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Abstract—
In this paper we show that significant simplicity can be ex-

ploited for pricing-based control of large networks. We first con-
sider a general loss network with Poisson arrivals and arbitrary
holding time distributions. In dynamic pricing schemes, the net-
work provider can charge different prices to the user according to
the current utilization level of the network and also other factors.
We show that, when the system becomes large, the performance (in
terms of expected revenue) of an appropriately chosen static pric-
ing scheme, whose price is independent of the current network uti-
lization, will approach that of the optimal dynamic pricing scheme.
Further, we show that under certain conditions, this static price is
independent of the route that the flows take. This indicates that
we can use the static scheme, which has a much simpler structure
than the optimal dynamic scheme, to control large communication
networks. We then extend the result to the case of dynamic rout-
ing, and show that the performance of an appropriately chosen
static pricing scheme with bifurcation probability determined by
average parameters can also approach that of the optimal dynamic
routing scheme when the system is large. Finally, we study the con-
trol of elastic flows and show that there exist schemes with static
parameters whose performance can approach that of the optimal
dynamic resource allocation scheme (in the large system limit). We
also identify the applications of our results for QoS routing and
rate control for real-time streaming.

I. I NTRODUCTION

In this work, we use pricing as the mechanism of control-
ling a network to achieve certain performance objectives. The
performance objectives can be modeled by some revenue- or
utility-functions. Such a framework has received significant in-
terest in the literature (e.g., see [1], [2], [3], [4], [5] and the
references therein) wherein price provides a good control sig-
nal because it carries monetary incentives. The network can
use the current price of a resource as a feedback signal to co-
erce the users into modifying their actions (e.g., changing the
rate or route).

In [6], Paschalidis and Tsitsiklis have shown that the perfor-
mance (in terms of expected revenue or welfare) of an appropri-
ately chosenstatic pricing schemeapproaches the performance
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of the optimaldynamic pricing schemewhen the number of
users and the network capacity become very large. Note that
a dynamic pricing scheme, is one where the network provider
can charge different prices to the user according to the vary-
ing levels of congestion in the network, while astatic pricing
schemeis one where the price only depends on the average lev-
els of congestion in the network (and is hence invariant to the
instantaneous levels of congestion). The result is obtained un-
der the assumption of Poisson flow arrivals, exponential flow
holding times, and a single resource (single node). This elegant
result is an example of the type of simplicity that one can ob-
tain when the system becomes large. In this paper, we find that
simple static network control can also approach the optimal dy-
namic network control under more general assumptions and a
variety of other network problems.

For simplicity of exposition, we structure the paper as fol-
lows:

We first extend the result of [6] from the single-link case to a
general loss network with arbitrary holding time distributions.1

Note that while the assumption of Poisson arrivals for flows in
the network is usually considered reasonable, the assumption of
exponential holding time distribution is not. For example, much
of the traffic generated on the Internet is expected to occur from
large file transfers which do not conform to exponential model-
ing. By weakening the exponential service time assumption we
can extend our results to more realistic systems. We show that a
static pricing scheme is still asymptotically optimal, and that the
correct static price depends on the service time distribution only
through its mean. A nice observation that stems from this result
is that under certain conditions, the static price depends only
on the price elasticity of the user, and not on the specific route
or distance. This indicates, for example, that the flat pricing
scheme used in the domestic long distance telephone service in
the US may be a sufficiently good pricing mechanism.

We then investigate whether more sophisticated schemes can
improve network performance (e.g., schemes that have prior

1Independently, in [7], Pachalidis and Liu have extended the work in [6] from
a single-link case to a Markovian loss network. But the authors still have the
exponential holding time assumption.



knowledge of the duration of individual flows, schemes that
predict the future congestion levels, etc.). We find that the
performance gains using such schemes become increasingly
marginal as the system size grows.

We then weaken the assumptions of fixed routing and fixed
bandwidth flows. In our dynamic routing model, flows can
choose among several alternative routes based on the current
network congestion level. In our elastic flow model, users are
allowed to modify their rates when facing different prices, sim-
ilar to the way in which TCP and some elastic multimedia traf-
fic react to changing network conditions. In these more general
models, when the system is large, we show that the invariance
result still holds, i.e., there still exists a static pricing scheme
whose performance can approach that of the optimal dynamic
scheme.

In networks of today and in the future, the capacity will be
very large, and the network will be able to support a large num-
ber of users. The work reported in this paper demonstrates
under general assumptions and different network problem set-
tings that, when a network is large, significant simplicity can
be exploited for pricing based network control. Our result also
shows the importance ofaverage informationwhen the system
is large, since the parameters of the static schemes are deter-
mined by average conditions rather than instantaneous condi-
tions. These results will help us develop more efficient and
realistic algorithms for controlling large networks. We have
identified the applications of our results in QoS routing and rate
control for real-time streaming.

Our work also has similarities to the work in [8], [9], and the
reference therein. However, in their work, the price is fixed,
and the focus is on how to admit and route each flow. Our work
(as well as [6]) explicitly models the users’ price-elasticity, and
consider the optimality of the pricing schemes. Our model of
elastic flows is also similar to the optimization flow control
model in [3], [10], [4], [5]. However, their models assume that
the number of users in the system is fixed. Hence their op-
timization is done for a snapshot in time, while we explicitly
consider thedynamicsof the network by taking into account
the flow arrivals and departures.

Due to space limitations, we leave out most of the proofs.
Details of these proofs are available online in [11].

II. PRICING IN A GENERAL MULTI -CLASS LOSS

NETWORK

A. Model

The basic model that we consider in this section is that of
a multi-class loss network with Poisson arrivals and arbitrary
service time distributions. There areL links in the network.
Each link l 2 f1; :::; Lg has capacityRl. There areI classes
of users. We assume that flows generated by users from each
class have a fixed route through the network. The routes are
characterized by a matrixfCl

i ; i = 1; :::; I; l = 1; :::; Lg, where
Cl
i = 1 if the route of classi traverses linkl,Cl

i = 0 otherwise.

Let ~n = fn1; n2; :::; nIg denote the state of the system, where
ni is the number of flows of classi currently in the network.
We assume that each flow of classi requires a fixed amount of
bandwidthri. The fixed routing and fixed bandwidth assump-
tion will be weakened in Sections III and IV, respectively.

Flows of classi arrive to the network according to a Poisson
process with rate�i(ui). The rate�i(ui) is a function of the
priceui charged to users of classi. Hereui is defined as the
price per unit time of connection. We assume that�i(ui) is
a non-increasing function ofui. Therefore�i(ui) represents
the price-elasticityof classi. We also assume that for each
classi, there is a “maximal price”umax;i such that�i(ui) = 0
whenui � umax;i. Therefore by setting a high enough price
ui the network can prevent users of classi from entering the
network. Once admitted, a flow of classi will hold ri amount of
resource in the network and pay a cost ofui per unit time, until
it completes service, whereui is the price set by the network
at the time of the flow arrival. The service times are i.i.d. with
mean1=�i. The service time distribution is general.

The bandwidth requirement determines the set of feasible
states
 = f~n :

P
i niriC

l
i � Rl 8lg. A flow will be blocked

if the system becomes infeasible after accommodating it. Other
than this feasibility constraint, the network provider can charge
a different price to each flow, and by doing so, the network
provider strives to maximize the revenue collected from the
users. The way price is determined can range from the sim-
pleststatic pricing schemesto more complicateddynamic pric-
ing schemes. In a dynamic pricing scheme, the price at timet
can depend on many factors at the momentt, such as the cur-
rent congestion level of the network, etc. On the other hand, in
a static pricing scheme, the price is fixed over all timet, and
does not depend on these factors. Intuitively, the more factors
a pricing scheme can be based on, the more information it can
exploit, and hence the higher the performance (i.e., revenue) it
can achieve.

The dynamic pricing scheme we study in this section is more
sophisticated than the one in [6]. Firstly, we allow the network
provider to exploit the knowledge of the immediate past history
of states up to lengthd. Note that when the exponential holding
time assumption is removed, the system is no longer Marko-
vian. There will typically be correlations between the past and
the future given the current state. In order to achieve a higher
revenue, we can potentially take advantage of this correlation,
i.e., we can use the past to predict the future, and use such pre-
diction to determine the price.

Secondly we allow the network provider to exploit prior
knowledge of the parameters of the incoming flows. In particu-
lar, the network knows the holding time of the incoming flows,
and can charge a different price accordingly. In order to achieve
a higher revenue, the network can thus use pricing to control the
composition of flows entering the network, for example, short
flows may be favored under certain network conditions, while
long flows are favored under others. We assume that the price-
elasticity of flows is independent of these parameters.



For convenience of exposition, we restrict ourselves to the
case when the range of the service time can be partitioned into
a series of disjoint segments, and the price is the same for flows
that are from the same class and whose service times fall into
the same segment. In particular, letfakg; k = 1; 2; ::: be an
increasing series of positive numbers, i.e.,0 < a1 < a2 < :::
and leta0 = 0. We assume that at any timet, for all flows of
classi whose service timesTi fall into segment[ak�1; ak), we
charge the same priceuik(t), i.e. we do not care about the exact
value ofTi as long asTi 2 [ak�1; ak).

The dynamic pricing scheme can thus be written as

ui(t; Ti) = uik(t) = gik(~n(s); s 2 [t� d; t]);

for Ti 2 [ak�1; ak);

where~n(s); s 2 [t� d; t] reflects the immediate past history of
lengthd, Ti is the holding time of the incoming flow of classi,
andgik are functions from
[�d;0] to the set of real numbersR.
By incorporating the past history in the functionsgik, we can
study the effect of prediction on the performance of the dynamic
pricing scheme without specifying the details of how to predict.
Let~g = fgik; i = 1; :::; I; k = 1; 2; :::g.

The system under such a dynamic pricing scheme can be
shown to be stationary and ergodic under very general condi-
tions. For example, when the arrival rates�i(u) are bounded
above by some constant�0, one can construct a so-called “re-
generative event” (due to the Poisson nature of the arrivals),
which is the event that the system is empty in the time inter-
val [t � d; t]. One can show that such an event is a stationary
event and occurs with positive probability. This ensures that any
stochastic process that is only a function of the system state is
asymptotically stationary and the stationary version is ergodic.
For details, please see [11], [12].

We are now ready to define the performance objective func-
tion. For each classi, let ~Tik = E fTijTi 2 [ak�1; ak)g be
the mean service time for flows of classi whose service time
Ti falls into segment[ak�1; ak). The expectation is taken
with respect to the service time distribution of classi. Let
pik = PfTi 2 [ak�1; ak)g be the probability that the ser-
vice timeTi of an incoming flow of classi falls into segment
[ak�1; ak). We can decompose the original arrivals of each
class into a spectrum of substreams. Substreamk of classi
has service time in[ak�1; ak). Its arrival is thus Poisson with
rate�i(u)pik, since we assume that the price-elasticity of flows
is independent ofTi.

For any dynamic pricing scheme~g, the expected revenue
achieved per unit time is given by

lim
�!1

IX
i=1

1

�
E

"Z �

0

1X
k=1

�i(uik(t))uik(t) ~Tikpik dt

#

=

IX
i=1

1X
k=1

E

h
�i(uik(t))uik(t) ~Tikpik

i
;

where the expectation is taken with respect to the steady state
distribution. The limit on the left hand side as the time� !1

exists and equals to the right hand side due to stationarity and
ergodicity. Note that the right hand side is independent oft
(from stationarity).

Therefore, the performance of theoptimaldynamic policy is

J� , max
~g

IX
i=1

1X
k=1

E

h
�i(uik(t))uik(t) ~Tikpik

i
:

When the exponential holding time assumption is removed,
we can no longer use the MDP approach as in [6] to find the
optimal dynamic pricing scheme. We will instead study the be-
haviour of the dynamic pricing scheme and its relationship with
the static pricing scheme when the system is large. In particu-
lar, we will establish an upper bound for the performance of
dynamic pricing schemes and show that the performance of an
appropriately chosen static pricing scheme can approach this
upper bound as the system is large. We will then conclude
that, when the system is large, the performance of an appro-
priately chosen static pricing scheme can approach that of the
optimaldynamic pricing scheme. Further, we show that the per-
formance gains of schemes that use such sophisticated mecha-
nisms as prediction and charging based on prior knowledge of
the holding times are minimal when the system is large.

B. An Upper Bound

We find that the upper bound of the form in [6] is also an
upper bound for our case. Let�max;i = �i(0) be the maxi-
mal value of�i. For convenience, we writeui as a function of
�i. Let Fi(�i) = �iui(�i), �i 2 [0; �max;i]. Further, letJub
be the optimal value of the following nonlinear programming
problem:

max
�i;i=1;:::;I

X
i

Fi(�i)
1

�i
(1)

subject to
X
i

�i
�i
riC

l
i � Rl for all l; (2)

where1=�i, ri are the mean holding time and the bandwidth re-
quirement, respectively, for flows from classi, Cl

i is the routing
matrix andRl is the capacity of linkl.

Proposition 1: If the functionFi is concave in(0; �max;i)
for all i, thenJ� � Jub.

Proof: Details of this proof are available online in [11].
The maximizer of the upper bound (1) induces a set of opti-

mal pricesui = ui(�i). It is interesting to note that although
the dynamic pricing scheme can use prediction and exploit prior
knowledge of the parameters of the incoming flows, the upper
bound (1) and its induced optimal prices are indifferent to these
additional mechanisms.

C. Static Policy

We now consider the static pricing scheme. In this scheme,
the price for each class is fixed, i.e., it does not depend on the



current state of the network, nor does it depend on the individ-
ual holding time of the flow. Letui be the static price for class
i. Let ~u = [u1; :::; uI ]. Under this static pricing scheme~u, the
expected revenue per unit time is:

J0 =

IX
i=1

�i(ui)ui
1

�i
(1�Ploss;i[~u]);

wherePloss;i[~u] is the blocking probability for classi. There-
fore the performance of theoptimalstatic policy is

Js , max
~u

IX
i=1

�i(ui)ui
1

�i
(1�Ploss;i[~u]):

By definitionJs � J�.
Throughout this paper we will focus on large systems with

many small users. To be specific, we consider the following
scaling(S):

(S) Let c � 1 be a scaling factor. We consider a series of
systems scaled byc. The scaled system has capacityRl;c =
cRl at each linkl, and the arrivals of each classi has rate
�ci (u) = c�i(u). LetJ�;c, Jc

s andJc
ub be the dynamic revenue,

static revenue, and upper bound, respectively, for thec-scaled
system.

We are interested in the performance of the dynamic pricing
scheme and the static pricing scheme whenc " 1, i.e., when
both the capacity and the number of users in the system be-
come very large. We first note thatthe normalized upper bound
Jc
ub=c is fixed over allc, sinceJc

ub is obtained by maximizingP
i c�iui(�i)=�i, subject to the constraints

P
i c�iriC

l
i=�i �

cRl, for all l. Therefore the optimal price induced by the upper
bound is also independent ofc.

The following lemma illustrates the behaviour of the block-
ing probabilityPloss;i asc!1 under scaling(S).

Lemma 2:Let�i be the arrival rate of flows from classi and
let 1=�i be the mean holding time. Under the assumptions of
Poisson arrivals and general holding time distributions, if the
load at each resource is less than or equal to 1, i.e.,

X
i

�i
�i
riC

l
i � Rl for all l;

then under scaling(S), asc ! 1, the blocking probability of
each class goes to 0, and the speed of convergence is at least
1=
p
c.
Proof: The proof of this lemma is analogous to the proof of

Proposition 3 in [12]. Details of this proof are available online
in [11].

We will use this lemma to show the following main result:
Proposition 3: If the functionFi is concave in(0; �max;i)

for all i, then

lim
c!1

1

c
Jc
s = lim

c!1

1

c
J�;c = lim

c!1

1

c
Jc
ub = Jub:

Proof: SinceJc
s � J�;c � Jc

ub = cJub, we only need to
show that lim

c!1
Jc
s=c � Jub.

Now considerJc
s . For every static price~u = [u1; :::uI ]

falling into the constraint ofJub, i.e.,

X
i

c�i(ui)riC
l
i

�i
� cRl for all l; (3)

let Jc
0 denote the revenue under this static price. Since (3)

guarantees that the condition of Lemma 2 is met, we have
Ploss;i[~u]! 0, asc!1. Therefore

lim
c!1

Jc
0

c
= lim

c!1

X
i

�i(ui)ui
1

�i
(1�Ploss;i[~u])

=
X
i

�i(ui)ui
1

�i
: (4)

If we take the optimal price induced by the upper bound as
our static price, then the right hand side of (4) is exactly the
upper bound. Therefore,

lim
c!1

Jc
s

c
� lim

c!1

Jc
0

c
� Jub

and the result follows.
Proposition 3 can be seen as a network version (with also

general holding times) of Theorem 6 in [6]. It tells us that
extending the result of [6] from a single link to a network of
links and from exponential holding time distributions to arbi-
trary holding time distributions does not change the invariance
result. In other words, there still exists static pricing schemes
whose performance can approach that of the optimal dynamic
pricing scheme when the system is large. Further, even though
the dynamic pricing scheme can use prediction and exploit prior
knowledge of the parameters of the incoming flows, the upper
bound (1) turns out to be indifferent to these additional mecha-
nisms. This shows that these extra mechanisms have a minimal
effect on the long term revenue when the system is large.

The static schemes are much easier to implement because
they do not require the collection of instantaneous load infor-
mation. Instead, they only depend on some average parame-
ters, such as the average load, etc. The static schemes are also
much easier to obtain because of their simple structure. Hence,
they introduce less communication and computation overhead
and they are insensitive to feedback delays. In future work we
intend to develop efficient distributed algorithms that can find
these static prices. We will discuss this briefly in Section V.

Here we report a few numerical results. Consider the network
in Fig. 1. There are 4 classes of flows. Their routes are shown
in the figure. Their arrivals are Poisson. The function�i(u) for
each classi is of the form

�i(u) =

�
�max;i

�
1� u

umax;i

��+
;
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Fig. 1. The network topology

TABLE I
TRAFFIC AND PRICE PARAMETERS OF4 CLASSES

Class 1 Class 2 Class 3 Class 4
�max;i 0.01 0.01 0.02 0.01
umax;i 10 10 20 20

Service Rate�i 0.002 0.001 0.002 0.001
Bandwidthri 2 1 1 2

i.e., �i(0) = �max;i and�i(umax;i) = 0 for some constants
�max;i andumax;i. The price elasticity is then

��0i(u)

�i(u)
=

1=umax;i
1� u=umax;i

, for 0 < u < umax;i:

The functionFi is thus

Fi(�i) = �i(1� �i
�max;i

)umax;i;

which is concave in(0; �max;i). The holding time is exponen-
tial with mean1=�i. The parameters�max;i, umax;i, service
rates�i, and bandwidth requirementri for each class are shown
in Table I.

First, we consider a base system where the 5 links have ca-
pacity 10, 10, 5, 15, and 15 respectively. The solution of the
upper bound (1) is shown in Table II. The upper bound is
Jub = 127:5. We then use simulations to verify how tight
this upper bound is and how close the performance of the static
pricing policy can approach this upper bound when the system
is large. We use the price induced by the upper bound calcu-
lated above as our static price. We first simulate the case when
the holding time distributions are exponential. We simulatec-
scaled versions of the base network wherec ranges from 1 to
1000. For each scaled system, we simulate the static pricing
scheme, and report the revenue generated. In Fig. 2 we show
the normalized revenueJ0=c as a function ofc.

As we can see, when the system grows large, the difference
in performance between the static pricing scheme and the upper
bound decreases. Although we do not know what the optimal
dynamic scheme is, its normalized revenueJ�=cmust lie some-
where between that of the static scheme and the upper bound.
Therefore the difference in performance between the static pric-
ing scheme and the optimal dynamic scheme is further reduced.

TABLE II
SOLUTION OF THE UPPER BOUND(1) WHEN THE CAPACITY OFL INK 3 IS 5

BANDWIDTH UNITS. THE UPPER BOUND ISJub = 127:5

Class 1 Class 2 Class 3 Class 4
ui 9.00 5.00 12.00 10.00

�i(ui) 0.00100 0.00500 0.00800 0.00500
�i(ui)=�i 0.500 5.00 4.00 5.00

1 10 100 1000
95

100

105

110

115

120

125

130

c: scaling

Jo/c

Fig. 2. The static pricing policy compared with the upper bound: when the
capacity of link 3 is 5 bandwidth units. The dotted line is the upper bound.

For example, whenc = 10, which corresponds to the case when
the link capacity can accommodate around 100 flows, the per-
formance gap between the static policy and the upper bound is
less than7%. The gap decreases as1=

p
c.

We now change the capacity of link 3 from 5 bandwidth
units to 15 bandwidth units. The solution of the upper bound
is shown in Table III. The upper bound isJ� = 137:5. The
simulation result (Fig. 3) confirms again that the performance
of the static policy approaches the upper bound when the sys-
tem is large. Atc = 10, the performance gap between the static
policy and the upper bound is around10%. Note that in this
latter example, the static price is the same for users with the
same price-elasticity even if they traverse different routes. For
example, classes 1 & 2 and classes 3 & 4 have different routes
but have the same price (and price-elasticity). In general,if
there is no significant constraint of resources, the maximizing
price structure will be independent of the route of the connec-
tion. (A network has no significant constraint of resources if
the unconstrainedmaximizer of

P
i Fi(�i) satisfies the con-

straint (2).) To see this, we go back to the formulation of the
upper bound (1). If theunconstrainedmaximizer of

P
i Fi(�i)

satisfies the constraint, then it is also the maximizer of thecon-
strainedproblem. In this case the price only depends on the
functionFi, which is determined by the price elasticity of the
users. Readers can verify that, in our second example, when
the capacity of link 3 is 15 bandwidth units. if we lift the con-
straints in (2), and solve the upper bound again, we will get
the same result. Therefore in our example,the optimal price



TABLE III
SOLUTION OF THE UPPER BOUND WHEN THE CAPACITY OFL INK 3 IS 15

BANDWIDTH UNITS. THE UPPER BOUND ISJub = 137:5

Class 1 Class 2 Class 3 Class 4
ui 5.00 5.00 10.00 10.00

�i(ui) 0.00500 0.00500 0.0100 0.00500
�i(ui)=�i 2.50 5.00 5.00 5.00

1 10 100 1000
100

110

120

130

140

c:scaling

Jo/c

Fig. 3. The static pricing policy compared with the upper bound: when the
capacity of link 3 is 15 bandwidth units. The dotted line is the upper bound.

will only depend on the price elasticity of each class and not on
the specific route. Since class 1 has the same price elasticity as
class 2, its price is also the same as that of class 2, even though
it traverses a longer route through the network.This result per-
haps justifies the use of flat pricing in inter-state long distance
telephone service in the United States.

We also simulate the case when the holding time distribution
is deterministic. The result is the same as that of the expo-
nential holding time distribution. The simulation result with
heavy tail holding time distribution also shows the same trend
except that the sample path convergence (i.e., convergence in
time) becomes very slow, especially when the system is large.
For example, Fig. 4 is obtained when the holding time dis-
tribution is Pareto, i.e., the cumulative distribution function is
1� 1=xa, with a = 1:5. We use the same set of parameters as
the constrained case above, and let the Pareto distribution have
the same mean as that of the exponential distribution. Note
that this distribution has finite mean but infinite variance. This
demonstrates that our result is indeed invariant of the holding
time distribution.

III. D YNAMIC ROUTING

We next consider a system with dynamic routing. Many re-
sults in the QoS routing literature focus on finding the “best”
route for each individual flow based on the instantaneous net-
work conditions. When these QoS routing algorithms are used
in a dynamic routing setting, the network is typically required
to first collect link information (such as available bandwidth,

1 10 100 1000
95

100

105

110

115

120

125

130

c: scaling

Jo/c

Fig. 4. The static pricing policy compared with the upper bound: when the ca-
pacity of link 3 is 5 bandwidth units and the service time distribution is Pareto.

delay, etc.) on a regular basis. Then, when a request for a new
flow arrives, the QoS routing algorithms are invoked to find a
route that can accommodate the flow. When there are multiple
routes that can satisfy the request, certain heuristics are used to
pick one of the routes. However, such “greedy” schemes may
be sub-optimal system wide, because a greedy selection may re-
sult in an unfavorable configuration such that more future flows
are blocked. Further, an obstacle to the implementation of these
dynamic schemes is that it consumes a significant amount of re-
sources to propagate link states throughout the network. Propa-
gation delay and stale information will also degrade the perfor-
mance of the dynamic routing schemes.

In this section, we will formulate a dynamic routing prob-
lem that directly optimizes the total system revenue. Although
our model is simplified, it reveals important insight on the per-
formance tradeoff among different dynamic routing schemes.
We will establish an upper bound on the performance ofthe
dynamic schemes, and show that the performance of an appro-
priate chosenstatic pricing scheme, which selects routes based
on some pre-determined probabilities, can approach the perfor-
mance ofthe optimal dynamic schemewhen the system is large.
The static scheme only requires some average parameters. It
consumes less communication and computation resources, and
is insensitive to network delay. Thus the static scheme is an
attractive alternative for control of routing in large networks.

The network model is the same as in the last section, except
that now a user of classi has�(i) alternative routes that are rep-
resented by matrixfH l

ijg such thatH l
ij = 1, if routej of classi

uses resourcel andH l
ij = 0, otherwise. The dynamic schemes

we consider have the followingidealizedproperties: the routes
of existing flows can be changed during their connection; and
the traffic of a given flow can be transmitted on multiple routes
at the same time. Thus our model captures the packet-level dy-
namic routing capability in the current Internet. These idealized
capabilities allow the dynamic schemes to “pack” more flows
into the system. Yet, we will show that an appropriately chosen
static routing scheme will have comparable performance to the
optimal dynamic scheme.



Let ni be the number of flows of classi currently in the net-
work. Consider thek-th flow of classi, k = 1; :::; ni. LetP k

ij

denote the proportion of traffic of flowk assigned to routej,
j = 1; :::�(i). Then, state~n = fn1; :::; nIg is feasible if and
only if

There existsP k
ij such that

P
j

P k
ij = 1;8i; k;

and
P
i;j

riH
l
ij

niP
k=1

P k
ij � Rl for all l:

(5)

The set of feasible states is
 = f~n such that (5) is satisfiedg.
A dynamic scheme can charge prices based on the current

state of the network, or a finite amount of past history, i.e.,
prediction based on past history. (For simplicity we consider
pricing schemes that are insensitive to the individual holding
times.) An incoming flow will be admitted if the resulting
state is in
. Once the flow is admitted, its route (i.e.,P k

ij )
is assigned based on (5), involving (in an idealized dynamic
scheme) possible rearrangement of routes of all existing flows.
We assume that such rearrangement can be carried out instan-
taneously. Thus a dynamic pricing scheme can be modeled by
ui(t) = gi(~n(s); s 2 [t � d; t]), wheregi is a function from


[�d;0] toR. Let~g = fg1; :::; gIg.
The performance objective is again the expected revenue per

unit time generated by the incoming flows admitted into the sys-
tem. The performance of theoptimal dynamic routing scheme
is given by:

J� , max
~g
Ef
X
i

�i(ui(t))ui(t)
1

�i
g (6)

subject to (5).

The expectation is taken with respect to the steady state distri-
bution. Note that (6) is independent oft because of stationarity
and ergodicity.

The set of dynamic schemes we have described may require
complex capabilities (e.g., rearrangements of routes and trans-
mitting traffic of a single flow over multiple routes) and hence
may not be suitable for actual implementation. We make clear
here that we are not advocating implementing such schemes but
instead advocate implementing static schemes. In fact, we will
show that, as the system scales, our static scheme will approach
the performance of the optimal idealized dynamic scheme. The
static schemes do not require the afore-mentioned complex ca-
pabilities and could be an attractive alternative for network rout-
ing.

Let ui = ui(�i) andFi(�i) = ui(�i)�i. Analogous to
Proposition 1, we can derive the following upper bound on the
optimal revenue in (6). Details are available online in [11].

Proposition 4: If the functionFi is concave in(0; �max;i)
for all i, thenJ� � Jub, whereJub is defined as the solution for
the following optimization problem:

Jub , max
�ij

X
i

Fi(
X
j

�ij)
1

�i
(7)

subject to
X
ij

�ij
�i

H l
ijri � Rl 8l:

We next construct our static routing policy as follows: The
network charges a static price to all incoming flows, and the
incoming flows are directed to alternative routes based on
pre-determined probabilities.Note that the static policy does
not have the idealized capabilities prescribed for the dynamic
schemes, i.e., all traffic of a flow has to follow the same path,
and rearrangement of routes of existing flows is not allowed.
Let fusi ; P s

ijg denote such a static policy, whereusi is the price
for classi, andP s

ij is the bifurcation probability that an incom-
ing flow from classi is directed to routej.

Then the optimal static policy can be found by solving:

Js , max
us
i
;P s

ij
;
P

j
P s
ij
=1

X
ij

�i(u
s
i )u

s
iP

s
ij

1

�i
[1�PLoss;ij ]; (8)

wherePLoss;ij is the blocking probability experienced by users
of classi routed toj.

We consider a special static policy derived from the solu-
tion of the upper bound in Proposition 4. If�ubij is the maxi-
mal solution to the upper bound, we letusi = ui(

P
j �

ub
ij ), and

P s
ij =

�ubijP
j �

ub
ij

. The revenue with this static policy differs from

the upper bound only by the term(1 �PLoss;ij), and this rev-
enue will be less thanJs. However, under scaling(S), we can
show that, asc ! 1, Ploss;ij ! 0. Therefore, we have our
invariance result (stated next).

Proposition 5: In the dynamic routing model, if the function
Fi is concave in(0; �max;i) for all i, then

lim
c!1

Jc
s=c = lim

c!1
J�;c=c = lim

c!1
Jc
ub=c = Jub

Proof: Analogous to that of Proposition 3. Details are
available online at [11].

When the routing is fixed, by replacing�ij with �i, andH l
ij

with Cl
i , we recover Propositions 1 and 3 from the results in this

Section. When there are multiple available routes, the upper
bound in Proposition 4 is typically larger than that of Proposi-
tion 1. Therefore one can indeed improve revenue by employ-
ing dynamic routing. However, Proposition 5 shows that, when
the system is large, most of the performance gain can also be
obtained by simpler static schemes that routes incoming flows
based on pre-determined probabilities. Further, what we learn
is that for large systems the capability to rearrange routes and
to transmit traffic of a single flow on multiple routes does not
lead to significant performance gains.

Not only can the static schemes be asymptotically optimal,
they also have a very simple structure. Their parameters are de-
termined by average conditions rather than instantaneous con-
ditions. Collecting average information introduces less com-
munication and processing overhead, and it is also insensitive
to network delay. Hence the static schemes are much easier to
implement in practice.

The optimal static scheme also reveals the macroscopic struc-
ture of the optimal dynamic routing scheme. For example,



the static priceusi shows the preference of some classes than
the others, and the static bifurcation probabilityP s

ij reveals the
preference on certain routes than the other. While a “greedy”
routing scheme tries to accommodate each individual flow, the
optimal static scheme may reveal that one should indeed pre-
vent some flows from entering the network, or prevent some
routes from being used. For our future work we plan to study
efficient distributed algorithms to derive these optimal static pa-
rameters.

IV. ELASTIC FLOWS

In previous sections we have restricted ourselves to the case
when the bandwidth requirements of flows are fixed. In this
section we will extend the model to the case when users can
change their bandwidth requirements according to the current
price. For ease of exposition we assume that there is only one
route for each classi. The routes are again represented by the
matrix fCl

ig as in Section II. Flows of classi enter the net-
work according to a Poisson process with rate�i. The service
times of flows of classi are i.i.d. with mean1=�i. The service
time distribution is general. LetUi(xi) be the utility function
for each classi, wherexi is the amount of resource assigned
to a classi flow along its route. We assume thatUi is a con-
tinuous differentiable and strictly concave function ofxi, and
Ui(0) = 0. This model is appropriate for real-time streaming
applications that can change the transmission rate according to
the network congestion level. For example, the utility function
Ui(xi) can be taken as the index of reception quality when the
real-time stream is transmitting at ratexi.

The network tries to allocate resources to the flows so that
the total utility of all flows supported by the network is max-
imized. For each flow, the resource allocation may vary over
time. In this section, we will first establish the optimal dy-
namic scheme. We will then show, as before, that there exists a
static scheme whose performance will approach that of the op-
timal dynamic scheme when the system is large. Surprisingly,
this near-optimal solution is in a “fixed-bandwidth” and “loss-
network” form as in Section II.

A. The Optimal Dynamic Scheme

Let ni(t) be the number of flows from classi that are in the
network at timet. Let ~n(t) = fn1(t); n2(t); :::; nI (t)g. The
optimal resource assignment is then given by the solution to the
following problem:

J�(~n(t)) , max
xi

IX
i=1

ni(t)Ui(xi) (9)

subject to
IX

i=1

ni(t)xiC
l
i � Rl;

whereJ�(~n(t)) can be interpreted as the maximal total utility
achieved by the system at timet. For eacht we can solve (9)

and obtain the optimal assignmentxi(t). Over time, this policy
will optimize the total utility.

Remark: in the optimal assignment (9), each flow of class
i will consume same amount of resourcexi. This is a conse-
quence of the concavity ofUi. For details, see [11].

In the past (e.g., [3], [4], [10]) this model has been used to
study the behavior of TCP congestion controlwhen the num-
ber of flows in the system is fixed. It has been shown that there
exist distributed algorithms that can drive the flows to the op-
timal resource assignment. The notion of “price” arises natu-
rally as Lagrange multipliers for the constraints. Some exam-
ples of such distributed algorithms resemble the control of TCP
in the Internet. Therefore, TCP congestion control can be seen
to maximize the total utility of a group of users with concave
utility functions. Our model is different from theirs because we
consider thedynamics caused by the arrivals and departures
of flows. We are interested in finding alternative forms of re-
source assignment schemes that can also achieve near optimal
total utility when the system is large. These schemes can then
be used in cases when TCP does not work as well.

B. An Upper Bound

Let E[ni] be the stationary mean ofni(t), i.e., E[ni] =
�i=�i. We formulate another optimization problem:

Jub , max
xi

IX
i=1

E[ni]Ui(xi) (10)

subject to
IX

i=1

E[ni]xiC
l
i � Rl:

Proposition 6: The expected total utility of the optimal dy-
namic scheme is upper bounded byJub, i.e. E[J�] � Jub,
where the expectation is taken with respect to the steady state
distribution ofni(t).

Proof: Note thatJ� is a function of~n(t) = fni(t); i =
1; :::Ig. ThenJub = J�(E[~n]).

To show thatE[J�(~n)] � J�(E[~n]), it is sufficient to show
thatJ�(~n) is a concave function of~n, which is a consequence
of the concavity ofUi(xi). For details, please refer to [11].

C. Static Policy

Let x0 = fx01; x02; :::; x0Ig be the corresponding maximizing
parameter of (10). Now consider the following control algo-
rithm with a static rate assignment: when a new flow from class
i arrives to the network, it will be assigned a ratex0i if there
is enough capacity available along its route, otherwise it will
either be blocked, or, equivalently, be assigned a rate 0. There-
fore, the flow is still elastic except that the rate is chosen ac-
cording tothe average conditionas in (10) rather thanthe in-
stantaneous conditionas in (9). The flow will hold the same
amount of resourcex0i until it leaves the system.



In such a system, the expected total utility will be

Js ,

IX
i=1

�i
�i
Ui(x

0
i )(1�Ploss;i);

wherePloss;i is the blocking probability of classi. Under scal-
ing (S), we have the following proposition.

Proposition 7: In the elastic flow model,

lim
c!1

1

c
Jc
s = lim

c!1

1

c
E[J�;c] = lim

c!1

1

c
Jc
ub = Jub:

Proof: Analogous to that of Proposition 3. Details are
available online at [11].

An application of this result is on the rate control of real-
time flows (e.g. audio and video streaming) on the Internet.
A central question in congestion control of streaming traffic
is its fairness with respect to TCP. When real-time flows and
TCP flows coexist in the same network, they should consume
comparable bandwidth, and neither flows should be starved by
the other. Among the existing congestion control schemes for
real-time flows, some use the same AIMD (Additive Increase
Multiplicative Decrease) idea as TCP [13]. They are usually
fair with TCP if timeouts occur infrequently. However, these
schemes typically produce a TCP-like saw-tooth type of tra-
jectory, which leads to rapid changes in reception quality. Such
rapid changes in quality are disconcerting for the viewer of mul-
timedia flows [14]. Equation-based congestion control does not
use AIMD and produces smoother rates at small time-scales.
However, simulation results show that at time-scales around
10 seconds, the fluctuation is still quite significant [15]. There
are yet other schemes, such as some binomial algorithms [16],
which change the rate slower than TCP. However they are also
slower in adapting to changing network conditions.

Note that fairness objectives are very closely related to the
utility maximization objectives. For example, proportional fair-
ness is equivalent to maximizing the total utility of a group of
users with log-utility functions. If we adopt utility maximiza-
tion as a substitute for the fairness requirement, we can use the
result above to obtain a new class of congestion-control algo-
rithms for real-time traffic. For example, consider the special
case when� portion of the flows are real-time flows, and the
rest are TCP flows. To be precise, letnRTi (t) andnTCPi (t) de-
note the number of real-time flows and TCP flows, respectively,
at timet. Then their stationary means areE[nRTi ] = �E[ni]
andE[nTCPi ] = (1��)E[ni]. Let us assign the fixed bandwidth
x0i to real-time flows, and allow them to use the same amount
of bandwidth throughout the connection. Such fixed bandwidth
allocation is beneficial to streaming applications because it en-
sures a stable reception quality for the viewer. Therefore the
expected total utility achieved by real-time flows is given by

JRT = E[nRTi ]Ui(x
0
i )(1�PRTloss;i) = �Jub(1�PRTloss;i);

wherePRTloss;i is the blocking probability experienced by the
real-time flows. The total utility achieved by TCP flows at

time t is given by the following optimization problem:

JTCP , max
xi

IX
i=1

nTCPi (t)Ui(xi); (11)

subject to
IX

i=1

nTCPi (t)xiC
l
i � Rl �

IX
i=1

nRTi (t)xiC
l
i :

The expected total utility achieved by both the real-time flows
and the TCP flows,JRT + E[JTCP], is bounded from above
by Jub and bounded from below byJs. Therefore, by Proposi-
tion 7,

lim
c!1

JRT;c +E[JTCP;c]

c
= lim

c!1

Jc
ub

c
= Jub;

whereJRT;c, JTCP;c andJc
ub are the respective utility when

the system is scaled byc. Now by Lemma 2,

lim
c!1

P
RT
loss;i = 0:

Therefore

lim
c!1

JRT;c

c
= �Jub;

and we conclude that

lim
c!1

E[JTCP;c]

c
= (1� �)Jub:

Note that by Proposition 7,(1 � �)Jub is also the limit of the
normalized expected total utility achieved by the TCP flows as
c ! 1, when the remaining portion� of the flows are also
TCP flows. This shows that when the same utility functions
are used for both the real-time flows and TCP flows, assigning
the fixed bandwidthx0i to real-time flows does not degrade the
performance of the TCP flows when the system is large.

It is interesting to compare existing congestion-control
schemes with our scheme above. In existing schemes, flows
start from an arbitrary initial condition, and congestion control
is exercisedduring the connection. In our scheme, congestion
control is exercisedat the beginningof the connection. The
congestion controller reacts to changing network condition by
choosing the correct initial bandwidth assignment for incoming
flows. Although our scheme does not modify the bandwidth
assignment for on-going flows, the difference between the total
utility of our scheme and the optimal utility is minimal (when
the system is large). Therefore, in the long run, the real-time
flows and TCP flows will receive fair share of the bandwidth.
In future work we plan to investigate the problem of efficiently
distributing our congestion controller over the network.

V. CONCLUSION AND FUTURE WORK

In this work we study pricing as a mechanism to control large
networks. We show under very general settings that an appro-
priately chosen static pricing scheme is asymptotically optimal



when the system is large. We have established these results
for admission control, dynamic routing, and control of elastic
flows.

The above results have important implications in the net-
works of today and in the future. Compared with dynamic pric-
ing schemes, static pricing schemes have some desirable prop-
erties. They are less computationally intensive, and introduce
less communication overhead. Their performance will not de-
grade as the network delay grows. Our results show that when
the system is large, as in broadband networks, the difference
between static pricing schemes and dynamic pricing schemes is
minimal.

Having said this, it should be noted that the parameters of
the static schemes are obtained from someglobaloptimization
problem (e.g., (1), (7) and (10) ) which requires coordination
among possibly all elements of the network. To make the static
schemes implementable, it is important to develop efficientdis-
tributed algorithms that can find these parameters. Here we
briefly discuss one possible approach (that is further elaborated
in [11]). We can associate a non-negative Lagrange multiplier
pl for the constraint (e.g. (2)) at each resourcel. The Lagrange
multiplier pl can be viewed as the implicit cost that summa-
rizes the congestion information at linkl. Givenpl, in order
to determine the price for classi, one only needs to know the
price-elasticity of classi (i.e., the functionFi) and the sum of
the implied costs along the path that flows of classi traverse.
Therefore we can decompose the global optimization problem
into several subproblems for each class. We can have the core
routers generate these implicit costs and have the ingress router
for each classi probe these implicit costs and determine the
price for classi. The idea of this decomposition has been used
in [4] to develop distributed algorithms for optimization flow
control, and it is also mentioned in [6] for the static pricing
scheme in the single-link case. Following this path, we are cur-
rently studying distributed algorithms for static pricing schemes
under more general settings.

Note that in the distributed algorithms outlined above for
static pricing schemes, the network still needs to generate and
communicate the implicit costs between different network el-
ements. However, the computation and communication in-
volved will be much smaller than in the optimal dynamic pric-
ing scheme. In the optimal dynamic pricing scheme, the net-
work has to acquire the instantaneous global state~n(t), and then
compute the right price for each network state. While in the
static schemes, only one set of static prices needs to be found
given the network topology and the functionsFi. Therefore,

the computation and propagation of the implicit costspl can be
much slower than the evolution of the network state. Once the
distributed algorithm converges, the pricesui (and the implicit
costspl) stay unchanged until the network topology or the load
conditionFi change.
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