{
max

𝑘∈[1,𝐾 ]
max

𝑡 ∈[1,𝑇 ]
|𝐺 (𝑡) + 𝛾𝑘 (𝑡) | ≤

√︃
4 · 2 log

2
𝑇 · 𝜎2 · ln𝑇

}
≥1 − 𝐾

𝑇
≥ 5

6

.

Moreover, according to (12) that 𝜎 = 1

9 log
2
𝑇
, we have√︃

4 · 2 log
2
𝑇 · 𝜎2 · ln𝑇 ≤ 3𝜎 log

2
𝑇 =

1

3

.

Therefore, we have that for all 𝑇 ≥ 6𝐾 ,

𝑃𝑟

{
max

𝑘∈[1,𝐾 ]
max

𝑡 ∈[1,𝑇 ]
|𝐺 (𝑡) + 𝛾𝑘 (𝑡) | ≤

1

3

}
≥ 5

6

.

Hence, we have

𝑃𝑟

{
𝐺 (𝑡) + 1

2

+ 𝛾𝑘 (𝑡) ∈
[

1

6

,
5

6

]
, for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]

}
≥ 5

6

. (77)

Finally, according to (12), we have 𝜖 ≤ 1

6
for 𝑇 ≥ max {𝛽𝑏 , 6𝐾}.

Lemma E.1 then follows.

□

Proof. (Proof of Lemma A.4.)

We follow the arguments in [10]. We use Ω to denote the event

{𝑙𝑘 (𝑡) ∈ [0, 1], for all 𝑘 ∈ [1, 𝐾], 𝑡 ∈ [1,𝑇 ]}. If Ω occurs, we have

Reg = Reg
′
. If Ω does not occur, note that the expected difference

between the loss of the optimal arm and that of any other arm at

any time 𝑡 is at most 𝜖 , conditioned on all decisions that occurs

before time 𝑡 . Thus, we have

E
[
Reg − Reg

′��¬Ω]
≤ 𝜖𝑇 .

Hence, we have

E [Reg] − E
[
Reg

′] = E [
Reg − Reg

′��¬Ω]
· 𝑃𝑟 (¬Ω) ≤ 𝜖𝑇

6

, (78)

which concludes the proof.

□

F PROOF OF LEMMA 3.3
Proof. To prove Lemma 3.3, we consider a static solution OPT

′

using the single arm in
ˆk∗ (𝑛) for all time 𝑡 = 1, ...,𝑇 . Since the

length of each episode is
𝑇
𝑛 and

ˆk∗ (𝑛) is the optimal arm all the

time, the subroutine Ψ(𝐾, ˆk∗, 𝑇𝑛 ) produces a regret lower-bound

equal to Ω

(
𝑓

(
log

2

𝑇
𝑛

) (
𝑇
𝑛

)𝜁 )
for each episode. Moreover, since the

total cost of the optimal static solution OPT must be smaller than

or equal to that of OPT
′
, we have,

𝑅𝜋 (𝑇 ) ≥ 𝑛 · Ω
(
𝑓

(
log

2

𝑇

𝑛

) (
𝑇

𝑛

)𝜁 )
= Ω

(
𝑓

(
log

2

𝑇

𝑛

)
𝑛1−𝜁𝑇 𝜁

)
= Ω

(
𝑓

(
log

2

𝑇

log
2
𝐾

) (
log

2
𝐾
)
1−𝜁

𝑇 𝜁
)
, (79)

where the last step is because 𝑛 = log
2
𝐾 .

□

G PROOF OF THEOREM 3.4
Proof. First, we prove that in the first time-slot of the 𝑢-th (𝑢 =

1, ...,𝑈 ) episode, for both cases (i.e., 𝛽2 ≥ 3

4
𝐾𝛽1 and 𝛽2 < 3

4
𝐾𝛽1),

the probability of picking each arm 𝑘 is

𝑃𝑟

{
k
ROCF [𝑢] = 𝑘

}
= 𝑝ROCF

𝑘
[𝑢] . (80)

(i) When 𝛽2 ≥ 3

4
𝐾𝛽1, (80) is trivially true.

(ii)When 𝛽2 < 3

4
𝐾𝛽1, we prove (80) by mathematical induction

(similar to the argument in [14]).

Base case: (80) is obviously true for 𝑢 = 1. Next, we assume the
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induction hypothesis that (80) is true for 𝑢 = 𝑢0. Then, we have

𝑃𝑟

{
k
ROCF [𝑢0 + 1] = 𝑘

}
= 𝑃𝑟

{
k
ROCF [𝑢0] = 𝑘

}
· 𝑝ns [𝑢0 + 1]

+
𝐾∑︁
𝑘 ′=1

𝑃𝑟

{
k
ROCF [𝑢0] = 𝑘′

} (
1 − 𝑝ns [𝑢0 + 1]

)
· 𝑝ROCF
𝑘

[𝑢0 + 1]

= 𝑝ROCF
𝑘

[𝑢0] ·
𝑤ROCF

𝑘
[𝑢0 + 1]

𝑤ROCF

𝑘
[𝑢0]

+
𝐾∑︁
𝑘 ′=1

𝑝ROCF
𝑘 ′ [𝑢0]

(
1 −

𝑤ROCF

𝑘 ′
[𝑢0 + 1]

𝑤ROCF

𝑘 ′
[𝑢0]

)
· 𝑝ROCF
𝑘

[𝑢0 + 1] .

Then, according to the definition of the probability 𝑝ROCF
𝑘

[𝑢] in
(20), we have

𝑃𝑟

{
k
ROCF [𝑢0 + 1] = 𝑘

}
=

𝑤ROCF

𝑘
[𝑢0]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0]

·
𝑤ROCF

𝑘
[𝑢0 + 1]

𝑤ROCF

𝑘
[𝑢0]

+
𝐾∑︁
𝑘 ′=1

𝑤ROCF

𝑘 ′
[𝑢0]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0]

·
(
1 −

𝑤ROCF

𝑘 ′
[𝑢0 + 1]

𝑤ROCF

𝑘 ′
[𝑢0]

)
·

𝑤ROCF

𝑘
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0 + 1]

=
𝑤ROCF

𝑘
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0]

+
𝐾∑︁
𝑘 ′=1

𝑤ROCF

𝑘 ′
[𝑢0] −𝑤ROCF

𝑘 ′
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0]

·
𝑤ROCF

𝑘
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0 + 1]

.

Noting that

𝑤ROCF

𝑘
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0]

=

𝐾∑︁
𝑘 ′=1

𝑤ROCF

𝑘 ′
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0]

·
𝑤ROCF

𝑘
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0 + 1]

,

we thus have

𝑃𝑟

{
k
ROCF [𝑢0 + 1] = 𝑘

}
=

𝑤ROCF

𝑘
[𝑢0 + 1]∑𝐾

𝑘=1
𝑤ROCF

𝑘
[𝑢0 + 1]

= 𝑝ROCF
𝑘

[𝑢0 + 1],

where the last equality is because of (20).

Now, we can calculate the regret attained by ROCF for both cases.

(i) If 𝛽2 ≥ 3

4
𝐾𝛽1, according to Exp3 analysis [1], we have that,

𝑅ROCF (𝑇 ) ≤ ln𝐾

𝜂
+ 1

2

𝜂𝐾𝜏𝑇 + 𝛽1

𝑇

𝜏
.

According to (22), we have 𝜏 =

⌊(
3

4
𝛽1

) 2

3 (𝐾 ln𝐾)−
1

3 𝑇
1

3

⌋
. Thus, we

have

𝑅ROCF (𝑇 ) ≤ ln𝐾

𝜂
+ 1

2

𝜂𝐾

⌊(
3

4

𝛽1

) 2

3

(𝐾 ln𝐾)−
1

3 𝑇
1

3

⌋
𝑇

+ 𝛽1

𝑇⌊(
3

4
𝛽1

) 2

3 (𝐾 ln𝐾)−
1

3 𝑇
1

3

⌋
≤ ln𝐾

𝜂
+ 1

2

𝜂𝐾

(
3

4

𝛽1

) 2

3

(𝐾 ln𝐾)−
1

3 𝑇
1

3𝑇

+ 𝛽1

𝑇(
3

4
𝛽1

) 2

3 (𝐾 ln𝐾)−
1

3 𝑇
1

3 − 1

. (81)

We consider the first two terms and the last term on the right-hand-

side of (81) one-by-one. For the first two terms, according to (22)

that 𝜂 =

(
3𝐾
4
𝛽1

)− 1

3 (ln𝐾)
2

3 𝑇 − 2

3 , we have

ln𝐾

𝜂
+ 1

2

𝜂𝐾

(
3

4

𝛽1

) 2

3

(𝐾 ln𝐾)−
1

3 𝑇
1

3𝑇 =
3

2

3

√︂
3

4

𝛽
1

3

1
(𝐾 ln𝐾)

1

3 𝑇
2

3 .

(82)

For the last term, since

(
3

4
𝛽1

) 2

3 (𝐾 ln𝐾)−
1

3 𝑇
1

3 ≥ 2 when 𝑇 ≥
128𝐾 ln𝐾

9𝛽2

1

, we have(
3

4

𝛽1

) 2

3

(𝐾 ln𝐾)−
1

3 𝑇
1

3 − 1 ≥ 1

2

(
3

4

𝛽1

) 2

3

(𝐾 ln𝐾)−
1

3 𝑇
1

3 . (83)

Combining (81)-(83), we have

𝑅ROCF (𝑇 ) ≤
(

3

2

3

√︂
3

4

+ 2
3

√︂
16

9

)
𝛽

1

3

1
(𝐾 ln𝐾)

1

3 𝑇
2

3 .

(ii) If 𝛽2 < 3

4
𝐾𝛽1, according to the shrinking-dartboard analy-

sis [14], we have that

𝑅ROCF (𝑇 ) ≤ ln𝐾

𝜂
+ 1

2

𝜂𝜏𝑇 + 𝛽1

(
ln𝐾 + 𝜂𝑇

𝜏

)
+ 𝛽2

𝑇

𝜏
.

According to (22), we have 𝜏 =

⌊
𝛽

2

3

2
(ln𝐾)−

1

3 𝑇
1

3

⌋
. Thus, we have

𝑅ROCF (𝑇 ) ≤ ln𝐾

𝜂
+ 1

2

𝜂

⌊
𝛽

2

3

2
(ln𝐾)−

1

3 𝑇
1

3

⌋
𝑇

+ 𝛽2

𝑇⌊
𝛽

2

3

2
(ln𝐾)−

1

3 𝑇
1

3

⌋ + 𝛽1

©­­­­«
ln𝐾 + 𝜂 𝑇⌊

𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3

⌋ ª®®®®¬
≤ ln𝐾

𝜂
+ 1

2

𝜂𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3𝑇

+ 𝛽2

𝑇

𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3 − 1

+ 𝛽1

©­«ln𝐾 + 𝜂 𝑇

𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3 − 1

ª®¬ .
(84)
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We consider the first two terms and the last two terms on the right-

hand-side of (84) one-by-one. For the first two terms, according to

(22) that 𝜂 = 𝛽
− 1

3

2
(ln𝐾)

2

3 𝑇 − 2

3 , we have

ln𝐾

𝜂
+ 1

2

𝜂𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3𝑇 =
3

2

𝛽
1

3

2
(ln𝐾)

1

3 𝑇
2

3 . (85)

For the last two terms, since 𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3 ≥ 2 when 𝑇 ≥ 8 ln𝐾

𝛽2

2

,

we have

𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3 − 1 ≥ 1

2

𝛽
2

3

2
(ln𝐾)−

1

3 𝑇
1

3 . (86)

Combining (84)-(86), we have

𝑅ROCF (𝑇 ) ≤ 3

2

𝛽
1

3

2
(ln𝐾)

1

3 𝑇
2

3 + 2𝛽
1

3

2
(ln𝐾)

1

3 𝑇
2

3

+ 𝛽1 (ln𝐾 + 2 ln𝐾/𝛽2)

≤ 7

2

𝛽
1

3

2
(ln𝐾)

1

3 𝑇
2

3 + 𝛽1 ln𝐾 (1 + 2/𝛽2) .

□

H PROOF OF LEMMA 4.2
Proof. To prove Lemma 4.2, we start from focus on the term

on the left-hand-side of (32). Specifically, for each sub-episode

(𝑢, 𝑣), given the historyH[𝑢 − 1] and the chosen working group

ˆkROW [𝑢, 𝑣], we have that for each time 𝑡 ∈ [𝑡𝑢,𝑣, 𝑡𝑢,𝑣 + 𝜏2 − 2],

− 1

𝜂2

ln

©­­­«
∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡 + 1)∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡)

ª®®®¬
= − 1

𝜂2

ln

©­­­«
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑤̂ROW

𝑘
(𝑡)𝑒−𝜂2𝑙𝑘 (𝑡 )∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW (𝑡)

ª®®®¬
= − 1

𝜂2

ln

©­­«
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑒−𝜂2𝑙𝑘 (𝑡 )
ª®®¬ , (87)

where the first equality is because of the updates of the weight

𝑤̂ROW

𝑘
(𝑡) in (27), and the second equality is because of the updates

of the probability 𝑝ROW
𝑘

(𝑡) in (26). Next, from (87), we have

− 1

𝜂2

ln

©­­­«
∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡 + 1)∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡)

ª®®®¬
≥ − 1

𝜂2

ln

©­­«
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)
(
1 − 𝜂2𝑙𝑘 (𝑡) +

1

2

𝜂2

2
𝑙2
𝑘
(𝑡)

)ª®®¬
= − 1

𝜂2

ln

(
1 − 𝜂2 ·

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑙𝑘 (𝑡)

+ 1

2

𝜂2

2
·

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑙2
𝑘
(𝑡)

)
, (88)

where the inequality is because 𝑒−𝑥 ≤ 1 − 𝑥 + 1

2
𝑥2

for all 𝑥 ∈ [0, 1]
and 𝜂2𝑙𝑘 (𝑡) ∈ [0, 1], and the equality is because of the re-arranging

of the terms. Then, from (88), we have

− 1

𝜂2

ln

©­­­«
∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡 + 1)∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡)

ª®®®¬
≥ − 1

𝜂2

(
− 𝜂2 ·

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑙𝑘 (𝑡)

+ 1

2

𝜂2

2
·

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑙2
𝑘
(𝑡)

)
≥

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑙𝑘 (𝑡) −
1

2

𝜂2, (89)

where the first inequality is because ln (1 − 𝑥) ≤ −𝑥 for all 𝑥 , and

the second inequality is because 𝑙2
𝑘
(𝑡) ≤ 1 for all 𝑘 and 𝑡 .

From now on, by utilizing the relation in (89), we relate the

expected total loss of ROW inside each sub-episode to the log-sum-

exp function 𝑔2 [𝑢, 𝑣]. Recall that for 𝑔2 [𝑢, 𝑣], we define 𝐿𝑘 [𝑢, 𝑣] ≜∑𝑡𝑢,𝑣+𝜏2−2

𝑡=𝑡𝑢,𝑣
𝑙𝑘 (𝑡), and 𝑝ROW𝑘

[𝑢] ≜ 𝑤ROW

𝑘
[𝑢 ]∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤ROW

𝑘
[𝑢 ] . By moving

the term
1

2
𝜂2 from the right-hand-side of (89) to the left-hand-side,

and then taking the sum of both sides of (89) for all time-slots

𝑡 ∈ [𝑡𝑢,𝑣, 𝑡𝑢,𝑣 + 𝜏2 − 2], we have
𝑡𝑢,𝑣+𝜏2−2∑︁
𝑡=𝑡𝑢,𝑣

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)𝑙𝑘 (𝑡)

≤ − 1

𝜂2

𝑡𝑢,𝑣+𝜏2−2∑︁
𝑡=𝑡𝑢,𝑣

ln

©­­­«
∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡 + 1)∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡)

ª®®®¬ +
1

2

𝜂2 (𝜏2 − 1)

≤ − 1

𝜂2

ln

©­­­«
∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡𝑢,𝑣 + 𝜏2 − 1)∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤̂ROW

𝑘
(𝑡𝑢,𝑣)

ª®®®¬ +
1

2

𝜂2𝜏2

= − 1

𝜂2

ln

©­­«
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]𝑒−𝜂2𝐿𝑘 [𝑢,𝑣 ]
ª®®¬ +

1

2

𝜂2𝜏2, (90)

where the first equality is because of the telescoping sum. The sec-

ond equality of (90) is because of the update of the weight 𝑤̂ROW

𝑘
(𝑡)

in (27) and (25), and the definition of 𝑝ROW
𝑘

[𝑢] in (31). Finally, no-

tice that for any working group
ˆkROW [𝑢, 𝑣], we have that, at the

last time-slot 𝑡 = 𝑡𝑢,𝑣 + 𝜏2 − 1 of the sub-episode,∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡𝑢,𝑣 + 𝜏2 − 1)𝑙𝑘 (𝑡𝑢,𝑣 + 𝜏2 − 1) ≤ 1. (91)

By combining (90) and (91), we can get (32).

□

Remark 2. Notice that when 𝑇 is not divisible by 𝜏2, the number
of time-slots in the last sub-episode of the last episode may be smaller
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than 𝜏2. In this case, we only need to take the sum of both sides of
(89) up to time 𝑇 . As a result, the loss 𝐿𝑘 [𝑢, 𝑣] only contains the
loss 𝑙𝑘 (𝑡) up to time 𝑇 . Moreover, the term 1

2
𝜂2𝜏2 in (90) will be

1

2
𝜂2 · mod (𝑇, 𝜏2), where mod (𝑇, 𝜏2) denote the remainder when𝑇 is

divided by 𝜏2. Then, for the last sub-episode of the last episode in this
case, the term 1

2
𝜂2𝜏2 in (32) will also be 1

2
𝜂2 · mod(𝑇, 𝜏2). (This is

why the sum of 1

2
𝜂2𝜏2 over all sub-episodes in (133) is equal to 1

2
𝜂2𝑇 .)

However, for the convenience of elaboration, we simply use 1

2
𝜂2𝜏2 for

both cases that 𝑇 being and not being divisible by 𝜏2.

I PROOF OF LEMMA 4.3
To prove Lemma 4.3, we first prove Proposition I.1 below. Lemma 4.3

then directly follows Proposition I.1.

Proposition I.1. Consider the log-sum-exp function

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
,

where
∑𝐾
𝑘=1

𝑝𝑘 = 1, and 0 ≤ 𝑝𝑘 ≤ 1 for all 𝑘 . If 𝜂 · max

𝑘=1,...,𝐾
𝑙𝑘 ≤ ln 2,

and 𝑙𝑘 ≥ 0 for all 𝑘 , we have

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
≤ E[𝑙] − 𝜂

8

· Var(𝑙), (92)

where E[𝑙] = ∑𝐾
𝑘=1

𝑝𝑘𝑙𝑘 and Var(𝑙) = ∑𝐾
𝑘=1

𝑝𝑘 (𝑙𝑘 − E[𝑙])2.

Proof. (Proof of Proposition I.1.)

First, we have

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
= − 1

𝜂
ln

[
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂 (𝑙𝑘−E[𝑙 ]+E[𝑙 ] )

]
= − 1

𝜂
ln

[
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂 (𝑙𝑘−E[𝑙 ] ) · 𝑒−𝜂E[𝑙 ]

]
= − 1

𝜂
ln

[
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂 (𝑙𝑘−E[𝑙 ] )

]
+ E[𝑙] . (93)

Notice that we assume 𝜂 · max

𝑘=1,...,𝐾
𝑙𝑘 ≤ ln 2, and 𝑙𝑘 ≥ 0 for all 𝑘 .

Thus, 𝜂 (𝑙𝑘 − E[𝑙]) ≤ ln 2 and 𝜂2 (𝑙𝑘 − E[𝑙])2 ≤ ln 2 for all 𝑘 . Next,

from (93), we have

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
≤ − 1

𝜂
ln

[
𝐾∑︁
𝑘=1

𝑝𝑘

(
1 − 𝜂 (𝑙𝑘 − E[𝑙]) +

1

4

𝜂2 (𝑙𝑘 − E[𝑙])2

)]
+ E[𝑙]

= − 1

𝜂
ln

[
1 + 1

4

𝜂2

𝐾∑︁
𝑘=1

𝑝𝑘 (𝑙𝑘 − E[𝑙])2

]
+ E[𝑙], (94)

where the inequality is because (i) 𝑒−𝑥 ≥ 1−𝑥 + 1

4
𝑥2

for all 𝑥 ≤ ln 2

and (ii) 𝜂 (𝑙𝑘 − E[𝑙]) ≤ ln 2 for all 𝑘 , and the equality is because

E[𝑙] = ∑𝐾
𝑘=1

𝑝𝑘𝑙𝑘 . Finally, from (94), we have

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
≤ − 1

𝜂
ln

(
𝑒

1

8
𝜂2

∑𝐾
𝑘=1

𝑝𝑘 (𝑙𝑘−E[𝑙 ] )2

)
+ E[𝑙]

= E[𝑙] − 𝜂

8

· Var (𝑙) .

where the inequality is because (i) 1 + 2𝑥 ≥ 𝑒𝑥 for all 𝑥 ∈ [0, ln 2]
and (ii) 𝜂2 (𝑙𝑘 − E[𝑙])2 ≤ ln 2 for all 𝑘 .

□

Proof. (Proof of Lemma 4.3.)

Notice that we have 𝜂2𝜏2 ≤ ln 2, and 𝐿𝑘 [𝑢, 𝑣] ∈ [0, 𝜏2] for all 𝑘 .
Hence, Proposition I.1 implies that Lemma 4.3 is true.

□

J PROOF OF LEMMA 4.5
To prove Lemma 4.5, we first prove Proposition J.1 below. Lemma 4.5

then directly follows Proposition J.1.

Proposition J.1. Consider the log-sum-exp function

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
,

where
∑𝐾
𝑘=1

𝑝𝑘 = 1, and 0 ≤ 𝑝𝑘 ≤ 1 for all 𝑘 . If 𝜂 · |𝑙𝑘 | ≤ ln 2 for all
𝑘 , we have

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
≥ E[𝑙] − 𝜂 · Var(𝑙), (95)

where E[𝑙] = ∑𝐾
𝑘=1

𝑝𝑘𝑙𝑘 and Var(𝑙) = ∑𝐾
𝑘=1

𝑝𝑘 (𝑙𝑘 − E[𝑙])2.

Proof. (Proof of Proposition J.1.)

First, notice that Proposition I.1 and Proposition J.1 consider the

same log-sum-exp function − 1

𝜂 ln

(∑𝐾
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
. Thus, we still

have (93). However, different from Proposition I.1 that gives an

upper bound of the log-sum-exp function, Proposition J.1 gives a

lower bound.

Since 𝜂 · |𝑙𝑘 | ≤ ln 2 for all 𝑘 , we have 𝜂 (𝑙𝑘 − E[𝑙]) ≥ −2 ln 2.

Next, from (93), we have

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
≥ − 1

𝜂
ln

[
𝐾∑︁
𝑘=1

𝑝𝑘

(
1 − 𝜂 (𝑙𝑘 − E[𝑙]) + 𝜂2 (𝑙𝑘 − E[𝑙])2

)]
+ E[𝑙]

= − 1

𝜂
ln

[
1 + 𝜂2

𝐾∑︁
𝑘=1

𝑝𝑘 (𝑙𝑘 − E[𝑙])2

]
+ E[𝑙], (96)

where the inequality is because (i) 𝑒−𝑥 ≤ 1 − 𝑥 + 𝑥2
for all 𝑥 ≥

−2 ln 2 and (ii) 𝜂 (𝑙𝑘 − E[𝑙]) ≥ −2 ln 2, and the equality is because
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E[𝑙] = ∑𝐾
𝑘=1

𝑝𝑘𝑙𝑘 . Finally, from (96), we have

− 1

𝜂
ln

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑒
−𝜂𝑙𝑘

)
≥ − 1

𝜂
ln

(
𝑒𝜂

2
∑𝐾
𝑘=1

𝑝𝑘 (𝑙𝑘−E[𝑙 ] )2

)
+ E[𝑙]

= E[𝑙] − 𝜂 · Var (𝑙) ,

where the inequality is because 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 .

□

Proof. (Proof of Lemma 4.5.)

Notice that we have 𝜂1𝜏1 ≤ ln 2, and 𝐿̃ROW
𝑘

[𝑢, 𝑣] ∈ [−𝜏1, 𝜏1] for
all 𝑘 . Hence, Proposition J.1 implies that Lemma 4.5 is true.

□

K PROOF OF LEMMA 4.6
In Proposition K.1 below, we develop a new expression for the

variance

Var(𝑙) ≜
𝐾∑︁
𝑘=1

𝑝𝑘

(
𝑙𝑘 −

𝐾∑︁
𝑘=1

𝑝𝑘𝑙𝑘

)2

. (97)

Proposition K.1 will be used to prove Lemma 4.6 and Lemma 4.7.

Proposition K.1. For the variance Var(𝑙) in (97), we have

Var(𝑙) = 1

2

·
𝐾∑︁

𝑘1,𝑘2=1,
𝑘1≠𝑘2

𝑝𝑘1
𝑝𝑘2

(𝑙𝑘1
− 𝑙𝑘2

)2 . (98)

Proof. (Proof of Proposition K.1.)

Lemma K.1 is true because

𝐾∑︁
𝑘1,𝑘2=1,
𝑘1≠𝑘2

𝑝𝑘1
𝑝𝑘2

(𝑙𝑘1
− 𝑙𝑘2

)2

=

𝐾∑︁
𝑘1,𝑘2=1

𝑘1≠𝑘2

𝑝𝑘1
𝑝𝑘2

(
𝑙2
𝑘1

+ 𝑙2
𝑘2

)
−

𝐾∑︁
𝑘1,𝑘2=1

𝑘1≠𝑘2

2𝑝𝑘1
𝑝𝑘2

𝑙𝑘1
𝑙𝑘2

= 2

𝐾∑︁
𝑘=1

𝑝𝑘

𝐾∑︁
𝑘 ′=1

𝑘 ′≠𝑘

𝑝𝑘 ′𝑙
2

𝑘
− 2

𝐾∑︁
𝑘1=1

𝑝𝑘1
𝑙𝑘1

©­­­«
𝐾∑︁
𝑘=1

𝑘≠𝑘1

𝑝𝑘𝑙𝑘

ª®®®¬
= 2

𝐾∑︁
𝑘=1

𝑝𝑘 (1 − 𝑝𝑘 ) 𝑙2𝑘 − 2

𝐾∑︁
𝑘1=1

𝑝𝑘1
𝑙𝑘1

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑙𝑘 − 𝑝𝑘1
𝑙𝑘1

)

= 2

𝐾∑︁
𝑘=1

𝑝𝑘𝑙
2

𝑘
− 2

(
𝐾∑︁
𝑘=1

𝑝𝑘𝑙𝑘

)2

= 2 · Var (𝑙) .

□

We can now proceed with the proof of Lemma 4.6.

Proof. (Proof of Lemma 4.6.)

First, according to Proposition K.1, we have

Var

(
𝐿[𝑢, 𝑣]

��H[𝑢 − 1], ˆkROW [𝑢, 𝑣]
)

=
1

2

·
∑︁

𝑘1,𝑘2∈ ˆkROW [𝑢,𝑣 ],
𝑘1≠𝑘2

𝑝ROW
𝑘1

[𝑢]𝑝ROW
𝑘2

[𝑢]
(
𝐿𝑘1

[𝑢, 𝑣] − 𝐿𝑘2
[𝑢, 𝑣]

)
2

.

(99)

Next, we derive (i) the relation between 𝑝ROW
𝑘

[𝑢] and 𝑝ROW
𝑘

[𝑢], and
(ii) the probability of choosing each working group

ˆkROW [𝑢, 𝑣]. For
(i), recall from (24) that 𝑝ROW

𝑘
[𝑢] = 𝑤ROW

𝑘
[𝑢 ]∑𝐾

𝑘=1
𝑤ROW

𝑘
[𝑢 ] . Moreover, recall

from (31) that 𝑝ROW
𝑘

[𝑢] ≜ 𝑤ROW

𝑘
[𝑢 ]∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤ROW

𝑘
[𝑢 ] , which is calculated

based on the chosen working-group
ˆkROW [𝑢, 𝑣]. Then, we have

𝑝ROW
𝑘

[𝑢] =
𝑤ROW

𝑘
[𝑢]∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤ROW

𝑘
[𝑢]

=
𝑤ROW

𝑘
[𝑢]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢]

·

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢]∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤ROW

𝑘
[𝑢]

= 𝑝ROW
𝑘

[𝑢] · 1∑
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑤ROW

𝑘
[𝑢 ]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢 ]

= 𝑝ROW
𝑘

[𝑢] · 1∑
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]
, (100)

where the third equality and fourth equality are because of the

update of the probability 𝑝ROW
𝑘

[𝑢] in (24). In other words, the

conditional probability 𝑝ROW
𝑘

[𝑢] is simply the probability 𝑝ROW
𝑘

[𝑢]
divided by the sum of the 𝑝ROW

𝑘
[𝑢] inside the chosen working-

group
ˆkROW [𝑢, 𝑣]. For (ii), the probability of choosing each working

group
ˆkROW [𝑢, 𝑣] is

𝑃𝑟

{
ˆkROW [𝑢, 𝑣]

��H[𝑢 − 1]
}

=
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

[
𝑃𝑟

{
𝑘ROW

0
[𝑢] = 𝑘

��H[𝑢 − 1]
}

· 𝑃𝑟
{

ˆkROW𝑀−1
[𝑢, 𝑣] = ˆkROW [𝑢, 𝑣] − {𝑘}

���𝑘ROW
0

[𝑢] = 𝑘,H[𝑢 − 1]
} ]

=
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢] · 1(𝐾−1

𝑀−1

) , (101)

where the last equality is because of (24) and because ROW chooses

the secondary arms uniformly (see Step 2 in Algorithm 4). Then,
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from (99)-(101), we have

E
ˆkROW [𝑢,𝑣 ]

[
Var

(
𝐿[𝑢, 𝑣]

��ˆkROW [𝑢, 𝑣]
) ���H[𝑢 − 1]

]
=

∑︁
ˆkROW [𝑢,𝑣 ]

𝑃𝑟

{
ˆkROW [𝑢, 𝑣]

��H[𝑢 − 1]
}

· 1

2

·
∑︁

𝑘1,𝑘2∈ ˆkROW [𝑢,𝑣 ],
𝑘1≠𝑘2

𝑝ROW
𝑘1

[𝑢]𝑝ROW
𝑘2

[𝑢]
(
𝐿𝑘1

[𝑢, 𝑣] − 𝐿𝑘2
[𝑢, 𝑣]

)
2

=
1

2

∑︁
ˆkROW [𝑢,𝑣 ]

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢] · 1(𝐾−1

𝑀−1

)
·

∑︁
𝑘1,𝑘2

∈ ˆkROW [𝑢,𝑣 ],
𝑘1≠𝑘2

𝑝ROW
𝑘1

[𝑢]𝑝ROW
𝑘2

[𝑢]( ∑
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]
)

2

(
𝐿𝑘1

[𝑢, 𝑣] − 𝐿𝑘2
[𝑢, 𝑣]

)
2

,

(102)

where the first equality is because of (99), and the second equality

is because of (100) and (101). By re-arranging the terms on the

right-hand-side of (102), we have

E
ˆkROW [𝑢,𝑣 ]

[
Var

(
𝐿[𝑢, 𝑣]

��ˆkROW [𝑢, 𝑣]
) ���H[𝑢 − 1]

]
=

1

2 ·
(𝐾−1

𝑀−1

) ∑︁
ˆkROW [𝑢,𝑣 ]

∑︁
𝑘1,𝑘2∈ ˆkROW [𝑢,𝑣 ],

𝑘1≠𝑘2

𝑝ROW
𝑘1

[𝑢]𝑝ROW
𝑘2

[𝑢]∑
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]

·
(
𝐿𝑘1

[𝑢, 𝑣] − 𝐿𝑘2
[𝑢, 𝑣]

)
2

. (103)

Finally, from (103), we have

E
ˆkROW [𝑢,𝑣 ]

[
Var

(
𝐿[𝑢, 𝑣]

��ˆkROW [𝑢, 𝑣]
) ���H[𝑢 − 1]

]
≥ 1

2 ·
(𝐾−1

𝑀−1

) ∑︁
ˆkROW [𝑢,𝑣 ]

∑︁
𝑘1,𝑘2∈ ˆkROW [𝑢,𝑣 ],

𝑘1≠𝑘2

𝑝ROW
𝑘1

[𝑢]𝑝ROW
𝑘2

[𝑢]

·
(
𝐿𝑘1

[𝑢, 𝑣] − 𝐿𝑘2
[𝑢, 𝑣]

)
2

=

(𝐾−2

𝑀−2

)
2 ·

(𝐾−1

𝑀−1

) 𝐾∑︁
𝑘1,𝑘2=1,
𝑘1≠𝑘2

𝑝ROW
𝑘1

[𝑢]𝑝ROW
𝑘2

[𝑢]
(
𝐿𝑘1

[𝑢, 𝑣] − 𝐿𝑘2
[𝑢, 𝑣]

)
2

=
𝑀 − 1

𝐾 − 1

· Var
(
𝐿[𝑢, 𝑣]

��H[𝑢 − 1]
)
,

where the inequality is because

∑
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢] ≤ 1, the first

equality is because there are

(𝐾−2

𝑀−2

)
working groups containing

both arm 𝑘1 and arm 𝑘2, and the second equality is because of

Proposition K.1.

□

L PROOF OF LEMMA 4.7
Proof. First, based on the definition of the variance, we have

E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
= E

ˆkROW [𝑢,1:𝑉 ]

[
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]
(
𝐿̃ROW
𝑘

[𝑢]
)

2

−
(
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝐿̃ROW
𝑘

[𝑢]
)2

�����H[𝑢 − 1]
]

≤ E
ˆkROW [𝑢,1:𝑉 ]

[
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]
(
𝐿̃ROW
𝑘

[𝑢]
)

2

�����H[𝑢 − 1]
]
. (104)

Next, from (104), we have

E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
≤

(
𝐾 − 1

𝑀 − 1

)
2

· E
ˆkROW [𝑢,1:𝑉 ]

[
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]

·
(
𝐿𝑘 [𝑢, 𝑣𝑢 (𝑘)] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣𝑢 (𝑘)]

)
2
���H[𝑢 − 1]

]
=

(
𝐾 − 1

𝑀 − 1

)
2

·
𝐾∑︁
𝑘=1

E
ˆkROW [𝑢,1:𝑉 ]

[
𝑝ROW
𝑘

[𝑢]

·
(
𝐿𝑘 [𝑢, 𝑣𝑢 (𝑘)] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣𝑢 (𝑘)]

)
2
���H[𝑢 − 1]

]
,

(105)

where the inequality is because of the calculation of the loss differ-

ence 𝐿̃ROW
𝑘

[𝑢] in (28), and the equality is because of the linearity of

the expectation. Notice that the expectation E
ˆkROW [𝑢,1:𝑉 ] is with re-

spect to the randomness of
ˆkROW [𝑢, 1 : 𝑉 ]. Thus, it can be expanded

into a sum over the randomness of the primary arm 𝑘ROW
0

[𝑢] and
the randomness of the sub-episodes where each secondary arm 𝑘

is chosen. Then, from (105), we have

E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
≤

(
𝐾 − 1

𝑀 − 1

)
2

·
𝐾∑︁
𝑘=1

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1

{
𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
𝑉∑︁
𝑣=1

[
𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣}} · 𝑝ROW

𝑘
[𝑢]

(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

] }
.
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Moreover, when 𝑘 = 𝑘ROW
0

[𝑢], we have 𝐿𝑘 [𝑢, 𝑣] −𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣] =
0. Thus, we have

E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
≤

(
𝐾 − 1

𝑀 − 1

)
2

·
𝐾∑︁
𝑘=1

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1,

𝑘ROW
0

[𝑢 ]≠𝑘

{
𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
𝑉∑︁
𝑣=1

[
𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣}} · 𝑝ROW

𝑘
[𝑢]

(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

] }
≤

(
𝐾 − 1

𝑀 − 1

)
·
𝐾∑︁
𝑘=1

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1,

𝑘ROW
0

[𝑢 ]≠𝑘

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
𝑉∑︁
𝑣=1

[
𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

]
=

2(𝐾 − 1)
𝑀 − 1

·
𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1]) , (106)

where the first inequality is because the probability

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣}} = 𝑀 − 1

𝐾 − 1

, (107)

and the last equality is because of Proposition K.1.

□

Remark 3. Notice that when 𝐾 − 1 is not divisible by𝑀 − 1, some
arm could be chosen as a secondary arm again in the𝑉 -th sub-episode.
In this case, besides 𝑣𝑢 (𝑘) = {𝑣}, we need to consider 𝑣𝑢 (𝑘) = {𝑣,𝑉 }.
Then, the first inequality in (106) becomes

E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
≤

(
𝐾 − 1

𝑀 − 1

)
2

·
𝐾∑︁
𝑘=1

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1,

𝑘ROW
0

[𝑢 ]≠𝑘

{
𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
[
𝑉∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣}} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

+
𝑉 −1∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣,𝑉 }} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] + 𝐿𝑘 [𝑢,𝑉 ]

− 𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣] − 𝐿𝑘ROW
0

[𝑢 ] [𝑢,𝑉 ]
)

2

]}
. (108)

To get an upper bound for the right-hand-side of (108), let us first
focus on the terms inside the bracket “[·]”. The first term inside the

big bracket "[·]" is trivially upper-bounded by twice of itself,

𝑉∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣}} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

≤ 2

𝑉 −1∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣}} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

+ 2 · 𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑉 }} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢,𝑉 ] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢,𝑉 ]

)
2

.

(109)

Moreover, note that(
𝐿𝑘 [𝑢, 𝑣] + 𝐿𝑘 [𝑢,𝑉 ] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢,𝑉 ]

)
2

≤ 2

(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

+ 2

(
𝐿𝑘 [𝑢,𝑉 ] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢,𝑉 ]

)
2

.

Thus, the second term inside the big bracket "[·]" can be upper-
bounded as follows,

𝑉 −1∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣,𝑉 }} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] + 𝐿𝑘 [𝑢,𝑉 ]

− 𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣] − 𝐿𝑘ROW
0

[𝑢 ] [𝑢,𝑉 ]
)

2

≤ 2

𝑉 −1∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣,𝑉 }} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

+ 2

𝑉 −1∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣,𝑉 }} · 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢,𝑉 ] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢,𝑉 ]

)
2

.

(110)

Note that the probability that the secondary arm 𝑘 is chosen in the
sub-episode 𝑣 = 1, ...𝑉 − 1 is simply 𝑀−1

𝐾−1
. Therefore, the sum of the

first term on the right-hand-side of (109) and the first term on the
right-hand-side of (110) is equal to

2

𝑉 −1∑︁
𝑣=1

(𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣}} + 𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣,𝑉 }})

· 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

= 2

𝑉 −1∑︁
𝑣=1

𝑀 − 1

𝐾 − 1

· 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

. (111)

Similarly, the probability that the secondary arm 𝑘 is chosen in the
sub-episode 𝑣 = 𝑉 is also 𝑀−1

𝐾−1
. Therefore, the sum of the second term

on the right-hand-side of (109) and the second term on the right-hand-
side of (110) is equal to

2

(
𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑉 }} +

𝑉 −1∑︁
𝑣=1

𝑃𝑟 {𝑣𝑢 (𝑘) = {𝑣,𝑉 }}
)

· 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢,𝑉 ] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢,𝑉 ]

)
2

= 2 · 𝑀 − 1

𝐾 − 1

· 𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢,𝑉 ] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢,𝑉 ]

)
2

. (112)
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Finally, combining (108)-(112), we have

E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
≤ 2

(
𝐾 − 1

𝑀 − 1

)
·
𝐾∑︁
𝑘=1

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1,

𝑘ROW
0

[𝑢 ]≠𝑘

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
𝑉∑︁
𝑣=1

[
𝑝ROW
𝑘

[𝑢]
(
𝐿𝑘 [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

)
2

]
=

4(𝐾 − 1)
𝑀 − 1

·
𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1]) . (113)

Therefore, when 𝐾 − 1 is not divisible by 𝑀 − 1, there will be an
additional factor 2 in (41), i.e., (41) will become

𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1]) ≥ 𝑀 − 1

4(𝐾 − 1)

· E
ˆkROW [𝑢,1:𝑉 ]

[
Var

(
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
) ���H[𝑢 − 1]

]
.

(114)

This will affect the choice of the parameters, i.e., the relation between

𝜂1 and 𝜂2 in (36) will become 𝜂2 ≥ 32

(
𝐾−1

𝑀−1

)
2

· 𝜂1, and the constant

𝑐2 in (46) will become 𝑐2 =
4

√
2(𝐾−1)
𝑀−1

.

M PROOF OF LEMMA 4.4
Proof. Our proof of Lemma 4.4 follows three steps. First, we

upper-boundE
ˆkROW [𝑢,1:𝑉 ]

[
𝑔2 [𝑢]

���H[𝑢 − 1]
]
. Second, we lower-bound

E
ˆkROW [𝑢,1:𝑉 ]

[
𝑔1 [𝑢]

���H[𝑢 − 1]
]
. Third, using the relation between

𝜂1 and 𝜂2 in (36), we relate these two bounds.

Step 1: Since 𝜂2𝜏2 ≤ ln 2, we have

E
ˆkROW [𝑢,1:𝑉 ]

[
𝑔2 [𝑢]

���H[𝑢 − 1]
]

=

𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,𝑣 ]

[
− 1

𝜂2

· ln

©­­«
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]𝑒−𝜂2𝐿𝑘 [𝑢,𝑣 ]
ª®®¬
�����H[𝑢 − 1]

]

−
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,1:𝑉 ]

[
𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

���H[𝑢 − 1]
]

≤
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,𝑣 ]

[
E

[
𝐿[𝑢, 𝑣]

��ˆkROW [𝑢, 𝑣]
] ���H[𝑢 − 1]

]
− 𝜂2

8

· 𝑀 − 1

𝐾 − 1

·
𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1])

−
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,1:𝑉 ]

[
𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

���H[𝑢 − 1]
]

(115)

where the equality is because of the definition of 𝑔2 [𝑢] in (35) and

the linearity of the expectation, and the inequality is because of

Lemma 4.3 and Lemma 4.6. Let us focus on the first term on the

right-hand-side of (115). According to (31), we have

𝑝ROW
𝑘

[𝑢] =
𝑤ROW

𝑘
[𝑢]∑

𝑘∈ ˆkROW [𝑢,𝑣 ]
𝑤ROW

𝑘
[𝑢]

=

𝑤ROW

𝑘
[𝑢 ]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢 ]∑

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑤ROW

𝑘
[𝑢 ]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢 ]

=
𝑝ROW
𝑘

[𝑢]∑
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]
. (116)

We let

E [𝐿[𝑢, 𝑣] |H [𝑢 − 1]] ≜
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝐿𝑘 [𝑢, 𝑣], (117)

denote the expected loss of full feedback with regard to the ran-

domness in 𝑝ROW
𝑘

[𝑢]. Thus, according to (116) and (117), we have

E
ˆkROW [𝑢,𝑣 ]

[
E

[
𝐿[𝑢, 𝑣]

��ˆkROW [𝑢, 𝑣]
] ���H[𝑢 − 1]

]
=

∑︁
ˆkROW [𝑢,𝑣 ]

𝑃𝑟

{
ˆkROW [𝑢, 𝑣]

��H[𝑢 − 1]
}

·
∑︁

𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]𝐿𝑘 [𝑢, 𝑣]

=
∑︁

ˆkROW [𝑢,𝑣 ]

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢] · 1(𝐾−1

𝑀−1

)
·

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]∑
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]
𝐿𝑘 [𝑢, 𝑣]

=
1(𝐾−1

𝑀−1

) ·
∑︁

ˆkROW [𝑢,𝑣 ]

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

[𝑢]𝐿𝑘 [𝑢, 𝑣]

= E [𝐿[𝑢, 𝑣] |H [𝑢 − 1]] , (118)

where the second equality is because of (101) and (116), and the

fourth equality is because there are

(𝐾−1

𝑀−1

)
working groups contain-

ing each arm 𝑘 . Then, from (115) and (118), we have

E
ˆkROW [𝑢,1:𝑉 ]

[
𝑔2 [𝑢]

���H[𝑢 − 1]
]

≤
𝑉∑︁
𝑣=1

E [𝐿[𝑢, 𝑣] |H [𝑢 − 1]]

− 𝜂2

8

· 𝑀 − 1

𝐾 − 1

·
𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1])

−
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,1:𝑉 ]

[
𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

���H[𝑢 − 1]
]
, (119)
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Step 2: Since𝜂1𝜏1 ≤ ln 2, according to Lemma 4.5 and Lemma 4.7,

we have

E
ˆkROW [𝑢,1:𝑉 ]

[
𝑔1 [𝑢]

���H[𝑢 − 1]
]

≥ E
ˆkROW [𝑢,1:𝑉 ]

[
E

[
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
] ���H[𝑢 − 1]

]
− 𝜂1 ·

2(𝐾 − 1)
𝑀 − 1

·
𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1]) . (120)

Let us focus on the first term on the right-hand-side of (120). We

have

E
ˆkROW [𝑢,1:𝑉 ]

[
E

[
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
] ���H[𝑢 − 1]

]
=

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

· E
ˆkROW [𝑢,1:𝑉 |𝑘ROW

0
[𝑢 ]]

[
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝐿̃ROW [𝑢]
]

=

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢] · E
ˆkROW [𝑢,1:𝑉 |𝑘ROW

0
[𝑢 ]]

[
𝐿̃ROW [𝑢]

]
,

(121)

where the second equality is because of the linearity of the ex-

pectation, and because the probability 𝑝ROW
𝑘

[𝑢] is independent of
the choice of the working group

ˆkROW [𝑢, 1 : 𝑉 ]. Notice that the
conditional probability that arm 𝑘 is chosen as a secondary arm in

each sub-episode (conditioned on 𝑘 not being the primary arm, but

unconditioned on the events in other sub-episodes) is
𝑀−1

𝐾−1
. Thus,

from (121), we have

E
ˆkROW [𝑢,1:𝑉 ]

[
E

[
𝐿̃ROW [𝑢]

��ˆkROW [𝑢, 1 : 𝑉 ]
] ���H[𝑢 − 1]

]
=

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]

·
𝑉∑︁
𝑣=1

𝑀 − 1

𝐾 − 1

𝐿𝑘 [𝑢, 𝑣𝑢 (𝑘)] − 𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣𝑢 (𝑘)]
𝑀−1

𝐾−1

=

𝐾∑︁
𝑘ROW

0
[𝑢 ]=1

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]

·
𝑉∑︁
𝑣=1

[
𝐿𝑘 [𝑢, 𝑣𝑢 (𝑘)] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣𝑢 (𝑘)]

]
=

𝑉∑︁
𝑣=1

E [𝐿[𝑢, 𝑣] |H [𝑢 − 1]]

−
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,1:𝑉 ]

[
𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

���H[𝑢 − 1]
]
. (122)

When𝑘 = 𝑘ROW
0

[𝑢], 𝐿̃ROW
𝑘

[𝑢] =
𝐿𝑘 [𝑢,𝑣𝑢 (𝑘 ) ]−𝐿𝑘ROW

0
[𝑢 ] [𝑢,𝑣𝑢 (𝑘 ) ]

𝑀−1

𝐾−1

= 0.

Thus, it does not affect the first equality of (122). Then, combining

(120) and (122), we have

E
ˆkROW [𝑢,1:𝑉 ]

[
𝑔1 [𝑢]

���H[𝑢 − 1]
]

≥
𝑉∑︁
𝑣=1

E [𝐿[𝑢, 𝑣] |H [𝑢 − 1]]

− 𝜂1 ·
2(𝐾 − 1)
𝑀 − 1

·
𝑉∑︁
𝑣=1

Var (𝐿[𝑢, 𝑣] |H [𝑢 − 1])

−
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,1:𝑉 ]

[
𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

���H[𝑢 − 1]
]
, (123)

Step 3: Finally, let us compare (119) and (123). The only difference

is the second term on the right-hand-side. According to (36), 𝜂2 ≥
16

(
𝐾−1

𝑀−1

)
2

· 𝜂1. Hence, we have (37).

□

N PROOF OF LEMMA 4.8
Proof. We start from considering the first term on the left-hand-

side of (43). First, we have that for all episodes 𝑢 = 1, ...,𝑈 ,

− 1

𝜂1

ln

(
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝑒−𝜂1𝐿̃
ROW

𝑘
[𝑢 ]

)

= − 1

𝜂1

ln

©­­­­«
𝐾∑︁
𝑘=1

𝑤ROW

𝑘
[𝑢]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢]

𝑒−𝜂1𝐿̃
ROW

𝑘
[𝑢 ]

ª®®®®¬
= − 1

𝜂1

ln

©­­­­«
𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢 + 1]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢]

ª®®®®¬
, (124)

where the first equality is because of the update of the probability

𝑝ROW
𝑘

[𝑢] in (24), and the second equality is because of the update

of the weight𝑤ROW

𝑘
[𝑢] in (29). Then, according to (124), we have

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

ˆkROW [𝑢,1:𝑉 ]

[
− 1

𝜂1

· ln

(
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝑒−𝜂1𝐿̃
ROW

𝑘
[𝑢 ]

) �����H[𝑢 − 1]
]}

=

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

ˆkROW [𝑢,1:𝑉 ]

[
− 1

𝜂1

· ln

©­­­­«
𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢 + 1]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢]

ª®®®®¬
�����H[𝑢 − 1]

]}

=

𝑈∑︁
𝑢=1

EROW


− 1

𝜂1

ln

©­­­­«
𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢 + 1]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢]

ª®®®®¬

.
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Thus, we have

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

ˆkROW [𝑢,1:𝑉 ]

[
− 1

𝜂1

· ln

(
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝑒−𝜂1𝐿̃
ROW

𝑘
[𝑢 ]

) �����H[𝑢 − 1]
]}

= EROW


𝑈∑︁
𝑢=1

− 1

𝜂1

ln

©­­­­«
𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢 + 1]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑢]

ª®®®®¬


= EROW


− 1

𝜂1

ln

©­­­­«
𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑈 + 1]

𝐾∑
𝑘=1

𝑤ROW

𝑘
[1]

ª®®®®¬

, (125)

where the first equality is because of the linearity of the expectation,

and the fourth equality is because of the telescoping sum. Next,

since𝑤ROW

𝑘
[1] = 1 for all 𝑘 , from (125), we have

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

ˆkROW [𝑢,1:𝑉 ]

[
− 1

𝜂1

· ln

(
𝐾∑︁
𝑘=1

𝑝ROW
𝑘

[𝑢]𝑒−𝜂1𝐿̃
ROW

𝑘
[𝑢 ]

) �����H[𝑢 − 1]
]}

= EROW

[
− 1

𝜂1

ln

𝐾∑︁
𝑘=1

𝑤ROW

𝑘
[𝑈 + 1]

]
+ ln𝐾

𝜂1

. (126)

Notice that the second term on the right-hand-side of (126) is the

first term on the right-hand-side of (43).

Then, let us focus on the first term on the right-hand-side of

(126). We have

EROW

[
− 1

𝜂1

ln

𝐾∑︁
𝑘=1

𝑤ROW

𝑘
[𝑈 + 1]

]
≤ EROW

[
− 1

𝜂1

ln𝑤ROW

𝑘OPT
[𝑈 + 1]

]
= EROW

[
− 1

𝜂1

ln

(
𝑒
−𝜂1

∑𝑈
𝑢=1

𝐿̃ROW
𝑘OPT

[𝑢 ]
)]

= EROW

[
𝑈∑︁
𝑢=1

𝐿̃ROW
𝑘OPT

[𝑢]
]
, (127)

where the first inequality is because

𝐾∑
𝑘=1

𝑤ROW

𝑘
[𝑈 +1] ≥ 𝑤ROW

𝑘OPT
[𝑈 +

1], the first equality is because of the update of the weight𝑤ROW

𝑘
[𝑢]

in (29). Notice that if 𝑘OPT is chosen as the primary arm, i.e.,

𝑘ROW
0

[𝑢] = 𝑘OPT, we have 𝐿̃ROW
𝑘OPT

[𝑢] = 0. This will not affect

the last equality. On the other hand, the conditional probability

that arm 𝑘OPT is chosen as a secondary arm in each sub-episode

(conditioned on 𝑘 not being the primary arm, but unconditioned

on the events in other sub-episodes) is
𝑀−1

𝐾−1
. Thus, from (127), we

have

EROW

[
− 1

𝜂1

ln

𝐾∑︁
𝑘=1

𝑤ROW

𝑘
[𝑈 + 1]

]
=

𝑈∑︁
𝑢=1

EH[𝑢−1]

[
𝐾∑︁

𝑘ROW
0

[𝑢 ]=1

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
𝑉∑︁
𝑣=1

𝑀 − 1

𝐾 − 1

𝐿𝑘OPT [𝑢, 𝑣] − 𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣]
𝑀−1

𝐾−1

]
=

𝑈∑︁
𝑢=1

EH[𝑢−1]

[
𝐾∑︁

𝑘ROW
0

[𝑢 ]=1

𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

·
𝑉∑︁
𝑣=1

{
𝐿𝑘OPT [𝑢, 𝑣] − 𝐿𝑘ROW

0
[𝑢 ] [𝑢, 𝑣]

} ]
. (128)

Then, from (128), we have

EROW

[
− 1

𝜂1

ln

𝐾∑︁
𝑘=1

𝑤ROW

𝑘
[𝑈 + 1]

]
≤

𝑇∑︁
𝑡=1

𝑙𝑘OPT (𝑡)

−
𝑈∑︁
𝑢=1

EH[𝑢−1]


𝐾∑︁

𝑘ROW
0

[𝑢 ]=1

(
𝑝ROW
𝑘ROW

0
[𝑢 ] [𝑢]

𝑉∑︁
𝑣=1

𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣]
) .
(129)

where the inequality is because of the linearity of the expectation.

Finally, combining (126) and (129), we have (43).

□

O PROOF OF THEOREM 4.1
Proof. We use

Loss
ROW (1 : 𝑇 ) ≜

𝑇∑︁
𝑡=1

𝑙
k
ROW (𝑡 ) (𝑡) (130)

and

Loss
OPT (1 : 𝑇 ) ≜ min

𝑘∈[1,𝐾 ]

𝑇∑︁
𝑡=1

𝑙𝑘 (𝑡) (131)

to denote the total loss of ROW and OPT, respectively. According

to the upper bound of the switching costs of ROW in (44), we have

𝑅ROW (𝑇 ) ≤ max

𝑙1:𝐾 (1:𝑇 )

{
EROW

[
Loss

ROW (1 : 𝑇 )
]
− Loss

OPT (1 : 𝑇 )
}

+ min {𝑀,𝐾 −𝑀} · 𝛽1

⌈
𝑇

𝜏2

⌉
. (132)

In the following, we focus on calculating the worst-case differ-

ence between the expected total loss of ROW and the total loss

of OPT, i.e., the first term on the right-hand-side of (132). First,
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according to Lemma 4.2, we have

EROW

[
Loss

ROW (1 : 𝑇 )
]

=

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,𝑣 ]

[
𝑡𝑢,𝑣+𝜏2−1∑︁
𝑡=𝑡𝑢,𝑣

∑︁
𝑘∈ ˆkROW [𝑢,𝑣 ]

𝑝ROW
𝑘

(𝑡)

· 𝑙𝑘 (𝑡)
���H[𝑢 − 1]

]}
≤

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,𝑣 ]

[
𝑔2 [𝑢, 𝑣]

+ 1

2

𝜂2𝜏2 + 1

���H[𝑢 − 1]
]}

=

𝑈∑︁
𝑢=1

EH[𝑢−1]

{
𝑉∑︁
𝑣=1

E
ˆkROW [𝑢,𝑣 ]

[
𝑔2 [𝑢, 𝑣]

���H[𝑢 − 1]
]}

+ 1

2

𝜂2𝑇 +
⌈
𝑇

𝜏2

⌉
, (133)

where the inequality is because of Lemma 4.2. Next, according to

the relation between 𝑔2 [𝑢, 𝑣] and 𝑔2 [𝑢] in (35), from (133), we have

EROW

[
Loss

ROW (1 : 𝑇 )
]

≤
𝑈∑︁
𝑢=1

EH[𝑢−1]
{
E

ˆkROW [𝑢,1:𝑉 ]

[
𝑔2 [𝑢]

���H[𝑢 − 1]
]}

+
𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

ˆkROW [𝑢,1:𝑉 ]

[
𝑉∑︁
𝑣=1

𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣]
��H[𝑢 − 1]

]}
+ 1

2

𝜂2𝑇 +
⌈
𝑇

𝜏2

⌉
. (134)

Notice that the values of the parameters in (46) satisfy the conditions

in (36). Thus, Lemma 4.4 holds. Then, applying Lemma 4.4 to (134),

we have

EROW

[
Loss

ROW (1 : 𝑇 )
]

≤
𝑈∑︁
𝑢=1

EH[𝑢−1]
{
E

ˆkROW [𝑢,1:𝑉 ]

[
𝑔1 [𝑢]

���H[𝑢 − 1]
]}

+
𝑈∑︁
𝑢=1

EH[𝑢−1]

{
E

ˆkROW [𝑢,1:𝑉 ]

[
𝑉∑︁
𝑣=1

𝐿𝑘ROW
0

[𝑢 ] [𝑢, 𝑣]
��H[𝑢 − 1]

]}
+ 1

2

𝜂2𝑇 +
⌈
𝑇

𝜏2

⌉
. (135)

Then, according to Lemma 4.8, from (135), we have

EROW

[
Loss

ROW (1 : 𝑇 )
]
≤

𝑇∑︁
𝑡=1

𝑙𝑘OPT (𝑡) +
ln𝐾

𝜂1

+ 1

2

𝜂2𝑇 +
⌈
𝑇

𝜏2

⌉
.

Since (132)-(135) hold for all loss sequences 𝑙1:𝐾 (1 : 𝑇 ), we have

EROW

[
Loss

ROW (1 : 𝑇 )
]
−

𝑇∑︁
𝑡=1

𝑙𝑘OPT (𝑡)

≤ 1

2

𝜂2𝑇 + ln𝐾

𝜂1

+
⌈
𝑇

𝜏2

⌉
, for all loss sequences 𝑙1:𝐾 (1 : 𝑇 ) . (136)

Finally, combining (132) and (136), we have

𝑅ROW (𝑇 ) ≤ 1

2

𝜂2𝑇 + ln𝐾

𝜂1

+ min {𝑀,𝐾 −𝑀} · 𝛽1

⌈
𝑇

𝜏2

⌉
+

⌈
𝑇

𝜏2

⌉
.

(137)

(137) is the same as (45), which can be used as a reference for tuning

the parameters.

In the following, we elaborate how we get the exact form of

the final regret in Theorem 4.1. First, according to (46), we have

𝜂1 =
𝜂2

16

(
𝐾−1

𝑀−1

)
2
and 𝜏2 =

⌊
ln 2

𝜂2

⌋
. Thus, according to (137), the regret

of ROW is upper-bounded as follows,

𝑅ROW (𝑇 ) ≤ 1

2

𝜂2𝑇 + 16

(
𝐾 − 1

𝑀 − 1

)
2

· ln𝐾

𝜂2

+ (min {𝑀,𝐾 −𝑀} · 𝛽1 + 1) 𝑇⌊
ln 2

𝜂2

⌋ + min {𝑀,𝐾 −𝑀} · 𝛽1 + 1

≤
(

1

2

+ min {𝑀,𝐾 −𝑀} · 𝛽1 + 1

ln 2 − 𝜂2

)
𝜂2𝑇 + 16

(
𝐾 − 1

𝑀 − 1

)
2

· ln𝐾

𝜂2

+ min {𝑀,𝐾 −𝑀} · 𝛽1 + 1. (138)

The value of 𝜂2 is then chosen to approximately minimize the right

hand side. Specifically, according to (46), we have

𝜂2 =

√︄
ln𝐾

5

2
+ min {𝑀,𝐾 −𝑀} · 2𝛽1

· 4(𝐾 − 1)
𝑀 − 1

·𝑇 − 1

2 .

Thus, for 𝑇 ≥ 448(𝐾−1)2
ln𝐾

5

2
+2𝛽1

, we have

𝜂2 ≤

√√√√√√ 16

(
5

2
+ 2𝛽1

)
448

(
5

2
+ min {𝑀,𝐾 −𝑀} · 2𝛽1

)
(𝑀 − 1)2

≤
√︂

1

28

≤ ln 2 − 1

2

. (139)

Finally, combining (138) and (139), the regret of ROW is upper-

bounded as follows,

𝑅ROW (𝑇 ) ≤
(

1

2

+ 2 (min {𝑀,𝐾 −𝑀} · 𝛽1 + 1)
)
𝜂2𝑇

+ 16

(
𝐾 − 1

𝑀 − 1

)
2

· ln𝐾

𝜂2

+ min {𝑀,𝐾 −𝑀} · 𝛽1 + 1

≤ 8(𝐾 − 1)
𝑀 − 1

√︂
5

2

+ min {𝑀,𝐾 −𝑀} · 2𝛽1

√
ln𝐾

√
𝑇

+ min {𝑀,𝐾 −𝑀} · 𝛽1 + 1.

□
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