
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. X, NO. X, XXXXXXXX 2004 1

Towards Achieving the Maximum Capacity in Large
Mobile Wireless Networks Under Delay Constraints

Xiaojun Lin and Ness B. Shroff

Abstract: In this paper, we study how to achieve the maximum ca-
pacity under delay constraints for large mobile wireless networks.
We develop a systematic methodology for studying this problem in
the asymptotic region when the number of nodes n in the network
is large. We first identify a number of key parameters for a large
class of scheduling schemes, and investigate the inherent tradeoffs
among the capacity, the delay, and these scheduling parameters.
Based on these inherent tradeoffs, we are able to compute the up-
per bound on the maximum per-node capacity of a large mobile
wireless network under given delay constraints. Further, in the
process of proving the upper bound, we are able to identify the op-
timal values of the key scheduling parameters. Knowing these op-
timal values, we can then develop scheduling schemes that achieve
the upper bound up to some logarithmic factor, which suggests that
our upper bound is fairly tight. We have applied this methodology
to both the i.i.d. mobility model and the random way-point mobil-
ity model. In both cases, our methodology allows us to develop new
scheduling schemes that can achieve larger capacity than previous
proposals under the same delay constraints. In particular, for the
i.i.d. mobility model, our scheme can achieve Θ(n−1/3/log3/2 n)
per-node capacity with constant delay. This demonstrates that, un-
der the i.i.d. mobility model, mobility increases the capacity even
with constant delays. Our methodology can also be extended to
incorporate additional scheduling constraints.

Index Terms: Capacity-delay tradeoff, large system asymptotics,
mobile ad hoc networks, mobile wireless networks.

I. INTRODUCTION

Since the seminal paper by Gupta and Kumar [1], there has
been tremendous interest in the networking research commu-
nity to understand the fundamental achievable capacity in wire-
less networks. For a static network (where nodes do not move),
Gupta and Kumar show that the per-node capacity decreases as
O(1/

√
n log n)1 as the number of nodes n increases [1]. The

capacity of wireless networks can be improved when mobility is
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1We use the following notation throughout:

f(n) = o(g(n)) ↔ lim
n→∞

f(n)

g(n)
= 0,

f(n) = O(g(n)) ↔ lim sup
n→∞

f(n)

g(n)
< ∞,

f(n) = ω(g(n)) ↔ g(n) = o(f(n)),

f(n) = Θ(g(n)) ↔ f(n) = O(g(n)) and g(n) = O(f(n)).

taken into account. When the nodes are mobile, Grossglauser
and Tse show that per-node capacity of Θ(1) is achievable [2],
which is much better than that of static networks. This capacity
improvement is achieved at the cost of excessive packet delays.
In fact, it has been pointed out in [2] that the packet delay of the
proposed scheme could be unbounded.

There have been several recent studies that attempt to address
the relationship between the achievable capacity and the packet
delay in mobile wireless networks. In the work by Neely and
Modiano [3], it was shown that the maximum achievable per-
node capacity of a mobile wireless network is bounded by O(1).
Under an i.i.d. mobility model, the authors of [3] present a
scheme that can achieve Θ(1) per-node capacity and incur Θ(n)
delay, provided that the load is strictly less than the capacity.
Further, they show that it is possible to reduce packet delay if
one is willing to sacrifice capacity. In [3], the authors formulate
and prove a fundamental tradeoff between the capacity and de-
lay. Let the average end-to-end delay be bounded by D. For D
between Θ(1) and Θ(n), [3] shows that the maximum per-node
capacity λ is upper bounded by

λ ≤ O(
D

n
). (1)

The authors of [3] develop schemes that can achieve Θ(1),
Θ(1/

√
n), and Θ(1/(n log n)) per-node capacity, when the de-

lay constraint is on the order of Θ(n), Θ(
√

n), and Θ(log n),
respectively.

Inequality (1) leads to the pessimistic conclusion that a mobile
wireless network can sustain at most O(1/n) per-node capacity
with a constant delay bound. This capacity is even worse than
that of static networks. It turns out that this pessimistic conclu-
sion is due to certain restrictive assumptions that are implicit in
the work in [3] (we will elaborate on these assumptions in Sec-
tion VII). In fact, Toumpis and Goldsmith [4] present a scheme
that can achieve a per-node capacity of Θ(n(d−1)/2/ log5/2 n)
when the delay is bounded by O(nd). The result of [4] has incor-
porated the effect of fading. If we remove fading, the per-node
capacity will be of the order Θ(n(d−1)/2/ log3/2 n). Ignoring
the logarithmic term, we find that the following capacity-delay
tradeoff is achievable by the scheme of [4]:

λ2 = Θ(
D

n
). (2)

This is better than (1). In particular, the authors of [4] present
a scheme that can achieve Θ(1/(

√
n log3/2 n)) per-node ca-

pacity with a constant delay bound. (The capacity will be
Θ(1/(

√
n log n)) with no fading.) This capacity is now com-

parable to that of the static wireless networks.
An open question then is: what is the maximum achievable

capacity of mobile wireless networks under given delay con-
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straints? Inequality (1) is clearly not optimal. Without a careful
study of the various inherent tradeoffs within the system, a con-
structive methodology such as the one in [4] will only produce
a lower bound like (2). In this paper, we attempt to address this
question using a systematic methodology as follows. We first
identify several key parameters of a general class of schedul-
ing schemes, and investigate the inherent tradeoffs among the
capacity, the delay, and these scheduling parameters. Based on
these inherent tradeoffs (in the form of inequalities), we are able
to compute an upper bound on the maximum per-node capac-
ity of a large mobile wireless network under given delay con-
straints. In the process of proving the upper bound, we are also
able to identify the optimal values of the key scheduling pa-
rameters. Knowing these optimal values, we can then develop
scheduling schemes that achieve the upper bound up to some
logarithmic factor, which suggests that our upper bound is fairly
tight. We have applied this methodology to both the i.i.d. mo-
bility model and the random way-point mobility model. For the
i.i.d. mobility model, the inherent tradeoffs that our methodol-
ogy is based on can be analytically established. For the random
way-point mobility model, we use a combination of analytical
and numerical techniques to establish these inherent tradeoffs.
In both cases, we are able to obtain new insights on the opti-
mal choices of the key scheduling parameters, and develop new
scheduling schemes that can achieve larger capacity than previ-
ous proposals under the same delay constraints. For example,
under the i.i.d mobility model, we can achieve a new capacity-
delay tradeoff of

λ3 ≥ Θ(
D̄

n
/ log9/2 n). (3)

In Fig. 1, we draw this new tradeoff (the top line) alongside the
capacity-delay tradeoffs achieved by the schemes in [3] and [4]
(the bottom line and the middle line, respectively). Our new
scheme clearly achieves larger capacity when the delay con-
straints are small. In particular, when the delay is bounded by a
constant, our scheme can achieve Θ(n−1/3/log3/2 n) per-node
capacity. Unlike previous works, this result shows that, even for
a constant delay bound, the per-node capacity of mobile wireless
networks can be larger than that of the static networks! Finally,
our methodology can be extended to incorporate additional con-
straints of the scheduling schemes.

The rest of the paper is structured as follows. In Section II,
we outline the network and mobility models. We will first focus
on the i.i.d. mobility model in Sections III-VII. In Section III,
we outline the general class of scheduling policies that we will
consider. We then identify a number of key scheduling param-
eters and study their inherent tradeoffs in Section IV. We es-
tablish the upper bound on the optimal capacity-delay tradeoff
in Section V and present a scheme in Section VI that achieves a
capacity-delay tradeoff close to the upper bound. In Section VII,
we discuss how to treat additional scheduling constraints such
as those that appear in previous works [3], [4]. The extension to
the random way-point mobility model is studied in Section VIII.
Then we conclude.

O(1) O(nd) O(n)
O( 1

n )

O( 1√
n
)

O( 1
3
√

n
)

O(1)

Capacity

Delay

Fig. 1. Comparison of the achievable capacity-delay tradeoffs (ignoring
the logarithmic terms).

II. NETWORK AND MOBILITY MODELS

We consider a mobile wireless network with n nodes moving
within a unit square2. For simplicity, we assume the following
traffic model similar to the models in [3], [4]. We assume that
the number of nodes n is even and the nodes can be labeled
in such a way that node 2i − 1 communicates with node 2i,
and node 2i communicates with node 2i − 1, i = 1, 2, ..., n/2.
The communication between any source-destination pairs can
go through multiple other nodes as relays. That is, the source
can either send a message directly to the destination; or, it can
send the message to one or more relay nodes; the relay nodes
can further forward the message to other relay nodes (possibly
after moving to another position); and finally some relay node
forwards the message to the destination.

We assume the following Protocol Model from [1] that gov-
erns direct radio transmissions between nodes. Let W be the
bandwidth of the system. Let Xi denote the position of node i,
i = 1, ..., n. Let |Xi − Xj | be the Euclidean distance between
nodes i and j. At any time, node i can communicate directly
with another node j at W bits per second if and only if the fol-
lowing interference constraint is satisfied [1]:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xj |

for every other node k 6= i, j that is simultaneously transmit-
ting. Here, ∆ is some positive number. Note that an alternative
model for direct radio transmission is the Physical Model [1],
[4]. In the Physical Model, a node can communicate with an-
other node if the signal-to-interference ratio is above a given
threshold. It has been shown that, under certain conditions, the
Physical Model can be reduced to the Protocol Model with an
appropriate choice of ∆ [1]. Hence, we will not consider the
Physical Model any further in this paper. We also assume that
no nodes can transmit and receive over the same frequency at
the same time.

We will study two types of mobility models.
1) The i.i.d. Mobility Model: In the i.i.d mobility model [3],

the time is divided into slots of unit length. At each time slot,
the positions of each node are i.i.d. and uniformly distributed

2Note that changing the shape of the area from a square to a circle or other
topologies will not affect our main results.
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within the unit square. Between time slots, the distributions of
the positions of the nodes are independent. Although the i.i.d.
mobility model is somewhat restrictive in assuming the distri-
bution of the node positions to be independent across time slots,
its mathematical tractability allows us to gain important insights
into the structure of the problem, which can then be extended to
other more realistic mobility models.

2) The Random Way-point (RWP) Mobility Model: In the
random way-point (RWP) mobility model, we assume that the
unit square is a torus, i.e., a node can move out of the unit square
from an edge and immediately move into the unit square from
the opposite edge.3 The initial positions of the nodes at time
t = 0 are i.i.d. and uniformly distributed within the unit square.
Each node then moves independently in trips: for each trip, the
node picks a target position uniformly distributed within the unit
square, and moves towards the target position along the shortest
path at a constant speed v. (Note that since the unit square is
a torus, the shortest path may not always be the straight line.)
When the node reaches the target position, it immediately starts
another trip by picking a new target position randomly. Unlike
[5], we assume that, when a node is picked as the relay node for
a message, the information about the future motion of the relay
node is not available to the scheduler. (On the other hand, the
scheduling scheme in [5] has exploited this knowledge to obtain
a different capacity-delay tradeoff than ours under a somewhat
similar uniform mobility model.) Following the convention in
related studies [6], we assume that the speed v scales as v(n) =
Θ(1/

√
n) when the number of nodes n increases.4

Under both mobility models, we assume the following sepa-
ration of time scales, i.e., radio transmission can be scheduled at
a time scale much faster than that of node mobility. This is usu-
ally a reasonable assumption in real networks. Hence, a message
may be divided into multiple bits and each bit can be forwarded
“instantaneously” across multiple hops as if the positions of all
nodes are frozen.

We assume a uniform traffic pattern, that is, all source nodes
communicate with their destination nodes at the same rate λ. Let
D̄ be the mean delay averaged over all messages and all source-
destination pairs. Both λ and D̄ will depend on how the trans-
missions between mobile nodes are scheduled. We are interested
in capturing the fundamental tradeoff between the achievable
capacity λ and the delay D̄. That is, over all possible ways of
scheduling the radio transmissions, what is the maximum per-
node capacity λ given certain constraint on the delay D̄.

III. THE CLASS OF SCHEDULING POLICIES

In Sections III-VII, we will focus on the i.i.d mobility model,
and we will defer the study of the random way-point mobility
model until Section VIII. In this section, we define the class of
scheduling policies that we will consider for the i.i.d. mobility
model. Because we are interested in the fundamental achievable
capacity for given delay constraints, we will assume that there
exists a scheduler that has all the information about the current

3The assumption of a torus could be removed. It is included here for mathe-
matical convenience so that we do not need to deal with the edge effects.

4It is also possible to extend our methodology to the case when the speed is
randomly distributed between [v(n), cv(n)] for some c > 1, and to the case
when nodes pause between trips.

and past status of the network, and can schedule any radio trans-
mission in the current and future time slots. At each time slot t,
for each bit b that has not been delivered to its destination yet,
the scheduler needs to perform the following two functions:
• Capture: The scheduler needs to decide whether to deliver
the bit b to the destination within the current time slot. If yes,
the scheduler then needs to choose one relay node (possibly the
source) that has a copy of the bit b at the beginning of the time
slot t, and schedule radio transmissions to forward this bit to the
destination within the same time slot, using possibly multi-hop
transmissions. When this happens successfully, we say that the
chosen relay node has successfully captured the destination of
bit b, or a successful capture has occurred for bit b.
• Duplication: If capture does not occur for bit b, the scheduler
needs to decide whether to duplicate bit b to other nodes that do
not have the bit at the beginning of the time slot t. The scheduler
also needs to decide which nodes to relay from and relay to, and
how to schedule radio transmissions to forward the bit to these
new relay nodes.

The capture function and the duplication function are mu-
tually exclusive for a given bit b. Once a successful capture
occurs, the bit b will be delivered to its destination within the
same time slot, and hence can exit the system. Note that once
a successful capture occurs, it is important to forward the bit b
to the destination within a single time slot. Otherwise, since the
chosen relay node may move arbitrarily far away from the des-
tination in the next time slot, the nodes that received the bit b in
the current time slot will only count as new relay nodes for the
bit b, and they have to capture again in the next time slot.

In this paper, we will consider the class of causal schedul-
ing policies that perform the above two functions at each time
slot. The causality assumption essentially requires that, when
the scheduler makes the capture decision and the duplication
decision, it can only use information about the current and the
past status of the network. In particular, at any time slot t, the
scheduler cannot use information about the future positions of
the nodes at any time slot s > t.

This class of scheduling policies is clearly very general, and
encompasses nearly any practical scheduling scheme we can
think of. (Note that even predictive scheduling schemes have
to rely on current and past information only.) Some remarks on
the capture process are in order. Although we do allow for other
less intuitive alternatives, in a typical scheduling policy a suc-
cessful capture usually occurs when some relay nodes are within
an area close to the destination node, so that fewer resources will
be needed to forward the information to the destination. For ex-
ample, a relay node could enter a disk of a certain radius around
the destination, or a relay node could enter the same cell as the
destination. We call such an area a capture neighborhood. The
relay nodes that has the bit b at the beginning of the time slot t
are called mobile relays for bit b. The mobile relay that is cho-
sen to forward the bit b to the destination is called the last mobile
relay for bit b.

Within this large class of general scheduling policies, the fol-
lowing cell-based scheme is of particular interest as we will use
it to construct the optimal capacity-achieving scheme later on.

The Cell-Based Scheduling Scheme: The unit square is
divided into g1(n) sending cells with equal size. Once a bit b
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enters the system, it is immediately broadcast to all other nodes
in the same sending cell. The number of mobile relays for the
bit b then stays unchanged. To decide a successful capture, we
divide the unit square into g2(n) receiving cells with equal size.
When one of the mobile relays for bit b moves into the same
receiving cell as the destination, the bit b is then forwarded from
the last mobile relay to the destination in a multi-hop fashion.

Compared with the most general scheduling policies, the cell-
based scheme clearly lacks in flexibility. Hence, it is not a pri-
ori obvious why the choice of setting up a rigid cell-structure
beforehand is a good one for achieving the maximum capacity.
This choice will however become evident after we establish the
upper bound on the maximum capacity under delay constraints.

IV. INHERENT TRADEOFFS AMONG THE KEY
SCHEDULING PARAMETERS

We find three key parameters in the cell-based scheme: g1(n)
will determine the number of mobile relays (denoted by Rb with
mean n/g1(n)), g2(n) will determine the area of the capture
neighborhood (denoted by Ab = 1/g2(n)), and the network
also needs to determine the number of hops hb that each bit b
takes from the last mobile relay to its destination. It turns out
that these three key parameters can also be defined for general
scheduling policies that are not cell-based, and these parame-
ters combined will determine the performance of any schedul-
ing policy. Indeed, fixing any scheduling policy, we can de-
fine the following random variables for each bit b that needs to
be communicated from its source node to its destination node.
Let t0(b) denote the time slot when bit b first enters the sys-
tem. Let sb ≥ t0(b) be the time slot when the scheduler de-
cides that a successful capture for bit b occurs. Define the delay
Db , sb − t0(b). The scheduler also needs to choose one mo-
bile relay that has a copy of bit b at the beginning of the time
slot sb to forward bit b towards its destination within the same
time slot sb. Let Rb be the number of mobile nodes holding the
bit b at the time of capture, and let lb denote the distance from
the chosen last mobile relay to the destination of bit b. (Note
that for the cell-based scheme, lb is on the order of

√
Ab.) Let

hb be the number of hops that bit b takes from the last mobile
relay to its destination. The parameters Rb, lb, and hb are essen-
tial for the subsequent tradeoffs that determine the relationship
between the achievable capacity and the delay Db

5. Note that
Db includes possible queueing delays at the source node or at
the relay nodes.

We are now ready to state the inherent tradeoffs among ca-
pacity, delay and these key scheduling parameters. Intuitively,
the larger the number of mobile relays and the larger the capture
neighborhood, the smaller the delay. On the other hand, in order
to improve capacity, we need to consume fewer radio resources,
which implies a smaller number of mobile relays and a shorter
distance from the last mobile relay to the destination. In this
section, we will state these tradeoffs precisely for the i.i.d. mo-
bility model, and defer the discussion on the random way-point

5Using the notion of filtrations and stopping times [7, p231], we can rigor-
ously define these quantities as random variables on the same probability space
where the random mobility of the mobile nodes is defined. The expectation in
the following tradeoffs are then taken with respect to this probability space. See
[8] for details.

mobility model until Section VIII.

A. Tradeoff I : Db versus Rb and lb

Proposition 1 captures the following tradeoff: the smaller the
number Rb of mobile relays that bit b is duplicated to, and the
shorter the targeted distance lb from the last mobile relay to the
destination, the longer it takes to capture the destination.

Proposition 1: Under the i.i.d. mobility model, the follow-
ing inequality holds for any causal scheduling policy when
n ≥ 3,

c1 log nE[Db] ≥
1

(E[lb] + 1
n2 )2E[Rb]

for all bits b, (4)

where c1 is a positive constant.
The proof is available in [8]. This seemingly odd relationship

is actually motivated by simple examples. When Rb and the
area of the capture neighborhood Ab are constants, then 1 −
(1 − Ab)

Rb is the probability that any one out of the Rb nodes
can capture the destination in one time slot. It is easy to show
that, the average number of time slots needed before a successful
capture occurs is,

E[Db] =
1

1 − (1 − Ab)Rb
≥ 1

AbRb
≥ c′1

E2[lb]Rb
,

where c′1 is a positive constant. Proposition 1 shows that, even
when Rb and Ab are random variables, no scheduling policy can
improve the tradeoff by more than a log n factor. For details,
please refer to [8].

B. Tradeoff II : Multihop

Once a successful capture occurs, the chosen mobile relay
(i.e., the last mobile relay) will start transmitting the bit to the
destination within a single time slot, using possibly other nodes
as relays. We will refer to these latter relay nodes as static re-
lays. The static relays are only used for forwarding the bit to the
destination after a successful capture occurs. Let hb be the num-
ber of hops it takes from the last mobile relay to the destination.
Let Sh

b denote the transmission range of each hop h = 1, .., hb.
The following relationship is trivial.

Proposition 2: The sum of the transmission ranges of the hb

hops must be no smaller than the straight-line distance from the
last mobile relay to the destination, i.e.,

hb
∑

h=1

Sh
b ≥ lb. (5)

C. Tradeoff III : Radio Resources

It consumes radio resources to duplicate each bit to mobile
relays and to forward the bit to the destination. Proposition 3
below captures the following tradeoff: the larger the number of
mobile relays Rb and the further the multi-hop transmissions to-
wards the destination have to traverse, the smaller the achievable
capacity. Consider a large enough time interval T . The total
number of bits communicated end-to-end between all source-
destination pairs is λnT .

Proposition 3: Assume that there exist positive numbers c2

and N0 such that Db ≤ c2n
2 for n ≥ N0. If the positions of
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the nodes within a time slot are i.i.d. and uniformly distributed
within the unit square, then there exist positive numbers N1 and
c3 that only depend on c2, N0 and ∆, such that the following
inequality holds for any causal scheduling policy when n ≥ N1,

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+ E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c3WT log n.

(6)
The assumption that Db ≤ c2n

2 for large n is not as restric-
tive as it appears. It has been shown in [3] and [6] that the
maximal achievable per-node capacity is Θ(1) and this capacity
can be achieved with Θ(n) delay under both the i.i.d. mobility
model and the random way-point mobility model. Hence, we
are most interested in the case when the delay is not much larger
than the order O(n). Further, Proposition 3 only requires that
the stationary distribution of the positions of the nodes within
a time slot is i.i.d. It does not require the distribution between
time slots to be independent, and hence can be extended to the
random way-point mobility model as well.

We briefly outline the motivation behind the inequality (6).
The details of the proof are quite technical and available in [8].
Consider nodes i, j that directly transmit to nodes k and l, re-
spectively, at the same time. Then, according to the interference
constraint:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xk]

|Xi − Xl| ≥ (1 + ∆)|Xj − Xl].

Hence,

|Xj − Xi| ≥ |Xj − Xk| − |Xi − Xk|
≥ ∆|Xi − Xk|.

Similarly,
|Xi − Xj | ≥ ∆|Xj − Xl|.

Therefore,

|Xi − Xj | ≥
∆

2
(|Xi − Xk| + |Xj − Xl|).

That is, disks of radius ∆
2 times the transmission range centered

at the transmitter are disjoint from each other6. This property
can be generalized to broadcast as well. We only need to de-
fine the transmission range of a broadcast as the distance from
the transmitter to the furthest node that can successfully receive
the bit. The above property motivates us to measure the ra-
dio resources each transmission consumes by the areas of these
disjoint disks [1]. For unicast transmissions from the last mo-
bile relay to the destination, the area consumed by each hop is
π∆2

4 (Sh
b )2. For duplication to other nodes, broadcast is more

beneficial since it consumes fewer resources. Assume that each
transmitter chooses the transmission range of the broadcast in-
dependently of the positions of its neighboring nodes. If the
transmission range is s, then on average no greater than nπs2

nodes can receive the broadcast, and a disk of radius ∆
2 s (i.e.,

area π∆2

4 s2) centered at the transmitter will be disjoint from

6A similar observation is used in [1] except that they take a receiver point of
view.

other disks. Therefore, we can use ∆2

4
E[Rb]−1

n as a lower bound
on the expected area consumed by duplicating the bit to Rb − 1
mobile relays (excluding the source node). This lower bound
will hold even if the duplication process is carried out over
multiple time slots, because the average number of new mobile
relays each broadcast can cover is at most proportional to the
area consumed by the broadcast. Therefore, inspired by [1], the
amount of radio resources consumed must satisfy

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+ E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c′3WT,

where c′3 is a positive constant.
However, ∆2

4
E[Rb]−1

n may fail to be a lower bound on the ex-
pected area consumed by duplicating to Rb − 1 mobile relays
if the following opportunistic broadcast scheme is used. The
source may choose to broadcast only when there are a larger
number of nodes close by. If the source can afford to wait for
these “good opportunities”, an opportunistic broadcast scheme
may consume less radio resources than a non-opportunistic
scheme to duplicate the bit to the same number of mobile re-
lays. Nonetheless, Proposition 3 shows that no scheduling poli-
cies can improve the tradeoff by more than a log n factor. For
details, please refer to [8].

D. Tradeoff IV : Half Duplex

Finally, since we assume that no node can transmit and re-
ceive over the same frequency at the same time (a practically
necessary assumption for most wireless devices), the following
property can be shown as in [1].

Proposition 4: The following inequality holds,

λnT
∑

b=1

hb
∑

h=1

1 ≤ WT

2
n. (7)

V. THE UPPER BOUND ON THE MAXIMUM
ACHIEVABLE CAPACITY UNDER DELAY

CONSTRAINTS

Our first main result is to derive from the above four tradeoffs
the upper bound on the optimal capacity-delay tradeoff of mo-
bile wireless networks under the i.i.d. mobility model. Since the
maximal achievable per-node capacity is Θ(1) and this capacity
can be achieved with Θ(n) delay by the scheme of [3], we are
only interested in the case when the mean delay is o(n).

Proposition 5: Let D̄ be the mean delay averaged over all
bits and all source-destination pairs, and let λ be the throughput
of each source-destination pair. If D̄ = O(nd), 0 ≤ d < 1, the
following upper bound holds for any causal scheduling policy
under the i.i.d. mobility model,

λ3 ≤ O(
D̄

n
log3 n). (8)

Proof: Using Jensen’s Inequality and Hőlder’s Inequality
[7, p14-15], we can reduce the four inequalities (4-7) to one
inequality and eliminate all variables except D̄ and λ. We can
then obtain (8). For details, please refer to [9]. 2

The capacity-delay tradeoff in Proposition 5 is better than
those reported in [3] and [4]. Assuming that the delay bound
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is Θ(nd), 0 ≤ d < 1, the achievable per-node capacity is
O(n−(1−d)) by the scheme in [3], and O(n−(1−d)/2) by the
scheme in [4]. Our upper bound, however, implies a per-node
capacity of O(n−(1−d)/3) (we have ignored all log n factors).
Since d < 1, there is clearly room to substantially improve ex-
isting schemes (see Fig. 1). In the next section, we will present a
new scheme that can achieve the upper bound (8) up to a logrith-
mic factor.

VI. A LOWER BOUND ON THE ACHIEVABLE
CAPACITY UNDER DELAY CONSTRAINTS

In this section, we will show how the study of the upper
bound also helps us to develop a new scheme that can achieve a
capacity-delay tradeoff that is close to the upper bound.

A. Choosing the Optimal Values of the Key Parameters

Assume that the mean delay is bounded by nd, d < 1. By
Proposition 5, we have,

λ ≤ Θ(
3

√

D̄

n
log3 n) = Θ(n

d−1
3 log n). (9)

In the process of proving the upper bound in Proposition 5, we
obtain several inequalities (see [9]). In order to achieve the max-
imum capacity on the right hand side of (9), all of these inequal-
ities need to hold with equality. By studying the conditions un-
der which these inequalities are tight, we are able to identify the
optimal choices of the key scheduling parameters (see [8] for
the detail). In particular, we find that the scheduling parameters
(such as Sh

b ,E[lb],E[Db]) of each bit b should be about the same
and should concentrate on their respective average values. This
implies that the scheduling policy should use the same parame-
ters for all bits. We can also obtain the optimal values of these
parameters. The results are summarized in Table 1. The details
of the derivation are available in our on-line technical report [8].

Several remarks are in order. Since it is sufficient to control
all parameters around these optimal values, simple cell-based
schemes in Section III suffice. Secondly, the optimal values for
Rb and lb can provide guidelines on how to choose the cell par-
titioning. Thirdly, the optimal value for Sh

b is roughly the aver-
age distance between neighboring nodes when n nodes are uni-
formly distributed in a unit square. Hence, it is desirable to use
multi-hop transmission over neighboring nodes to forward the
information from the last mobile relay to the destination. These
guidelines have allowed us to sketch a blueprint of the optimal
scheduling scheme. We next present schemes that can achieve
capacity-delay tradeoffs that are close to the upper bound up to
a logarithmic factor.

B. Achievable Capacity with Θ(nd) Delay

We now present a scheme that can achieve the maximum per-
node capacity in (9) up to a logarithmic factor. Our scheme can
achieve Θ(n

d−1
3 / log3/2 n) per-node capacity with Θ(nd) delay,

0 ≤ d < 1. When d = 0, i.e., when the delay is bounded by a
constant, our scheme can achieve Θ(n−1/3/ log3/2 n) per-node
capacity with Θ(1) delay7. This is an encouraging result for

7The scheme for d = 0 can be further refined to achieve Θ(n−1/3/ log n)
per-node capacity with Θ(1) delay [9].

mobile networks because we know that the per-node capacity of
static networks is O(1/

√
n log n) [1]. Hence, for the i.i.d. mo-

bility model, mobility increases the capacity even with constant
delay. This is the first such result of its kind in the literature.

We will need the following Lemma before stating the main
scheduling scheme. We will repeatedly use the following type
of cell-partitioning. Let m be a positive integer. Divide the unit
square into m × m cells (in m rows and m columns). Each cell
is a square of area 1/m2. As in [4], we call two cells neighbors
if they share a common boundary, and we call two nodes neigh-
bors if they lie in the same or neighboring cells. We say that
a group of cells can be active at the same time when one node
in each active cell can successfully transmit to or receive from
a neighboring node, subject to the interference from other cells
that are active at the same time. Let bxc be the largest integer
smaller than or equal to x. The proof of the following Lemma is
available in [8].

Lemma 6: There exists a scheduling policy such that each
cell can be active for at least 1/c4 amount of time, where c4 is a
constant independent of m.

Group every bndc time slots into a super-frame. The capacity-
achieving scheme is as follows.

Capacity-Achieving Scheme:
1) In every odd super-frame (i.e., the 1st, 3rd, 5th, ... super-

frame), we schedule transmissions from the sources to the re-
lays. We will refer to the bndc time slots in each odd super-
frame as the sending time slots. At each sending time slot:

• We divide the unit square into g1(n) = b
(

n
2+d
3

16 log n

)
1
2

c2 send-

ing cells. By Lemma 6, each cell can be active for 1
c4

amount of
time in each sending time slot.
• When a cell is scheduled to be active, each node in the cell
broadcasts a new packet to all other nodes in the same cell
for 1

4096c4n(1−d)/3 log3/2 n
amount of time (Fig. 2). The length

of the packet is W
4096c4n(1−d)/3 log3/2 n

. These other nodes then
serve as mobile relays for the packet. The nodes within the
same sending cell coordinate themselves to broadcast sequen-
tially in each sending time slot. Note that on average there are
E[Rb] = n/g1(n) = Θ(n(1−d)/3 log n) mobile relays for each
packet. Compared with the value in Table 1, the additional log n
term for Rb is to improve the capture probability later in the even
super-frame.
• If, in any of the bndc sending time slots, there exists a sending
cell that has more than 64n(1−d)/3 log n nodes, we refer to it
as a Type-I error [4]. If no Type-I errors occur, each source
can broadcast a total of bndc distinct packets, each of length

W
4096c4n(1−d)/3 log3/2 n

, during the entire odd super-frame.
2) In every even super-frame (i.e., the 2nd, 4th, 6th, ... super-

frame), we schedule transmissions from the mobile relays to the
destination nodes. We will refer to the bndc time slots in each
even super-frame as the receiving time slots. At each receiving
time slot:

• We divide the unit square into g2(n) = b
(

n
1+2d

3

)
1
2 c2 receiv-

ing cells. Capture occurs for each packet k when one of its
mobile relays moves within the same receiving cell as the desti-
nation node (see Fig. 3). Note that the average distance from the
last mobile relay to the destination is E[lb] = Θ(

√

1/g2(n)) =
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Table 1. The order of the optimal values of the key scheduling parameters when the mean delay is bounded by nd.

Rb: # of Duplicates Θ(n(1−d)/3)

lb: Distance to Destination Θ(n−(1+2d)/6/ log1/2 n)

hb: # of Hops Θ(n(1−d)/3/ log n)

Sh
b : Transmission Range of Each Hop Θ(

√

log n
n )

g_1(n) rows

g_1(n) columns

move

Source

Relay

Fig. 2. Transmission schedule in each time slot of the odd super-

frame. g1(n) = b

„

n
2+d
3

16 log n

«

1
2

c2.

g_2(n) rows

g_2(n) columns

moved

Destination

Mobile Relay

Static Relay
Last

Fig. 3. Transmission schedule in each time slot of the even

super-frame. g2(n) = b
“

n
1+2d

3

”
1
2
c2.

Θ(n−(1+2d)/6). Again, compared with the value in Table 1, the
removal of the log n terms for lb is to improve the capture prob-
ability. Let Yj(t) denote the set of packets that meet the criteria
for capture in receiving cell j at receiving time slot t. We will
refer to these packets as the active packets. If a packet k does
not meet the criteria for capture in any of the bndc time slots,
i.e., packet k does not belong to Yj(t) for any j = 1, ..., g2(n)
and t = 1, ..., bndc, we will refer to it as a Type-II error.
• The active packets in each set Yj(t) are then forwarded to
their destination nodes within the same time slot t in the follow-
ing multi-hop fashion. We further divide the receiving cell j into

g3(n) = b
(

n
2−2d

3

8 log n

)
1
2

c2 mini-cells. By Lemma 6, there exists

a scheduling scheme where each mini-cell can be active for 1
c4

amount of time in time slot t. When each mini-cell is active, it
forwards an active packet (or a part of the packet) to one other
node in the neighboring mini-cell. If the destination of the active
packet is in the neighboring mini-cell, the packet is forwarded
directly to the destination node. Note that the distance traveled
by each hop is Sh

b = Θ(
√

1/(g2(n)g3(n)) ) = Θ(
√

log n/n),
which is consistent with the value in Table 1. The active packets
from each mobile relay are first forwarded towards neighbor-
ing mini-cells along the X-axis, then to their destination nodes
along the Y-axis. In this fashion, a successful schedule will be
able to deliver all active packets in Yj(t) to their respective des-
tination nodes (in the same receiving cell j) within the time slot
t. For details on constructing such a schedule, see [8]. If no such
schedule exists, we refer to it as a Type-III error.
• At the end of each even super-frame, any packets that remain
in the buffer of the mobile relays (i.e., that have not been deliv-
ered to the destination nodes) are dropped.

If the packets that have already been delivered to the destina-
tion nodes are not immediately removed from the buffer of other

mobile relays, it is possible that the above scheme delivers the
same packet for more than once to the same destination node. In
this case, we will assume that each packet has a sequence num-
ber so that the destination node can detect duplicate packets and
only keep the new packets.

We can show that, as n → ∞, the probabilities of er-
rors of Type-I, II, and III, will all go to zero. The follow-
ing proposition then holds, which shows that our scheme can
achieve Θ(n(d−1)/3/ log3/2 n) per-node capacity with Θ(nd)
delay. The proof is available in [8].

Proposition 7: Assume the i.i.d. mobility model. With prob-
ability approaching one, as n → ∞, the above scheme allows
each source to send bndc packets of length W

4096c4n(1−d)/3 log3/2 n

to its respective destination node within 2bndc time slots.

Remark: Our scheme uses different cell-partitioning in the
odd super-frames than that in the even super-frames. Note that
in previous works [3], [4], the cell structure remains the same
over all time slots. Our judicious choice of the cell-structures is
the key to the development of a tighter lower bound for the ca-
pacity. As is discussed when we present the capacity-achieving
scheme, we have chosen g1(n), g2(n) and g3(n) such that the
key scheduling parameters Rb, lb and hb are all close to their
respective optimal values in Table 1.

Remark: We can incorporate the queueing delays into the
above analysis. In fact, when we defined the delay Db of each
bit b in Section IV, it includes possible queueing delays at the
source node and at the relay nodes. The upper bound on the
capacity-delay tradeoff (Proposition 5) thus holds regardless of
the queueing discipline used in the system, and D̄ also includes
the queueing delay. For the lower bound, provided that the of-
fered load is at a fixed percentage below the capacity, we have
shown in [8] that the queueing delay is again a constant mul-
tiple of nd. Hence, our capacity-achieving scheme can sus-
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Fig. 4. Mean queueing delay (in number of time slots) versus the number
of nodes.

tain Θ(n(d−1)/3/ log3/2 n) per-node throughput (in bits per time
slot) with O(nd) queueing delay. For details, please refer to [8].

C. Simulation Results

We have simulated the capacity-achieving scheme in Sec-
tion VI-B for different values of the delay exponent d and the
number of nodes n. In our simulation, we use the follow-
ing Bernoulli packet arrival processes, i.e., one packet arrives
at each source-destination pair every time-slot with probabil-
ity p. The packet size scales as W

4096c4n(1−d)/3 log3/2 n
. Hence,

for a fixed p, the offered load for each source-destination pair
scales as Θ(n(d−1)/3/ log3/2 n) (in bits per time slot). We use
p = 0.4 in the simulation. Fig. 4 shows the mean queueing
delay (in number of time slots) versus the number of nodes
n at different values of d. We observe that, for large n, the
mean queueing delay evolves as Θ(nd) for all values of d.
This figure demonstrates that our scheme can indeed sustain
Θ(n(d−1)/3/ log3/2 n) per-node throughput with Θ(nd) delay.

VII. INCORPORATING ADDITIONAL SCHEDULING
CONSTRAINTS

Our methodology can be extended to incorporate additional
constraints in the scheduling policy. For example, if coordina-
tion among a large number of nodes is prohibited, i.e., each node
is only allow to obtain the information about a constant num-
ber of other nodes in its close neighborhood, then the distance
lb from the last mobile relay to the destination node should be
on the same order as the average distance between neighboring
nodes, i.e., E[lb] = O(1/

√
n). Combining this new constraint

with the four tradeoffs in Section IV, and using a similar argu-
ment as that of Proposition 5, we can establish the following
new upper bound on the maximum achievable capacity under
delay constraints.

Proposition 8: Let D̄ be the mean delay averaged over all
bits and all source-destination pairs, and let λ be the throughput
of each source-destination pair. If D̄ = O(nd), 0 ≤ d < 1 and
E[lb] = O(1/

√
n), then for any causal scheduling policy under

the i.i.d. mobility model,

λ ≤ O(
D̄

n
log2 n).

The proof is available in [8]. The scheme of [3] achieves the
above upper bound up to a logarithmic factor. Note that their

scheme only allows coordination among nodes that are within
a cell of area 1/n. Hence, Proposition 8 shows that the restric-
tive choice of lb is indeed the performance limiting factor of the
scheme in [3].

Similarly, if coordination among more than Θ(1) nodes is al-
lowed, however multi-hop transmissions are undesirable, then
the number of hops hb from the last mobile relay to the desti-
nation is of order O(1). We can then obtain the following new
capacity-delay tradeoff.

Proposition 9: Let D̄ be the mean delay averaged over all
bits and all source-destination pairs, and let λ be the throughput
of each source-destination pair. If D̄ = O(nd), 0 ≤ d < 1 and
hb = O(1), then for any causal scheduling policy under the i.i.d.
mobility model,

λ2 ≤ O(
D̄

n
log3 n).

The proof is available in [8]. The scheme of [4] achieves the
above upper bound up to a logarithmic factor. Note that their
scheme uses direct single-hop transmission from the last mobile
relay to the destination (i.e., hb = 1). Hence, Proposition 9
shows that the restriction on hb is indeed the performance limit-
ing factor of the scheme in [4].

VIII. THE RANDOM WAY-POINT MOBILITY MODEL

The analyses in the previous sections have focused on the
i.i.d. mobility model. In this section, we will extend our
methodology to the random way-point (RWP) mobility model.
In previous sections, we have shown that, at least for the i.i.d.
mobility model, there is not a significant loss of generality by
using cell-based schemes. Indeed, by choosing the appropri-
ate cell-partitioning, we have been able to develop cell-based
schemes that asymptotically achieve the maximum capacity un-
der given delay constraints. Hence, in this section, we will re-
strict our attention to cell-based schemes only, and our focus will
be to find the optimal cell-partitioning (i.e., the values of g1(n)
and g2(n)) for the RWP mobility model. However, in the RWP
mobility model, the nodes move continuously instead of in time
slots. Hence, we need to modify the cell-based scheme as fol-
lows. We still divide the time into slots of unit length. After a bit
b enters the system, it is broadcast to all other nodes in the same
sending cell by the end of the next time slot. Let Rb be the num-
ber of mobile relays that receive the bit b. After certain delay
Db, one of the mobile relays (i.e., the last mobile relay) moves
into the same receiving cell (of area Ab) as the destination node
of bit b. The bit b is then forwarded from the last mobile relay to
the destination by the end of the next time slot. Since the veloc-
ity of the nodes is v(n) = Θ(1/

√
n), the distance any node can

move within one time slot is of order Θ(1/
√

n), which is small
compared to the sizes of the sending cells and the receiving cells
that we will choose later. Hence, the mobility of the nodes will
not interfere much with both the duplication of the bit at the very
beginning and the multi-hop forwarding after capture. Let hb be
the number of hops that bit b takes from the last mobile relay to
the destination.

With the above modification of the cell-based scheme, the
Tradeoffs II, III, and IV can be readily extended to the RWP
mobility model. However, the exact counterpart to Tradeoff I is
quite difficult to obtain analytically. We instead use numerical
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methods to study the likely form of Tradeoff I under the RWP
mobility model. In the cell-based scheme, the number of mobile
relays for each bit b is determined at the beginning of the dupli-
cation process, and all of these mobile relays were close to the
source node of bit b when they received bit b. Hence, we can
use the following simple simulation model to study the tradeoff
between Db, Rb and Ab. At time t = 0, we put one (desti-
nation) node at a random position uniformly distributed within
the unit square. We put Rb mobile relays at another random
position. Let the size of the receiving cell be Ab = 1/g2(n).
We then let these nodes move according to the RWP mobility
model and record the mean delay E[Db] (averaged over simula-
tion runs) before any one of the Rb mobile relays moves within
the same receiving cell as the destination node. Varying Rb and
Ab, we can thus obtain the relationship between E[Db], Rb and
Ab. However, note that we are only interested in the relationship
when n is large. In order to extract the most useful information,
we let Rb = nd1 , 0 < d1 < 1, and Ab = n−d2 , 0 < d2 < 1.
With any fixed d1 and d2, we observe from our simulations that,
when n is large, log E[Db]

log n will converge to a number d, i.e., the

delay is approximately nd. In Fig. 5, we plot the relationship be-
tween d, d1, and d2 for the RWP mobility model. It is instructive
to compare with the same plot obtained under the i.i.d. mobility
model (Fig. 6). Note that each line in Fig. 6 can be expressed as

d = d2 − d1, for d ≥ 0,

which is consistent with (4) noting that lb = Θ(
√

Ab). On the
other hand, each line in Fig. 5 can be expressed as

d =
1 + d2

2
− d1, for 0.5 < d < 1,

which corresponds to

E[Db] ≈ Θ(
n

1
2

E[lb]E[Rb]
). (10)

This relationship between Db, lb and Rb under the RWP mobil-
ity model is consistent with the findings in [6]. When lb and Rb

are fixed, it has been shown in [6] that a given mobile relay can
move within a distance lb from the destination node during a sin-
gle trip with probability Θ(lb). Since odd trips are independent
from each other, the expected number of trips for any of the Rb

mobile relays to move within distance lb from the destination
node is Θ( 1

lbRb
). Finally, as v(n) = Θ(1/

√
n), each trip will

take Θ(
√

n) amount of time. We then obtain (10). However, this
relationship only holds when d ≥ 0.5. In fact, it has been shown
in [6] that, in order to take advantage of mobility, the minimum
amount of delay under the RWP mobility model is Θ(

√
n).

Combining relationship (10) with Tradeoffs II, III and IV, we
can compute the upper bound on the maximum capacity under
given delay constraints (as in Proposition 5), and we can also
identify the optimal values of the parameters Rb, Ab and hb for
achieving the upper bound. Due to space constraints, we state
the results directly (for details, please refer to [8]). We obtain
the following upper bound on the capacity-delay tradeoff under
the RWP mobility model:

λ2 ≤ Θ(
D̄

n
log

3
2 n).
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Fig. 5. Delay exponent d versus d1 and d2 for the random way-point
mobility model.
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Further, when the delay constraint is Db = O(nd), the optimal
values of the scheduling parameters are

Rb = Θ(n
1−d
2 log

1
4 n), lb = Θ(n− d

2 / log
1
4 n),

hb = Θ(n
1−d
2 / log

3
4 n), and Sh

b = Θ(

√

log n

n
).

Hence, to use the cell-based capacity-achieving scheme as in
Section VI, the number of sending cells and receiving cells

should be g1(n) = Θ(n
1+d
2

log n ) and g2(n) = Θ(nd), respectively.
We have simulated this cell-based scheme under the RWP mo-
bility model and find it to achieve the following capacity-delay
tradeoff

λ2 ≥ Θ(
D̄

n
/ log2 n) when 0.5 < d < 1.

Note that this capacity-delay tradeoff is better than the tradeoff
reported in earlier studies [6]. Analogous to Section VII, we can
show that a restrictive choice of the receiving cell size is again
the performance limiting factor of the scheme in [6].

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a systematic methodology for
studying the maximum achievable capacity under given delay
constraints for large mobile wireless networks. We first iden-
tify a number of key parameters of a large class of scheduling
schemes, and investigate the inherent tradeoffs among the ca-
pacity, the delay, and these scheduling parameters. Based on
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these inherent tradeoffs, we are able to compute the upper bound
on the maximum per-node capacity of a large mobile wireless
network under given delay constraints, and develop scheduling
schemes that achieve the upper bound up to some logarithmic
factor. We have applied this methodology to both the i.i.d. mo-
bility model and the random way-point mobility model. In both
cases, our methodology sheds important insights on the opti-
mal values of the key scheduling parameters, and allows us
to develop new schemes that can achieve larger capacity than
previous proposals under the same delay constraints. In par-
ticular, for the i.i.d. mobility model, our scheme can achieve
Θ(n−1/3/log3/2 n) per-node capacity with constant delay. This
demonstrates that, under the i.i.d. mobility model, mobility in-
creases the capacity even with constant delays. Our methodol-
ogy can also be extended to incorporate additional scheduling
constraints.

In this paper, our treatment of the i.i.d. mobility model is
purely analytical and rigorous. On the other hand, the treatment
of the random way-point mobility model uses a combination of
analytical and numerical techniques. For future work, we plan
to investigate how to analytically establish the Tradeoff I for
the random way-point mobility model as well. We also plan to
investigate other mobility models, such as the Brownian motion
mobility model [10], [11], and the linear mobility model [12].
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