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Abstract. In this work we study pricing as a mechanism to control large
networks. Our model is based on revenue maximization in a general loss
network with Poisson arrivals and arbitrary holding time distributions.
In dynamic pricing schemes, the network provider can charge different
prices to the user according to the current utilization level of the net-
work. We show that, when the system becomes large, the performance
of an appropriately chosen static pricing scheme, whose price is indepen-
dent of the current network utilization, will approach that of the optimal
dynamic pricing scheme. Further, we show that under certain conditions,
this static price is independent of the route that the connections take.
This result has the important implication that distance-independent pric-
ing that is prevalent in current domestic telephone networks in the U.S.
may in fact be appropriate not only from a simplicity, but also a perfor-
mance point of view. We also show that in large systems prior knowledge
of the connection holding time is not important from a network revenue
point of view.

1 Introduction

In the last few years there has been significant interest in using pricing as a
mechanism to control communication networks. The network uses the current
price of a resource as a feedback signal to coerce the users into modifying their
actions (e.g. changing the rate or route). Price provides a good control signal
because it carries monetary incentives.

Past works in the literature differ in their schemes to compute the price. Some
of the proposed schemes use different forms of auctions, e.g., “Smart Market” [9]
or “Progressive Second Price Auction” [7] to reach the right price. Other schemes
use differential equations at the resource and at the users to converge to such
prices [4]. A common theme behind this category of research is to have the
resource calculate price based on the instantaneous load and available capacity.
If the current condition changes, a new price is calculated. The users are expected
to act on up-to-date price information to achieve the desired design objectives.
Feedback delays to the user may introduce undesirable effects on the performance
of the system, such as instability or slow speed of convergence [4]. In practice,
this feedback delay may be difficult to control because calculating up-to-date
price information continuously consumes a large amount of processing power at



the resource/node. Also, there is a substantial communication overhead when
users try to obtain these up-to-date prices.

Pricing over multiple resources also poses additional problems. Usually the
price is calculated over a given route by summing over the price of all the re-
sources along that route [4, 8, 14]. The user has to act on the sum. This kind
of route-specific or distance-specific price may introduce substantial signaling
overhead in real networks.

Interestingly, in our daily lives, we observe quite the opposite phenomenon.
For example, we do not see the prices of products we purchase everyday fluctuate
substantially, but in fact they change very slowly. Another example of distance-
neutral pricing is the domestic long distance telephone service in the US. Most
long distance companies offer flat rate pricing to users calling anywhere within
the continental US.

These observations have motivated a number of recent works. In [12], after
a critique on the optimality-pricing approach, the authors have proposed two
approximations of congestion pricing: the first approximation was to replace
the instantaneous congestion conditions1 by the expected or average congestion
conditions, similar to time-of-day pricing. The second approximation was to
replace the cost of the actual path the flow would traverse through the network
with the cost of the expected path; where the charge depends only on the source
and destination(s) of the flow and not on the particular route taken by the flow.
However, in this work, there is no analysis of the performance implication of
such approximations.

In [11], the authors investigate this problem in the case of a single resource
with Poisson arrivals and exponential service times. In particular, the authors
study the expected utility and revenue under both dynamic pricing and static
pricing schemes in a dynamic network. By a dynamic network, we mean that
in their system, call arrivals and departures are taken into account. This is
different from the work in [4, 6, 8, 14] where the authors view congestion control
as a distributed asynchronous computation to maximize the aggregate source
utility. In these works, the optimization is done over a snapshot in time, i.e., it
does not take into account the dynamic nature of the network. In contrast, in
[11], the authors model the dynamic nature of the system by assuming that calls
arrive according to a Poisson process and stay in the system for an exponentially
distributed time. The authors study the expected utility and revenue under both
dynamic pricing and static pricing schemes. It is shown that when the capacity
is large, using a static pricing scheme suffices, in the sense that the utility (or
revenue) under an appropriately chosen static price converges asymptotically
to that of the optimal dynamic scheme. The implication of this work is that
we can now base pricing decisions only on the average load rather than on the
instantaneous load, thus reducing both processing and communication overhead.

This paper extends the results in [11] in two directions:

1 Note that the congestion conditions in [12] can be obtained from the instantaneous
load and available capacity in the system. Hence, these terms can be viewed inter-
changeably.



1) We show that the same type of invariance results hold for general loss net-
works (i.e., the performance of the optimal static pricing scheme asymptotically
approaches the performance of the dynamic scheme). The results hold even if the
service time distribution is general. We show that the right static price depends
on the service time distribution only by its mean. These extensions have two
implications: Firstly, while the assumption of Poisson arrivals for calls or flows
in the network is usually considered reasonable, the assumption of exponential
holding time distribution is not. For example, much of the traffic generated on
the Internet is expected to occur from large file transfers which do not conform
to exponential modeling. By weakening the exponential service time assumption
we can extend our results to more realistic systems. Secondly, in the general
network case, we can show that in our revenue-maximization problem, under
certain conditions, the static price only depends on the price elasticity of the
user, and not on the specific route or distance. This indicates that the flat pric-
ing scheme used in the domestic long distance service in the US may, in many
cases, be good enough.

2) Thus far, when we refer to dynamic pricing schemes, we mean schemes
that take into account the current congestion information. We now consider an
even broader set of dynamic pricing schemes and show that the performance of
the static pricing scheme suffices for large systems. In this broader set of dynamic
pricing schemes, the network has prior knowledge of the individual service time of
the connections when they arrive. The question is whether we can gain additional
advantage by pricing the resource based on this additional information. Our
analysis shows that when the system grows large, this additional information
does not result in significant gain. We show that the individual service time is
inessential, and a static price based on the average service time suffices.

We believe that these results are important in understanding how to use
pricing as a mechanism for controlling real networks. The possibility of using
static and/or route-independent prices will give rise to more efficient and realistic
algorithms. Also, “pricing” here can be interpreted as a general signal which is
only loosely related to actual pricing. For example, pricing models have been
used as a mechanism to understand resource allocation and congestion control.
Therefore the results we present here will help us in better understanding how
to control large networks.

1.1 Related Work

The ideas of upper bounding the performance of the optimal dynamic policy
in a general loss network and showing that fixed/static policy approaches the
upper bound asymptotically have been reported in the past, for example, [10, 5],
and the reference therein. In their work, the objective to be optimized is a linear
function of the number of users in the system, i.e., the utility value. This objective
function maximizes the utilization of the network, but does not consider the
revenue generated, hence there is no notion of the price of a resource. Maximizing
the utility in a system corresponds to a linear optimization problem. However,
revenue maximization is more difficult to evaluate because it is a non-linear



optimization problem. Moreover, users can easily take advantage of the system
by providing an incorrect utility value when price is not an issue. Pricing is a
mechanism to coerce users into using the amount of resources that they need (or
can afford!). Recently, in [11], Paschalidis and Tsitsiklis have investigated the
problem of revenue maximization. Our work extends the result of [11] to general
loss networks and general service time distributions. Further, our proof of the
stationarity and ergodicity of such types of system with feedback control is new,
and of value in its own right. Our treatment of pricing schemes based on the call
duration sheds insight on the optimal dynamic policy.

The rest of the paper consists of three parts. In Sect. 2, we investigate the
case of a general loss network with Poisson call arrivals and general service time
distribution. In Sect. 3, we study the implication of individual service time on
the price and in Sect. 4, we conclude.

2 General Loss Network, General Service Time

2.1 Model

Consider an abstract network providing service to multiple classes of users. There
are L links in the network. Each link l = {1, ..., L} has capacity Rl. There are I
classes of users. For users of each class i, there is a route through the network.
The routes are characterized by a matrix {Cli , i = 1, ..., I, l = 1, ..., L}, where
Cli = 1 if the route of class i traverses link l, Cli = 0 otherwise. Each class i
connection consumes bandwidth ri. A call is rejected and lost if any of the links
it traverses does not have enough capacity to accommodate it, otherwise it may
be admitted to the network depending on the network policy.

Calls of class i arrive to the network according to a Poisson process with rate
λi(ui), which is a function of the price ui charged to users of class i. Here ui
is defined as the price per unit time of connection. We assume that λi(ui) is a
non-increasing function of ui. Therefore λi(ui) represents the price-elasticity of
class i. Once admitted, the call will hold the resources on all links it traverses
until it finishes service. The service time distribution is general with mean 1/µi.

The network provider can charge different prices for different classes of users.
A dynamic price is one where charges are based on the current utilization of the
resource, for example, how many calls of each class are already in service, and
how long they have been served, etc. On the other hand, a static price is one
which only depends on the class of the user and is indifferent to the current
utilization of the resource.

2.2 Stability of the Model

Our first result is regarding the stability of such a system. Note that our model
is very similar to a network of M/G/N/N queues. However, here we also have
“feedback” introduced by the price ui, which makes the model somewhat more
complex. The arrival rate is changing over time. It is not intuitive to even define



stationarity and ergodicity for the input! However, as we will see next the system
will be stationary and ergodic under very general conditions.

Proposition 1. Assume that the arrival rates λi(u) are bounded above by some
constant λ0 for all classes i, the service times are i.i.d. with finite mean and
independent of the arrivals. If the price is only dependent on the current state
of the system, then any stochastic process that is only a function of the system
state is asymptotically stationary and the stationary version is ergodic.

Proof. To show this, let us first look at the case of a single resource with users
coming from a single class i. To develop the result, we need to take a different but
equivalent view of the original model. In the original system, the arrival rate is a
function of the current price. In the new but equivalent system, the arrival rate is
constant but is thinned by a probability as a function of the price. Specifically, in
the new model, the arrivals are Poisson with constant rate λ0. Each arrival now
carries a value v that is independently distributed, with distribution function
P{v ≥ u} = λi(u)/λ0. The value v of each arrival is independent of the arrival
process and service times. If v < u, where u is the current price at the time of
arrival, the call will not enter the system. We can see that with this construction,
at each time instant, the arrivals are bifurcated with probability of success equal
to P{v ≥ u} = λi(u)/λ0. Therefore the resultant arrivals (after thinning) in the
new model are also Poisson with rate λ0P{v ≥ u} = λi(u). Thus the model is
equivalent to the original model.

To show stationarity and ergodicity, we need to construct a so called “re-
generative event” [1]. Let {τen, τ

s
n, vn}, −∞ < n < ∞, be the n-th arrival’s

interarrival time, service time, and value, respectively (note this is the arrival of
the Poisson process before bifurcation.) Let

Qn = 1{τ
s
n−1 < τen}+ 1{τ

s
n−2 < τen + τen−1}+ ...+ 1{τ

s
n−k <

k−1∑
j=0

τen−j}+ ...

Also let An = {Qn = 0}. Then An can be interpreted as the event that “all
potential arrivals before time n have left the system.” The event An is regen-
erative, that is, if event An occurs, then after time n, the system will evolve
independently from the past (this is true because we assume that the price is
only dependent on the current state of the network). The events An are station-
ary, i.e., if we define T as the shift operator, T{{τeni, τ

n
ni
, vni} ∈ Bi, i = 1...k} =

{{τeni+1, τ
n
ni+1, vni+1} ∈ Bi, i = 1...k}, then An = TnA0, and P{An} = P{A0}.

Note here we have eliminated the dependence on both vn and the price u. Now
to proceed with the proof, we need the following lemma.

Lemma 1. Let the sequence of service times τs be i.i.d., and E[τs] < ∞, then
P{A0} > 0.

Proof. See Appendix.

Now by Borovkov’s Ergodic Theorem, [1], the distribution of the state of
the system converges as n → ∞ to the distribution of the stationary process.
Ergodicity follows from the lemma below.



Lemma 2. The regenerative event An is positive recurrent, i.e., let
T1 = inf{Xn ∈ An}. Then E{T1|X0 ∈ A0} < ∞, where Xn is the state of the
system at time n.

Proof. See Appendix.

Since the regenerative event is positive recurrent, the state of the system is
both stationary and ergodic, i.e., any random process that depends only on the
state of the system is both stationary and ergodic [13].

For the case of multiple classes and multiple links, assume there are I classes.
We can construct the equivalent system in the following way: we first construct
Poisson arrivals with rate Iλ0. Each of these arrivals is assigned to class i with
probability 1/I, and each of these assignments is independent of each other. The
service time is then generated according to the service time distribution of class
i. Each class i arrival carries a value v that is independently distributed, with
distribution function Pi{v ≥ ui} = λi(ui)/λ0. The value v of each arrival is
independent of the arrival process and service times. If v < ui where ui is the
current price for class i at the time of the arrival, the call will not enter the
system. Following the same idea as in the first paragraph of the proof, it is easy
to show that such a constructed system is equivalent to the original system.

The initial Poisson arrivals with rate Iλ0 can be interpreted as “all potential
arrivals from all classes.” Let {τen, τ

s
n} be the n-th arrival’s interarrival time and

service time respectively. It then follows that the sequence of service times τsn
is again i.i.d. with finite mean, and it is independent of the arrivals. Hence, we
can construct the event A0 as before, which is now the event that “all potential
arrivals from all classes have left the system before time n.” Again this event is
the “regenerative event” for the system, and we can show that P{A0} > 0, and
A0 is positive recurrent. Therefore, the system is asymptotically stationary and
the stationary version is ergodic. ut

2.3 Dynamic Price, Static Price, and Upper Bound

In this section, we consider dynamic pricing schemes that are based on the
current occupancy of the network resources. Let n = {ni, i = 1, ..., I} represent
the state of the network, where ni is the number of users from class i that
are being served in the network. Let Ω denote the set of possible states, then
Ω = {n :

∑
i niriC

l
i ≤ R

l for all l}. Let n(t) denote the state at time t, then
the dynamic price for class i can be written as ui(t) = gi(n(t)), where gi is a
function from Ω to the set of real numbers R. Let g = {gi, i = 1, ..., I}.

The expected revenue achieved by any dynamic pricing scheme is given by

lim
T→∞

I∑
i=1

1

T
E

[∫ T

0

λi(ui(t))ui(t)
1

µi
dt

]
.

From stationarity and ergodicity established in the last section, we have

lim
T→∞

I∑
i=1

1

T
E

[∫ T

0

λi(ui(t))ui(t)
1

µi
dt

]
=

I∑
i=1

E

[
λi(ui(t))ui(t)

1

µi

]
,



where the right hand side is independent of t (because of stationarity).
Therefore, the optimal dynamic policy is

J∗ = max
g

I∑
i=1

E

[
λi(ui(t))ui(t)

1

µi

]
.

On the other hand, for static pricing schemes, the expected revenue per unit
time is:

J0 =
I∑
i=1

λi(ui)ui
1

µi
(1− Ploss,i[u]),

where Ploss,i[u] is the probability of loss for class i when the price vector is
u = [u1, ..., uI ]. Therefore the optimal static policy is

Js = max
u

I∑
i=1

λi(ui)ui
1

µi
(1− Ploss,i[u]).

By definition Js ≤ J∗.
Here we show that the upper bound in [11] is also an upper bound for our

case. For convenience, we write ui as a function of λi. Let Fi(λi) = λiui(λi)
1
µi

.
Let Jub be the optimal value of the following nonlinear programming problem:

max
λi

∑
i

Fi(λi) (1)

subject to λi = µini for all i (2)∑
i

niriC
l
i ≤ R

l for all l.

Proposition 2. If the functions Fi are concave, then J∗ ≤ Jub.

Proof. We follow the same method as in the proof of Theorem 6 in [11]. Consider
an optimal dynamic pricing policy. Let ni(t) be the number of calls of class i in
the system at time t. View λi(t) and ni(t) as random variables. From Little’s
Law, we have

E[ni(t)] = E[λi(t)]
1

µi
.

At any time t,
∑
i ni(t)riC

l
i ≤ R

l for all l. Therefore

∑
i

E[ni(t)riC
l
i ] ≤ E

[∑
i

ni(t)riC
l
i

]
≤ Rl for all l. (3)

Therefore λi = E[λi(t)] and ni = E[ni(t)] satisfy the constraint of Jub.
Using the concavity of F and Jensen’s inequality, we have

Jub ≥
∑
i

Fi (E[λi(t)]) ≥
∑
i

E [Fi(λi(t))] = J∗.

ut



2.4 The Many Sources Regime

Consider the regime of many small users. Let c ≥ 1 be a scaling factor. We
consider a series of systems scaled by c. The scaled system has capacity Rc = cR,
and the arrivals of each class i has rate λci (u) = cλi(u). Let J∗,c, Jcs and Jcub
be the dynamic revenue, static revenue, and upper bound, respectively, for the
c-scaled system.

Proposition 3. If the functions Fi are concave, then

lim
c→∞

1

c
Jcs = lim

c→∞

1

c
J∗,c = lim

c→∞

1

c
Jcub.

Proof. Firstly, Jcub is obtained by maximizing
∑
i cλiui(λi)/µi, subject to the

constraint
∑
i cλiriC

l
i/µi ≤ cRl for all l. Therefore the optimal price is inde-

pendent of c, and Jcub = cJub.
Now consider Jcs , for every static price uci falling into the constraint of Jub,

i.e., ∑
i

cλi(u
c
i)riC

l
i

µi
≤ cRl for all l, (4)

let Jc0 denote the revenue under this static price. We will show that as c→∞,

lim
c→∞

Jc0
c

=
∑
i

λi(u
c
i )u

c
i

1

µi
. (5)

If we take the optimal price of the upper bound as our static price, then the
right hand side of (5) is exactly the upper bound. Therefore,

lim
c→∞

Jcs
c
≥ lim
c→∞

Jc0
c
≥ Jub.

On the other hand, Jcs ≤ J
∗,c ≤ cJub, and the result follows.

Now we show (5). The key idea is to use an insensitivity result from [3]. In
[3], Burman et. al. investigate a blocking network model, where a call instanta-
neously seizes channels along a route between the originating and terminating
node, holds the channels for a randomly distributed length of time, and frees
them instantaneously at the end of the call. If no channels are available, the call
is blocked. When the arrivals are Poisson and the holding time distributions are
general, the authors in [3] show that the blocking probabilities are still in prod-
uct form, and are insensitive to the call holding-time distributions. This means
that they depend on the call duration only through its mean.

Our system is a special case of [3]. Let n = {nj, j = 1, ..., I} be the vector
denoting the state of the system, and let λj be the arrival rate of class j under
the static price ucj, i.e., λj = cλj(u

c
j). Let ρj = λj/µj. From [3], we have the

blocking probability of calls of class i as:

P closs,i =

∑
n∈Γ ′

∏
j

ρj
nj/nj!∑

n∈Γ0

∏
j

ρ
nj
j /nj!

, (6)



where

Γ ′ =

∑
j

njrjC
l
j ≤ cR

l for all l and there exists an l

such that Cli = 1 and
∑
j

njrjC
l
j > cRl − ri


Γ0 =

∑
j

njrjC
l
j ≤ cR

l for all l

 .

Since from (6) we can see that the blocking probability is exactly the same
as in the case of exponential service times, we now only need to look at the case
of exponential service times.

Consider an infinite channel system with the same arrival rate and holding-
time distribution. Let nj,∞ be the number of flows of class j in the infinite
channel system. Further let n∞ = {nj,∞, j = 1, ..., I} be the vector denoting the
state of the infinite channel system. We can then rewrite P closs,i as

P closs,i = P c,∞Γ ′ /P c,∞Γ0
,

where

P c,∞Γ0
=

∑
n∞∈Γ0

∏
j

ρ
nj,∞
j /nj,∞!

e
∑
j ρj

and P c,∞Γ ′ =

∑
n∞∈Γ ′

∏
j

ρ
nj,∞
j /nj,∞!

e
∑
j ρj

are the probabilities that {n∞ ∈ Γ0} and {n∞ ∈ Γ ′}, respectively in the infinite
channel system.

We will use the estimate of P c,∞Γ0
and P c,∞Γ ′ to bound P closs,i. In the infinite

channel system, there is no constraint. Therefore the number of flows nj,∞ in
class j is Poisson (from well known M/M/∞ result) and independent of the
number of flows in other classes. We can view each nj,∞ as a sum of c independent
random variables.

First we calculate the first and second order statistics of nj,∞.

E[nj,∞] = c
λj

µj
, σ2[nj,∞] = c

λj

µj
.

Now by invoking the Central Limit Theorem, as c→∞, we have

nj,∞ − c
λj
µj√

c
→ N(0,

λj

µj
) in distribution. (7)

Let xc,l∞ ,
∑
j nj.∞rjC

l
j be defined as the amount of resource consumed at

link l in the infinite channel system. We have

E[xc,l∞ ] = c
∑
j

λj

µj
rjC

l
j , σ2[xc,l∞ ] = c

∑
j

λj

µj
r2
jC

l
j .



Therefore 
xc,l∞
c −

∑
j
λj
µj
rjC

l
j√

1
c

→ N(0, Q) in distribution, (8)

where Q = {Qmn}, Qmn =
∑
j

λj

µj
r2
jC

m
j C

n
j .

Now since
∑
j c

λj
µj
rjC

l
j ≤ cR

l for all l (4),

lim inf
c→∞

P c,∞Γ0
= lim inf

c→∞
P

{
xc,l∞
c
≤ Rl, for all l

}

≥ lim inf
c→∞

P

xc,l∞c ≤∑
j

λj

µj
rjC

l
j , for all l

 (by (4))

≥ lim inf
c→∞

P

{
nj,∞ ≤ c

λj

µj
, for all j

}
(by definition of xc,l∞)

= lim inf
c→∞

∏
j

P

{
nj,∞ ≤ c

λj

µj

}
≥ 0.5I (by (7)) ,

lim sup
c→∞

P c,∞Γ ′ = lim sup
c→∞

P

{
xc,l∞
c
≤ Rl, for all l, and there exists l

such that Cli = 1 and
xc,l∞
c

> Rl −
ri

c

}
≤ lim sup

c→∞

∑
l

P

{
xc,m∞
c
≤ Rm, for all m, and

xc,l∞
c

> Rl −
ri

c

}
≤ lim sup

c→∞

∑
l

P

{
Rl −

ri

c
<
xc,l∞
c
≤ Rl

}
≤ lim sup

c→∞

∑
l

1
√

2π

ri
c√

1
c

∑
j
λj
µj
r2
jC

l
j

(by (8)) (9)

=
∑
l

0 = 0.

Therefore
lim
c→∞

P closs,i = lim
c→∞

P c,∞Γ ′ /P c,∞Γ0
= 0,

and

lim
c→∞

Jcs
c
≥ lim
c→∞

Jc0
c

= lim
c→∞

∑
i

λi(u
c
i )u

c
i

1

µi
(1− P closs,i) =

∑
i

λi(u
c
i)u

c
i

1

µi
.

Thus the result follows. ut



The above proof not only shows that the limit converges, but also shows that
the speed of convergence is at least 1√

c
. To see this, we go back to (9). The

convergence is the slowest when (4) is satisfied with equality, in which case∑
l

1
√

2π

ri
c√

1
c

∑
j
λj
µj
r2
jC

l
j

≤
∑
l

1
√

2π

1
√
c

ri√∑
j
λj
µj
rjC

l
j mini ri

In fact, we can show that if the maximizing price of the upper bound falls
inside the constraint (4), (instead of at the border), then the speed of convergence
is exponential.

Here we report a few numerical results. Consider the network in Fig. 1. There
are 4 classes of flows. Their routes are shown in the figure. Their arrivals are
Poisson. The function λi(u) for each class i is of the form

λi(u) =

[
λmax,i

(
1−

u

umax,i

)]+

,

i.e., λi(0) = λmax,i and λi(umax,i) = 0 for some constants λmax,i and umax,i.
The price elasticity is then

−
λ′i(u)

λi(u)
=

1/umax,i
1− u/umax,i

, for 0 < u < umax,i.

The mean holding time is 1/µi. The arrival rates, price elasticity, service rates
µi, and bandwidth requirement are shown in Table 1.

L1

L2 L5

L3

L4
Class 1

Class 2

Class 3

Class 4

Fig. 1. The network topology

First, let us consider a base system where the 5 links have capacity 10, 10, 5,
15, and 15 respectively. The solution of the upper bound (1) is shown in Table 2.
The upper bound is Jub = 127.5. We then use simulations to verify how tight this
upper bound is and how close the performance of the static pricing policy can
approach this upper bound when the system is large. We use the price induced



Table 1. Traffic and price parameters of 4 classes

Class 1 Class 2 Class 3 Class 4

λmax,i 0.01 0.01 0.02 0.01
umax,i 10 10 20 20

Service Rate 0.002 0.001 0.002 0.001
Bandwidth 2 1 1 2

Table 2. Upper bound in the constrained case, Jub = 127.5

Class 1 Class 2 Class 3 Class 4

ui 9.00 5.00 12.00 10.00
λi 0.00100 0.00500 0.00800 0.00500

λi/µi 0.500 5.00 4.00 5.00

by the upper bound calculated above as our static price. We first simulate the
case when the holding time distributions are exponential. We simulate c-scaled
versions of the base network where c ranges from 1 to 1000. For each scaled
system, we simulate the static pricing scheme, and report the revenue generated.
In Fig. 2 we show the normalized revenue J0/c as a function of c.

As we can see, as the system grows large, the performance gap between the
static pricing scheme and the upper bound gets smaller and smaller. Although
we do not know what the optimal dynamic policy is, its normalized revenue
J∗/c must lie somewhere between that of the static policy and the upper bound.
Therefore the performance gap between the static pricing scheme and the op-
timal dynamic scheme also gets very small. For example, when c = 10, which
corresponds to the case when the link capacity can accommodate around 100
flows, the performance gap between the static policy and the upper bound is less
than 7%. Further the gap decreases as 1/

√
c.

Now, we change the capacity of link 3 from 5 to 15. The solution of the upper
bound is shown in Table 3.

Table 3. Upper bound in the unconstrained case, Jub = 137.5

Class 1 Class 2 Class 3 Class 4

ui 5.00 5.00 10.00 10.00
λi 0.00500 0.00500 0.0100 0.00500

λi/µi 2.50 5.00 5.00 5.00
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Fig. 2. The static pricing policy compared with the upper bound: the constrained case.
The dotted line is the upper bound.

The upper bound is J∗ = 137.5. The simulation result (Fig. 3) confirms again
that the performance of the static policy approaches the upper bound when the
system is large. At c = 10, the performance gap between the static policy and the
upper bound is less than 10%. Also note that when the system is in an uncon-
strained state, the price in our static scheme is the same for users with the same
price-elasticity even if they traverse different routes. For example, classes 1 & 2
and classes 3 & 4 have the same price (and price-elasticity) but have different
routes. In general, if there is no significant constraint of resources, the maximiz-
ing price structure will be independent of the route of the connection. To see
this, we go back to the formulation of the upper bound (1). If the unconstrained
maximizer of

∑
i Fi(λi) satisfies the constraint, then it is also the maximizer of

the constrained problem. In this case the price only depends on the function
ui(λi), which represents the price elasticity of the users. Readers can verify that
in our second example when the capacity of link 3 is 15, if we lift the constraints
in (2), and solve the upper bound again, we will get the same result. Therefore
in our example, the optimal price will only depend on the price elasticity of each
class and not on the specific route. Since class 1 has the same price elasticity as
class 2, its price is also the same as that of class 2, even though it traverses a
longer route through the network. That also explains why in some scenarios, for
example, state-to-state long distance in US, prices are flat.

We also simulate the case when the holding time distribution is deterministic.
The result is the same as that of exponential holding time distribution. The case
with heavy tail holding time distribution is more complicated. Here is a result
when the holding time distribution is Pareto, i.e., the cumulative distribution
function is 1− 1/xa, with a = 1.5. This distribution has finite mean but infinite
variance. We use the same set of parameters as the constrained case above,
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Fig. 3. The static pricing policy compared with the upper bound: the unconstrained
case. The dotted line is the upper bound.

and let the Pareto distribution have the same mean as that of the exponential
distribution.

In Fig. 4, we can see that even with the Pareto distribution the performance
of the static policy still follows the same trend as the case of exponential holding
time distribution. It demonstrates that our result is indeed invariant of the hold-
ing time distribution. However, we also note that if the holding time distribution
is Pareto with infinite variance, the sample path convergence becomes very slow.
The problem is even worse when the system is large. We will briefly discuss this
in the conclusion.

3 Pricing on the Incoming Traffic Parameters

Our previous result shows that dynamic pricing based on the instantaneous
utilization does not provide us with significant improvement over static pricing,
when the system is large. The question to then ask is: If we base our dynamic
price on some other factor, can we outperform the static pricing scheme? In this
section, we investigate pricing based on another factor, namely the duration of a
connection. Thus, here we look at the case when the dynamic pricing scheme, in
addition to the instantaneous load, also has prior knowledge of the call duration.

For convenience we restrict ourselves to the single resource and single class
model. The case of multiple resources and multiple classes can be treated anal-
ogously. Assume flows consume unit bandwidth. The only difference from the
system studied in Sect. 2 is that now the provider tries to price the incoming call
according to additional information, i.e., the duration of the call, (here we as-
sume that each connection request knows how long it has to last). Therefore the
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Fig. 4. The static pricing policy compared with the upper bound: the constrained case
with Pareto distribution. The dotted line is the upper bound. ‘x’ and ‘+’ are 0.99
confidence interval.

price becomes u(t, T ) = g(n(t), T ), where T reflects the length of the incoming
call and g is a function from Ω ×R to R.

The question again is: what is the relationship between such a dynamic pric-
ing scheme and a static pricing scheme? The static pricing scheme can now either
take T into consideration (i.e., price is u(T )), or not (i.e., price is u, a constant).
In this section we will show that the performance of the static pricing scheme
using price independent of T will approach that of the optimal dynamic pricing
scheme when the system is large. Therefore there is really no incentive to price
according to individual holding time in a large system.

We consider the special case when the range of service time can be partitioned
into slots [Tk, Tk+∆Tk), k = 1, 2, ..., and at each time instant the price is constant
within each slot, i.e., u(t, T ) = uk(t), u(T ) = uk, for T ∈ [Tk, Tk +∆Tk).

Let T̃k = E {T |T ∈ [Tk, Tk +∆Tk)}, and let pk = P{T ∈ [Tk, Tk + ∆Tk)}.
Our idea is to decompose the original arrivals into a spectrum of substreams.
Substream k has service time [Tk, Tk + ∆Tk). Its arrival rate is thus λ(u)pk.
Here, we assume that the price-elasticity of calls is independent of T . Therefore
the arrival of each substream k is still Poisson. The expected dynamic revenue
is then given by

J∗ = max
g
E

[
∞∑
k=1

λ(uk(t))uk(t)T̃kpk

]
.

The expected static revenue is

Js = max
uk

∞∑
k=1

λ(uk)ukT̃kpk (1− Ploss).



where Ploss is the probability that a call is blocked given the static prices uk.
Note that this probability is independent of k.

Let λk = λ(uk). Again we write uk as a function of λk. Also let F (λk) =
λku(λk). We have,

Proposition 4. If F is concave, then J∗ is upper bounded by Jub, which is the
solution of the following optimization problem:

Jub = max
λk

∞∑
k=1

F (λk)T̃kpk (10)

subject to
∞∑
k=1

λkT̃kpk ≤ R. (11)

Also when the system is scaled by c, i.e., λc(u) = cλ(u) and Rc = cR, we have
limc→∞ J

c
s/c = limc→∞ J

∗,c/c = limc→∞ J
c
ub/c. Hence, the static price of the

form u(T ) = uk, T ∈ [Tk, Tk +∆Tk) suffices.

Proof. If we view each substream as a class, the only difference from the system
we studied in last section is that it has countably infinite number of classes. Since
we can still use Little’s Law for each substream, the first part of this proposition
can be shown by using the same idea as in the proof of Proposition 2 and by
invoking the Monotone Convergence Theorem in (3).

In order to show the second part, it suffices to show that when we use the
price induced by the upper bound as our static price, Ploss → 0, as c→∞. Note
that as far as Ploss is concerned, the system can be viewed as having only a single
class. Therefore, we can reuse the result in the last section. Compared with a
system with no pricing control, the arrivals in this system are “weighted” by the
static price uk according to their holding times. Hence, the arrival process is still
Poisson, with arrival rate λ′ =

∑∞
k=1 λ(uk)pk, and the holding time distribution

is i.i.d. with mean T ′ =
(∑∞

k=0 T̃kλ(uk)pk
)
/λ′. Because the constraint (11) is

satisfied by such an induced static price, we have λ′T ′ ≤ R. Using the same
techniques as in the proof of Proposition 3, we can show that Ploss → 0 as
c→∞. Then, the result follows. ut

Next we study the form of the optimal price uk which maximizes the upper
bound (10). We construct another bound J ′ as the solution of the following
optimization problem:

J ′ = max
λ

F (λ)
∞∑
k=1

T̃kpk (12)

subject to λ

∞∑
k=1

T̃kpk ≤ R.

If J ′ = Jub, we will be able to conclude that the optimal λk in (10) should be
independent of k, i.e., it is independent of the duration T ! Therefore the price
u(T ) should also be independent of T . We now show that this is indeed the case.



From the definition of Jub, J
′ ≤ Jub. It remains to show that J ′ ≥ Jub. For

any set of λk that satisfies the constraint of (10), let

λ =

∑∞
k=1 λkT̃kpk∑∞
k=1 T̃kpk

.

Then λ will satisfy the constraint of (12). Since F is concave, we have

F (λ) ≥

∑∞
k=1 F (λk)T̃kpk∑∞

k=1 T̃kpk
.

Therefore J ′ ≥ Jub.
Now λk is independent of k, and hence, so is uk. We conclude that, in the

asymptotic regime, not only is there no incentive to price according to instanta-
neous utilization, but there is also no incentive to price based on the duration
of the individual calls! Again, we recall the previous result, that the speed of
convergence for this invariance result to hold is at least 1/

√
c.

Our above result suggests that in a very broad sense, the optimal price needs
only to take care of one parameter, that is, the traffic class (in a sense the total
cost also depends on duration, however the relationship is linear). Note the above
result is obtained under the assumption that the arrival elasticity is independent
of T . If this is not true, even though the performance of our static price in the
form of u(T ) will still approach the performance of the optimal dynamic scheme,
u(T ) will not be a constant. In this case, we may need to treat calls of different
duration as different classes.

4 Conclusion and Future Work

In this work we study pricing as a mechanism to control large networks. Our
model is based on revenue maximization in a general loss network with Poisson
arrivals and arbitrary holding time distributions. In dynamic pricing schemes,
the network provider can charge different prices to the user according to the
varying level of utilization in the network. We prove that this type of a sys-
tem with feedback is asymptotically stationary and ergodic. We then analyze
the performance of the static pricing scheme compared with that of the optimal
dynamic pricing scheme. We prove that there is an upper bound on the perfor-
mance of dynamic pricing schemes, and that the performance of an appropriately
chosen static pricing scheme will approach that of the optimal dynamic pricing
scheme, when the system is large. Under certain condition, this static price will
only depend on the price-elasticity of each class, while being independent of the
route of the call.

We then extend the result to the case when a network provider can charge
a different price according to an additional factor, i.e., the individual holding
time. We develop appropriate static pricing schemes for this case and show that
the static scheme that is independent of the individual holding time performs as
well as the optimal dynamic schemes, when the system is large.



The above results have important implication in the networks of today and
in the future. Compared with dynamic pricing schemes, static pricing schemes
have some desirable properties. They are less computationally intensive, and
consume less network bandwidth. Their performance will not degrade as the
network delay grows. Our results show that when the system is large, as in
broadband networks, the difference between static pricing schemes and dynamic
pricing schemes is minimal. We are currently investigating how to use these
results to develop efficient and realistic algorithms to control large networks.

We also note that when the holding time distribution is heavy tailed, the
sample path convergence to the mean becomes slow. We think this is caused
by the fact that with the Pareto distribution, some flows will have very large
duration. This fact has two implications on the sample path convergence. One
is that the average of the Pareto distributed random variables converges very
slowly to their mean, because of a small number of very large samples. The other
is that the queue dynamics tend to have correlation over a very large timescale,
which leads to very slow convergence of statistics based on queue average.

This indicates that the long term average may not be practically meaningful
in such cases. The transient behavior might be more important, and deserves to
be handled more carefully.

5 Appendix

Proof (of Lemma 1). We follow [1]. To show P{A0} > 0 , we note that for some
a > 0,m ≥ 1,

P{A0} ≥ P

{τe0 ≥ a}
k=m⋂
k=1

{
τs−k ≤ a

} ∞⋂
k=m+1

τs−k ≤
−1∑

j=−k+1

τej




= P{τe0 ≥ a}
m∏
k=1

P{τs−k ≤ a}P


∞⋂

k=m+1

τs−k ≤
−1∑

j=−k+1

τej


 .

This can be interpreted as the following: A0 is the event that {Q0 = 0}, i.e.,
all potential arrivals before time 0 has left the system. The event on the right
of the inequality above says that, of all the potential arrivals before time 0, the
last arrival arrives before a time interval of a, (τe0 ≥ a); the last m arrivals all
have service time less than a; and finally, the rest of the arrivals leave the system
before time −1. Obviously this is a smaller event than A0. From now on we will
focus on this event only.

Now choose a such that P{τs−k ≤ a} = q > 0, we also have
P{τen ≥ a} = p > 0, since the interarrival times are exponential.

Then

P{A0} ≥ pq
mP


∞⋂

k=m+1

τs−k ≤
−1∑

j=−k+1

τej


 .



Now let B be the event inside the bracket on the right hand side. We only
need to show P{B} > 0 for some m.

Choose b < E{τen}. Then

P{Bc} = P


∞⋃

k=m+1

τs−k >
−1∑

j=−k+1

τej




≤ P


∞⋃

k=m+1


−1∑

j=−k+1

τej < b(k − 1)


∞⋃

k=m+1

{
τs−k ≥ b(k − 1)

}
≤ P


∞⋃

k=m+1


−1∑

j=−k+1

τej < b(k − 1)


+ P

{
∞⋃

k=m+1

{τs−k ≥ b(k − 1)}

}
.

Now as m→∞, the first term goes to

P

⋂
m

∞⋃
k=m+1


−1∑

j=−k+1

τen < b(k − 1)


 = P


−1∑

j=−k+1

τen < b(k − 1) i.o.

 = 0

by Strong Law of Large Numbers (since b < E{τen}).
On the other hand, as m→∞, the second term goes to

P

{
∞⋃

k=m+1

{τs−k ≥ b(k − 1)}

}
≤

∞∑
k=m+1

P{τs−k ≥ b(k − 1)} → 0

since E{τsn} <∞.
Therefore we can choose m large enough such that P{Bc} < 1/2. And

P{A0} ≥ pq
mP{B} ≥ pqm1/2 > 0.

ut

Proof (of Lemma 2). First note that

P{Xn ∈ An at least once} = P

{
∞⋃
1

An

}
.

Again let T be the shift operator, Let B =
⋃∞

1 An, then TB ⊂ B, and P{TB} =
P{B}, because B is also a stationary event. Therefore TB and B differ by a set
of measure zero, B is an invariant set. Since the arrivals are ergodic, P{B} =
0 or 1. However, since P{B} ≥ P{A0} > 0, therefore P{B} = 1, i.e., P{Xn ∈
An at least once} = 1.

By [2], Prop 6.38.

E{T1|X0 ∈ A0} =
1

P{A0}
<∞.

ut
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