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Abstract— Scheduling delay-tolerant tasks based on both load-
and channel-awareness can significantly reduce the peak demand
in cellular networks. However, solving the optimal scheduling
problem leads to a large-scale Markov Decision Process (MDP)
with extremely high complexity. In this work, we propose a
scalable and distributed approach to this problem, called Co-
ordinated Scheduling (CoSchd). CoSchd decomposes the large-
scale MDP problem into many individual MDP problems, each of
which can be solved independently by each user under a limited
amount of coordination signal from the BS. We show that CoSchd
is close to optimal when the number of users becomes large.
Further, we propose an online version of CoSchd that iteratively
updates the scheduling policy based on online measurements.
Simulation results demonstrate that exploiting load- and channel-
awareness with CoSchd can effectively alleviate cellular network
congestion.

I. INTRODUCTION

A grand challenge facing today’s mobile service providers
is to meet the exponentially increasing demand for mobile
broadband services. This problem is particularly severe at
the so-called “peak”, where the network is heavily loaded
at specific times and locations. Currently, wireless providers
invest heavily in new spectrum and infrastructure to accom-
modate the peak demand, but such efforts are costly and
inefficient: since the network traffic at non-peak times is
orders-of-magnitude lower than peaks, provisioning network
capacity for peak demand will lead to poor utilization of
network resources.

An alternative approach is to exploit the delay tolerance of
mobile applications to improve the network utilization. Prior
work has identified a class of applications that can tolerate
some delay, ranging from a few minutes to hours [1–4]. For
example, the analysis in [3] shows that more than 55% of
multimedia contents in cellular networks are uploaded more
than one day after their creation time. More recently, the
survey conducted in the TUBE project indicates that users
are willing to delay their data transmissions if appropriate
incentives are provided, i.e. a discounted price [1]. Motivated
by these findings, in this paper we study the scheduling
of delay-tolerant traffic to minimize network congestion and
improve resource utilization in wireless networks.

There are two directions where delay-tolerance can po-
tentially be exploited to alleviate network congestion: load-

awareness and channel-awareness. On one hand, approaches

such as TUBE [1, 5] move delay-tolerant traffic to the time
and location where the network is less loaded, i.e., being

load-aware, and thus alleviate network congestion. However,
TUBE does not consider users’ time-varying wireless channels
– hence we classify it as a “load-only” approach. On the
other hand, noting the temporal variation of channel conditions
in wireless networks, a number of channel-aware scheduling
schemes have been proposed at the mobile device to improve
spectrum efficiency [2, 4, 6]. While this line of work takes
advantage of the opportunistic nature of wireless networks,
it has been limited to optimizing on a single mobile device.
As a result, these schemes are oblivious to traffic-load levels
and thus we refer to them as “channel-only” approaches.
The recent work in [7] proposes mobile-side mechanisms to
estimate and react to both channel condition and network
load. However, it mainly focuses on reducing the energy
consumption of the mobile. To the best of our knowledge,
the above two directions have not been investigated jointly for
the purpose of reducing network congestion.

In this paper, we study joint load- and channel-aware
scheduling policies for delay-tolerant traffic to reduce network
congestion. We consider the scenario of a cellular network
serving a sequence of data transfer requests. Each data transfer
request has a pre-specified deadline, which is directly tied
to the users’ overall experience. The network’s objective is
to schedule such data transfers intelligently to minimize the
network congestion cost, subject to the deadline constraints
of the data transfers. We define the network congestion cost
as the sum of (strictly-)convex functions of the load at each
BS/WiFi-hotspot and at each time. With the strict-convexity,
the cost function naturally penalizes high peak demand and
thus a cost-minimizing solution will tend to smooth out the
traffic load across time and location.

The above scheduling problem is a sequential decision
problem and can theoretically be cast as a Markov Decision
Process (MDP). However, solving such an MDP problem faces
challenges of both computational complexity and information
collection. First, as the system size increases, the complexity
of the MDP problem increases exponentially due to the curse
of dimensionality. Compared to the channel-only approach that
only considers one mobile device [2, 4], here the size of the
problem is very large, as a typical network may have hundreds
of thousands of requests and a large number of BSs and Wi-



Fi hotspots. Compared to the load-only approach [1], here the
channel uncertainty leads to significant difficulty in determin-
ing the amount of load that can be moved under a given policy.
Second, if we were to solve the MDP in a centralized manner,
the scheduler needs to know all requests and channel evolution
statistics for each individual user. Collecting this information
may require the BS to track the behaviors of all users, which
raises concerns on both signaling overhead and privacy. Thus,
decomposition technique and distributed scheduling policies
are highly desirable to effectively solve such a large-scale
MDP.

In this paper, we propose distributed schemes for solving
this type of large-scale MDP problems. We refer to our dis-
tributed solution as Coordinated Scheduling (CoSchd). Under
CoSchd, the network does not need to know the statistics
of all requests before hand, but instead updates a set of
congestion signals based on the aggregated network load. At
the same time, each user executes an individual decision policy
based on the congestion signal and its own channel statistics.
The key to this decomposition is to approximate the original
problem by exchanging the order of the expectation and the
cost function. Specifically, we replace the minimization of
the expectation of the cost function with a minimization of
the cost of the expected load (See Section III for details).
This approximation allows us to apply duality to decompose
the network control, which addresses both the complexity
issue and the signaling/privacy issues discussed earlier. Under
certain conditions, we show that as the number of users in
the system tends to infinity, this decomposition is tight in
the sense that it approaches to close to the optimal solution
of the original problem. We further propose an online ver-
sion of CoSchd that iteratively updates the scheduling policy
based on online measurements. Finally, we have performed
trace-driven simulations to evaluate the performance gains
of exploiting load- and/or channel-awareness. Our simulation
results demonstrate the asymptotic optimality of the proposed
CoSchd and the benefits of scheduling with load- and channel-
awareness.

To the best of our knowledge, this is the first unified frame-
work that exploits both the load- and channel-fluctuations to
alleviate network congestion and improve resource efficiency.
Note that load-only and channel-only policies can also be
derived from our framework. For example, we can obtain
the load-only policy by using identical congestion signals at
all time and locations. Moreover, the decomposition approach
proposed in this paper could potentially be used to solve other
types of large-scale MDP problems, where multiple agents are
weakly coupled by sharing common resources.

II. SYSTEM MODEL

We start by considering one BS, where the proposed ap-
proach can also be generalized to include multiple BSs and
WiFi-hotspots, as discussed in [8]. The problem stated here
applies to both the uplink and downlink in cellular networks.

Assume that time is slotted and indexed by t ∈ {0, 1, . . .}.
Let N be the number of time-slots in each day. A typical

time-slot length ranges from tens of seconds to a few minutes.
Because of the large time scale, we assume that a data transfer
request will be completed in one time-slot when the request
is accepted, as in [1].

Data Traffic. In every day, a sequence of data transfer
requests enter the network with user-specified deadlines. We
use the words “user” and “request” interchangeably. The
requests depart upon completion or deadline expiration.

Consider the scheduling problem in one day, where t ∈
{0, 1, . . . , N − 1}. Let I = {1, 2, . . . ,m} be the index set of
all users that may request transfers from the BS. For each user
i ∈ I, denote the arrival time and the file size of its request
by Ai and Bi, respectively. Assume that Ai’s and Bi’s are
i.i.d. across users. Ai follows a distribution that reflects the
typical traffic pattern of the day [1, 9]. Note that a user may
not request transfers every day and we let Ai = N when user
i does not request any transfers. We assume that the file size
Bi is bounded [10] and is given as soon as the request arrives.

Each request i is associated with a user- or application-
specific deadline Di, i.e., the maximum delay that a user can
tolerate. The deadline ranges from minutes to hours for delay-
tolerant traffic [1, 3]. Such a deadline requirement depends
on specific applications and can be set in various ways. For
example, it could be a default setting in an application, e.g.,
syncing emails every half an hour; or, it can be learned from
user preference. We assume that all transmission tasks should
be completed at the end of the day, i.e., Ai + Di ≤ N − 1,
for simplicity. To guarantee the quality of user experience,
we need to constrain the deadline violation probability when
scheduling delay-tolerant traffic, as will be discussed later.
Note that in this model we also allow real-time traffic that
needs to be transmitted immediately, in which case the dead-
line is set to be zero.

Channel Dynamics. Each user experiences time-varying
network availability and channel conditions. This is captured
by a stochastic process Ri(t) (t ∈ {0, 1, . . .}), where Ri(t) ≥
0 denotes the instantaneous rate per unit spectrum resource
(e.g., a time-frequency block in LTE) at which the BS can
communicate with user i in time-slot t. We assume that Ri(t)
is independent across users and model Ri(t) as a homogeneous
Markov chain over a finite set of the possible transmission
rates, i.e., Ri(t) ∈ {r1, r2, . . . , rJ}, where J is the number of
possible rates, and 0 = r1 < r2 < . . . < rJ . For user i, the
transition probability matrix is given by

P i = [p
(i)
j1j2

]J×J , i ∈ I, (1)

where p
(i)
j1j2

∈ [0, 1], 1 ≤ j1, j2 ≤ J , is the transition proba-
bility from state j1 to state j2 for user i. We assume that all
channel processes have reached the steady state, i.e., with the
stationary distribution π(i), where π(i) = [π

(i)
1 , π

(i)
2 , . . . , π

(i)
J ]

is the stationary distribution for the Markov chain of user i.
When user i in channel condition Ri(t) (Ri(t) > 0) is

scheduled to transmit a file of size Bi, it consumes Bi/Ri(t)
units of spectrum resource. We assume that each user can
estimate its current channel condition via measurements of
received signal strength and interference levels. Further, the



user can learn the transition probability of its channel dynam-
ics based on historical measurements, as in [6, 11, 12].

Scheduling Policy and Base-Station Load. Let Γ denote a
general scheduling policy that decides which users to transmit
at a given time-slot. We consider the set of all causal policies.
Corresponding to each Γ, we let Lt(Γ) be the aggregate
amount of spectrum resource consumed by the users trans-
mitting in time-slot t under policy Γ. We express Lt(Γ) as

Lt(Γ) =
∑
i∈I

Yi,t(Γ), t = 0, 1, . . . , N − 1, (2)

where Yi,t(Γ) is the amount of resource consumed by user i
in time-slot t. More precisely,

Yi,t(Γ) =

{
Bi/Ri(t), if user i transmits in slot t,
0, otherwise.

(3)

Objective. From the network’s point of view, the objective
is to minimize the total congestion cost in the horizon of N
time-slots subject to the deadline violation constraints. Let
f(·) be a strictly-convex congestion-cost function and vi(Γ)
be the deadline violation probability of user i. The scheduling
problem is then

(P0)
minimize

Γ
F =

N−1∑
t=0

E
[
f
(
Lt(Γ)

)]
,

subject to vi(Γ) ≤ ηi, ∀i ∈ I,
(4)

where ηi is the maximum deadline violation probability toler-
ated by user i.

In problem P0, the convexity of f(·) penalizes peaks and
thus favors load that is smoothed over time, which is desirable
for network operators. In our numerical results, we use the
following function f(l) =

(
l/C̄

)ν
, where C̄ is a positive

constant and ν > 1 is a factor for controlling the penalty.
Note that in principle, P0 can be viewed as an MDP by

taking the waiting time and channel condition of all users
as system state. However, solving such an MDP problem in
a centralized manner is forbiddingly complex. First, the size
of the problem is very large, as a typical network may have
hundreds of thousands of users, over a time horizon of a
day. In addition, deadline constraint is notoriously difficult to
solve in general because of the resource coupling across time
and among users. Second, the problem formulation assumes
knowledge of all jobs and their detailed channel information.
In practice, it is not feasible to gather such detailed information
in a central entity because of both signaling overhead and
privacy concerns. Next, we will focus on the regime where the
number of users is large, and develop a distributed approach
for (approximately) solving problem P0. Our main intuition
is the following. In our system, each user can be seen as
interacting with the set of all other users. When the number
of users is large, the impact of any given user’s decision on
the overall system should be minimal. Thus, it would be as
if each user is interacting with a common entity that includes
all users in the system. If we can summarize the effect of
all users by some kind of “congestion signal,” we may then

be able to approximate the original system by one where each
user independently reacts to such a common congestion signal.
The challenges are how to design such a common congestion
signal and how to establish the (asymptotic) optimality of
the decomposition, which will be the focus of the following
section.

III. ASYMPTOTICALLY OPTIMAL DECOMPOSITION

This section studies asymptotically optimal policies for
solving the large scale MDP P0. Note that the objective in
(4) is to minimize the expectation of total cost. We first
propose a lower bound of P0 by introducing a new problem
P1 that minimizes the total cost of expectation. We show the
asymptotic optimality of the decomposition approach in the
many-source regime and a distributed implementation of the
approach, referred to as Coordinated Scheduling (CoSchd).

A. Lower Bound

In the original MDP problem P0, the cost is a function of the
instantaneous load level Lt(Γ) and the objective is to minimize
the expected total cost. Because the cost function f(·) is
convex, the optimal value of P0 can be lower bounded by
exchanging the order of the expectation and the cost function.
Specifically, consider the following problem that minimizes
the total cost of the expected load level:

(P1)
minimize

Γ
F̃ =

N−1∑
t=0

f
(
lt(Γ)

)
,

subject to vi(Γ) ≤ ηi, ∀i ∈ I,

where lt(Γ) = E[Lt(Γ)] is the expected value of load level. Let
F ∗ be the optimal value of the original problem P0 and let Flb

be the optimal value of P1. Because the constraints of P0 and
P1 are identical and the only difference lies in the objective
function, we can easily show the following proposition by the
convexity of f(·) and Jensen’s inequality [13].

Proposition 1 The optimal value of problem P1 provides a

lower bound on the value of the original problem P0, i.e.,

Flb ≤ F ∗.

As we will see later, thanks to the linearity of expectation,
the cost of expected load is much easier to deal with than the
expectation of cost. Hence, problem P1 and its lower-bound
property are critical in the design and analysis of asymptotical-
ly optimal policies. Next, we will study the optimal solution
for P1, and show its asymptotic optimality for the original
problem P0 in the many-source regime.

B. Dual Decomposition

This subsection proposes a decomposition approach for
solving problem P1 based on dual decomposition. To use dual
decomposition, we first introduce auxiliary variables ht ≥ 0
(t = 0, 1, . . . , N − 1). Let h = {ht, t = 0, 1, . . . , N − 1}. We



can rewrite problem P1 as

minimize
Γ,h

F̃ =
N−1∑
t=0

f(ht)

subject to lt(Γ) ≤ ht, for all t, (5)
vi(Γ) ≤ ηi, ∀i ∈ I. (6)

Let β = [β0, β1, . . . , βN−1] be the Lagrange multiplier vector
corresponding to the constraints in Eq. (5). It will be clear
that β serves as the congestion signal provided by the BS
over time (in a day). Given β, we formulate and decompose
the Lagrangian as follows:

L(Γ,h,β) =
N−1∑
t=0

f(ht)−
N−1∑
t=0

βt

[
ht − lt(Γ)

]

=
N−1∑
t=0

[f(ht)− βtht] +
∑
i∈I

N−1∑
t=0

βtyi,t(Γ), (7)

where yi,t(Γ) = E[Yi,t(Γ)] is the expected amount of resource
consumed by user i in slot t. Let the objective function of the
dual problem be g(β), i.e.,

g(β) = inf
Γ,h

L(Γ,h,β). (8)

Since the Lagrangian has been decomposed, we can use a
distributed policy Γi to minimize the expected consumed
resource of user i such that the latter term in (7) is minimized.
Therefore, for given β, the dual objective function can be
obtained by solving the following subproblems:

(SP0) minimize
h≥0

N−1∑
t=0

[f(ht)− βtht],

(SPi)
minimize

Γi

N−1∑
t=0

βtyi,t(Γi)

subject to vi(Γi) ≤ ηi. i ∈ I
The master dual-problem is

(D1)
maximize

β
g(β)

subject to β ≥ 0.

Since f(·) is convex, subproblem SP0 can be easily solved
by convex optimization algorithms [13]. For subproblem SPi,
we can view it as a constrained sequential decision problem
and obtain the optimal policy Γi by backward induction [14].
Therefore, the dual problem can be solved efficiently by using
(sub-)gradient approach, as will be discussed later.

For a general optimization problem, dual decomposition
only guarantees weak duality, i.e., the dual solution only
provides a lower bound to the original problem. However, we
show below that the duality gap between P1 and D1 is zero,
and hence there exists an optimal β such that the algorithms
SP0 and SPi combined provides an optimal solution to P1.

Proposition 2 Given that the cost function f(·) is convex, the

dual problem D1 have zero duality gap, and thus the dual

decomposition approach provides an optimal value to P1.

Proof: Strong duality holds for convex optimization
problem. To prove the proposition, we convert P1 to a convex
problem with exponentially large number of control variables,
and thus show the dual problem D1 have zero duality gap. See
Appendix I for details.

The proof in Appendix I uses a transformation of policy
representations, which will also be useful for design schedul-
ing policies. Hence, we briefly introduce the transformation
here. Let Ωi be the set of possible realizations of channel
process Ri(t) for user i. For each realization denoted by
r = [r(0), r(1), . . . , r(N − 1)] ∈ Ωi, let r(0 : t) =
[r(0), r(1), . . . , r(t)] be the first t+1 elements of r. We only
focus on causal policies, and thus the decision is made based
on the history of the channel conditions. Let xai,w,r(0:ai+w) ∈
[0, 1] denote the transmission probability of user i when its
arrival time is ai, waiting time is w slots and the channel
condition history is r(0 : ai+w). Then, a policy Γi for solving
subproblem SPi can be represented by a decision matrix
xi = {xai(r) : 0 ≤ ai ≤ N − 1, r ∈ Ωi}, where each sub-
matrix xai

(r) = [xai,w,r(0:ai+w)] represents the policy for
each pair of arrival time ai and channel realization r. For each
decision matrix xi, we define the following transformation,
denoted by ϕi = T (xi), as follows: for each realization
r ∈ Ωi,

ϕai,w,r(0:ai+w) =

⎧⎪⎨
⎪⎩
xai,w,r(0:ai+w), if w = 0,

xai,w,r(0:ai+w)

∏w−1
w′=0[1− xai,w,r(0:ai+w′)],

if w = 1, 2, . . . , Di − 1.

(9)

Note that ϕai,w,r(0:ai+w) can be interpreted as the probability
that user i under a particular channel realization r transmits
at time ai + w. The transformation T is invertible, where
the inverse transformation ϕi = T −1(xi) can be defined as
follows: for a realization r ∈ Ωi,

xai,w,r(0:ai+w) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕai,w,r(0:ai+w), if w = 0,
ϕai,w,r(0:ai+w)

∏w−1

w′=0
(1−xai,w

′,r(0:ai+w′))
,

if 0 < w ≤ Di − 1 and
∏w−1

w′=0(1− xai,w′,r(0:ai+w′)) > 0,

0, if 0 < w ≤ Di − 1 and
∏w−1

w′=0(1− xai,w′,r(0:ai+w′)) = 0.

(10)

C. CoSchd: Coordinated Scheduling

Based on the dual decomposition discussed in the previous
subsection, we propose the following distributed algorithm,
referred to as Coordinated Scheduling (CoSchd), to solve the
approximate problem P1. In this distributed algorithm, the BS
decides its congestion signal vector in an iterative fashion and
each user individually decides its transmission schedule based
on the congestion signal from the BS and its own channel
characteristics.

In Algorithm 1, we follow a (sub-)gradient method to solve
the dual problem D1:

β
(d+1)
t =

[
β
(d)
t + α(d)

(
l
(d)
t − h

(d)
t

)]+
, ∀t (13)



Algorithm 1 Coordinated Scheduling (CoSchd).
Input: Distributions of Ai, Bi, Di;

Transition probability matrix P i.
Output: Transmission probability x̄i.
Init: Set d = 0 and β

(0)
t = 1 for all t = 0, 1, . . . , N − 1.

for d ← 1, 2, . . . , dmax

1) Mobile-side: each user i ∈ I solves SPi and obtains

x
(d)
i ← argmin

N−1∑
t=0

βtyi,t(xi),

ϕ
(d)
i ← T (x

(d)
i );

Each user estimates its expected load in each slot according
to Eq. (16) and reports to the BS;
2) Network-side: the BS collects the load of each user and

calculates the aggregated load l
(d)
t :

The BS solves SP0 and updates β(d)
t using Eq. (13) below;

endfor
Averaging: Calculate the average transition probability

ϕ̄i ← 1

dmax

dmax∑
d=1

ϕ
(d)
i ; (11)

x̄i ← T −1(ϕ̄i). (12)

where d is the iteration index, α(d) is the step-size, and [·]+
denotes the projection to non-negative numbers.

Based on the framework of CoSchd, the network-side op-
eration is simple: first, the BS solves subproblem SP0 and
obtains the optimal value of h(d); second, the BS updates
congestion signals according to Eq. (13) based on load level
l(d) and h(d). Next, we focus on the operation on the mobile
side.

1) Mobile-side Operation

On the mobile-side, each user operates independently as fol-
lows: it generates policies based on its channel characteristics
and the congestion signals, and then executes the policy based
on the instantaneous channel condition.

For a given β (i.e., the congestion signal vector), the
subproblem SPi turns out to be a constrained sequential
decision problem [14]. In the proof of Proposition 2, we
consider general causal policies and assume that each user
makes decisions based on its channel condition history. In fact,
for Markov channel processes, each user only needs to make
decision based on the waiting time and the current channel
state. In particular, one can introduce a cost for deadline vio-
lation. The mobile minimizes SPi plus the deadline violation
cost by backward induction. We now discuss the specifics of
the deterministic deadline-constraint case as follows and refer
the readers to [14] for the probabilistic deadline constraint
case.

For user i arriving at ai, let xai,w,j ∈ [0, 1] (w =
0, 1, . . . , Di − 1; j = 1, 2, . . . , J) be the probability that
user i requests transmission when its waiting time is w and

channel state is j. (Thus, the probability xai,w,r(0:ai+w) =
xai,w,j if r(ai + w) = rj .) In the deterministic deadline-
constraint case, i.e., ηi = 0, all data must be transmitted before
expiration. Therefore, for user i arriving at ai, it requires that
xai,ai+Di−1,j = 1. To guarantee a finite transmission cost, we
assume that for each user,

E{Bi/Ri(ai +Di − 1)|Ei,Di−1} < +∞, i ∈ I, (14)

where Ei,Di−1 represents the event that user i does not transmit
before ai + Di − 1. In the case with temporally-Markovian
channels, using the principle of optimality and taking the
multipliers β into account, we can obtain the optimal decision

xai,w,j =

{
1, if βai+w

Ri(ai+w) ≤ E[V ∗
ai,w+1|rj ]

0, otherwise,
(15)

where E[V ∗
ai,w+1|rj ] is the expected future cost conditioned

on Ri(ai + w) = rj , which can be calculated by backward
induction:

E[V ∗
ai,w+1|rj ]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E

[
βai+Di−1

Ri(ai+Di−1)

∣∣∣∣rj)
]

for w = Di − 2;

E

[
min

( βai+w+1

Ri(ai+w+1) , V
∗
ai,w+2

)∣∣∣∣rj
]
,

for w = Di − 3, Di − 4, . . . , 0.

As a special case of Markovian channels, when the channel
process is independent across time-slots, it is easy to verify
that the policy becomes a threshold policy, i.e., there exists a
threshold Tw for each w, the transfer occurs if Ri(ai +w) ≥
Tw.

After obtaining xi, each user can estimate the amount of
required resource as follows:

yi,t =

N−1∑
a=0

P(Ai = a)yi,a,t

=
N−1∑
a=0

P(Ai = a)E[Bi]
J∑

j=2

π′
i,a,t,j/rj , (16)

where π′
i,a,t,j is the probability that the user i with arrival time

a transmits at slot t under channel condition rj , i.e.,

π′
i,a,t,j =

{
π
(i)
j , if t = a,∑J
j′=1(1− xa,t−a,j′)π

′
i,a,t−1,j′pj′j otherwise.

Finally, the averaging operation given by (11) and (12)
is taken to deal with the possible oscillation issues of the
subgradient method, as in [15]. Note that the constraints of
P1 are linear in ϕi and the subgradient is bounded. Using
the results in [15], we can show that CoSchd provides a
approximate solution of problem P1. Specifically, we use a
constant step-size in (13) and let α(d) = α. Let F̃CoSchd(α)

be the cost value of P1 under CoSchd with α(d) = α. Then,
the following lemma states that CoSchd(α) provides a near



optimal solution of P1. The proof is similar to Proposition 2
in [15] and is omitted here.

Lemma 1 For CoSchd with constant step-size α(d) = α, the

cost of problem P1 is bounded as follows:

F̃CoSchd(α) ≤ Flb + μ0α, (17)

where Flb is the optimal value of P1, and μ0 > 0 is a constant

depending on the maximum value of ||lt − h(t)||.
2) Asymptotic Optimality in the Many-Source Regime

According to Proposition 2, P1 can be solved by dual
decomposition approach. However, P1 is not equivalent to the
original problem P0. Fortunately, because all users indepen-
dently solve individual MDPs under CoSchd, as the number
of users increases, the instantaneous load level is close to
its expectation. Using this property, we can show that the
proposed approach is asymptotically optimal for P0 in the
many-source regime.

Consider the many-source regime. To study the asymptotic
properties of the proposed approach, we consider the following
m-scaled system.

Assumption 1 All users in I can be divided into K classes.

For each class k,

• the number of users mk (k = 1, 2, . . . ,K) is proportional

to the total number of users m, i.e., mk = mλk, where

0 < λk < 1 is the ratio of class-k users and
∑K

k=1 λk =
1;

• users in class-k have the same deadline requirements, and

the same statistics of arrival time and channel dynamics

that do not change with m.

Further, we make the following assumption on the cost func-
tion:

Assumption 2 The cost function f(·) in the m-scaled system

is continuous, and is a function of the normalized load, i.e.,

f(l) = f̃(l̃), where l̃ = l/m.

For the above m-scaled system, we let F
(m)
CoSchd(α) be the

cost value of the original problem P0 under CoSchd with
α(d) = α, and let F

(m)
lb be the optimal value of problem

P1. Note that by optimizing on the normalized load-level
l̃t, the constant μ0 in Lemma 1 for the m-scaled system is
independent of m. The following proposition then shows the
performance of CoSchd in the many-source regime.

Proposition 3 Under Assumptions 1 and 2, F
(m)
CoSchd(α) con-

verges to a value near F
(m)
lb as m increases, i.e.,

lim
m→∞F

(m)
CoSchd(α) ≤ lim

m→∞F
(m)
lb + μ0α, (18)

where μ0 is the constant introduced in Lemma 1.

Proof: See Appendix II.
According to Proposition 1, F (m)

lb provides a lower bound
on the optimal value of P0. The above proposition states that
F

(m)
CoSchd(α) will be in a neighborhood of F (m)

lb as m increases,
and thus the decomposition approach is asymptotically optimal
for P0 in the many-source regime.

D. Online Implementation of CoSchd

The CoSchd approach proposed in the previous section can
only be implemented before really running the network. Next,
we propose an online version of CoSchd (online-CoSchd) in
Algorithm 2, where in every day, the scheduling decision is
iteratively computed based on the actual traffic-load measure-
ments.

Algorithm 2 Online-CoSchd.
Init:
set d = 0 and β

(0)
t = 1 for all t = 0, 1, . . . , N − 1.

Iteration: (day d)
1) At time t = 0, β(d)

t (t = 0, 1, . . . , N − 1) is announced
to all users;

Each user i ∈ I solves SPi as the request arrives and
calculates the average decision matrix according to (19);
2) For t = 0 → N − 1,

Each user makes decision based on its channel states;
The BS serves requested users and observes the load level

L
(d)
t ;
The BS solves SP0 and updates β

(d)
t using Eq. (13) with

l
(d)
t = L

(d)
t ;

3) Set d ← d+ 1 and go to step 1).

Recall that Algorithm 1 needs to consider all possible
realizations of channel process for each user when calculating
the average value of the decision matrices, and it becomes
very complex as the deadline increases (because |Ωi| =
JDi ). In contrast, in Algorithm 2, here each user directly
applies a Exponential-Moving-Averaging policy to deal with
the oscillation issues, i.e.,

x̄
(d)
i = ϑx̄

(d−1)
i + (1− ϑ)x

(d)
i , (19)

where ϑ ∈ [0, 1] is a memory factor for trading-off the
convergence speed and fluctuation, as will be discussed in
Section IV. Without considering all possible realizations, the
number of control variables for each user is reduced to DiJ ,
which is much smaller than JD

i for large Di.
With the online policy, each user also estimates its instan-

taneous channel condition and then makes decision using the
decision table, as shown in Eq. (15). We will evaluate the per-
formance of online-CoSchd through simulation in Section IV.
In the current stage, we have not obtained theoretic properties
for the online version of CoSchd and leave it as our future
work.

IV. EVALUATION

Based on the framework proposed in our paper, we can also
derive load-only and channel-only policies as special cases
(with constant congestion signal and data rate, respectively).
In this section, We evaluate the performance of load-only,
channel-only, and CoSchd approaches via trace-driven sim-
ulations. Since the offline-CoSchd and online-CoSchd have
similar performance and online-CoSchd is more scalable as
discussed in Section III, we only consider online-CoSchd here



and refer it to as CoSchd for simplicity. As a baseline, we
also consider ImTrans, where all users immediately transfer
the data when the requests arrive.

A. Simulation Setup

We use a slot length of 10 minutes and each day is divided
into 144 time-slots. For the cost function, we set ν to be
ν = 8 which is large enough for smoothing out the load
level according to our experiments. We consider both a single-
cell scenario and a two-cell scenario, except that the load-only
policy will only be evaluated in the single-cell scenario similar
to [1].

1) Traffic Arrival Pattern

We assume a time-dependent Poisson arrival process, i.e.,
the total number of requests arriving in time-slot t is a Poisson
random variable with mean value λt (t = 0, 1, . . . , N−1). For
the single-cell network, the mean arrival rates are set based on
the weekday traffic profile of the center BS from Fig. 1 in [16].
For the multi-cell network, we use the weekday traffic profile
of the center BS and the neighbor BS 1 (again from Fig. 1
in [16]). To capture the delay-tolerance of traffic, we apply
the waiting function proposed in [1], and use the patience
indices for the different traffic classes estimated from the U.S.
survey in [1]. Specifically, for the delay-tolerant traffic (“Time-
Dependent Pricing” traffic in [1]), the probability that user i
wants to wait Di slots is proportional to 1

(Di+1)ρ , where the
patience index ρ is 2.0 for video traffic and 0.6 for others. In
addition, the usage distribution of the different traffic classes
is taken from recent estimates [17], where the proportion of
video traffic is about 65%.

2) Channel Profile
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Fig. 1. Distribution of spectrum efficiency.

We collected a set of Received Signal Strength Indication
(RSSI) values from a group of anonymous mobile users to
best emulate the spectrum efficiency in cellular networks. We
assume that the interference strength is a constant and thus
the RSSI value represents the SINR, which determines the
spectrum efficiency. We follow the LTE-Advanced standards
[18], and map the measured RSSI to the proper modes of
Modulation and Coding Scheme (MCS). We use the 5-bit CQI
and the distribution of the corresponding spectrum efficiency
is shown in Fig. 1. To capture time-varying and location-
dependent channel conditions, we use a Markov model where
Markovian transitions between adjacent channel states (RSSI

values) are assumed in each time-slot [19]. We assume that
all users use the same channel model. One limitation of the
model is that the parameters (e.g., transition probabilities) do
not change over time while real human users may have more
time-dependent behavior (e.g., 2am at home vs. 2pm at work).
We hope to further collect real-life channel profile traces for
a more realistic evaluation of real networks in the future.

B. Convergence of CoSchd

We first demonstrate the asymptotic behavior of the system
and the convergence of CoSchd.

Fig. 2 shows the difference between the values of the
original problem P0 and its approximate version P1. Note that
the cost of expected load f [E(Lt)] is close to the lower bound
(Lemma 1) and the expected cost under CoSchd E[f(Lt)]
provides an upper bound on the original problem P0. As we
can see from the figure, the gap between the upper- and lower-
bounds becomes smaller as the network scale increases. The
two values are close to each other in medium-sized systems.
For example, when the average number of users in each slot is
400, the gap is about 15% of the value for the original problem.
Hence, minimizing the cost of expected load approximately
solves the original problem P0.
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Fig. 2. The difference between the cost of expected load and the expectation
of cost.

Fig. 3 shows the evolution of the duality gap between
problem P1 and its duality. The duality gap decreases as
the number of iterations increases, and the duality gap is
small after several iterations. Comparing the evolutions with
different memory factor ϑ, we can see that with smaller ϑ, the
duality gap decreases faster, but the fluctuation is larger. We
set ϑ = 0.9 for the rest of simulations which seems to strike
a balance between the convergence speed and fluctuation.

C. Network Load

Fig. 4 shows the network load in one day obtained by
different approaches. The three subfigures represent different
settings. Fig. 4(a) and Fig. 4(b) are for single-cell systems
with, respectively, 50% and 75% of load being delay-tolerant.
In contrast, Fig. 4(c) is for a multi-cell system with 50%
of load being delay-tolerant. We can make a number of
interesting observations from Figs. 4(a) and 4(b). Specifically,
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Fig. 4. Load level under different approaches and settings (a) single-cell with 50% delay-tolerant traffic, (b) single-cell with 75% delay-tolerant traffic, and
(c) multi-cell with 50% delay-tolerant traffic (solid-line for BS1 and dash-line for BS2).
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Fig. 3. The convergence of CoSchd.

from Fig. 4(a), we can see that by moving the delay-tolerant
traffic into “valleys”, the peak load obtained by the load-only
policy is about 80% of that under ImTrans. On the other hand,
using the channel-only policy, the peak is reduced to about
75% of ImTrans. A similar observation can be made from
Fig. 4(b), while the peak load reduction is more significant
since there is more delay-tolerant traffic. This finding sug-
gests that channel-awareness can be more effective than load-
awareness in wireless systems.

Further, although CoSchd leads to even lower peak con-
sumption by considering both load-awareness and channel-
awareness, the additional gain compared to the channel-only
policy is relatively marginal in the single-cell setting in
Fig. 4(a) and Fig. 4(b) (about 8% reduction in both figures).
We note that, under the channel-only policy, users defer their
transmissions when waiting for good channels. Therefore, a
“peak-shedding” effect also occurs under the channel-only
approach. Since the traffic fluctuation is not large, the room for
CoSchd to further move traffic is relatively small. However, the
multi-cell simulation in Fig. 4(c) illustrates different behaviors.
By moving the delay-tolerant traffic to the neighbor BS (i.e.,
BS 2), the peak of network load (corresponding to the load
in BS 1 at about 18:00) is reduced by about 20% by CoSchd
compared to the channel-only policy.

V. CONCLUSIONS

In this paper, we present a decomposition technique for
solving a large-scale MDP that models the problem of
scheduling delay-tolerant traffic with both load- and channel-
awareness. Despite the high complexity of the large-scale
MDP, we develop a distributed framework, called CoSchd, and
shows its asymptotic-optimality in the many-source regime.
An online version of CoSchd is also proposed to reduce the
complexity.

The results in this paper are of both practical and theo-
retical values. Practically, our proposed policy can be im-
plemented in a distributed manner in real systems. Further,
our comparative evaluations provide cellular operators with
operation guidelines to decide the most appropriate approach-
es. Specifically, our numerical results suggest that channel-
awareness is rather important in wireless networks. For single-
cell systems, channel-only may be preferred due to its simplic-
ity and relatively good performance. For multi-cell systems
with load variations, CoSchd can attain significant additional
gains. Theoretically, the joint approach provides an optimal
benchmark for comparing with other solutions. Moreover, the
decomposition technique and the proposed CoSchd algorithm
can potentially be applied to other large-scale MDP, where
multiple agents are weakly coupled through sharing common
resources.

APPENDIX I
PROOF OF PROPOSITION 2

To prove the optimality of the proposed dual decomposition
approach, we show that problem P1 can be reformulated to a
convex optimization problem P2, albeit with an exponentially
large number of decision variables. Thus, strong duality holds
between P2 and its dual, named D2.

First, we show that any policy Γ can be represented by a
stochastic policy Ψ as follows 1. Note that each causal policy
Γ makes decision based on the history of the arrival sequence
and channel processes. To represent the history, for each user
i ∈ I, we introduce Ãi(t) to represent its present status in
time-slot t. Namely, if the arrival time Ai of user i is equal

1The representation and transformation are slightly different from that in
Section III, because here scheduling policies are made based on the state of
the entire network before decomposition.



to ai (we let ai = N represent the event that user i does not
appear), then Ãi(t) = −1 if ai > t, and Ãi(t) = ai if ai ≤ t.
Recall that Ri(t) (i = 0, 1, . . . , N − 1) is the channel process
of user i. Hence, the history of the system up to time-slot t is
given by

St = [Ãt R̃t],

where Ãt = [Ã1(t), Ã2(t), . . . , Ã|I|(t)]T and

R̃t =

⎡
⎢⎢⎢⎣
R1(0) R1(1) . . . R1(t)
R2(0) R2(1) . . . R2(t)

...
...

. . .
...

R|I|(0) R|I|(1) . . . R|I|(t)

⎤
⎥⎥⎥⎦ .

Let Ω be the set of possible realizations of arrival sequence
and channel processes, i.e., the possible realization of SN−1.
Then, each policy Γ can be represented by a stochastic policy
Ψ, which is a Ω 	→ [0, 1]|I|×N mapping: for each s ∈ Ω,

Ψ(s) =

⎡
⎢⎢⎢⎣
ψ1(s0) ψ1(s1) . . . ψ1(sN−1)
ψ2(s0) ψ2(s1) . . . ψ2(sN−1)

...
...

. . .
...

ψ|I|(s0) ψ|I|(s1) . . . ψ|I|(sN−1)

⎤
⎥⎥⎥⎦ ,

where st is the history of arrival sequence and channel pro-
cesses up to time-slot t for the realization s, and ψi(st) ∈ [0, 1]
is the transmission probability of user i in time-slot t.

Second, we study the expected resource consumed by user i
under Ψ(s). For each s ∈ Ω where user i arrives in time-slot
ai, we can calculate the probability that user i transmits in
slot ai + w as follows

ϕi(st) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψi(sai

), t = ai

ψi(sai+w)
∏w−1

w′=0[1− ψi(sai+w′)],

t = ai + w, 0 < w ≤ Di − 1

0, otherwise.

For given s, the expected consumed resource of user i in
time-slot t is

c′i,t(s,Ψ) =
biϕi(st)

Ri(t)
.

In addition, note that all users should transmit before expira-
tion. Hence,

Di−1∑
w=0

ϕi(sai+w) = 1, s ∈ Ω, i ∈ I. (20)

Moreover, using the relationship between ϕi(·) and ψi(·), a
ϕi(·) satisfying (20) can be mapped to a policy Ψ 2.

2If
∑w

w′=0 ϕi(s0:ai+w′ ) = 1 for some w < Di − 1, then for w′ > w,
ψi(si,w) can be artificially set to be 0, which will not affect the behavior of
Ψ.

Consequently, problem P1 is equivalent to

(P2) minimize
Ψ,h′

F =

N−1∑
t=0

f
(
h′
t

)
,

subject to
Di−1∑
w=0

ϕi(sai+w) = 1, s ∈ Ω, i ∈ I,

l′t(Ψ) ≤ h′
t, t = 0, 1, . . . , N − 1,

where

l′t(Ψ) =
∑
s∈Ω

∑
i∈I

π(s)c′i,t(s,Ψ). (21)

We can verify that P2 is a convex optimization problem
because f(·) is a convex function and all the constraints
are linear. However, we do note that it is impractical to
solve P2 directly because of its large number of variables.
Recall that there are |I| × N decision variable for each
possible state. Assume the channel state of each user can be
quantized to J values, then there are J |I|×N possible states,
and thus |I|×N×J |I|×N decision variables, which is clearly
intractable. We note that the formulation can be considered as a
linear representation of a centralized Markov Decision Policy,
which clearly suffers the curve of dimensionality.

Again, we resort to the dual decomposition approach to
study P2. Similar to the approach in Section III, we can
introduce a dual variable for each time slot, and then rearrange
the variables that belong to each user. Then, we have a similar
format as in SP0 and SPi. The dual decomposition approach
can also be applied to solve problem P2 and the strong duality
holds.

APPENDIX II
PROOF OF PROPOSITION 3

Let F̃ (m)
CoSchd(α) be the cost value of P1 under CoSchd(α).

Because F̃
(m)
CoSchd(α) ≤ F

(m)
lb + μ0α according to Lem-

ma 1, we only need to show that limm→∞ F
(m)
CoSchd(α) =

limm→∞ F̃
(m)
CoSchd(α). To achieve this, we first consider the

single-class system, i.e., K = 1. Since F
(m)
CoSchd(α) is the

sum of the expected costs in each slot, i.e., F
(m)
CoSchd(α) =∑N−1

t=0 E
[
f(Lt)

]
, we can prove Proposition 3 if we can show

that under CoSchd(α),

lim
m→∞E[f(Lt)] = f

(
E[Lt]

)
, (22)

which implies that the “expectation of the cost” approaches
the “cost of the expectation” as m increases. As will be
seen shortly, this can be verified by using the fact that,
under CoSchd(α), each user operates independently when the
congestion signal β is fixed.

Specifically, fix a time-slot t. Let Yi (i = 1, 2, . . . ,m) be the
amount of resource required by the i-th user in slot t. Since
all users in the same class have identical traffic and channel
statistics, Yi’s (i = 1, 2, . . . ,m) are i.i.d. random variables.
Let E[Yi] = μY . The load level is Lt =

∑m
i=1 Yi and the

normalized load level is L̃t =
1
m

∑m
i=1 Yi with E[L̃t] = μY .



Since the file size Bi is bounded, the amount of resource Yi

is bounded and we let ymax = maxYi =
maxBi

r2
.

Using the Chernoff bound, we have that for a given δ > 0,

P
{
L̃t ≤ μY − δ

} ≤ e−mIY (δ) (23)

P
{
L̃t ≥ μY + δ

} ≤ e−mIY (δ), (24)

where

IY (δ) = min{D(μY + δ||μY ), D(μY − δ||μY )}, (25)

and D(x||y) = x log x
y + (1 − x) log 1−x

1−y is the Kullback-
Leibler divergence.

Next, we bound E[f(Lt)] using the above results and the
properties of the cost function. E[f(Lt)] can be calculated as
follows

E[f(Lt)] = E[f̃(L̃t)]

=

∫ ∞

0

f̃(l)φL̃t
(l)dl

=

[ ∫ μY −δ

0

+

∫ μY +δ

μY −δ

+

∫ ∞

μY +δ

]
f̃(l)φL̃t

(l)dl,

where φL̃t
(·) is the probability density function of L̃t. Note

that f̃(l) is increasing in l. Thus, from (23) and (24), we have

E[f(Lt)] ≥ (1− 2e−mIY (δ))f̃(μY − δ), (26)

and

E[f(Lt)] ≤ f̃(μY + δ) + 2e−mIY (δ)f̃(ymax). (27)

For any ε > 0, by the continuity of f̃(l) , we can choose a
δ > 0 such that f̃(μY − δ) ≥ f̃(μY )− ε/2 and f̃(μY + δ) ≤
f̃(μY ) + ε/2. Combining with (26) and (27), we know that
there exists an m1 such that for all m ≥ m1, we have

|E[f(Lt)]− f(E[Lt])| = |E[f(Lt)]− f̃(μY )| ≤ ε,

and thus (22) holds by taking ε → 0.
For multi-class systems, similar properties can be obtained.

Let Ik (k = 1, 2, . . . ,K) be the index set of class-k users.
For all i ∈ Ik, Yi are i.i.d. random variables because within
one class, all users have identical traffic and channel charac-
teristics. Let μ(k)

Y = E[Yi] for i ∈ Ik. Then, the load level is
Lt =

∑K
k=1

∑
i∈Ik

Yi and the normalized load level is given
by

L̃t =
Lt

m
=

K∑
k=1

λkL̃
(k)
t ,

where L̃
(k)
t = 1

mk

∑
i∈Ik

Yi, and E[L̃t] =
∑K

k=1 λkμ
(k)
Y .

Because the event L̃t ≤ E[L̃t] − δ implies that there exists
at least one k satisfying that L̃(k)

t ≤ μ
(k)
Y − δ, we have

P
{
L̃t ≤ E[L̃t]− δ

}
≤

K∑
k=1

P
{
L̃
(k)
t ≤ μ

(k)
Y − δ

} ≤ Ke−mI∗
Y (δ) (28)

where

I∗Y (δ) = min
k∈{1,2,...,K}

λk min{D(μ
(k)
Y + δ||μ(k)

Y ), D(μ
(k)
Y − δ||μ(k)

Y )}.

Similarly,

P
{
L̃t ≥ E[L̃t] + δ

} ≤ Ke−mI∗
Y (δ). (29)

Therefore, using the same approach in the single-class case,
E[f(Lt)] can be made as close to f̃(E[L̃t]) as desired.

The conclusion then follows by adding the expected costs
from time-slot 0 to N − 1.
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