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Abstract—We study task assignment in online service platforms
where un-labeled clients arrive according to a stochastic process
and each client brings a random number of tasks. As tasks are
assigned to servers, they produce client/server-dependent random
payoffs. The goal of the system operator is to maximize the
expected payoff per unit time subject to the servers’ capacity
constraints. However, both the statistics of the dynamic client
population and the client-specific payoff vectors are unknown
to the operator. Thus, the operator must design task-assignment
policies that integrate adaptive control (of the queueing system)
with online learning (of the clients’ payoff vectors). A key
challenge in such integration is how to account for the non-
trivial closed-loop interactions between the queueing process and
the learning process, which may significantly degrade system
performance. We propose a new utility-guided online learning
and task assignment algorithm that seamlessly integrates learning
with control to address such difficulty. Our analysis shows that,
compared to an oracle that knows all client dynamics and
payoff vectors beforehand, the gap of the expected payoff per
unit time of our proposed algorithm in a finite T horizon is
bounded by β1/V + β2

√
logN/N + β3N(V +1)/T , where V is

a tuning parameter of the algorithm, and β1, β2, β3 only depend
on arrival/service rates and the number of client classes/servers.
Through simulations, we show that our proposed algorithm sig-
nificantly outperforms a myopic matching policy and a standard
queue-length based policy that does not explicitly address the
closed-loop interactions between queueing and learning.

I. INTRODUCTION

Driven by advances in communication and computing, new
generations of online service platforms have transformed busi-
ness models in many domains, from online labor market of
freelance work, online hotel rental, online education, crowd-
sourcing, to online advertising and many more. By bringing
unprecedented numbers of clients and service providers to-
gether, these online service platforms greatly increase access
to service, lower the barrier-to-entry for competition, improve
resource utilization, reduce cost and delay, and thus enhance
the overall well-being of society and our daily life.

One of the key control decisions in operating such online
service platforms is how to assign clients to servers to attain
the maximum system benefit. However, such decisions are
challenging because there often exists significant uncertainty
in both client payoffs and client dynamics. First, there is
significant uncertainty in the quality, i.e., payoff, of a particular
assignment between a client (needing service) and a server
(providing service). For example, in online ad platforms,
when an ad from a particular ad campaign is displayed in

response to a search request for a given keyword, the click-
through rate is unknown in advance [1]. Similarly, in crowd-
sourcing, the efficiency of completing a particular task by
a given worker is unknown a priori [2]. The online service
platforms have to learn the payoff parameters from the payoff
feedback of past assignments. Second, the population of clients
is often highly dynamic. For example, ad campaigns arrive
and depart constantly in online ad platforms [3]; so do
requestors in crowd-sourcing. The statistics of such arrivals
and departures are often unknown beforehand, resulting in
uncertain queueing dynamics. Further, when a new client
arrives, it brings a new set of payoff parameters, which may
need to be learned from scratch. Therefore, the operator of
these platforms must not only continuously learn the payoffs
associated with each new client, but also adaptively control the
assignment and resource allocation in response to the uncertain
arrival/departure dynamics. Thus, it is imperative to study both
online learning (of uncertain payoffs) and adaptive control
(of uncertain queueing dynamics) in a unified framework to
achieve optimal performance in such a dynamic and uncertain
environment.

Motivated by these features, in this paper we focus on the
following queueing system model that incorporates uncertainty
in both client dynamics and payoffs. Note that on many online
service platforms, the operator often has enough aggregate
information on the servers’ features, and servers arrive at and
depart from the system at a slower time scale than clients [4],
[5], [6]. Thus, in this work we assume that there are a fixed
number of servers. Clients of multiple classes arrive at the
system with unknown arrival rates. Using the earlier examples,
a client may represent an ad campaign or a crowd-sourcing
requestor. Each client brings a random number of tasks, which
may correspond to the ads from the same ad campaign or the
crowd-sourcing tasks of the same requestor. Associated with
each class, there is a payoff vector over all servers. As the
tasks of a client are assigned to different servers, they produce
random payoff feedback with mean given by the underlying
class-dependent payoff vector. However, neither the class label
of a client nor its payoff vector is known to the operator. Thus,
the operator has to learn the payoff vector of a new client from
the random payoff feedback, and then decide how to match
clients with servers.

We note that the aforementioned model differs significantly
from both classical online learning problems and adaptive



control problems in the literature. On the one hand, while
online learning has often been studied as a MAB (multi-
armed bandits) problem, most existing studies ignore the client
dynamics and focus on either one client [7], [8], [9], [10]
or a fixed set of clients [11], [12], [13], [14], [15]. Our
model is also different from open-bandit processes (where
arms are dynamic and follow a Markov chain with known
statistics [16]), and contextual bandits (which assume known
label, i.e., context, for each incoming client [17]). On the other
hand, although adaptive control and online matching policies
under uncertain dynamics have been provided, e.g., for online
ad [3], [18] and/or queueing networks in general [19], [20],
[21], [22], these studies usually assume that the payoff vectors
of the clients are known.

The main contribution of this paper is therefore to develop
new schemes that integrate online learning with adaptive
control to address uncertainty in both payoff parameters and
client dynamics. We propose a new utility-guided online
learning and task assignment algorithm that can achieve near-
optimal system payoff even compared to an “oracle” that
knows the statistics of client dynamics and all clients’ payoff
vectors beforehand. Specifically, we show that the gap between
the expected payoff per unit time achieved by our proposed
algorithm and that achieved by the “oracle” in a finite T
horizon is at most the sum of three terms: the first one is
of the order 1/V where V is a parameter of the proposed
algorithm that can be taken to a large value; the second one
is of the order

√
logN/N where N is the average number

of tasks per client; the third one is of the order N(V + 1)/T
which decreases as the time T increases. These three terms
have the following natural physical interpretations. The first
1/V term is due to the uncertainty in client arrival process;
the second

√
logN/N term is because of learning from noisy

payoff feedback; the third N(V +1)/T term characterizes the
payoff loss incurred by the backlogged clients.

Our proof builds upon the standard Lyapunov drift tech-
nique [20], [22], [23], [24] and finite-time regret analysis [8];
however, we make two major innovations, which could be of
independent interest. First, to obtain

√
logN/N loss in payoff

learning, we combine a martingale argument and a comparison
argument to capture both the impact of the payoff estimation
errors on the queueing dynamics, and the impact of congestion
on the rate of payoff learning. Second, to derive the NV/T
loss in finite time horizon, we upper bound the mean number
of backlogged clients in the system by establishing a coupling
between the current system and a Geom/Geom/m queue.

There are a few recent studies on integration of learning and
queueing [4], [5], [6], [25], [26]. Compared to these related
studies, our work is significantly different in the following
aspects. First of all, while the previous work [4], [6] also
investigates payoff loss in queueing systems, its analysis
focuses exclusively on the stationary setting. In contrast, our
work carefully characterizes the transient behavior of the
system and obtains a payoff gap which holds for any finite time
horizon, providing important design insight when real systems
either operate at early phases or experience recent changes of
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Fig. 1. Uncertain client dynamics and payoffs.

statistics. Moreover, policies in [4], [5], [6] explicitly divide
exploration (where learning occurs) and exploitation (where
queueing and control occur) into two stages, by assuming per-
fect knowledge of various uncertainty, such as class-dependent
payoff vectors, the number of tasks per client, and/or “shadow
prices” (which in turn require knowledge of the statistics of
the client arrival dynamics). On the contrary, our algorithm
requires no such prior knowledge and seamlessly integrates
exploration, exploitation, and dynamic assignment at all times.
Finally, our proposed algorithm can scale to large systems
with many clients and servers, which is in sharp contrast to
the previous work in both [25] (which only deals with two
types of clients) and [26] (which uses an exponential number
of virtual queues).

The rest of the paper is organized as follows. The system
model is defined in Section II. Our proposed algorithm and
main analytical results are presented in Section III. Simulation
results are shown in Section IV, and key proof steps are
sketched in Section V. Finally, we conclude and discuss
possible future directions.

II. SYSTEM MODEL

We model an online service platform as a multi-server
queueing system that can process tasks from a dynamic
population of clients, as shown in Fig. 1. Time is slotted
and the system is empty at time 0. At the beginning of
each time-slot t ≥ 1, a new client arrives with probability
λ/N , independently of other time-slots. Upon arrival, the
client carries a random number of tasks that is geometrically
distributed with mean N . Note that in this way the total rate
of arriving tasks is λ. A client leaves the system once all of
her tasks have been served. We assume that each client must
belong to one of I classes. There is a probability distribution
[ρi, i = 1, ..., I] with

∑I
i=1 ρi = 1, such that a newly-arriving

client belongs to class i with probability ρi, independently of
other clients. Let S = {1, 2, . . . , J} denote the fixed set of
servers. Each server j ∈ S can serve exactly µj tasks in a
time-slot. Let µ =

∑J
j=1 µj .

Each class i is associated with a payoff vector [C∗ij , j =
1, ..., J ], where C∗ij ∈ [0, 1] is the expected payoff when a
task from a class-i client is served by server j. Note that all
tasks associated with a client have the same payoff vector.
However, the arrival rate λ, the class distribution ρi, the
expected number N of tasks per client, the class label of a
new client, her total number of tasks, and her payoff vector are



all unknown to the system. The system does know the identity
of the servers and their service rates µj . Another important
quantity that the system can learn from is that, after a task
from a client is served by server j, the system can observe a
noisy payoff of the task. Conditioned on the task being from
a class-i client, this noisy payoff is assumed to be a Bernoulli
random variable with mean C∗ij , (conditionally) independently
of other tasks and servers.

The goal of the system is then to use the noisy payoff
feedback to learn the payoff vectors of the clients and to assign
their tasks to servers in order to maximize the total system
payoff. Such decisions must be adaptively made without
knowing the statistics of the client arrivals and departures. At
each time-slot t, let n(t) be the total number of clients in the
system (including any new arrival at the beginning of the time-
slot). (Note that n(0) = 0.) Let plj(t) be the expected number
of tasks from the l-th client that are assigned to server j in
this time-slot, l = 1, ..., n(t). Then, the decision at time t of a
policy Π maps from the current state of the system (including
all payoff feedback observed before time t) to the quantities
plj(t). Such decisions lead to the evolution of the following
two types of queues. First, let qj(t) denote the number of tasks
waiting to be served at server j at the beginning of time-slot
t. Let Y lj (t) be the actual number of tasks from the l-th client
that are assigned to server j at time-slot t, with mean given
by plj(t). The dynamics of the task-queue qj(t) can then be
described as

qj(t+ 1) = max

qj(t) +

n(t)∑
l=1

Y lj (t)− µj , 0

 . (1)

Second, let ni(t) be the number of class-i clients in the system
at the beginning of time t. (We caution that, while the operator
sees n(t), ni(t) cannot be directly observed because the class
labels of the clients are unknown.) The dynamics of the client-
queue ni(t) can be described as

ni(t+ 1) = ni(t) + Ui(t+ 1)−Di(t), (2)

where Ui(t + 1) is the number of client arrivals of class i
at the beginning of time t + 1 and is Bernoulli with mean
λi/N , and Di(t) is the number of client departures of class i
at time-slot t. Because the total number of tasks per client is
assumed to be geometrically distributed, conditional on [Y lj (t)]
and [ni(t), i ∈ I], the departure [Di(t), i ∈ I] is independent
of everything else.

The expected payoff per unit time of such a policy Π for a
given time horizon T is defined as:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j

 , (3)

where i(l) denotes the underlying (but unknown) class of the
l-th client. In contrast, if an “oracle” knew in advance the
statistics of the arrival and departure dynamics (i.e., λ, ρi and
N ), as well as the class label and payoff vector of each client,

one can formulate the following linear program:

R∗ = max
[pij ]≥0

λ

I∑
i=1

ρi

J∑
j=1

pijC
∗
ij (4)

subject to λ

I∑
i=1

ρipij ≤ µj for all servers j, (5)

J∑
j=1

pij = 1 for all classes i, (6)

where pij is the probability that a task from a class-i client is
assigned to server j. It is not difficult to show that R∗ provides
an upper bound for the expected payoff per unit time RT (Π)
under any policy Π [4], [6]. Thus, our goal is to achieve a
provably small gap R∗ −RT (Π) for any given time T .

III. DYNAMIC ASSIGNMENT WITH ONLINE LEARNING
UNDER UNCERTAINTIES

A. Difficulty of Classical Queue-length Based Control

A classical approach to adaptive control in the presence
of uncertain arrival/departure dynamics is to use queue-length
based policies [19], [20], [27], [28], [21]. This line of work
assumes perfect knowledge of the payoff vector for each client.
By building up queues of unserved tasks at the servers, the
system operator uses the queue length qj at server j as a
dynamic “shadow price” to capture the congestion level at the
server. The system operator then adjusts each client’s payoff
parameter C∗ij to C∗ij − qj/V with a proper choice of V , and
assigns the next task to the server with the highest adjusted
payoff. When the payoff vector of each client is known in
advance, this type of queue-length based control can be shown
to attain near-optimal system payoff when the parameter V is
large [3].

However, when the payoff vector of each client is unknown,
such queue-length based control leads to complicated closed-
loop interactions between queueing and learning. In one di-
rection, excessive queueing degrades learning performance in
at least two ways. First, because the operator is only able
to receive the noisy payoff feedback of a task after the task
is served, excessive task-queues at server-sides (esp. when V
is large) not only delay the service of the tasks, but also
delay the payoff feedback. We refer to this effect as the
payoff-feedback delay. Second, because all clients compete
for the limited server capacity, the learning process of some
clients will inevitably be slowed down, which also results
in poor estimate of their payoff vectors. We refer to this
second effect as the learning slow-down. In the opposite
direction, ineffective learning in turn affects queueing because
assignment decisions have to be made based on delayed or
inaccurate payoff estimates. Such sub-optimal decisions not
only lower system payoff, but also increase queueing delay.
Together, the above closed-loop interactions between queueing
and learning will produce complex system dynamics which,
if not designed and controlled properly, can severely degrade
system performance.



In this section, we present a new algorithm that seamlessly
integrates online learning with dynamic task assignment to
address the aforementioned closed-loop interactions. Unlike
classical queue-length based control policies that rely on the
task-queues as the “shadow prices,” we instead eliminate the
task-queues at the servers, and thus eliminate the “payoff-
feedback delay” altogether. This is achieved by controlling
the number of tasks assigned to each server j at each time-
slot to be always no greater than its service rate µj . Therefore,
the length of the server-side task-queue qj(t) given by (1) is
trivially zero at all times. However, without the server-side
task-queues or “shadow prices”, we need another congestion
indicator to guide us in the dynamic assignment of tasks.
Here, we propose to rely on the number of backlogged clients
in the system. Specifically, we use the solution to a utility-
maximization problem (that is based on the current number
of backlogged clients in the system) to help us trade-off
between the current and future payoffs. The parameters of
the utility-maximization problem are carefully chosen to also
control the learning slow-down of all clients in a fair manner.
We remark that while the structure of our proposed utility-
guided algorithm bears some similarity to that of flow-level
congestion control in communication networks [22], [23], [24],
the focus therein was only on the system stability (but not the
system payoff), and there was no online learning of uncertain
parameters. To the best of our knowledge, our work is the
first in the literature that uses utility-guided adaptive control
policies with online learning to optimize system payoff.

B. Utility-Guided Dynamic Assignment with Online Learning

We present our algorithm in Algorithm 1. At each time-slot
t, the algorithm operates in three steps. Step 1 generates an
estimate [Clj(t)] of the payoff vector for each client l based
on previous payoff feedback (Lines 4-7). Note that n(t) is the
current number of clients in the system, including any newly-
arriving client. For each client l = 1, ..., n(t), if no task of
this client has been assigned to server j yet, we set Clj(t) = 1
(Line 6); otherwise, we use a truncated Upper-Confidence-
Bound (UCB) estimate [8] to generate Clj(t) (Line 7):

Clj(t) = min

{
C
l

j(t− 1) +

√
2 log hl(t− 1)

hlj(t− 1)
, 1

}
, (9)

where hlj(t − 1) is the number of tasks from client l that
have previously been assigned to server j before the end of
the (t − 1)-th time-slot and hl(t − 1) =

∑J
j=1 h

l
j(t − 1);

C
l

j(t − 1) is the empirical average payoff of client l based
on the received noisy payoff feedback for server j until the
end of the (t − 1)-th time-slot. Since the true payoffs C∗ij’s
are within [0, 1], we truncate the UCB estimate at threshold 1
in (9). Then, Step 2 solves a maximization problem (Line 9),
subject to the capacity constraint of each server, to obtain the
values of plj(t), which corresponds to the expected number of
new tasks of client l to be assigned to server j in time-slot t.
The objective (7) can be viewed as the sum of some utility
functions over all clients. The parameter γ in (7) is chosen to

Algorithm 1: Utility-Guided Dynamic Assignment with
Online Learning

1 For every time slot t:
2 Update the total number of clients n(t) (including newly

arriving clients)
3 Step 1: Form truncated UCB payoff estimates
4 for l = 1 : n(t) do
5 for j = 1 : J do
6 if hlj(t− 1) = 0 or client l is new then

Clj(t)← 1; hlj(t)← 0;
7 else Set Clj(t) according to (9) ;

8 Step 2: Solve [plj(t)] for the optimization problem
9

max
[plj ]≥0

n(t)∑
l=1

{
1

V
log

 J∑
j=1

plj

+

J∑
j=1

plj(C
l
j(t)− γ)

}
(7)

sub to
n(t)∑
l=1

plj ≤ µj , for all servers j ∈ S. (8)

10 Step 3: Assign tasks and obtain noisy payoff feedback
11 Initialize to zero the number of tasks from client l to be

assigned to server j, i.e., Y lj (t) = 0.
12 for j = 1 : J do
13 for ν = 1 : µj do
14 Choose a client l∗ randomly such that the

probability of choosing client l is equal to
plj(t)/µj . Assign one task from client l∗ to
server j and let Y l

∗

j (t)← Y l
∗

j (t) + 1 ;

15 for l = 1 : n(t) do
16 for j = 1 : J do
17 Observe Y lj (t) number of Bernoulli noisy payoffs

X l
j(t, 1), . . . , X l

j

(
t, Y lj (t)

) i.i.d.∼ Bern
(
C∗i(l),j

)
;

18 Update hlj(t) and C
l

j(t) according to Y lj (t) and
X l
j(t, ·);

19 hl(t) =
∑J
j=1 h

l
j(t) ;

20 Clients with no remaining tasks leave the system.

be strictly larger than 1, and V is a positive parameter. Finally,
Step 3 determines the exact number Y lj (t) of tasks from client
l that are assigned to server j (Lines 12-14). The values of
Y lj (t) are randomly chosen in such a way that (i) each server
j receives at most µj tasks, i.e.,

∑n(t)
l=1 Y

l
j (t) ≤ µj ; and (ii)

the expected value of Y lj (t) is equal to plj(t). The tasks are
then sent to the servers and new noisy payoffs are received
(Lines 15-19).

Before we present our analytical results, we make several
remarks on the design of our proposed algorithm.

Seamless Integration of Learning and Control: First, recall



that the policies in [4], [5], [6] separate exploration and ex-
ploitation into distinct stages by assuming perfect knowledge
of class-dependent payoff vectors, the total number of tasks
per client, and/or “shadow prices.” In contrast, our algorithm
does not require such prior knowledge at all and seamlessly
integrates exploration, exploitation, and dynamic assignment
at all times.

Zero Payoff-Feedback Delay: Second, note that by Step 3
of the algorithm, the number of assigned tasks to each server
j is no more than the service rate µj . Since server j can serve
exactly µj tasks per time-slot, there is no longer any “payoff-
feedback delay,” i.e., all payoff feedback will be immediately
revealed at the end of the time-slot.

The Importance of Fairness: Third, if we removed the
logarithmic term in (7) and set γ = 0, then the maximization
problem in (7) would have become a myopic matching policy
that maximizes the total payoff in time-slot t based on the
current payoff estimates. However, such a myopic matching
policy focuses too much on the current payoff, and as a
result underperforms in terms of the long-term average payoff.
Instead, the logarithmic term in (7) serves as a concave utility
function that promotes fairness [22], [23], [24], so that even
clients with low payoff estimates can still receive some service
(i.e.,

∑J
j=1 p

l
j(t) is always strictly positive). This fairness

property is desirable in two ways. First, it has an eye for
the future (which is somewhat related to the fact that fair
congestion-control ensures long-term system stability [24]), so
that we can strike the right balance between current and future
payoffs. Second, it also controls the learning slow-down of all
clients in a fair manner. Specifically, thanks to this fairness
property, we can show that the “learning rate” of each client
based on imprecise payoff estimates will not be too far off
from the “learning rate” of the client based on its true payoff
vector, which constitutes a crucial step in our analysis (see
Section V-C).

Parameter Choice: Fourth, the choice γ > 1 in (7) and
the truncation of the UCB estimates in (9) also play a crucial
role in achieving near-optimal system payoff. If γ = 0, then
every client l will have the incentive to increase

∑J
j=1 p

l
j(t)

by utilizing as many available servers as possible, even when
the server payoff is very close to zero. Such an aggressive
approach typically leads to suboptimal performance because
in many settings the optimal policy must restrict some clients
to only use the high-payoff servers. Instead, by choosing
γ > 1 ≥ Clj(t), the second term inside the summation in
(7) becomes negative. As a result, the operator assigns clients
to low-payoff servers only if the derivative of the logarithmic
term, which is equal to 1/[V

∑J
j=1 p

l
j(t)], is sufficiently large.

This feature leads to an inherent “conservativeness” of our
algorithm in choosing low-payoff servers. As the parameter V
increases, our algorithm becomes more and more conservative
in choosing low-payoff servers, which benefits the long-term
payoff. On the other hand, it also increases the number of
clients backlogged in the system, leading to extra payoff loss
for a finite time horizon T . Our theoretical results below will
capture this tradeoff.

Complexity: Last but not least, the maximization problem
in Step 2 is a convex program and can be effectively solved.
Thus, our proposed algorithm can scale to large systems with
many clients and servers, which is in contrast to the work in
both [25] (which only deals with two types of clients) and
[26] (which uses an exponential number of virtual queues).

C. Main Results

We now present our main results for the performance guar-
antees of the proposed algorithm. For simplicity, we denote
λi = λρi, and hence λ =

∑I
i=1 λi. Recall that µ =

∑J
j=1 µj

and n(0) =
∑I
i=1 ni(0) = 0. The first results gives an upper

bound to the mean number of backlogged clients in the system
at any time t.

Theorem 1. Suppose that the arrival rate λ is strictly less
than the total service capacity, i.e., λ < µ. Then for any time
t,

E [n(t)] ≤ 2µ

µ− λ

(
1 +

µ2γ

γ − 1

)
+ µγV. (10)

Theorem 1 immediately implies the system is stable in
the mean [29]. The upper bound in (10) characterizes the
effect of V . As V increases, our algorithm becomes more
conservative in choosing low-payoff servers, leading to more
clients backlogged in the system.

Departing from the standard Lyapunov technique in proving
system stability [22], [23], [24], our proof of Theorem 1 relies
on a careful coupling between n(t) and a Geom/Geom/m
queue with Bernoulli arrivals and Binomial departures (see
[30]).

The second result below further characterizes the payoff gap
of the proposed algorithm compared to the oracle.

Theorem 2. Suppose N logN ≥ 1. The gap between the
upper bound (4) and the expected payoff of Algorithm 1 at
any time horizon T is bounded by:

I∑
i=1

J∑
j=1

λip
∗
ijC
∗
ij −

1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


≤ β1

V
+ β2

√
logN

N
+ β3

N(V + 1)

T
, (11)

where [p∗ij ] is the optimal solution to (4), and

β1 =
I

2
+
µ2

2

(
1 +

γ2

(γ − 1)2N

) I∑
i=1

1

λi
,

β2 = 4
√

2λ(J + µ) + 3λ

(
1 +

Jγ2

(1− γ)2

)
µ,

β3 =
2µγ

µ− λ
+

2µ3γ2

(µ− λ)(γ − 1)
+ µγ2. (12)

To the best of our knowledge, this is the first result in
the literature that characterizes the payoff gap for this type
of utility-guided adaptive controllers under payoff uncertainty.
The above result is quite appealing as it separately captures the
impact of the uncertainty in client dynamics and the impact
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√

logN/N).

of the uncertainty in payoffs for any finite time horizon T . In
(11), the first term on the right-hand-side is of the order 1/V ,
capturing the impact of the uncertainty in client dynamics
(e.g., we do not know what are the values of λi and N ). The
second term in (11) is of the order

√
logN/N and related to

the notion of “regret” in typical MAB problems. It captures the
payoff loss due to the uncertainty in payoffs as a function of
the total number of tasks per client, i.e, the tradeoff between
exploration and exploitation [7], [8]. The third term in (11)
is of the order N(V + 1)/T , characterizing the payoff loss
incurred by clients backlogged in the system. Given T , the
first term and the third term reveal an interesting tradeoff as
V increases. On the one hand, the first term will approach zero
at the speed of 1/V , indicating that the policy adapts to the
unknown client dynamics; on the other hand, the third term
will increase linearly with V due to the payoff loss incurred
by clients backlogged in the system. If N and T are known
in advance, we can tune V to be min{T/N,

√
T/N}, so that

the payoff-gap upper-bound is minimized and becomes of the
order max{N/T,

√
N/T}+

√
logN/N . As a consequence, as

T increases, the payoff gap first decreases at a rate of T−1 for
T ≤ N and then at a rate of T−1/2 for N ≤ T ≤ N2/ logN
and finally gets saturated at

√
logN/N for T ≥ N2/ logN.

The
√

logN/N regret here may seem inferior compared to
the logN/N regret in [4], [6]. However, the regret in [4], [6]
only holds under the stationary setting T →∞ and assuming
knowledge of various uncertainty, such as the class-dependent
payoff vectors, the number of tasks per client, and/or “shadow
prices” (which in turn require knowledge of the statistics
of the client arrival dynamics). In contrast, our payoff gap
characterizes the transient behavior of the system and holds
for any finite time T and finite N ≥ 2 without any such prior
knowledge. It remains open whether our

√
logN/N regret

can be further reduced to logN/N .

Our proof of Theorem 2 builds upon the standard Lyapunov
drift technique [20], [22], [23], [24] and finite-time regret
analysis [8]; however, our proof employs new techniques to
carefully account for the closed-loop interactions between the
queueing dynamics and the learning processes (see Section V).
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Fig. 5. The simulation setup.

IV. NUMERICAL RESULTS

We consider the setup as shown in Fig. 5. In particular,
there are two servers and two classes of clients. Define the
key parameters as follows: µj = 1 for each server j = 1, 2;
λi = 0.6 for each class i = 1, 2, and hence λ = λ1 + λ2 =
1.2. The expected number of tasks per client is initially set
to be N = 100, but we will vary the value later. The true
payoff vectors for class 1 and class 2 are given by [0.9 0.1]
and [0.9 0.3], respectively, although they are unknown to the
operator. Note that server 1 has larger expected payoff for both
class 1 and class 2. However, its service rate is insufficient to
support all clients. Hence, this contention must be carefully
controlled when the system aims to maximize the payoff. For
a given policy Π and simulation time T , we report the average
system payoff RT (Π) per unit time.

A. Two Other Policies for Comparison

We compare our proposed Algorithm 1 with the myopic
matching policy and a queue-length based policy. These two
policies also use UCB to estimate unknown payoff vectors.
The myopic matching policy aims at maximizing the total
payoff for the current time-slot. Specifically, at each time
slot t, the policy solves a modified maximization problem of
the form (7)–(8), but with the logarithmic term removed and
with γ = 0. Then, based on the solution to this modified
maximization problem, the tasks are assigned to each server
in the same way as described in Step 3 in Algorithm 1. We
expect that the myopic matching policy incurs relatively large
payoff loss because it does not look at the future.



The queue-length based policy maintains a queue of tasks
at each server j, and uses the length of this task-queue qj(t)
at time-slot t to indicate the congestion level at server j.
At each time-slot t and for each client l, the operator finds
the server j∗(l) with the highest queue-adjusted payoff, i.e.,
j∗(l) = arg maxj{Clj(t)− qj(t)/V }. The operator then adds
one task from each client l to the end of the task queue at the
server j∗(l). Every server j then processes µj = 1 task from
the head of its own queue and observes the random payoff
generated. As discussed in Section III-A, one weakness of such
a queue-length based policy is that, when tasks are waiting in
the queues, the system cannot observe their payoff feedback
right away. Hence, there is significant payoff feedback delay,
which in turn leads to suboptimal assignment decisions for
subsequent tasks.

B. Performance Comparisons

We fix γ = 1.1 for our proposed Algorithm 1 in all
experiements, but we may vary N and V . The first set of
experiements give a general feel of the dynamics of different
policies. In Fig. 2, we fix N = 100 and plot the evolution of
the time-averaged system payoff up to time T under the three
policies (with different V ), as the simulation time T advances.
We can see that, even when N is not very large (N = 100), the
system payoff under our proposed Algorithm 1 with V = 21
(the solid curve with marker N) approaches the upper bound
(4) (the horizontal dashed line). Further, comparing V = 2
(marker N, dashed curve) with V = 21 (marker N, solid
curve), we observe significantly higher system payoff under
Algorithm 1 when V increases. In comparison, the payoff
achieved by the myopic matching policy (the lowest dotted
curve) is significantly lower. The performance of the queue-
length based policy (the two curves with marker H) also
exhibits a noticable gap from that of the proposed Algorithm 1.
Further, even when V increases from V = 2 (marker H, dashed
curve) to V = 100 (marker H, solid curve), the improvement
of the queue-length based policy is quite limited. This result
suggests that, due to the increase in payoff-feedback delay,
controlling V is not effective in improving the performance
of the queue-length based policy.

In Fig. 3, we fix N = 100, increase V and plot the
payoff gap (compared to the upper bound (4)) of our proposed
Algorithm 1 over T = 7 × 105 time slots. Each plotted data
point represents the average of 5 independent runs. We can
observe that initially the payoff gap decreases significantly
with V , but eventually it saturates at V ≥ 50. This is because
the regret due to small N , i.e., the second term of (11),
eventually dominates the payoff gap when V is large. A
similar figure with increasing N but fixed V (not shown)
shows a similar saturation behavior when N is large. Such
saturation makes it difficult to assess whether the scaling
reported in (11) is accurate. To answer this question, we next
set V =

√
N/ logN . In this way, both the first and second

terms in (11) are of the order Θ(
√

logN/N). We then increase
N (and V simultaneously) and show in Fig. 4 how the payoff
gap of our Algorithm 1 decreases with N on a log-log scale.

The result indeed matches well with a Θ(
√

logN/N) scaling.
Note that there is a noticable difference in slope from the
Θ(logN/N) scaling. The difference remains even if we set V
to be larger at V = N/ logN . Thus, the results suggest that
the performance bound in (11) for our proposed Algorithm 1
may be tight.

V. PROOFS

Due to space constraint, here we sketch the proof of Theo-
rem 2. The omitted details along with the proof of Theorem
1 are available in [30].

A. Equivalent Reformulation

We will use a Lyapunov-drift analysis with special modifica-
tions to account for the learning of uncertain payoffs. Note that
for the purpose of this drift analysis, we can use the underlying
class label of each client to keep track of the system dynamics,
even though our algorithm does not know this underlying
class label. Thus, we re-label the n(t) clients at time-slot t
as follows. Recall that ni(t) is the number of clients at time-
slot t whose underlying class is i. Let I(t) = {i : ni(t) ≥ 1}.
We have

∑
i∈I(t) ni(t) = n(t). For each class i ∈ I(t), we

use k = 1, ..., ni(t) to index the clients of this class at time
t. Similar to the notations C∗i(l),j , C

l

j(t) and Clj(t), we denote

C∗ij , C
k

ij(t) and Ckij(t) as the true expected value, empirical
average of past payoffs at time t, and the UCB estimate at
time t, respectively, for the payoff of server j serving tasks
from the k-th client of the underlying class i. We also define
hkij(t), hki (t) =

∑J
j=1 h

k
ij(t), and pkij(t) analogously to hlj(t),

hl(t) and plj(t). Thus, the UCB estimate (9) in Step 1 of our
proposed Algorithm 1 is equivalent to

Ckij(t)← min

{
C
k

ij(t− 1) +

√
2 log hki (t− 1)

hkij(t− 1)
, 1

}
, (13)

and the maximization problem (7) in Step 2 of our proposed
Algorithm 1 is equivalent to:

max
[pkij ]≥0

∑
i∈I(t)

ni(t)∑
k=1

{
1

V
log

 J∑
j=1

pkij

+

J∑
j=1

pkij
(
Ckij(t)− γ

)}
(14)

s.t.
∑
i∈I(t)

ni(t)∑
k=1

pkij ≤ µj , for all j ∈ S. (15)

Our proof below will use these equivalent forms of the
proposed Algorithm 1. In the rest of the analysis, we will
use boldface variables (e.g., n, p, and C) to denote vectors,
and use regular-font variables (e.g., ni, pkij , and Ckij) to denote
scalars. A list of notations is provided in Table I.

B. Handling Uncertain Client Dynamics

Recall that λi = λρi, λ =
∑I
i=1 λi and µ =

∑J
j=1 µj .

Define the vector n(t) = [ni(t), 1 ≤ i ≤ I] and p(t) =



TABLE I
LIST OF NOTATIONS

Symbol Meaning

Ck
ij(t) UCB estimate for server j by client k of class i

Cl
j(t) UCB estimate for server j by client l

C∗
ij True expected payoff for server j and class i

C
k
ij(t), C

l
j(t) Empirical payoff average

γ > 1 Parameter in (7) and (14)
p∗ij Solution to upper bounds (4) or (17)
pkij(t), plj(t) Solution to (7) or (14) using UCB payoff estimates
p̂kij(t) Solution to (14) with Ck

ij(t) replaced by C∗
ij

[pkij(t), i ∈ I(t), 1 ≤ j ≤ J, 1 ≤ k ≤ ni(t)]. Define the
Lyapunov function L(n(t)) as

L(n(t)) =
1

2

I∑
i=1

n2
i (t)

λi
. (16)

Recall that [p∗ij ] is the optimal solution of the upper bound in
(4). Note that if we replace each C∗ij in (4) by C∗ij − γ, this
will result in the same optimal solution. Thus, [p∗ij ] is also the
optimal solution to the following optimization problem:

max
[pij ]≥0

I∑
i=1

λi

J∑
j=1

pij(C
∗
ij − γ), subject to (5) and (6). (17)

Next, we will add a properly-scaled version of the following
term to the drift of the Lyapunov function L(n(t + 1)) −
L(n(t)):

∆(t) =

I∑
i=1

J∑
j=1

λip
∗
ij(C

∗
ij−γ)−

∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

pkij(t)(C
∗
ij−γ).

(18)
The value of ∆(t) captures the gap between the achieved
payoff and the upper bound in (17), both adjusted by γ.
The following lemma is the first step towards bounding the
Lyapunov drift plus this payoff gap [30].

Lemma 3. The expected drift plus payoff gap is bounded by

E
[
L(n(t+ 1))− L(n(t)) +

V

N
∆(t) | n(t),p(t)

]
≤ A1(t)

N
+
V

N

∑
i/∈I(t)

J∑
j=1

λip
∗
ij(C

∗
ij − γ) +

c1 + c2
N

, (19)

where c1 = I
2 , c2 = µ2

2

(
1 + γ2

(γ−1)2N

)∑I
i=1

1
λi

, and

A1(t)

,
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

(
ni(t)

λi
+ V (C∗ij − γ)

)(
λip
∗
ij

ni(t)
− pkij(t)

)
.

Proof of Theorem 2. Recall that in Step 2 of our proposed
algorithm, we have chosen γ > 1 ≥ C∗ij . Hence, the second
term on the right-hand-side of (19) is always less than 0. Then,

taking expectations of (19) over n(t) and p(t), summing over
0 ≤ t ≤ T − 1, and divided by T , we have

1

T
E [L(n(T ))− L(n(0))] +

V

TN

T−1∑
t=0

E [∆(t)]

≤ 1

NT

T−1∑
t=0

E [A1(t)] +
c1 + c2
N

.

Since the system at time t = 0 is empty, i.e., n(t) = 0, it
follows that L(n(0)) = 0. In view of L(n(T )) ≥ 0, the last
displayed equation gives

1

T

T−1∑
t=0

E [∆(t)] ≤ 1

TV

T−1∑
t=0

E [A1(t)] +
c1 + c2
V

. (20)

Let RT denote the expected payoff per unit time achieved by
Algorithm 1 for a given time T as defined in (3). By definitions
of ∆(t), RT , and R∗, we get that

1

T

T−1∑
t=0

E [∆(t)]

= R∗ −RT − γλ+
γ

T

T−1∑
t=0

J∑
j=1

E

 ∑
i∈I(t)

ni(t)∑
k=1

pkij(t)

 . (21)

We show in [30, Appendix A.1] that the total number D(t)
of departures at time t satisfies

E [D(t) | n(t),p(t)] ≤ 1

N

∑
i∈I(t)

J∑
j=1

ni(t)∑
k=1

pkij(t).

It follows that

λ− 1

T

T−1∑
t=0

J∑
j=1

E

 ∑
i∈I(t)

ni(t)∑
k=1

pkij(t)


≤ λ− N

T

T−1∑
t=0

E [D(t)]

=
N

T

T−1∑
t=0

E [U(t+ 1)−D(t)]

=
N

T
E [n(T )] ≤ β3N(V + 1)

γT
,

where U(t) denotes the total number of arrivals at time t,
and the last inequality holds in view of Theorem 1 and the
definition of β3 in (12). By combining the last displayed
equation with (21) and (20), we get that

R∗ −RT ≤
β3N(V + 1)

T
+

1

TV

T∑
t=1

E [A1(t)] +
c1 + c2
V

.

(22)



In the rest of this section, we show that for all T ,

1

TV

T∑
t=1

E [A1(t)]

≤ λ

N

[
4J
√

2N logN + µ
(
4
√

2 logN + 3 +
3Jγ2

(1− γ)2

)]
.

(23)

Substituting (23) into (22) and invoking the assumption
N logN ≥ 1, the result of Theorem 2 readily follows.

The remainder of the section focuses on proving (23).

C. Bounding A1(t): Handling Payoff Uncertainty

The key in bounding A1(t) is to account for the impact
of payoff estimation errors. In the rest of this subsection,
we fix n = n(t). Recall that I(t) = {i|ni(t) ≥ 1}, and
p(t) = [pkij(t)] is the solution to the optimization problem
(14). Denote vectors W = [W k

ij , i ∈ I(t), 1 ≤ j ≤ J, 1 ≤
k ≤ ni(t)] and π = [πkij , i ∈ I(t), 1 ≤ j ≤ J, 1 ≤ k ≤ ni(t)].
We define function

f(π|n,W)

,
∑
i∈I(t)

ni(t)∑
k=1

log

 J∑
j=1

πkij

+ V

J∑
j=1

(W k
ij − γ)πkij

 .
(24)

When W = [Ckij(t)], the value of this function at π = p(t)
is precisely the optimal objective value of (14) multiplied by
V . Now, let C∗ denote the vector [W k

ij ] such that W k
ij = C∗ij

for all i ∈ I(t), 1 ≤ j ≤ J, k = 1, ..., ni(t). Denote p̂(t) =[
p̂kij(t)

]
as the maximizer of f(π|n,C∗) over the constraint

(15). We have the following lemma [30].

Lemma 4. The following holds for each time-slot t:

A1(t) ≤ f(p̂(t)|n,C∗)− f(p(t)|n,C∗) (25)
≤ A2(t) +A3(t), (26)

where

A2(t) = V
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

(
Ckij(t)− C∗ij

)
pkij(t),

A3(t) = V
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

(
C∗ij − Ckij(t)

)
p̂kij(t).

To appreciate the difference between the two terms in (25),
recall that p̂(t) maximizes f(π|n,C∗), while p(t) maximizes
f(π|n,C(t)), where we have denoted C(t) = [Ckij(t)].
Clearly, if there were no errors in the payoff estimates C(t),
i.e., if C(t) = C∗, we would have obtained p(t) = p̂(t) and
A1(t) ≤ 0 trivially. This lemma thus bounds the difference
even when C(t) 6= C∗.

It remains to upper bound (1/T )
∑T
t=1 E[A2(t)] and

(1/T )
∑T
t=1 E[A3(t)] for a given time T. We define Λ as a

particular realization of the sequence of client arrival-times up

to time slot T . We use EΛ to denote the conditional expectation
given Λ. Given Λ, we slightly abuse notation and use the index
k now to denote the k-th client of class i that arrives to the
system. Let t1(k) denote the arrival time of this client, and
t2(k) denote the minimum of her departure time and T .

Lemma 5. Suppose that the k-th arriving client of the under-
lying class i brings a total number ak of tasks into the system.
For all 1 ≤ j ≤ J , it holds that

EΛ

 t2(k)∑
s=t1(k)

(Ckij(s)− C∗ij)pkij(s)


≤ 4
√

2ak log ak + 4µj
√

2 log ak + 3µj . (27)

Lemma 6. Suppose that the k-th arriving client of class i
arrives at time t1(k). Then, the following holds,

EΛ

 J∑
j=1

t2(k)∑
s=t1(k)

(
C∗ij − Ckij(s)

)
p̂kij(s)

 ≤ 3J

(
γ

γ − 1

)2

µ.

(28)

By summing (27) and (28), respectively, over all users k,
we can then obtain that

1

TV

T∑
t=1

E [A2(t)]

≤ λ

N

(
4J
√

2N logN +
(

4
√

2 logN + 3
)
µ
)
. (29)

and

1

TV

T∑
t=1

E[A3(t)] ≤ 3λµJ

N

(
γ

1− γ

)2

. (30)

Remark: The proofs of both lemmas involve finite-time
regret analysis for UCB [8]. However, there is a major inno-
vation. In standard MAB problems, exactly one arm is pulled
at each time. In our system, the rate that servers are chosen
is determined by pkij(t), which in turn depends on previous
values of Ckij(s), s < t. Our proofs use a delicate martingale
argument to take care of such dependency. Between these two
lemmas, the proof of Lemma 6 is even trickier. To see this,
note that the loss in Lemma 5 is accumulated at the same rate
as the rate that each server is chosen. Thus, we may view
the time as being “slowed down” (compared to a standard
MAB problem), and expect Lemma 5 to hold. In contrast, the
loss in Lemma 6 is accumulated at the rate p̂kij(s), which is
different from the rate pkij(t) that each server is chosen. Thus,
a direct “slowing-down” argument will not work. Fortunately,
by exploiting the structure of Algorithm 1, we can show that∑J
j=1 p̂

k
ij(t) and

∑J
j=1 p

k
ij(t) cannot differ by more than a

constant factor. We can then prove Lemma 6 using a similar
martingale argument. For details, please refer to [30].

Finally, we remark that Lemma 5 is the main reason for the√
logN/N regret in the second term of (11). In the classical

MAB problem in [8], there is a non-zero gap δ between the
best arm and the second-best arm. Thus, once the estimation
error is within δ, which takes Θ(logN) time slots, learning



can stop. Hence, the regret is on the order of logN/N . In
contrast, in our problem the notions of “best/second-best arms”
are more fluid because they depend on the number of clients
in the system. Thus we do not have such a fixed gap δ, which
is why we have a larger

√
logN/N loss due to learning.

VI. CONCLUSION

In this paper, we propose a new utility-guided task assign-
ment algorithm for queueing systems with uncertain payoffs.
Our algorithm seamlessly integrates online learning and adap-
tive control, without relying on any prior knowledge of the
statistics of the client dynamics or the payoff vectors. We show
that, compared to an oracle that knows all client dynamics and
payoff vectors beforehand, the gap of the expected payoff per
unit time of our proposed algorithm at any finite time T is
on the order of 1/V +

√
logN/N +N(V + 1)/T, where V

is a parameter controlling the weight of a logarithmic utility
function, and N is the average number of tasks per client. Our
analysis carefully accounts for the closed-loop interactions be-
tween the queueing and learning processes. Numerical results
indicate that the proposed algorithm outperforms a myopic
matching policy and a standard queue-length based policy that
does not explicitly address such closed-loop interactions.

There are a number of future research directions. First, a
straightforward lower bound on the payoff loss is O(logN/N)
[8]. Thus, it would be interesting to study whether the pro-
posed algorithm can be further improved to reduce the second
regret term of (11) to O(logN/N). Second, in order to limit
the payoff-feedback delay, our algorithm assumes that the
service of each server is deterministic. We plan to generalize
to the case with random service or even unknown service
rates. Finally, although our model does not assume any prior
knowledge of the class-dependent payoff vectors, it would
be interesting to study whether the idea from this paper can
be used to improve the policies in [4], [5], [6] when such
knowledge is available.
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