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Abstract— There has been recent interest within the net-
working research community to understand how mobility
can improve the capacity of mobile ad hoc networks. Of
particular interest is the achievable capacity under delay
constraints. In this paper, we establish the following upper
bound on the optimal capacity-delay tradeoff in mobile ad
hoc networks for an i.i.d. mobility model. For a mobile
ad hoc network with n nodes, if the per-bit-averaged
mean delay is bounded by D̄, then the per-node capacity
λ is upper bounded by λ3 ≤ O( D̄

n log3 n). By studying
the condition under which the upper bound is tight, we
are able to identify the optimal values of several key
scheduling parameters. We then develop a new scheme that
can achieve a capacity-delay tradeoff close to the upper
bound up to a logarithmic factor. Our new scheme achieves
a larger per-node capacity than the schemes reported in
previous works. In particular, when the delay is bounded
by a constant, our scheme achieves a per-node capacity of
Θ(n−1/3/ log n). This indicates that, for the i.i.d. mobility
model, mobility results in a larger capacity than that of
static networks even with constant delays. Finally, the
insight drawn from the upper bound allows us to identify
limiting factors in existing schemes. These results present a
relatively complete picture of the achievable capacity-delay
tradeoffs under different settings.

I. INTRODUCTION

Since the seminal paper by Gupta and Kumar [1],
there has been tremendous interest in the network-
ing research community to understand the fundamental
achievable capacity in wireless ad hoc networks. For a
static network (where nodes do not move), Gupta and
Kumar show that the per-node capacity decreases as
O(1/

√
n log n)1 as the number of nodes n increases [1].
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1We use the following notation throughout:

f(n) = o(g(n)) ↔ lim
n→∞

f(n)

g(n)
= 0,

The capacity of wireless ad hoc networks can be im-
proved when mobility is taken into account. When the
nodes are mobile, Grossglauser and Tse show that per-
node capacity of Θ(1) is achievable [2], which is much
better than that of static networks. This capacity im-
provement is achieved at the cost of excessive packet de-
lays. In fact, it has been pointed out in [2] that the packet
delay of the proposed scheme could be unbounded.

There have been several recent studies that attempt to
address the relationship between the achievable capacity
and the packet delay in mobile ad hoc networks. In
the work by Neely and Modiano [3], it was shown that
the maximum achievable per-node capacity of a mobile
ad hoc network is bounded by O(1). Under an i.i.d.
mobility model, the authors of [3] present a scheme
that can achieve Θ(1) per-node capacity and incur Θ(n)
delay, provided that the load is strictly less than the
capacity. Further, they show that it is possible to reduce
packet delay if one is willing to sacrifice capacity. In [3],
the authors formulate and prove a fundamental tradeoff
between the capacity and delay. Let the average end-to-
end delay be bounded by D. For D between Θ(1) and
Θ(n), [3] shows that the maximum per-node capacity λ
is upper bounded by

λ ≤ O(
D

n
). (1)

The authors of [3] develop schemes that can achieve
Θ(1), Θ(1/

√
n), and Θ(1/(n log n)) per-node capacity,

when the delay constraint is on the order of Θ(n),
Θ(

√
n), and Θ(log n), respectively.

Inequality (1) leads to the pessimistic conclusion that
a mobile ad hoc network can sustain at most O(1/n)

f(n) = O(g(n)) ↔ lim sup
n→∞

f(n)

g(n)
< ∞,

f(n) = ω(g(n)) ↔ g(n) = o(f(n)),

f(n) = Θ(g(n)) ↔ f(n) = O(g(n)) and g(n) = O(f(n)).



per-node capacity with a constant delay bound. This
capacity is even worse than that of static networks.
It turns out that this pessimistic conclusion is due to
certain restrictive assumptions that are implicit in the
work in [3] (we will elaborate on these assumptions
in Section VI). In fact, Toumpis and Goldsmith [4]
present a scheme that can achieve a per-node capacity
of Θ(n(d−1)/2/ log5/2 n) when the delay is bounded by
O(nd). The result of [4] has incorporated the effect
of fading. If we remove fading, the per-node capacity
will be of the order Θ(n(d−1)/2/ log3/2 n). Ignoring
the logarithmic term, we find that in [4] the following
capacity-delay tradeoff is achievable:

λ2 = Θ(
D

n
). (2)

This is better than (1). In particular, the authors of [4]
present a scheme that can achieve Θ(1/(

√
n log3/2 n))

per-node capacity with a constant delay bound. (The
capacity will be Θ(1/(

√
n log n)) with no fading.) This

capacity is now comparable to that of the static ad hoc
networks.

An open question that still remains is: what is the op-
timal capacity-delay tradeoff in mobile ad hoc networks?
Inequality (1) is clearly not optimal. The methodology
of [4] is constructive in nature. Hence, inequality (2) is
only a lower bound. The search for the optimal capacity-
delay tradeoff is important for two reasons. First, it will
allow us to see where the fundamental limits (i.e., upper
bounds) are, and how far existing schemes could possibly
be improved. Secondly, as has happened in previous
works [1], [3], a careful study of the upper bound is
usually able to reveal the delicate tradeoffs inherent to
the problem. A complete understanding of these tradeoffs
will help us identify the possible points of inefficiency
in existing schemes and provide directions for further
improvement. The ultimate goal is to find a scheme that
can achieve the optimal capacity-delay tradeoff.

This paper accomplishes these two goals. Under the
i.i.d. mobility model studied in [3], we will first establish
an upper bound on the optimal capacity-delay tradeoff
in mobile ad hoc networks. We will show that, if the
per-bit-averaged mean delay is bounded by D̄, then the
per-node capacity λ is upper bounded by

λ3 ≤ O(
D̄

n
log3 n). (3)

In Fig. 1, we draw this upper bound alongside the
capacity-delay tradeoffs achieved by the schemes in [3]
and [4]. There is obviously a gap between the upper
bound and what can be achieved by existing schemes.

O(1) O(nd) O(n)
O( 1

n )

O( 1
√

n
)

O( 1
3
√

n
)

O(1)

Capacity

Delay

Fig. 1. The achievable capacity-delay tradeoffs of existing schemes
compared with the upper bound (ignoring the logarithmic terms). The
top line corresponds to our upper bound (achievable by the scheme
outlined in Section V up to a logarithmic factor). The middle line is
achieved by the scheme in [4], and the bottom one is achieved by
the scheme in [3].

Further, in the process of proving the upper bound, we
are able to identify the optimal choices for several key
parameters of the scheduling policy. We then develop
a new scheme that achieves the upper bound on the
capacity-delay tradeoff upto a logarithmic factor, which
suggests that our upper bound is fairly tight. Our new
scheme achieves a larger per-node capacity than the ones
in [3] and [4]. In particular, our scheme can achieve
Θ(n−1/3/log n) per-node capacity with constant delay.
Unlike previous works, this result shows that, even for
a constant delay bound, the per-node capacity of mobile
ad hoc networks can be larger than that of the static
networks! Finally, the insight drawn from the upper
bound allows us to identify the limiting factors of the
schemes in [3] and [4].

The rest of the paper is organized as follows. In
Section II, we outline the network and mobility model. In
Section III, we prove several key properties that capture
various tradeoffs inherent in mobile ad hoc networks. We
establish the upper bound on the optimal capacity-delay
tradeoff in Section IV and present a scheme in Section V
that achieves a capacity-delay tradeoff close to the upper
bound. In Section VI, we discuss the existing schemes
described in [3] and [4]. Then we conclude.

II. NETWORK AND MOBILITY MODEL

We consider a mobile ad hoc network with n nodes
moving within a unit square2. We assume that time
is divided into slots of unit length. We assume the

2Note that changing the shape of the area from a square to a circle
or other topologies will not affect our main results.



following i.i.d. mobility model proposed in [3]. At each
time slot, the positions of each node are i.i.d. and
uniformly distributed within the unit square. Between
time slots, the distributions of the positions of the nodes
are independent. Although the assumption on an i.i.d.
mobility model is somewhat restrictive, its mathematical
tractability allows us to gain important insights into the
structure of the problem. We will comment on some
extensions to the i.i.d. mobility model in the conclusion.

For simplicity, we assume the following traffic model
similar to the models in [3], [4]. We assume that the
number of nodes n is even and the nodes can be labeled
in such a way that node 2i − 1 communicates with
node 2i, and node 2i communicates with node 2i − 1,
i = 1, ..., n/2. The communication between any source-
destination pairs can go through multiple other nodes
as relays. That is, the source can either send a message
directly to the destination; or, it can send the message
to one or more relay nodes; the relay nodes can further
forward the message to other relay nodes (possibly after
moving to another position); and finally some relay node
forwards the message to the destination.

We assume the following Protocol Model from [1]
that governs direct radio transmissions between nodes.
Let W be the bandwidth of the system. Let Xi denote
the position of node i, i = 1, ..., n. Let |Xi − Xj | be
the Euclidean distance between nodes i and j. At each
time slot, node i can communicate directly with another
node j at W bits per second if and only if the following
interference constraint is satisfied [1]:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xj |
for every other node k 6= i, j that is simultaneously
transmitting. Here, ∆ is some positive number. Note that
an alternative model for direct radio transmission is the
Physical Model [1], [4]. In the Physical Model, a node
can communicate with another node if the signal-to-
interference ratio is above a given threshold. It has been
shown that, under certain conditions, the Physical Model
can be reduced to the Protocol Model with an appropriate
choice of ∆ [1]. Hence, we will not consider the Physical
Model any further in this paper. We also assume that no
nodes can transmit and receive over the same frequency
at the same time. We further assume the following
separation of time scale, i.e., radio transmission can
be scheduled at a time scale much faster than that of
node mobility. This is usually a reasonable assumption
in real networks. Hence, a message may be divided into
multiple bits and each bit can be forwarded multiple hops
separately within a single time slot.

We assume a uniform traffic pattern, that is, all source
nodes communicate with their destination nodes at the
same rate λ. let D̄ be the mean delay averaged over all
messages and all source-destination pairs. Both λ and D̄
will depend on how the transmissions between mobile
nodes are scheduled. We are interested in capturing the
fundamental tradeoff between the achievable capacity
λ and the delay D̄. That is, over all possible ways of
scheduling the radio transmissions, what is the maximum
per-node capacity λ given certain constraint on the
delay D̄.

III. PROPERTIES OF THE SCHEDULING POLICIES

In this section, we will prove several key results that
capture the various tradeoffs inherent in mobile ad hoc
networks. We will first define the class of scheduling
policies that we will consider. Because we are interested
in the fundamental achievable capacity for a given delay,
we will assume that there exists a scheduler that has all
the information about the current and past status of the
network, and can schedule any radio transmission in the
current and future time slots. At each time slot t, for
each bit b that has not been delivered to its destination
yet, the scheduler needs to perform the following two
functions:

• Capture: The scheduler needs to decide whether
to deliver the bit b to the destination within the
current time slot. If yes, the scheduler then needs
to choose one relay node (possibly the source) that
has a copy of the bit b at the beginning of the time
slot t, and schedule radio transmissions to forward
this bit to the destination within the same time
slot, using possibly multi-hop transmissions. When
this happens successfully, we say that the chosen
relay node has successfully captured the destination
of bit b. It is important to forward the bit to the
destination within a single time slot. Otherwise,
since the chosen relay node may move far away
from the destination in the next time slot, the nodes
that received the bit b in the current time slot will
only count as new relay nodes for the bit b, and
they have to capture again in the next time slot.

• Duplication: If capture does not occur for bit b, the
scheduler needs to decide whether to duplicate bit
b to other nodes that do not have the bit at the
beginning of the time slot t. The scheduler also
needs to decide which nodes to relay from and
relay to, and how to schedule radio transmissions
to forward the bit to these new relay nodes.



In this paper, we will consider the class of causal
scheduling policies that perform the above two functions
at each time slot. The causality assumption essentially
requires that, when the scheduler makes the capture
decision and the duplication decision, it can only use
information about the current and the past status of the
network. In particular, at any time slot t, the scheduler
cannot use information about the future positions of the
nodes at any time slot s > t.

This class of scheduling policies is clearly very gen-
eral, and encompasses nearly any practical scheduling
scheme we can think of. (Note that even predictive
scheduling schemes have to rely on current and past
information only.) Some remarks on the capture process
is in order. Although we do allow for other less intuitive
alternatives, in a typical scheduling policy a successful
capture usually occurs when some relay nodes are within
an area close to the destination node, so that fewer
resources will be needed to forward the information to
the destination. For example, a relay node could enter
a disk of a certain radius around the destination, or a
relay node could enter the same cell as the destination.
We call such an area a capture neighborhood. The relay
nodes that has the bit b at the beginning of the time slot
t are called mobile relays for bit b. The mobile relay that
is chosen to forward the bit b to the destination is called
the last mobile relay for bit b.

The following examples are illustrative of the possible
scheduling policies within this broad class. The schemes
in previous works [3], [4] are all special cases or variants
of these examples.

Example A: The number of mobile relays R is fixed
and the capture neighborhood is chosen to be a disk
with a fixed radius ρ around the destination. Once a
bit b enters the system, it is immediately broadcast to
the nearest R − 1 neighboring nodes. When any of
the R mobile relays (including the source node) move
within distance ρ from the destination, the bit b is
then forwarded from the nearest mobile relay to the
destination.

Example B: The unit area is divided into a number of
cells. Once a bit b enters the system, it is immediately
broadcast to all other nodes in the same cell. The number
of mobile relays for the bit b then stay unchanged. Note
that the actual number of mobile relays depends on the
number of nodes that reside in the same cell as the source
(at the time slot when the bit b enters the system), and is
thus a random variable. When one of the mobile relays
moves into the same cell as the destination, the bit b
is then forwarded from the nearest mobile relay to the

destination.
Example C: In the above two schemes, no duplication

for bit b is carried out except at the first time slot when
the bit enters the system. A more sophisticated strategy
is to use an opportunistic duplication scheme such as the
example below. The unit area is divided into a number
of cells. After a bit b enters the system, at each time
slot t, if one of the mobile relays moves into the same
cell as the destination, bit b is then forwarded from the
nearest mobile relay to the destination. Otherwise, the
source node (or, alternatively, the current mobile relays)
broadcasts the bit to all other nodes that reside at the
same cell. Hence, duplication may occur at each time
slot until bit b is delivered to its destination.

In the sequel, we will prove several key inequalities
that capture the various tradeoffs inherent in the class
of scheduling policies outlined above. Intuitively, the
larger the number of mobile relays and the larger the
capture neighborhood, the smaller the delay. On the other
hand, in order to improve capacity, we need to consume
fewer radio resources, which implies a smaller number
of mobile relays and a shorter distance from the last
mobile relay to the destination. As we will see later, these
tradeoffs will determine the fundamental relationship
between achievable capacity and delay in mobile ad hoc
networks.

A. Notations

Fix any scheduling policy. Define the following ran-
dom variables for each bit b that needs to be commu-
nicated from its source node to its destination node.
Let t0(b) denote the time slot when bit b first enters
the system. Let sb ≥ t0(b) be the time slot when the
scheduler decides that a successful capture for bit b
occurs. The scheduler also needs to choose one mobile
relay that has a copy of bit b at the beginning of the
time slot sb to forward bit b towards its destination
within the same time slot sb. Let Rb be the number of
mobile nodes holding the bit b at the time of capture, let
Db , sb − t0(b) be the number of time slots from the
time bit b enters the system to the time of capture, and
let lb denote the distance from the chosen last mobile
relay to the destination of bit b. The quantities Rb, Db,
and lb are essential for the tradeoffs that follow3. Note

3Using the notion of filtrations and stopping times [5, p231], we
can rigorously define these quantities as random variables on the same
probability space where the random mobility of the mobile nodes is
defined. The expectation in the following tradeoffs are then taken
with respect to this probability space. See [6] for details.



that Db includes possible queueing delay at the source
node or at the relay nodes.

B. Tradeoff I : Db versus Rb and lb

Proposition 1: Under the i.i.d. mobility model, the
following inequality holds for any causal scheduling
policy when n ≥ 3,

c1 log nE[Db] ≥
1

(E[lb] + 1
n2 )2E[Rb]

for all bits b, (4)

where c1 is a positive constant.
The proof is available in [6]. This new result is

the cornerstone for deriving the optimal capacity-delay
tradeoff in mobile ad hoc networks. It captures the
following tradeoff: the smaller the number Rb of mobile
relays the bit b is duplicated to, and the shorter the
targeted distance lb from the last mobile relay to the
destination, the longer it takes to capture the destination.
This seemingly odd relationship is actually motivated
by some simple examples. Consider Example A at the
beginning of this section. When Rb and the area of the
capture neighborhood Ab are constants, then 1 − (1 −
Ab)

Rb is the probability that any one out of the Rb nodes
can capture the destination in one time slot. It is easy
to show that, the average number of time slots needed
before a successful capture occurs, is,

E[Db] =
1

1 − (1 − Ab)Rb
≥ 1

AbRb
.

If, as in Example B, Rb and possibly Ab are random but
fixed after the first time slot t0(b), then

E[Db|Rb, Ab] ≥
1

AbRb
.

By Hőlder’s Inequality [5, p15],

E
2[

1√
Ab

] ≤ E[Rb]E[
1

AbRb
].

Hence,

E[Db] ≥ E[
1

AbRb
] ≥ E

2[
1√
Ab

]
1

E[Rb]

≥ 1

E2[
√

Ab]E[Rb]
,

where in the last step we have applied Jensen’s Inequality
[5, p14]. Note that on average lb is on the order of

√
Ab.

Hence,

E[Db] ≥
c′1

E2[lb]E[Rb]
for all bits b, (5)

where c′1 is a positive constant. It may appear that, when
an “opportunistic duplication scheme” such as the one in

Example C is employed, such a scheme might achieve a
better tradeoff than (5) by starting off with fewer mobile
relays and a smaller capture neighborhood, if the node
positions at the early time slots after the bit’s arrival turns
out to be favorable. However, Proposition 1 shows that
no scheduling policy can improve the tradeoff by more
than a log n factor.

C. Tradeoff II : Multihop

Once a successful capture occurs, the chosen mobile
relay (i.e., the last mobile relay) will start transmitting
the bit to the destination within a single time slot, using
possibly other nodes as relays. We will refer to these
latter relay nodes as static relays. The static relays are
only used for forwarding the bit to the destination after a
successful capture occurs. Let hb be the number of hops
it takes from the last mobile relay to the destination.
Let Sh

b denote the transmission range of each hop h =
1, .., hb. The following relationship is trivial.

Proposition 2: The sum of the transmission ranges of
the hb hops must be no smaller than the straight-line
distance from the last mobile relay to the destination,
i.e.,

hb
∑

h=1

Sh
b ≥ lb. (6)

D. Tradeoff III : Radio Resources

It consumes radio resources to duplicate each bit to
mobile relays and to forward the bit to the destination.
Proposition 3 below captures the following tradeoff: the
larger the number of mobile relays Rb and the further
the multi-hop transmissions towards the destination have
to traverse, the smaller the achievable capacity. Consider
a large enough time interval T . The total number of bits
communicated end-to-end between all source-destination
pairs is λnT .

Proposition 3: Assume that there exist positive num-
bers c2 and N0 such that Db ≤ c2n

2 for n ≥ N0. If the
positions of the nodes within a time slot are i.i.d. and
uniformly distributed within the unit square, then there
exist positive numbers N1 and c3 that only depend on
c2, N0 and ∆, such that the following inequality holds
for any causal scheduling policy when n ≥ N1,

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c3WT log n.

(7)
The assumption that Db ≤ c2n

2 for large n is not as
restrictive as it appears. It has been shown in [3] that the
maximum achievable per-node capacity is Θ(1) and this



capacity can be achieved with Θ(n) delay. Hence, we are
most interested in the case when the delay is not much
larger than the order O(n). Further, Proposition 3 only
requires that the stationary distribution of the positions
of the nodes within a time slot is i.i.d. It does not require
the distribution between time slots to be independent.

We briefly outline the motivation behind the inequality
(7). The details of the proof are quite technical and
available in [6]. Consider nodes i, j that directly transmit
to nodes k and l, respectively, at the same time. Then,
according to the interference constraint:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xk]

|Xi − Xl| ≥ (1 + ∆)|Xj − Xl].

Hence,

|Xj − Xi| ≥ |Xj − Xk| − |Xi − Xk|
≥ ∆|Xi − Xk|.

Similarly,
|Xi − Xj | ≥ ∆|Xj − Xl|.

Therefore,

|Xi − Xj | ≥
∆

2
(|Xi − Xk| + |Xj − Xl|).

That is, disks of radius ∆
2 times the transmission range

centered at the transmitter are disjoint from each other4.
This property can be generalized to broadcast as well.
We only need to define the transmission range of a broad-
cast as the distance from the transmitter to the furthest
node that can successfully receive the bit. The above
property motivates us to measure the radio resources
each transmission consumes by the areas of these disjoint
disks [1]. For unicast transmissions from the last mobile
relay to the destination, the area consumed by each hop
is π∆2

4 (Sh
b )2. For duplication to other nodes, broadcast

is more beneficial since it consumes fewer resources.
Assume that each transmitter chooses the transmission
range of the broadcast independently of the positions of
its neighboring nodes. If the transmission range is s, then
on average no greater than nπs2 nodes can receive the
broadcast, and a disk of radius ∆

2 s (i.e., area π∆2

4 s2)
centered at the transmitter will be disjoint from other
disks. Therefore, we can use ∆2

4
E[Rb]−1

n as a lower bound
on the expected area consumed by duplicating the bit to
Rb − 1 mobile relays (excluding the source node). This
lower bound will hold even if the duplication process is

4A similar observation is used in [1] except that they take a receiver
point of view.

carried out over multiple time slots, because the average
number of new mobile relays each broadcast can cover
is at most proportional to the area consumed by the
broadcast. Therefore, inspired by [1], the amount of radio
resources consumed must satisfy

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+ E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c′3WT,

(8)
where c′3 is a positive constant.

However, ∆2

4
E[Rb]−1

n may fail to be a lower bound on
the expected area consumed by duplicating to Rb − 1
mobile relays if the following opportunistic broadcast
scheme is used. The source may choose to broadcast
only when there are a larger number of nodes close
by. If the source can afford to wait for these “good
opportunities”, an opportunistic broadcast scheme may
consume less radio resources than a non-opportunistic
scheme to duplicate the bit to the same number of
mobile relays. Nonetheless, we can show that, when n
is large, the probability that the number of nodes in
a neighborhood is orders of magnitude larger than its
average value will be very small. We can then prove
Proposition 3, which implies that no scheduling policies
can improve the tradeoff by more than a log n factor. For
details, please refer to [6].

E. Tradeoff IV : Half Duplex

Finally, since we assume that no node can transmit
and receive over the same frequency at the same time
(a practically necessary assumption for most wireless
devices), the following property can be shown as in [1].

Proposition 4: The following inequality holds,

λnT
∑

b=1

hb
∑

h=1

1 ≤ WT

2
n. (9)

IV. THE UPPER BOUND ON THE CAPACITY-DELAY

TRADEOFF

Our first main result is to derive, from the above
four tradeoffs, the upper bound on the optimal capacity-
delay tradeoff of mobile ad hoc networks under the i.i.d.
mobility model. Since the maximum achievable per-node
capacity is Θ(1) and this capacity can be achieved with
Θ(n) delay by the scheme of [3], we are only interested
in the case when the mean delay is o(n).

Proposition 5: Let D̄ be the mean delay averaged
over all bits and all source-destination pairs, and let
λ be the throughput of each source-destination pair. If



D̄ = O(nd), 0 ≤ d < 1, the following upper bound holds
for any causal scheduling policy,

λ3 ≤ O(
D̄

n
log3 n).

Proof: Using the Cauchy-Schwartz inequality, we
have
(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

≤
(

λnT
∑

b=1

hb
∑

h=1

1

)(

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2

)

≤ WTn

2

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2, (10)

where in the last step we have used Tradeoff IV (9).
Equality holds in (10) when inequality (9) is tight and
when Sh

b is equal for all b and h. We thus have,

E[
λnT
∑

b=1

hb
∑

h=1

(Sh
b )2] ≥ 2

WTn
E[

(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

]

≥ 2

WTn

(

E[
λnT
∑

b=1

hb
∑

h=1

Sh
b ]

)2

(11)

≥ 2

WTn

(

λnT
∑

b=1

E[lb]

)2

, (12)

where in the last two steps we have used Jensen’s
Inequality and the Tradeoff II (6), respectively. Inequality

(11) is tight when
λnT
∑

b=1

hb
∑

h=1

Sh
b is almost surely a constant,

and (12) is tight when (6) is tight.
From Tradeoff I (4), we have

λnT
∑

b=1

E[Rb] ≥
λnT
∑

b=1

1

c1 log n

1

(E[lb] + 1
n2 )2E[Db]

. (13)

Let

D̄ =

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

=

λnT
∑

b=1

E[Db]

λnT
.

Using Jensen’s Inequality and Hőlder’s Inequality, we
have,

1




λnT
P

b=1

(E[lb]+
1

n2 )

λnT
P

b=1

1





2 ≤











λnT
∑

b=1

1
(E[lb]+

1

n2 )

λnT
∑

b=1

1











2

≤

λnT
∑

b=1

1
(E[lb]+

1

n2 )2E[Db]

λnT
∑

b=1

1

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

. (14)

Equality holds when E[lb] is the same for all b and
E[Db] = D̄ for all b. Substituting (14) in (13), we have

λnT
∑

b=1

E[Rb] ≥ 1

c1 log n

(

λnT
∑

b=1

1

)3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2 .(15)

Substituting (12) and (15) into Inequality (7), we have

4c3WT log n

∆2
≥

λnT
∑

b=1

E[Rb] − 1

n
+ πE[

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2]

≥ 1

c1n log n

(λnT )3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2

+
2π

WTn
(
λnT
∑

b=1

E[lb])
2 − λT.

There are two cases that we need to consider.

Case 1: If
λnT
∑

b=1

E[lb] ≤ λT
n , then

4c3WT log n

∆2
≥ 1

c1n log n

(λnT )3

D̄
(

2λT
n

)2 − λT

=
1

4c1 log n

λTn4

D̄
− λT.

When D̄ = O(nd), d < 1, the first term dominates when
n is large. Hence, for n large enough,

4c3WT log n

∆2
≥ 1

8c1 log n

λTn4

D̄

λ ≤ 32c1c3W

∆2

D̄ log2 n

n4
. (16)

Case 2: If
λnT
∑

b=1

E[lb] ≥ λT
n , then

4c3WT log n

∆2

≥ 1

c1n log n

(λnT )3

D̄

(

2
λnT
∑

b=1

E[lb]

)2

+
2π

WTn
(
λnT
∑

b=1

E[lb])
2 − λT (17)



≥ 2

√

1

c1 log n

2π

WTn2

(λnT )3

4D̄
− λT (18)

= 2

√

π

2c1 log n

λ3nT 2

D̄W
− λT. (19)

Therefore, either

λ ≤ O(
D̄ log n

n
), (20)

or, if λ = ω( D̄ log n
n ), then the first term in (19) dominates

when n is large. In the latter case, for n large enough,

4c3WT log n

∆2
≥

√

π

2c1 log n

λ3nT 2

D̄W

λ3 ≤ 32c1c
2
3W

3

∆4

D̄ log3 n

n
. (21)

Finally, we compare the three inequalities we have
obtained, i.e., (16), (20) and (21). Since D̄ = o(nd), d <
1, inequality (21) will eventually be the loosest for large
n. Hence, the optimal capacity-delay tradeoff is upper
bounded by

λ3 ≤ O(
D̄

n
log3 n).

V. AN ACHIEVABLE LOWER BOUND ON THE

CAPACITY-DELAY TRADEOFF

The capacity-delay tradeoff in Proposition 5 is better
than those reported in [3] and [4]. Assuming that the
delay bound is Θ(nd), 0 ≤ d < 1, the achievable per-
node capacity is O(n−(1−d)) by the scheme in [3], and
O(n−(1−d)/2) by the scheme in [4]. Our upper bound,
however, implies a per-node capacity of O(n−(1−d)/3)
(we have ignored all log n factors). Since d < 1, there is
clearly room to substantially improve existing schemes
(see Fig. 1). In this section, we will show how the study
of the upper bound also helps us in developing a new
scheme that can achieve a capacity-delay tradeoff that
is close to the upper bound. Then, in the next section,
we will identify the limiting factors of existing schemes
in [3], [4] that prevent them from achieving the optimal
capacity-delay tradeoff.

A. Choosing the Optimal Values of the Key Parameters

Assume that the mean delay is bounded by nd, d < 1.
By Proposition 5, we have,

λ ≤ Θ(
3

√

D̄

n
log3 n) = Θ(n

d−1

3 log n).

TABLE I

THE ORDER OF THE OPTIMAL VALUES OF THE PARAMETERS

WHEN THE MEAN DELAY IS BOUNDED BY nd .

Rb: # of Duplicates Θ(n(1−d)/3)

lb: Distance to Destination Θ( n−(1+2d)/6
√

log n
)

hb: # of Hops Θ(n(1−d)/3

log n
)

Sh
b : Transmission Range of Each Hop Θ(

q

log n
n

)

In order to achieve the maximum capacity on the right
hand side, all inequalities (10)-(18) should hold with
equality. By studying the conditions under which these
inequalities are tight, we will be able to identify the opti-
mal choices of various key parameters of the scheduling
policy. For example, by checking the conditions when
(10)-(14) are tight, we can infer that the parameters (such
as Sh

b ,E[lb],E[Db]) of each bit b should be about the
same and should concentrate on their respective average
values. This implies that the scheduling policy should
use the same parameters for all bits. Further, note that
equality holds in (18) if and only if

1

4c1n log n

(λnT )3

D̄(
λnT
∑

b=1

E[lb])2
=

2π

WTn
(
λnT
∑

b=1

E[lb])
2.

From here we can solve for lb, hb, Sh
b and Rb. The results

are summarized in Table I. The details of the derivation
is available in [6].

Several remarks are in order. Since it is sufficient
to control all parameters around these optimal values,
simple cell-based schemes such as the one in Example B
of Section III suffice. Secondly, the optimal values for
Rb and lb can provide guidelines on how to choose the
cell partitioning. Thirdly, the optimal value for Sh

b is
roughly the average distance between neighboring nodes
when n nodes are uniformly distributed in a unit square.
Hence, it is desirable to use multi-hop transmission over
neighboring nodes to forward the information from the
last mobile relay to the destination. These guidelines
have sketched a blueprint of the optimal scheduling
scheme for us. We next present schemes that can achieve
capacity-delay tradeoffs that are close to the upper bound
up to a logarithmic factor.

B. Achievable Capacity with Θ(1) Delay

We first focus on the case when the mean delay
is bounded by a constant, i.e., the exponent d = 0.
By Proposition 5, the per-node throughput is bounded



by O(n−1/3 log n). We now present a scheme that can
achieve Θ(n−1/3/ log n) capacity with Θ(1) delay for
large n. This is an encouraging result for mobile net-
works because we know that the per-node capacity of
static networks is O(1/

√
n log n) [1]. Hence, mobility

increases the capacity even with constant delay.
We will need the following Lemma before stating the

main scheduling scheme. We will repeatedly use the
following type of cell-partitioning. Let m be a positive
integer. Divide the unit square into m × m cells (in m
rows and m columns). Each cell is a square of area
1/m2. As in [4], we call two cells neighbors if they share
a common boundary, and we call two nodes neighbors if
they lie in the same or neighboring cells. We say that a
group of cells can be active at the same time when one
node in each cell can successfully transmit to or receive
from a neighboring node, subject to the interference from
other cells that are active at the same time. Let bxc be
the largest integer smaller than or equal to x. The proof
of the following Lemma is available in [6].

Lemma 6: There exists a scheduling policy such that
each cell can be active for at least 1/c4 amount of time,
where c4 is a constant independent of m.

The capacity achieving scheme is as follows.
Capacity Achieving Scheme:
1) At each odd time slot, we schedule transmissions

from the sources to the relays. We divide the unit square

into g1(n) = b
(

n2/3

8 log n

) 1

2 c2 cells. We refer to each cell
in the odd time slot as a sending cell. By Lemma 6,
each cell can be active for 1

c4
amount of time. When

a cell is scheduled to be active, each node in the cell
broadcasts a new message to all other nodes in the same
cell for 1

32c4n1/3 log n amount of time. These other nodes
then serve as mobile relays for the message. The nodes
within the same sending cell coordinate themselves to
broadcast sequentially. If any sending cell has more than
32n1/3 log n nodes, we refer to it as a Type-I error [4].

2) At each even time slot, we schedule transmissions
from the mobile relays to the destination nodes. Note that
the positions of the mobile relays have changed and are
now independent of their positions in the previous time

slot. We divide the unit square into g2(n) = b
(

n1/3
)

1

2 c2
cells. We refer to each cell in the even time slot as the
receiving cell. For any receiving cell i = 1, ..., g2(n) and
any sending cell j = 1, ..., g1(n), pick a node Yij that is
in the receiving cell i in the current time slot and that was
in the sending cell j in the previous time slot. We refer to
this node Yij as the designated mobile relay in receiving
cell i and for sending cell j. If there is no such node Yij

for any i or j, we refer to it as a Type-II error. There may
be multiple nodes that can serve as the designated mobile
relay for some i, j. In this case we only pick one. Note
that if no Type-II errors occur, each destination node
can now find a designated mobile relay that holds the
message intended for the destination node and that re-
sides in the same receiving cell. We then schedule multi-
hop transmissions in the following fashion to forward
each message from the designated mobile relay to its
destination in the same receiving cell. We further divide

each receiving cell i into g3(n) = b
(

n2/3

4 log n

) 1

2 c2 mini-

cells (in
√

g3(n) rows and
√

g3(n) columns). Each mini-
cell is a square of area 1/(g2(n)g3(n)). By Lemma 6,
there exists a scheduling scheme where each mini-cell
can be active for 1

c4
amount of time. When each mini-cell

is active, it forwards a message (or a part of a message)
to one other node in the neighboring mini-cell. If the
destination of the message is in the neighboring cell, the
message is forwarded directly to the destination node.
The messages from each designated mobile relay are first
forwarded towards neighboring cells along the X-axis,
then to their destination nodes along the Y-axis. In this
fashion, a successful schedule will allow each destination
node to receive a message of length W

32c4n1/3 log n from
its respective designated mobile relay residing in the
same receiving cell. For details on constructing such a
schedule, see [6]. If no such schedule exists, we refer to
it as a Type-III error. At the end of each even time slot,
if there are any packets that cannot be delivered to the
destination nodes due to Type-II or Type-III errors, they
are dropped.

We can show that, as n → ∞, the probabilities
of errors of all types will go to zero. The following
proposition thus holds. For space consideration, we do
not provide the proof here. It is available in [6].

Proposition 7: With probability approaching one, as
n → ∞, the above scheme allows each source to
send a message of length W

32c4n1/3 log n to its respective
destination node within two time slots.

Remark: Our scheme uses different cell-partitioning
in the odd time slots than that in the even time slots.
Note that in previous works [3], [4], the cell structure
remains the same over all time slots. Our judicious
choice of the cell-structures is the key to our tighter
lower bound for the capacity. In particular, the size of
the sending cell is chosen such that the average number
of nodes in each cell, n/g1(n) = Θ(n1/3 log n), is
close to the optimal value of Rb in Section V-A (with
d = 0). The size of the receiving cell is chosen such



that its area, 1/g2(n) = Θ(n1/3), is close to the optimal
value of l2b . Finally, the size of the mini-cell is chosen
such that each hop to the neighboring cell is of length
1/
√

g2(n)g3(n) = Θ(
√

log n/n), which is close to the
optimal value of Sh

b .

C. The Effect of Queueing

When we defined the delay Db of each bit b in
Section III, it includes the possible queueing delay at
the source node and at the relay nodes. The upper bound
on the capacity-delay tradeoff (Proposition 5) thus holds
regardless of the queueing discipline used in the system,
and D̄ also includes the queueing delay. We now show
how to analyze the queueing delay of the capacity-
achieving scheme in Section V-B. This scheme attempts
to deliver one message of length W

32c4n1/3 log n for each
source-destination pair every two time slots. Let pe be
the probability that a message is successfully delivered
to the destination at the end of the even time slot. (Note
that pe is the same for all source-destination pairs due
to symmetry, and by Proposition 7, pe → 1 as n → ∞.)
Assume that if such delivery is unsuccessful, messages
that have not been delivered to the destinations at the
end of each even time slot are discarded and have to
be retransmitted at the source nodes. Further, assume
that packets of length W

32c4n1/3 log n arrive at each source
according to certain stochastic process. Then packets
may get enqueued at the source nodes. If we observe
the system at the end of each even time slot, the number
of packets queued for each source-destination pair will
evolve as that of a discrete-time queue with geometric
service time distributions [7], and the queues for each
source-destination pair can be studied independently.
If we know the packet arrival process, we can then
compute the queueing delay. For example, if the arrival
process is Bernoulli, i.e., one new packet for each source-
destination pair arrives at the source every two time
slots with probability Λ, then using standard results for
discrete time M/M/1 queues [7, p82], we can compute
the queueing delay as,

D = 2
1 − Λ

pe − Λ
.

As n → ∞, pe → 1. Hence,

D → 2, as n → ∞.

On the other hand, if the arrival process is Poisson with
rate Λ, then the number of packets arriving at a source-
destination pair every two time slots is a Poisson random
variable with mean 2Λ. Hence, using results for discrete

time Man/M/1 queues [7, p89], we can compute the
queueing delay as

D = 2
1 − Λ

pe − 2Λ
.

Assume 2Λ ≤ 1 − ε, where 0 < ε < 1. As n → ∞,
pe → 1. Hence,

D → 2
1 − Λ

ε
, as n → ∞.

Note that in both cases, the queueing delay is at most a
constant multiple of 2 (time slots) provided that ε (i.e.,
the difference between the arrival rate and the capacity)
is positive and bounded away from zero as n → ∞.
Hence, the capacity-achieving scheme in Section V-B
can sustain Θ(n−1/3/ log n) throughput (in bits per time
slot) with O(1) queueing delay.

D. The Capacity Achieving Scheme for Arbitrary Delay
Bound

The above scheme can be generalized to arbitrary
delay bounds. Let the mean delay be bounded by D̄ =
Θ(nd), 0 ≤ d < 1. We can group every bndc + 1 time
slots into a super-frame. In each odd super-frame, we
schedule transmissions from the sources to the relays. We
divide the unit square into Θ(n(2+d)/3/ log n) sending
cells of equal area. Within each sending cell, each source
broadcasts a new message to all other nodes within the
same cell for a duration of Θ( 1

n(1−d)/3 log2 n
) every time

slot.
In each even super-frame, we schedule transmissions

from the relays to the destination nodes. We divide the
unit square into Θ(n(1+2d)/3) receiving cells of equal
area. In every time slot, some mobile relays will have
messages intended for some other destination nodes in
the same receiving cell. We then schedule multi-hop
transmissions to deliver the messages from the mobile
relays to the destination nodes in the same receiving cell.

Using similar techniques as the one in [4] and the
one in Section V-B, we can show that, with probability
approaching one as n → ∞, each source can send
bndc+1 messages of length Θ(n−(1−d)/3/ log2 n) to its
destination within 2(bndc+ 1) time slots. The queueing
delay can also be studied in a similar fashion as in
Section V-C. The details are omitted because of space
constraints.

VI. THE LIMITING FACTORS IN EXISTING SCHEMES

In Section V, we have shown that choosing the op-
timal values of the scheduling parameters is the key
to achieving the optimal capacity-delay tradeoff. In this



section, we will show that deviating from these optimal
values will lead to suboptimal capacity-delay tradeoffs.
In particular, we will identify the limiting factors in
the existing schemes in [3] and [4] by comparing the
optimal values of scheduling parameters in Section V-A
with those used by the existing schemes. Our model in
Section IV can be extended to study the upper bounds on
the capacity-delay tradeoff when one imposes additional
restrictive assumptions that correspond to these limiting
factors. We will see that these new upper bounds are
inferior to the capacity-delay tradeoff reported in Sec-
tions IV and V. The existing schemes of [3] and [4]
in fact achieve capacity-delay tradeoffs that are close to
the respective upper bounds. These results will give us
new insight on which schemes to use under different
conditions.

A. The Limiting Factor in the Scheme of [3]

The scheme by Neely and Modiano [3] divides the
unit square into n cells each of area 1/n. A mobile
relay will forward messages to the destination only when
they both reside in the same cell. Hence, the distance
from the last mobile relay to the destination, lb, is on
average on the order of O(1/

√
n), regardless of the delay

constraints. However, we have shown in Section V-A
that the optimal choice for lb should be on the order
of Θ(n−(1+2d)/6 log−1/2 n), when the mean delay is
bounded by Θ(nd). The next Proposition shows that the
restrictive choice of lb is indeed the limiting factor of
the scheme in [3]. The proof is available in [6].

Proposition 8: Let D̄ be the mean delay averaged
over all bits and all source-destination pairs, and let
λ be the throughput of each source-destination pair. If
D̄ = O(nd), 0 ≤ d < 1 and E[lb] = O(1/

√
n), then for

any causal scheduling policy,

λ ≤ O(
D̄

n
log2 n).

Remark: The scheme of [3] achieves the above upper
bound up to a logarithmic factor.

B. The Limiting Factor in the Scheme of [4]

In the scheme by Toumpis and Goldsmith [4], a
mobile relay will always use single-hop transmission to
forward the messages directly to the destination. That
is, the number of hops from the last mobile relay to
the destination node, hb, is always 1. However, we have
shown in Section V-A that the optimal value of hb is
Θ(n(1−d)/3/ log n) when the mean delay is bounded by
Θ(nd). The next Proposition shows that the restriction

on hb is indeed the limiting factor of the scheme in [4].
The proof is available in [6].

Proposition 9: Let D̄ be the mean delay averaged
over all bits and all source-destination pairs, and let
λ be the throughput of each source-destination pair. If
D̄ = O(nd), 0 ≤ d < 1 and hb = O(1), then for any
causal scheduling policy,

λ2 ≤ O(
D̄

n
log3 n).

Remark: The scheme of [4] achieves the above upper
bound up to a logarithmic factor.

Propositions 5, 8 and 9 present three different upper
bounds on the capacity-delay tradeoff of mobile ad hoc
networks under different assumptions. Assume that the
mean delay is bounded by nd, 0 ≤ d < 1. When the
capacity is the main concern, Proposition 5 shows that
the per-node throughput is at most O(n−(1−d)/3 log n).
The capacity-achieving scheme reported in Section V
can achieve close to this upper bound up to a loga-
rithmic factor. However, this capacity-achieving scheme
requires sophisticated coordination among the mobile
nodes. Hence, it may not be suitable when simplicity
is the main concern. On the other hand, the scheme
of [3] only requires coordination among nodes that are
within a cell of area 1/n. Note that the average number
of nodes in such a cell is Θ(1). Proposition 8 then shows
that, when coordination among a large number of nodes
is prohibited, the scheme of [3] is close to optimal.
Similarly, the scheme of [4] only requires single-hop
transmissions from the mobile relays to the destinations.
Proposition 9 shows that, when multi-hop transmissions
are undesirable, the scheme of [4] is close to optimal.
Therefore, the results reported in this paper present a
relatively complete picture of the achievable capacity-
delay tradeoffs under different conditions.

An interesting open problem for future work is to
investigate whether these insights apply to the capacity-
delay tradeoff under mobility models other than the
i.i.d. model. For example, [8] and [9] have studied
the capacity-delay tradeoff under the Brownian Motion
mobility model. In these works, the authors also have
implicit restrictions on the scheduling policy. In partic-
ular, the scheme in [8] uses at most one mobile relay at
any time (i.e., Rb = 1), and the scheme in [9] schedule
a transmission from the mobile relay to the destination
only when they are at a distance of O(1/

√
n) away (i.e.,

lb = O(1/
√

n)). In this paper, we have shown under the
i.i.d. mobility model that, in order to achieve the optimal
capacity-delay tradeoff, Rb, lb and hb should all vary
with the delay exponent d. Putting restrictions on any



one of these variables will lead to suboptimal capacity
for a given delay constraint. For our future work, we plan
to study whether these kind of restrictions will also limit
the capacity-delay tradeoff obtained in existing works
under other mobility models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the fundamental
capacity-delay tradeoff in mobile ad hoc networks under
the i.i.d. mobility model. Our contributions are three-
fold. We have established the upper bound on the op-
timal capacity-delay tradeoff over all causal scheduling
policies. The upper bound not only provides the fun-
damental limits of capacity and delay, but also helps
to identify the optimal values of the key scheduling
parameters in order to achieve the optimal capacity-
delay tradeoff. Our second contribution is to develop
a new scheduling scheme that can achieve a capacity-
delay tradeoff that differs from the upper bound only by
a logarithmic factor, which also implies that our upper
bound is fairly tight. The capacity achievable by our new
scheme is larger than that of the existing schemes in
[3] and [4]. In particular, when the delay is bounded
by a constant, our scheme achieves a per-node capacity
of Θ(n−1/3/ log n). This indicates that, under the i.i.d.
mobility model, mobility increases the capacity even
with constant delays. Our third contribution is to use
the insight drawn from the upper bound to identify the
limiting factors in the existing schemes. These results
present a relatively complete picture of the achievable
capacity-delay tradeoffs under different considerations.

In this paper, we have assumed an i.i.d. mobility
model. For future work, we plan to study the optimal
capacity-delay tradeoff for mobile ad hoc networks under
other mobility models. Among the properties that we
proved in Section III, we expect that the Tradeoffs II to
IV will be relatively invariant to the choice of mobility
models, while Tradeoff I is likely to depend on a specific
model. Hence, future work will concentrate on how
to tailor Tradeoff I for other mobility models. Some
immediate extensions to the i.i.d. mobility model are
possible. For example, at each time slot, each node may
independently choose to stay in its old position with
probability p, and to move to a new random position with
probability 1−p. This model may approximate scenarios
where nodes move at a fast speed and then stay for a
relatively long period of time. Tradeoff I will hold for

this extension of the i.i.d. mobility model, and hence our
main results will hold as well. Other mobility models that
we plan to investigate are, the Brownian motion mobility
model [8], [9], the random waypoint model [9], [10], and
the linear mobility model [11], etc.

Other aspects to consider are how the upper bound
will be impacted by the use of diversity coding [12],
effect of fading [4], and the use of information-theoretic
approaches [13], [14].
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