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Abstract—Caching plays an important role in reducing the
backbone traffic when serving high-volume multimedia content.
Recently, a new class of coded caching schemes have received
significant interest because they can exploit coded multi-cast
opportunities to further reduce backbone traffic. Without con-
sidering file popularity, prior works have characterized the
fundamental performance limits of coded caching through a
deterministic worst-case analysis. However, when heterogeneous
file popularity is taken into account, there remain open questions
regarding the fundamental limits of coded caching performance.
In this work, for an arbitrary popularity distribution, we fi rst
derive a new information-theoretical lower bound on the expected
transmission rate of any coded caching schemes. We then
show that a simple coded-caching scheme attains an expected
transmission rate that is at most a constant factor away fromthe
lower bound (except a small additive term). Unlike other existing
studies, the constant factor that we derived is independentof the
popularity distribution.

I. I NTRODUCTION

As the amount of Internet traffic continues to grow, video is
expected to dominate69% of the overall traffic [1], which will
greatly stress the underlying communication infrastructure.
Historically, caching has played a significant role in reducing
the bandwidth requirement for serving video traffic. By placing
contents closer to, or even at the end-users, the bandwidth
requirement at the upstream links can be greatly reduced. Most
of such studies of caching have focused on the case where
uncoded video packets were stored and transmitted (see, e.g.,
[2–5] and references therein).

Recently, a new class of caching schemes, called coded
caching [6–14], have gained significant interest because it
can significantly reduce the upstream bandwidth requirement
in systems with broadcast/multicast capabilities. Consider K
users request contents from one server through a shared
communication link with broadcast capability. Each user may
request any one of theN files (N > K), but each user only has
a storage with sizeM < N . In the worst case, each user may
request a distinct file. With conventional (uncoded) caching
scheme, it is easy to see that the worst-case transmission rate
on the upstream link must beK(1 − M

N ), because each user
can only cacheMN fraction of all the contents. [6] refers to
this factor (1 − M

N ) as thelocal caching gain. UnlessM is
large (compared toN ), this local caching gain will not differ
significantly from 1 (i.e., the baseline with no-caching). Note
that the broadcast capability of the system is not exploitedhere
because each user requests a different file. In contrast, with the

coded caching scheme in [6], the worst-case transmission rate
at the upstream link is reduced toK(1 − M

N ) 1
1+KM/N . The

additional factor 1
1+KM/N , which is referred to as theglobal

caching gainin [6], suggests a significant improvement over
the uncoded case when theglobal storage capabilityKM of
all users is comparable to, or larger than,N . The key idea
of [6] is to transmitcodedpackets so that multiple users can
benefit from the same broadcast packet. Thus, the broadcast
capability in the system can be exploited even if different users
request different files. [6] further shows in an information
theoretic sense that the worst-case transmission rate of the
coded caching scheme in [6] is at most a constant factor
(specifically, 12 times) away from the minimum possible. In
this sense, the performance of the coded caching scheme of [6]
is close to the fundamental limit for the system studied. The
works in [7, 12–14] extend this idea to decentralized caching,
hierarchical networks, multiple group-cast, and online caching,
respectively.

The studies cited above all focus on thedeterministicworst-
case, i.e., not only does each user request distinct files, the
performance of the system is studied against the worst-case
request pattern. Arguably, if the popularity of the files are
identical, the probability of each request pattern will vary
less significantly. Then, the worst-case performance may not
differ significantly from the average-case performance [8]. In
reality, however, the file popularitycandiffer significantly, and
thus some request patterns will occur much more frequently
than other request patterns. As a result, the average-case
performance can differ significantly from the worst-case bound
(see also the discussions at the end of Section II).

While the average-case performance of coded caching un-
der heterogeneous file popularity was studied in [8–10], the
optimality bounds obtained are substantially weaker than the
results in [6] because the gap between the achievable bound
and the lower bound depends on various system parameters.
Specifically, in [8], contents are divided into groups with
similar popularity. Each group is assigned a separate portion
of the cache and uses the coded caching scheme of [7].
The gap between the corresponding transmission rate and the
lower bound is found to increase with the total number of
groups. Similarly, in [9] the authors study the case when
the file popularity hasL different levels. The theoretical
gap between the achievable transmission rate and the lower
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bound increases asL3. The work in [10] is most related
to ours, where the authors study the special case when file
popularity follows a Zipf distribution. The upper bound on the
achievable transmission rate is obtained in 8 different cases,
according to different network parameter settings. Although
the authors show that the gap between the upper bound and
the lower bound is of a constant order, the gap estimated by
the theoretical results of [10] still depends on the parameter
of the Zipf distribution, and may also become large for certain
ranges of the parameter values [11]. Therefore, it remains an
important open question what is the fundamental limit of the
performance of coded caching for the more practical scenario
of heterogeneous file popularity, and whether one can find a
coded-caching scheme whose performance gap from the lower
bound isindependentof the system settings.

In this paper, we make the following contributions to answer
the above open question. First, we show that a simple coded-
caching scheme (similar to the one in [10]) can attain an
average transmission rate that is at most87 times from the
optimal (except a small additive term). Although this factor
appears to be large, it is the first result in the literature with
a constant-factor gap that is independent of the popularity
distributions. In contrast, in earlier studies the performance
gap could be arbitrarily large depending on either the number
of groups [8], the number of levels [9], or the parameter of
the Zipf distribution [10, 11]. Second, a key step towards
this result is to use a new construction to establish a much
sharper lower bound on the achievable transmission rate of
any schemes (see Section IV for details). Specifically, we
establish this lower bound by a series of reduction steps that
convert the original system with heterogeneous popularityto
another system with uniform popularity. The technique may
be of independent interest for future studies of coded caching
performance. Third, our analysis reveals the important role of
the file with a threshold popularity. Specifically, suppose that
the number of users isK and the size of each user’s storage
is M . The achievable scheme caches evenly all files whose
popularity is greater than or equal to1KM , and does not cache
the rest of the files. The decentralized coded caching scheme
in [7] is then used to serve the files whose popularity is greater
than or equal to 1

KM . It is quite remarkable that, regardless of
the popularity distribution, this simple coded caching scheme
will achieve a transmission rate that is a constant factor
away from the fundamental lower bound (except a small
additive term). Finally, as an immediate corollary, our result
implies that the version of Random LFU scheme in [10] that
numerically optimizes the threshold̃m (which is comparable
to N1 in our paper) also attains an average transmission rate
that is away from the optimal by at most a constant factor,
independently of the popularity distribution (even thoughthe
theoretical results in [10] focus only on Zipf distributions).

The remainder of this paper is as follows. We first present
the network model in Section II. Main results are summarized
in Section III. Followed is the analysis on the information
theoretical lower bound in Section IV. The achievable scheme
is analyzed in Section V. Finally, we conclude this paper in

Section VI.

II. N ETWORK MODEL

In the following, we present the network model for a
video delivery system with both local caches and broadcast
capabilities (see Figure 1).
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Fig. 1: An illustration of network model.

We assume that there areN distinct files from the setF =
{F1, F2, ..., FN}. The popularity of the fileFi is pi, where
∑N

i=1 pi = 1. Without loss of generality, we assume that the
file size is of unit length and the file popularity is decreasing
in the index, i.e.,pi ≥ pj if i ≤ j.

There is one server who has allN files and who serves
these files toK users interested in these files. Each user has
a local cache with sizeM (again measured with respect to
the unit-length of the files). TheK users are connected to the
server through a network with broadcast capability, i.e., each
transmission from the server can be received by all users.

Before users request any files, some of the contents are
placed in the users’ caches. This is called cache placement
and in practice is usually carried out during off-peak hoursof
the network. Then, at each time, a userk will request fileFi

with probabilitypi, independently of all other users and files.
If the user’s local cache already has (some of) the content,
the request can be served locally. Otherwise, the server must
transmit (via broadcast) contents not available from the local
cache. The goal is that every user should be able to reconstruct
the file that it requests with the information received from the
server and the cached content in its local cache.

A. Definition of the Expected Transmission Rate

In this subsection, we will define the expected rate needed
from the server in serving the requests. Note that we do not
consider the transmission rate for cache placement.

Let Wi = {fi1, fi2, ..., fiK} denote a request pattern,
where fij ∈ F is the requested file for thej-th user,
1 ≤ j ≤ K. Note that there areNK such patterns. LetW
be the set of all possible request patterns fromK users, i.e.,
W = {W1,W2, ...,WNK}. Since each user can request one
file from N files independently, the probability for eventWi
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is given by

P (Wi) =
K
∏

j=1

P (fij)

whereP (fij) is the probability for a user to request filefij .
Note that in our original system, the probability for a user
to request fileFj is pj . However, later in the analysis we
will compare to another system with a different popularity
distribution P . Hence, we use the notationW(K,F ,P) to
denote the setW of possible request patterns associated with
the corresponding popularity distributionP .

Obviously, given a set of filesF and the files’ corresponding
popularity distributionP , there exists numerous caching and
transmission schemes to meet users’ request. For a caching
and transmission schemeF, let rF(K,Wi) denote the amount
of broadcast transmission from the server that is needed to
satisfy a requestWi. The expected rate under schemeF is
therefore defined as

RF(K,F ,P) =
NK

∑

i=1

rF(K,Wi)P (Wi). (1)

We wish to find the scheduleF that minimizes
RF(K,F ,P). Define the optimal rate as

R(K,F ,P) = min
F

RF(K,F ,P). (2)

Unfortunately, finding the exact optimal schedule that achieves
this optimal rate is very difficult [6–14]. Like [6–14], our goal
is to find a simple schemeF whose achievable rate is as close
to the optimal rateR(K,F ,P) as possible.

Remark: In [6], instead of studying the expected rate (1),
the authors focus on the worst-case rate, i.e.,

max
Wi

rF(K,Wi). (3)

Let F∗ be the optimal scheme that attains the minimum value
of (3), and letF be the scheme proposed in [6]. Then [6]
shows that

maxWi
rF(K,Wi)

maxW ′

i
rF∗(K,W ′

i )
≤ 12. (4)

However, in this paper since we are interested in the expected
rate given in (2), we would be interested in the gap

∑NK

i=1 rF(K,Wi)P (Wi)
∑NK

i=1 rF∗(K,W ′
i )P (W ′

i )
. (5)

Note that the bound in (4) does not imply that the expression
in (5) is bounded by the same constant, especially when the
probabilityP (Wi) varies significantly. In general, even if the
bound in (4) holds, the expression in (5) can still be arbitrarily
large. Thus, quantifying the performance gap in terms of the
expected rate represents a new research problem.

III. M AIN RESULTS

In this section, we provide an overview of our main
results. Given an arbitrary popularity distribution, our first
result establishes a fundamental lower bound on the expected

transmission rate for any coded caching scheme. Let[x]+
denotemax{0, x}.

Theorem 1:With K users requesting files independently in
F according to the corresponding popularity distributionP ,
the lower bound on the expected transmission rate is given
by

R(K,F ,P) ≥ max
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(6)
whereM ≥ 2 andN1 is an integer that satisfiesKMpN1

≥ 1
andKMpN1+1 < 1.

To the best of our knowledge, the lower bound in Theorem
1 has not been reported in the literature, and this sharper
bound is the main reason behind the improved performance
characterization reported in this paper. Thus, this lower bound
is one of the main contributions of the paper. Further, we
comment on the indexN1, which plays an important role in
most of the results in this paper. Recall that the popularitypi
is non-increasing in the file indexi. Roughly speaking,N1 is
the index for the file whose popularity is around1KM . We may
view all files i ≤ N1 as the “more popular” files, and all files
i > N1 as the “unpopular” files. As readers will see in the
proofs of Theorem 1 in Section IV, the first term129 [

N1

M −1]+ is
a lower bound on the expected transmission rate for serving the
more popular files, while the second term is a lower bound on
the expected transmission rate for serving the unpopular files.
Thus, they combine to produce the lower bound in Theorem
1. This result is shown by carefully constructing a series of
reduced systems whose performance is easier to characterize.
Details of the proof will be presented in Section IV.

We next present an achievable scheme that can attain a
corresponding upper bound. Recall that each file is of unit
length. In order to allow a portion of each file to be cached,
we refer to a minimally divisible portion of a file as a “bit”,
and assume that each file hasF “bits”. We are most interested
in the case of large files, i.e., when the bits are very small
compared to the file size, and henceF → +∞. Our pro-
posed achievable scheme uses the decentralized coded caching
scheme of [7] to serve the “popular” files, and uses uncoded
transmissions to serve the “unpopular” files. Specifically,each
user randomly caches an equal number ofmin{F, MF

N1

} bits
from every fileF1, ..., FN1

. The remaining unpopular files are
not cached unless there are space left after all the more popular
files are cached (i.e., whenM > N1). After the users request
the files according to the popularity distributionp1, ..., pN ,
the decentralizedcoded transmission scheme of [7] is used
to serve those users requesting popular files, and anuncoded
transmission scheme is used to serve those users requesting
unpopular files. The details will be presented in Section V. We
note that this scheme is similar to the Random LFU scheme
studied in [10], although the rules for choosing the threshold
file N1 (which corresponds tõm in [10]) are different. The
following result summarizes an upper bound on the expected
transmission rate of this simple scheme.
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Theorem 2:With K users independently requesting files in
F according to the popularity distributionP , asF → +∞,
the optimal achievable rate can be upper bounded by

R(K,F ,P) ≤
ï

N1

M
− 1

ò

+

+min

(

∑

i>N1

Kpi,
N −N1

[M −N1]+
− 1

)

.

(7)
In (7), the first term[N1

M − 1]+ is an upper bound on the
expected transmission rate to serve the more popular files (i.e.,
with index i ≤ N1), and the second minimization term is
an upper bound on the expected transmission rate to serve
unpopular files. Assuming thatM < N1, note that increasing
N1 by 1 will increase the first term by1/M , and will reduce
the second term by roughlyKpN1

. Thus, by settingpN1
≈

1
KM , this indexN1 is chosen such that the net effect to the
upper bound (7) is approximately zero, and thus the sum in
(7) is approximately maximized.

Remark:We note that a similar upper bound is also reported
in [10], although without the last term in (7), which captures
the case with abundant caches (i.e.,M > N1).

From Theorem 1 and Theorem 2, it is easy to show that the
gap between the lower boundRlb and the upper boundRup

is bounded by
Rup ≤ 87Rlb + 2. (8)

Thus, except a small additive term of 2, the bounds differ
by at most a factor of 87. As we discuss in the introduction,
although this factor may appear to be large, it is the first result
in the literature with a constant-factor gap that is independent
of the popularity distributions. In contrast, the gap (between
upper- and lower-bounds) estimated by the existing resultscan
be arbitrarily large depending on either the number of groups
[8], the number of levels [9], or the parameter of the Zipf
distribution [10]. It is remarkable that such a simple coded
caching scheme, with a very simple choice ofN1, can achieve
such a strong performance guarantee, independently of the
popularity distribution.

We briefly discuss the relationship between the above
scheme and the Random LFU (RLFU) scheme in [10] because
they are similar. RLFU also evenly caches files whose popu-
larity is above a threshold. In RLFU, the file with the threshold
popularity is denoted as̃m, which plays a similar role asN1

in this paper. In this sense, the above simple scheme can also
be viewed as a member within the class of RLFU. However,
the details in choosing the threshold popularity differ. Inthe
theoretical analysis in [10],̃m is chosen as a function of
the exponentα of the Zipf distribution (assuming that the
popularity of thei-th most-popular file is proportional to1/iα).
Based on this choice of̃m, [10] bounds the gap between the
achievable rate and the lower-bound as a function ofα. This
theoretical bound on the performance gap roughly scales as
1/(α− 1), which becomes unbounded asα approaches 1. On
the other hand, [10] also proposes a practical version of RLFU
that numerically optimizes an upper bound over all possible
values of m̃. Since the performance of the numerically-
optimized RLFU scheme is always no worse than that with

any fixed m̃, the theoretical performance guarantees in [10]
for Zipf distributions also apply to this numerically-optimized
RLFU scheme. In contrast, in this paper the threshold file
N1 is chosen to be the one with popularity close to1/KM .
Not only does this rule apply to all popularity distributions,
it also leads to an achievable transmission rate that is away
from the lower bound by at most a constant factorindependent
of the popularity distribution. Thus, our results reveal new
insights on the choice of this threshold. Further, we note that
the performance of the numerically-optimized RLFU scheme
in [10] must also be no worse than that with our choice
of N1. Thus, as an immediate corollary of our result, it
implies that the numerically-optimized RLFU scheme in [10]
also attains a constant-factor performance gap for arbitrary
popularity distributions. We also note that, for certain ranges
of the exponentα of the Zipf distributions, the performance
characterization in [10] may be tighter than the 87 factor
reported in (8). Thus, the results in [10] and in this paper
combined provide a more complete characterization of the
performance guarantees for the numerically-optimized RLFU
scheme across both Zipf and non-Zipf distributions.

A. Main Intuition

Before we present the proofs for these main results, we
would like to illustrate the main intuition behind. First, con-
sider only the “popular files”1 to N1, i.e., assuming that the
unpopular filesN1 + 1 to N are removed. Let us refer to
this system as “System 1”. In our proof, we will consider
an alternate system where the popularity of all popular files
is reduced topN1

. We will refer to this alternate system
as “System 2” (see Section IV-A). Intuitively, the average
transmission rate in System 2 is no larger than that in System
1. Further, since all files are with the same popularity in
System 2, the average-case and the worst-case performance
will not differ too much [8]. Thus, one can then use System
2 to derive a lower bound on the average transmission rate,
and compare it with an upper bound attained by an achievable
scheme.

However, the potential problem of this argument is that,
when we reduce the popularity of all popular files topN1

,
some popularity values could be reduced by several orders of
magnitude. It is then unclear why the lower bound derived
from System 2 is still a reasonable lower bound for System
1. The intuition behind this insensitivity can be explainedas
follows. Suppose that there areK ′ users in System 1 that
request any of the popular files. Then, according to the result
in [6], the worst-case transmission rate to serve theseK ′ users
is no larger than

K ′(1− M

N1
)

1

1 + K′M
N1

. (9)

Now, suppose that the individual cache sizeM is much smaller
thanN1, and the global cache sizeK ′M is much larger than
N1 (note that this is precisely the regime where coded caching
will be most helpful [6]). Then, we have1 − M

N1

≈ 1 and

1+K′M
N1

≈ K′M
N1

. Thus, the expression in (9) is approximately
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equal toN1/M . The significance of this observation is that this
approximated expression is independent ofK ′. In other words,
in a suitable regime of interest, the exact popularity of the
“popular files” does not seem to matter! It is then plausible to
argue that, even when we reduce the popularity values topN1

in System 2, there is no substantial change in the lower-bound
performance. Of course, this argument needs to be carefully
made. Further, we have to account for not only popular files,
but also unpopular files. The proofs in the next section will
make this intuition precise.

IV. L OWER BOUND ON THE EXPECTEDRATE

In this section, we present the proof of Theorem 1, i.e., the
lower bound.

The proof consists of two parts. Subsections A-C focus on
popular files 1 toN1, and prove the part thatR(K,F ,P) ≥
1
29 (

N1

M − 1). This proof is composed of 5 steps. From the
first step to the fourth one, we map the original system into a
series of reduced systems, whose information-theoreticalrate
is strictly smaller than previous ones. Then, we calculate the
rate needed for the system constructed in the fourth step.
Finally, Subsection D focuses on the unpopular files and
proves the part thatR(K,F ,P) ≥ 1

58 (
∑

i>N1
Kpi − 2).

A. Reduction Steps 1& 2

Recall that the set of files is given byF = {F1, F2, ..., FN}
and their popularity distribution is given byP =
{p1, p2, ..., pN}. Next, we will compare to a series of reduced
systems with different sets of files and popularity distributions.
Again, letN1 be the integer defined in Theorem 1.

In the first constructed system, the set of files is given by
F1 = {F0, F1, F2, ..., FN1

}, whereF0 denotes the empty file,
which is introduced for ease of presentation. Its correspond-
ing popularity distribution isP1 = {p0, p1, p2, ..., pN1

} and
p0 = 1 −∑N1

i=1 pi. In other words, we replace all unpopular
files FN1+1, ..., FN in the original system by the empty file
F0, and reassign their popularity all toF0. Intuitively, the
new system should require a lower transmission rate than the
original system, which is stated in the following lemma.

Lemma 1:Let R(K,F1,P1) be the minimum expected rate
required to meet the requests by theK users, each of which
randomly requests a file inF1 according to the popularity
distributionP1. We have

R(K,F ,P) ≥ R(K,F1,P1). (10)

We next create another new system by a further adjustment
on the tuple(K,F1,P1). Note thatN1 ≤ KM . Otherwise,
we will have

∑N
i=1 pi > KM · pN1

≥ 1, which is a
contradiction with

∑N
i=1 pi = 1. Define a new popularity

distribution P2 = {1 − N1pN1
, pN1

, pN1
, ..., pN1

}. In other
words, compared to(K,F1,P1), in this new system, each
non-empty file is requested with a smaller probabilitypN1

.
Intuitively, its expected transmission rate should be evenlower,
which is stated below.

Lemma 2:Let R(K,F1,P2) be the minimum expected rate
required to meet the requests byK users, each of which

randomly requests a file inF1 according to the popularity
distributionP2. We have

R(K,F1,P1) ≥ R(K,F1,P2). (11)

The proofs of Lemma 1& 2 use similar coupling idea as
in Lemma 5, and are omitted here due to space limits.

With Lemma 1 and Lemma 2, we have proved that
R(K,F ,P) ≥ R(K,F1,P2). In the following analysis for
the first part of Theorem 1, we will focus onR(K,F1,P2).
Note that the system(K,F1,P2) is precisely the “System 2”
that we discussed in Section III-A. Next, we will derive a
lower bound on the average transmission rate of System 2,
which also provides a lower bound onR(K,F ,P). We will
derive this lower bound on theaveragetransmission rate of
System 2 by relating it to a lower bound on theworst-case
transmission rate. Note that since all files have equal popularity
in System 2, the fact that itsaveragetransmission rate is at
most a constant factor away from itsworst-casetransmission
rate is in fact known from the results in [8]. Indeed, we
can obtain a lower bound on the average transmission rate
of System 2 from Theorem 2 in [8] by choosingc = 1,
Nl = N1 there and by choosingKl in [8] as the number
of users requesting popular files. However, the lower bound
derived in this way involves an expectation overKl. Since
later we will use System 2 again to deal with unpopular files,
we wish to obtain a lower bound that is a function of the
total number of usersK. The following derivation accounts
for such technical details, and at the same time yields a tighter
characterization (which eventually translates to the factor 1/29
and1/58 in (6)). We note that some of the proof techniques
below and in Sections IV-B to IV-C are also similar to [8],
although here we exploit the fact thatpN1

≈ 1
KM to obtain

the tighter characterization.
To proceed, note that in the system(K,F1,P2), it is

possible that some file is requested by multiple users. In
Section IV-B, we will reduce it to the third system where every
non-empty requested file is requested exactly once. Towards
that end, we first characterize the number of distinct files
requested in system(K,F1,P2).

For a given system setting(K,F1,P2), let Ii = 1 if user i
requests a non-empty file, and letIi = 0 if user i requests the
empty file. DenoteKr =

∑K
i=1 Ii. Then,Kr is the number of

users who request non-empty files. AllIi are i.i.d. distributed
with meanN1pN1

. The probability distribution forKr is given
by

P (Kr = K1) = CK1

K (N1pN1
)
K1 (1−N1pN1

)
K−K1 .

Lemma 3: Define K1 , ⌊N1

M ⌋. Then we haveK1 ≤
⌊KN1pN1

⌋, and

P (Kr ≥ K1) ≥
1

2
. (12)

This follows from the result in [15], which shows that any
median must lie in the interval[⌊np⌋, ⌈np⌉], for a binomial
distributionB(n, p).

In other words, with probability no less than 0.5, no less
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than K1 users request non-empty files. Still, some of these
K1 users may request a common file. Next, we are interested
in the number of distinct files that are requested. Denote this
number asKd.

Lemma 4:Given that there areKr users requesting non-
empty files, the probability that the number of distinct files
requested is no smaller thanmin{⌊ 1

2Kr⌋, ⌊ 1
2K1⌋} is greater

than or equal to0.56.
Proof: Clearly, we only need to considerKr ≤ K1

(because a larger value ofKr only increases the number of
distinct files). WhenKr = 1, 2, or 3, we have that⌊ 1

2Kr⌋
equals 0 or 1. In this case, it is easy to see that this lemma
holds, since there must be at least one distinct file requested.

For Kr ≥ 4, consider only thoseKr users requesting non-
empty files. Each user requests one file from theN1 non-empty
files uniformly randomly and independently. There areNKr

1

possible request patterns for theKr users, each of which is
equally likely. For some of these request patterns, the number
of distinct files are smaller thanK2 , ⌊ 1

2Kr⌋. The number of
such request patterns must be smaller thanCK2

N1
·KKr

2 . To see
this, note that the first term is the number of ways to choose
K2 files from theN1 non-empty files. The second term is the
number of ways that each user can choose one of theK2 files.
We thus have

P (Kd ≤ K2|Kr) <
CK2

N1
KKr

2

NKr

1

≤ e
√
N1(

N1

e )N1

√

2π(N1 −K2)(
N1−K2

e )N1−K2

· 1√
2πK2(

K2

e )K2

Å

K2

N1

ãKr

≤ e

2π

Å

N1

N1 −K2

ãN1−K2

· (N1

K2
)K2−Kr .

Here, we have used Stirling’s formula in the third step, i.e.,
√
2πn

(n

e

)n

≤ n! ≤ e
√
n
(n

e

)n

.

In the fourth step, we have used
»

N1

K2(N1−K2)
≤ 1, due to

K2 ≥ 2 andK2 ≤ 1
2N1. It is easy to prove that(1+x)

1

x ≤ e
for any x > 0. Therefore,

Å

N1

N1 −K2

ãN1−K2

=

Å

1 +
K2

N1 −K2

ã

N1−K2

K2
·K2

≤ eK2 .

Due toK2 ≤ 1
2Kr ≤ 1

2K1 ≤ 1
4N1 (sinceM ≥ 2), we have

P (Kd ≤ K2|Kr) <
e

2π
eK2 · eK2−Kr ≤ e

2π
.

Finally, P (Kd > K2|Kr) = 1− P (Kd ≤ Kr

2 |Kr) ≥ 0.56.

B. Reduction Step 3

Combing Lemma 3 and Lemma 4, we can show that, with
probability no less than 0.28, the number of distinct files
requested is no smaller than⌊ 1

2K1⌋. We now perform the third
reduction. ForW(K,F1,P2), let π(K1) be the probability

that either the number of users requesting non-empty files,
Kr, is less thanK1, or the number of distinct non-empty files
requested,Kd, is less thanK3 , ⌊K1

2 ⌋.
Then, in the third system, with probabilityπ(K1) the users

will all request the empty file. With probability1 − π(K1),
exactlyK3 users will request exactlyK3 distinct non-empty
files from F1, ..., FN1

, and all other users will request the
empty file. Note that there are exactlyCK3

K AK3

N1
request

patterns where exactlyK3 users requestK3 distinct non-
empty files. We let each such request pattern occur with equal
probability 1−π(K1)

C
K3

K
A

K3

N1

.

Let this third system be denoted byW3(K3,K1), and let
R(K,W3) be the corresponding minimum expected transmis-
sion rate. Then. we have the following lemma.

Lemma 5:

R(K,F1,P2) ≥ R(K,W3). (13)

Proof: The proof uses coupling [17]. For everyWi ∈
W(K,F1,P2), map it to a randomW

′

i ∈ W3(K3,K1) as
follows. If the number of users requesting non-empty files in
Wi is less thanK1, or the number of distinct non-empty files
requested is less thanK3 , ⌊K1

2 ⌋, then inW
′

i all users request
the empty file. Otherwise, we perform the mapping described
below.

For every remainingWi with Kd ≥ K3, we conduct the
following splitting procedure.

• For each non-empty file that is requested by some users,
randomly choose one user requesting it. Note that there
areKd such chosen users.

• Among the chosen users, randomly chooseK3 of them.
TheseK3 users now request distinct non-empty files, and
we let all other users request the empty file.

It is easy to see that, given any cache placement and
transmission schemeF, we have

rF(K,Wi) ≥ rF(K,W
′

i ), (14)

becauseW
′

i requests a subset of the files inWi. It remains
to show that, ifWi is chosen according to the distribution of
W(K,F1,P2), then the resultingW

′

i has the same distribution
as W3(K3,K1). To see this, note that the probability with
whichWi requests no empty files is exactly1−π(K1). Further,
due to symmetry on the files and the users inW(K,F1,P2),
along with the symmetry of our mapping, each patternW

′

i that
requests non-empty files must occur with equal probability.
We can then conclude that eachW ′

i occurs with the same
probability as inW3(K3,K1).

Thus, with the coupling method [17], we have

RF(K,F1,P2) ≥ RF(K,W3). (15)

and the result then follows.

C. Reduction Step 4& the Lower Bound

We now consider the4th systemW4. In this system,
there are alwaysK3 , ⌊K1

2 ⌋ users requestingK3 distinct
non-empty files and all the other users request the empty
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file. Further, each such request pattern occurs with equal
probability 1

C
K3

K
A

K3

N1

. LetR(K,W4) be the minimum expected

transmission rate for the above systemW4. The following
lemma is easy to show.

Lemma 6:R(K,W3) = (1− π(K1))R(K,W4).
Next we focus on the systemW4.
Let Hi, i = 1, 2, ..., CK3

K be theCK3

K choices of pickingK3

users out of theK users. In systemW4, if in a requestWj ,
the users requesting distinct non-empty files are exactly inHi,
we denote it byWj ∈ Hi. Note that there areAK3

N1
= N1!

(K−K3)!

such patterns in eachHi. We have the following result.
Lemma 7:Consider systemsW4 where there are always

exactly K3 users requesting distinct files inF1 and the
other K − K3 users request the empty file. For anyHi,
i = 1, 2, ..., CK3

K , the following holds,

∑

Wj∈Hi

rF(K,Wj) ≥ AK3

N1
·

ö

N1

K3

ù

K3 −K3M
ö

N1

K3

ù . (16)

Note that Lemma 7 immediately implies that

R(K,W4) ≥

ö

N1

K3

ù

K3 −K3M
ö

N1

K3

ù . (17)

Proof: Without loss of generality, suppose thatHi =
{1, 1, ..., 1, 0, 0, ..., 0}. In other words, user 1, 2,...,K3 are
requesting distinct non-empty files. Each user has a cache, la-
beledM1,M2, ...,MK3

, each of which has a common storage
sizeM .

There areN1! permutations for theN1 files. For each per-
mutation, we split it into⌊N1

K3

⌋ subgroups, each withK3 files.
Denoter(i, j) as the rate needed to meet the users’ requests
if their request pattern is the same as thej-th subgroup in the
i-th permutation, i.e., when thek-th user requests thek-th file
in the subgroup,k = 1, 2, ...,K3.

For each permutationi, consider all the sub-groups (i.e.,
request patterns) as a whole. Recall that the cache con-
tent is fixed when these request patterns varies. Consider
a feasible cache placement and transmission schemeF.
Based on the cached contentM1, ...,MK3

, and the transmis-
sions from the server for each request pattern (with rates
r(i, 1), ..., r(i, ⌊N1

K3
⌋), respectively), theK3 users together

must be able to reconstruct allK3 · ⌊N1

K3
⌋ files. Hence,

⌊

N1

K3

⌋

∑

j=1

rF(i, j) +

K3
∑

k=1

Mk ≥ K3 · ⌊
N1

K3
⌋. (18)

Summarizing over allN1! permutations, we have

N1!
∑

i=1

⌊

N1

K3

⌋

∑

j=1

rF(i, j) ≥
Åõ

N1

K3

û

·K3 −K3M

ã

·N1!. (19)

Note that there areAK3

N1
request patternsWj ∈ Hi, while

there are
ö

N1

K3

ù

· N1! subgroups among all theN1! permuta-

tions. By symmetry, eachWj ∈ Hi appears an equal number

of times in these subgroups. Hence, the number of times
eachWj ∈ Hi appears in the summation in Equation (19)

is

⌊

N1

K3

⌋

·N1!

A
K3

N1

. Hence,

∑

Wj∈Hi
rF(K,Wj)

AK3

N1

=
1

ö

N1

K3

ù

·N1!
·
N1!
∑

i=1

⌊

N1

K3

⌋

∑

j=1

rF(i, j)

≥ 1
ö

N1

K3

ù

·N1!
·N1!(

õ

N1

K3

û

K3 −K3M)

=

ö

N1

K3

ù

K3 −K3M
ö

N1

K3

ù .

(20)
We therefore conclude this lemma.

Denote the right hand side of Equation (17) byf(K3). From
Lemmas 1, 2, 5 and 6, the minimum expected rate can be
bounded by

R(K,F ,P) ≥ R(K,F1,P2)

≥ R(K,W3)

= (1− π(K1)) · R(K,W4)

≥ (1− π(K1))f(K3).

(21)

Recall thatK1 , ⌊N1

M ⌋ andK3 , ⌊ 1
2K1⌋. We now consider

two cases.
If N1

M ≤ 6, it is easy to verify that

f(K3) ≥ f(1)

=
M

N1
(
N1

M
− 1)

≥ 1

8
(
N1

M
− 1).

(22)

On the other hand, ifN1

M > 6, we haveK3 ≥ N1

2M −1 ≥ N1

3M ,
and
ö

N1

K3

ù

≥ ⌊2M⌋. SinceM ≥ 2, we have

f(K3) = K3 −
K3M
ö

N1

K3

ù

≥ K3

Å

1− M

⌊2M⌋

ã

≥ N1

3M
· 3
8
(usingM ≥ 2)

≥ 1

8
(
N1

M
− 1).

(23)

Using both (22) and (23) in (21), we conclude that the
minimum expected rate needed forW(K,F ,P) is bounded
by

R(K,F ,P) ≥ 0.28 · 1
8
[
N1

M
− 1]+

≥ 1

29
[
N1

M
− 1]+.

(24)

D. Second Part of Theorem 1

Now we will move our attention to the unpopular files and
prove the other part of the lower bound, i.e.,R(K,F ,P) ≥
1
58 [
∑

i>N1
Kpi − 2]+.
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Consider another system, where the set of files isF3 =
{F0, FN1+1, FN1+2, ..., FN} (recall thatF0 is again an empty
file). The corresponding popularity distribution isP3 =
{p′

0, pN1+1, pN1+2, ..., pN} wherep
′

0 = 1 −∑N
i=N1+1 pi. In

other words, we replace filesF1, F2, ..., FN1
in the original

system by the empty file and use the corresponding popularity.
Similar to Lemma 1, we can prove that

R(K,F ,P) ≥ R(K,F3,P3). (25)

Again, we will perform a series of further reductions and
finally construct a system with a smaller rate, which can utilize
the results in previous analysis of “System 2”.

To proceed, we need the lemma below. Denote a file set
by T1 = {T1, T2, ..., Tt}. Each elementTi can either be a
regular file or the empty file. Let its corresponding popularity
distribution beQ1 = {q1, q2, ..., qt}, where

∑t
i=1 qi = 1.

Denote another file set byT2 = {T1, T2, ..., Tt−2, Tt+1} with
popularity distributionQ2 = {q1, q2, ..., qt−2, qt+1}. Here
qt+1 = qt−1 + qt. In other words, the two filesTt−1 and
Tt in the first system are replaced byone file Tt+1 in the
second system. Intuitively, it should be easier (i.e., requiring
less cache and lower transmission rate) to serve the second
system because there is less “diversity”. This statement is
made precise below.

Lemma 8:Let R(K, T1,Q1) be the minimum expected rate
required to meet the requests byK users, each of which
randomly requests a file inT1 according to the popularity
distributionQ1. LetR(K, T2,Q2) be defined similarly forQ2.
We have

R(K, T1,Q1) ≥ R(K, T2,Q2). (26)

Proof: The request set for(K, T1,Q1) isW(K, T1,Q1) =
{Wi}, whereWi = {fi1, fi2, ..., fiK} andfij ∈ T1. We first
construct a mapping fromW(K, T1,Q1) to W(K, T2,Q2).

For every requestWi ∈ W(K, T1,Q1), we map it to a
requestW

′

i ∈ W(K, T2,Q2) as follows. If file Tt−1 or Tt in
T1 is requested inWi, we replace it byTt+1.

For a cache placement and transmission schemeF, suppose
that each user can retrieve the file requested inWi with rate
rF(K,Wi). Using the sameF, with the replacement ofTt+1

for Tt−1 or Tt in both cache placement and transmissions, we
can show that the raterF(K,Wi) can also satisfy the request
of W

′

i . Therefore, we have

rF(K,Wi) ≥ rF(K,W
′

i ). (27)

Further, if Wi follows the distribution ofW(K, T1,Q1),
W

′

i must follow the distribution ofW(K, T2,Q2). Thus, by
the coupling method [17], we must have

RF(K, T1,Q1) ≥ RF(K, T2,Q2). (28)

The results of this lemma then follows.
Next, we create a new system(K,F4,P4) originated from

(K,F3,P3), by merging multiple files inF3 to a new file in
F4 (described below) and combine their popularity (similar
to the mapping fromQ1 to Q2). We denote this new file
set asF4 = {V0, V1, ..., VN2

} and the popularity distribution

as P4 = {v0, v1, v2, ...vN2
}. Here,V0 is the empty file and

v0 = 1 − ∑N2

i=1 vi. The other filesV1, ..., VN2
are non-

empty files and we pick them in such a way that they all
have similar popularityvi ≈ 1/KM . Specifically, recall that
1

KM > pN1+1 ≥ pN1+2 ≥ ... ≥ pN . Let h0 = 0. Pick
h1 as the smallest integer such that

∑N1+h1

j=N1+1 pj ≥ 1/KM .
We then replace filesFN1+1, ..., FN1+h1

by one file V1,
whose popularity isv1 =

∑N1+h1

j=N1+1 pj . Similarly, for each
i = 2, 3, ..., we pickhi as the smallest integer such that

N1+hi
∑

j=N1+hi−1+1

pj ≥ 1/KM (29)

and then replace filesFN1+hi−1+1, ..., FN1+hi
by one fileVi,

whose popularity isvi =
∑N1+hi

j=N1+hi−1+1 pj. In this way, each
non-empty file’s popularity satisfies1/KM ≤ vi ≤ 2/KM
for all 1 ≤ i ≤ N2, and we further have

∑N2

i=1 vi =
∑

i>N1
pi ≤ 2N2

KM .
By applying Lemma 8 iteratively, we can show that

R(K,F3,P3) ≥ R(K,F4,P4). (30)

DefineP5 = {1 − N2

KM , 1
KM , ..., 1

KM }. Similar to Lemma
2, we can prove that

R(K,F4,P4) ≥ R(K,F4,P5). (31)

Now, note that the system(K,F4,P5) is of the same form
as the system(K,F1,P2): all non-empty files are requested
with a common probability that is greater than or equal to1KM
(this is also of the form of the “System 2” that we referred
to in Sections III-A and IV-A). Readers can check that the
analysis in Sections IV-B and IV-C also applies to the system
(K,F4,P5). Thus, like Equation (24), we have

R(K,F4,P5) ≥
1

29
[
N2

M
− 1]+ ≥ 1

58
[
∑

i>N1

Kpi − 2]+.

(32)
Combining Equations (24) and (32), we have proved The-

orem 1.

V. UPPERBOUND ON EXPECTEDTRANSMISSION RATE

In this section, we will show that the achievable transmis-
sion rate of a simple cache-placement and transmission scheme
(similar to the RLFU scheme in [10]) provides an upper bound
onR(K,F ,P). Recall the following statement of Theorem 2,

R(K,F ,P) ≤
ï

N1

M
− 1

ò

+

+min

(

∑

i>N1

Kpi,
N −N1

[M −N1]+
− 1

)

.

(33)
Proof of Theorem 2:We again divide the whole file

set into two subsetsF1 = {F1, F2, ..., FN1
} and F2 =

{FN1+1, FN1+2, ..., FN}. The files inF1 are the “more pop-
ular” files whose popularity is larger than1KM . Recall that in
our model each file is of unit length. The minimum indivisible
portion of a file is called a “bit”. We have assumed that each
file hasF such bits. The cache placement strategy is given as
follows.
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Algorithm 1 Cache Placement Procedure

for 1 ≤ k ≤ K, 1 ≤ n ≤ N1

Userk randomly cachesmin{MF
N1

, F} bits of the fileFn

end for

Note that we only cache fractions of theN1 popular files in
the users’ storage. On the other hand, the files requested by the
K users may also come from files inF2. Assume that there
areK4 users requesting files inF1 and denote these users as
U1. Denote the otherK −K4 users requesting files inF2 as
U2. For everyS that is a subset ofU1 and for everyk ∈ S,
let Vk,S\{k} represent all the bits that are requested by user
k, that are stored in the cache of every other user ofS except
userk, and that are not stored in the caches of any other user
in U1\S. Denote⊕k∈SVk,S\{k} as the XOR across the sets of
bits Vk,S\{k}. More precisely, order the bits in eachVk,S\{k}

in some way. Then, each bit of⊕k∈SVk,S\{k} is the XOR of
the corresponding bits acrossVk,S\{k}, k ∈ S. Note that the
size of⊕k∈SVk,S\{k} equals tomax{|Vk,S\{k}|, k ∈ S}.

Now we are ready to present the transmission scheme,
which consists of two steps. In the first step, the server will
send coded data (as in the decentralized coded caching scheme
of [7]) to meet the requests of users inU1. In the second step,
the server sends uncoded data to meet the requests of users in
U2. Recall that the size ofU1 is K4.

Algorithm 2 Transmission Procedure

Step 1: fors = K4,K4 − 1, ..., 1
for everyS ⊂ U1 such that|S| = s, do

Server sends⊕k∈SVk,S\{k}

end for
end for

Step 2: for every userk ∈ U2

Sever sends its requested filedk
end for

After both steps, all requests ofK users will be satisfied.
The reason is as follows. If a user is inU2, its request will be
immediately satisfied in step 2. If a userk is in U1, a bit b of
its requested file will be in someVk,Sb\{k}, for a specific set
Sb. After step 1,Vk,Sb\{k} will be retrieved by userk from
the transmission received and its local storage. Hence, user K
must be able to decode the bitb.

We now compute the rate required by the transmission
scheme. This analysis is similar to [7]. We first calculate the
rateR1 sent by the server in step 1. For a subsetS ⊂ U1 and
|S| = s, a bit of file dk is in Vk,S\{k} with probability

(
M

N1
)s−1(1 − M

N1
)K4−s+1. (34)

The expected number of bits inVk,S\{k} is F ·(M
N1

)s−1(1−
M
N1

)K4−s+1. When the file sizeF is large, the number of bits
in Vk,S\{k} is F · ( M

N1

)s−1(1− M
N1

)K4−s+1 + o(F ) with high
probability. Therefore, the rate needed to be sent for a specific

subsetS is

| ⊕k∈S Vk,S\{k}| = max
k∈S

|Vk,S\{k}|

= F · (M
N1

)s−1(1− M

N1
)K4−s+1 + o(F ).

(35)
In the sequel, we focus on the “large file-size” regime and
ignore the factoro(F ). For eachs, there areCs

K4
subsetsS

that satisfiesS ⊂ U1 and |S| = s. Summing over all possible
s and all subsetsS, the rate needed in the first step (in the
unit of “bit”) can be bounded by

R1 ≤

K4
∑

s=1

C
s

K4
· F

(

M

N1

)s−1 (

1−
M

N1

)K4−s+1

= F (1−
M

N1

)
1− (1− M

N1
)K4

M

N1

< F (
N1

M
− 1).

(36)

Note that this bound does not depend onK4.
Next, we calculate the rate needed for step 2. Since each

user requests a file inF2 with probability
∑N

i=N1+1 pi, the
expected rate that it needs in step 2 isF

∑N
i=N1+1 pi. Sum-

ming over allK users, the expected rate ofR2 (again in the
unit of “bit”) can be represented by

R2 ≤ KF
N
∑

i=N1+1

pi. (37)

Note that it is possible thatN1 is smaller thanM . In that
case, after each user caches allN1 popular files, there are still
some space left for caching unpopular files. Therefore, when
N1 < M , we let the remaining storage to randomly cache a
equal portion of filesFi (i > N1). Similar to the proof ofR1,
the expected rate ofR2 can also be bounded by

R2 ≤ F (
N −N1

M −N1
− 1). (38)

Finally, by a conversion from the unit of “bit” to the unit of
“file” (recall that each file is unit length), the result of Theorem
2 then follows from Equation (36), (37) and (38).

VI. CONCLUSION

In this work, given an arbitrary popularity distribution, we
first derive a new information-theoretical lower bound on the
expected transmission rate of any coded caching schemes.
We then show that a simple coded-caching scheme attains an
expected transmission rate that is at most a constant factor
away from the lower bound. Unlike other existing studies, the
constant factor that we derived is independent of the popularity
distribution.

There are a number of interesting questions for future
studies. First, the complexity of the transmission scheme in
Section V can be high (esp. for enumerating all the subsets
S). Thus, an important question is whether we can develop
low-complexity transmission schemes that still attain similar
performance guarantees. Further, it would be interesting to
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study how the benefits of coded caching can be extended to
wireless environments (in particular heterogeneous wireless
networks).
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