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Abstract—We consider the downlink of an OFDM system for
supporting a large number of delay-sensitive users. The OFDM
scheduling problem can be modeled as a discrete-time multi-
source multi-server queuing system with time-varying connec-
tivity. For such a system, the Max-Weight policy is known to
be throughput-optimal and the Server-Side Greedy (SSG) policy
has been recently shown to achieve small queue lengths for i.i.d.
arrival processes. However, there is often significant difference
between queue-length optimality and delay optimality, andthere
exist arrival patterns such that algorithms with small queue
backlog can still lead to large delay. In this work, we propose a
new OFDM scheduling algorithm that gives preference to packets
with large delay. Assuming ON-OFF channels, we show that
for a large class of arrival processes, the proposed policy is
rate-function delay-optimal. We substantiate the result via both
analysis and simulation.

I. I NTRODUCTION

Next generation OFDM-based wireless cellular systems
(e.g. WiMax and LTE) are envisioned to provide much higher
data rate and larger system capacity. It is conceivable thatin
the future, both voice, data, and video traffic can be carried
on a single packet-based OFDM system, eliminating the need
to maintain separate voice networks. An important problem
in the realization of this goal is the design of scheduling
algorithms that provide low-delay guarantees to delay sensitive
voice/video users. In a typical OFDM system, the bandwidth
available to the base-station is partitioned into hundredsof
orthogonal carriers. A given user can be served by multi-
ple frequency carriers simultaneously, and the allocationof
carriers to users can change over every time-slot. How user
transmissions should be scheduled over frequency and time
will have a significant impact on the delay performance of the
system, which needs to be carefully studied.

In this paper, we focus on the down-link OFDM scheduling
problem in a single cell. Arriving packets get queued in the
buffer at the base-station before they are transmitted to the
users. The goal is to minimize the amount of time that any
packet spends in the buffer of the base-station. In the literature,
it is well-known that the Max-Weight algorithm is throughput
optimal under such a setting, in the sense that it can stabilize
the system under the largest set of offered loads. However, it
has been observed in [1] [2] [3] that the Max-Weight algorithm
can lead to large delays for users. Specifically, although a

system can be stabilized by the Max-Weight algorithm, the
queue length can be very large. [1] [2] [3] proposed a number
of new scheduling algorithms that are efficient in maintaining
low queue lengths for all users. They keep queue length
small by serving the queues with higher weighted sum and
at the same time balancing queues in each time-slot. The
authors of [1] [2] [3] use large-deviation tools to study the
asymptotic decay-rate of the probability that the queue-length
of any user exceed a given threshold, as the number of users
and the number of frequency carriers both increase. They
show that for Bernoulli arrivals that are i.i.d. across time,
the proposed algorithm is rate-function queue-length optimal
i.e., they achieve the largest decay-rate for the above queue
overflow probability. For more general arrival processes, the
algorithms are shown to achieve strictly positive decay-rates
for the queue overflow probability

However, simply maintaining low queue-lengths is insuffi-
cient in order to guarantee low waiting-time. When the number
of arrival packets is constant over time, one may map the
decay rate of the queue-overflow probability to that of the
delay-violation probability [4]. However, for general arrival
processes there may not exist such mappings. The discrepancy
can be quite large especially when the arrivals are correlated
over time. For example, a packet that is present in a queue
with low queue-length may have to wait for a long time to
get served if few packets are offered to this queue for several
time-slots.

In this paper, we directly study the delay-optimality of
OFDM down-link scheduling algorithms under an ON-OFF
fading model. We use large-deviations tools and study the
asymptotical decay-rate of the probability that the delay of
any packet exceeds a threshold, as the number of users and
the number of channels both increases. (The precise definition
of the above delay-violation probability is given in Section II.)

We provide a new algorithm that is shown to achieve the
largest decay-rate. Unlike [1] [2] [3], our optimality result
holds for a large class of general arrival processes, which may
be correlated across time. To the best of our knowledge this is
the first work that deals directly with the design and analysis
of rate-function delay-optimal scheduling policies in OFDM
wireless cellular systems.

When a large number of users are served by a single-



server queue with fixed capacity, it is easy to see that the
delay-optimal policy should serve packets in a First-come
First-serve manner. Previously, many-source large-deviations
tools have been used to study the delay performance of First-
come First-serve (FCFS) scheduling policy in such single
server queues [5] [6]. Somewhat surprisingly, our analysis
indicates that, when the number of users and the number of
carriers are large, an OFDM system under ON-OFF fading
behaves quite closely to a single-server queue with intermittent
connectivity, provided that some conditions on the per-user
transmission requirements are satisfied (see Lemma 6 in
Section IV). However, the FCFS policy no longer satisfies
these conditions. Specifically, due to the random connectivity
between queues and servers, we may not always be able to
serve a the set of packets with the highest delay in every
time-slot. Hence, we must design a new policy, called DWM
(delay-weighted matching) that respects the conditions onthe
per-user transmission requirement.

In summary, the main contributions of this work are,
• We develop a scheduling algorithm, called DWM (delay-

weighted matching), that is rate-function delay-optimal
under an ON-OFF channel model for a large class of
arrival processes. The conditions on the arrival processes
are very mild and the arrivals may be correlated across
time. Specifically, we prove that both, arrivals that are
i.i.d. across time and, arrivals driven by a two-state
Markov chain, satisfy the assumptions required for op-
timality.

• The key insight that emerges from our work is that OFDM
systems with a large number of users and channels may
be approximately modeled as a single-server queue with
intermittent connectivity. This however requires careful
consideration of the restrictions imposed by the random
nature of channel capacity in a wireless OFDM system.
We provide the analytical techniques that successfully
address these issues.

II. SYSTEM MODEL

We model the down-link of a single cell in an OFDM
system as a discrete-time multi-source multi-server system
with stochastic connectivity. There aren users and the base-
station maintains a queue for each user. There aren frequency
sub-carriers each of which is represented by a server. The
arrival process to each queue is assumed to be stationary
and ergodic, and i.i.d. across queues. However, arrivals may
correlate across time. We assume that time is slotted. Letau(i)
denote the number of packets that arrive to queueu at time
i, and letau(i, j) =

∑j
k=i au(k) denote the total arrivals to

queueu from time i to j. We useā to denoteE[au(·)]. Let
A(i) =

∑n

u=1 au(i) denote the cumulative arrivals at timei
and A(i, j) =

∑j

k=i A(k) denote the cumulative arrivals to
all queues from timei to j. To model channel fading, the
queue-server connectivity in time-sloti is given by the matrix
C(i) = [cu,s(i)]n×n. We assume an ON-OFF model. When
cu,s(i) = 1 we say that the queueu is connected to the server
s at time i. When cu,s(i) = 0 we say that the queueu is

disconnected from servers at time i. At every time-slot the
resource manager or the scheduler at the base station allocates
queues to servers. If a connected servers is allocated to a
queueu in time-slot i, then one packet fromu can be served
by the end of the time-slot by servers. In a time-slot multiple
servers may be assigned to a single queue, but each server can
be assigned only to one queue. For concreteness we assume
that all arrivals occur at the beginning of a time-slot followed
by any possible service. We also assume that each queue has
infinite buffer capacity so that no packets are ever dropped.
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Fig. 1. System Model

Let Du(i) denote the maximum delay, starting from time
i until the packet is served, of all packets that are present in
queueu at timei. Note that if the packets of each queueu are
served in a First-come First-serve (FCFS) manner and there is
at least one packet that arrives to queueu at timei, thenDu(i)
is the maximum delay of all packets that arrive to queueu at
time i. Further, this definition allowsDu(i) to be well-defined
even when there is no packet arriving to queueu at time i.
Let D(i) = maxu{Du(i)}. Hence,D(i) > d if and only if
there exists a packet that arrived on or before timei and that
has not been served till timei + d. Assume that the system is
stationary and ergodic. We wish to design service rules that
maximize:

I(d) = lim
n→∞

−
1

n
log P

(

D(0) > d
)

.

Here, I(d) is called the rate-function for delayd. One can
imagine that a high value of rate-function would imply a low
probability of packets getting delayed byd time-slots. In fact
for largen we can estimateP

(

D(0) > d
)

≈ e−nI(d), and the
estimate becomes better for increasing values ofn. It is then
clear that our goal should be to design scheduling algorithms
that achieve high values of delay rate-function. A policy is
said to be rate-function optimal if it achieves the maximum
value ofI(d) that any scheduling algorithm can achieve. Note
that the large-n, fixed-d asymptotics are meaningful for the
OFDM systems with a large number of users and carriers but
requiring small delay.

We make the following assumptions about the arrival pro-
cess:
Assumption 1: Arrivals are bounded. There existsL < ∞
such thatau(i) < L for any i andu.
Assumption 2: Given any ε > 0 and δ > 0, there exists
T > 0, N > 0, and a positive functionIB(ε, δ) independent



of n and t such that

P

(

∑t

i=1 1{|A(i)−ān|>εn}

t
> δ

)

< e−ntIB(ε,δ),

for all t > T and n > N . For eachε > 0 and δ > 0, let
TB(ε, δ) andNB(ε, δ) be one corresponding set of values for
T andN , respectively.
Assumption 3: We assume that the channel process isi.i.d.,
i.e.,

cu,s(i) =

{

1 with probability q,

0 with probability 1 − q,

independently acrossi, u, s.

A. Chernoff Bound and Cramer’s Theorem

We use the following results from Probability Theory in
our proofs. LetXi, 1 ≤ i ≤ n be a sequence of i.i.d. random
variables. For anyx > E[Xi], the Chernoff bound states that

P

(

n
∑

i=1

Xi ≥ nx
)

≤ e−n[θx−λX1(θ)],

for any real numberθ > 0, (1)

whereλXi
(θ) = log E[eθXi ] is the cumulant-generating func-

tion of Xi. The best bound is obtained by choosing the real
numberθ = θ∗ that maximizesθx−λX1 (θ), assuming thatθ∗

exists. Cramer’s Theorem states that the upper bound of (1)
is tight in the exponent [7, Chapter 2], i.e.

lim
n→∞

−
1

n
P

(

n
∑

i=1

Xi ≥ nx
)

= θ∗ − λX1 (θ
∗).

Note that the cumulative arrivals in our system in any time
interval −t + 1 to 0 , i.e. A(−t + 1, 0) =

∑n

u=1 au(−t +
1, 0), is just the sum ofn i.i.d. random variables. Hence, using
Cramer’s Theorem we have, for anyx ≥ 0,

lim
n→∞

−
1

n
P

(

A(−t + 1, 0) ≥ n(t + x)
)

= sup
θ

[θ(t + x) − λau(−t+1,0)(θ)].

We define the quantity

IA(t, x) := sup
θ

[θ(t + x) − λau(−t+1,0)(θ)].

This quantity is the rate function for the probability that in t

time-slots, the total number of arrivals is greater thannx+nt.
The minimum ofIA(t, x) taken over all positive integer values
of t is defined as

IA(x) := inf
t>0

IA(t, x).

We now state a technical result that uses the Chernoff bound
and is often referred to in this paper.

Lemma 1: Let Xi be a sequence of binary random variables

P

(

Xi = 1
)

< c(n)e−nb, for all i

wherec(n) is a polynomial inn of finite degree. LetN1 be
such thatc(n) < e

nb
2 for all n > N1. Then, for any0 < a < 1,

P

(

t
∑

i=1

Xi > at
)

< e−
tnab

3

for all n > N := max{ 12
ab

, N1}.
Proof: Please refer to Appendix A of [8].

B. Discussion on Assumptions

Assumption 1 is mild and Assumption 3 has been used
in previous work [1] [2] [3] [9]. Assumption 1 states that
the arrivals in every time-slot must be bounded above by
a finite numberL. While the ON-OFF channel model is a
simplification, we believe that the insights will be useful for
more general channel models, e.g., when the channel takes a
finite set of values.Assumption 2 is also very general. The
intuition behind Assumption 2 is a statistical multiplexing
effect when a large number of sources are multiplexed. The
basic tenet of the assumption is that the arrivals to different
queues are independent of each other. The arrivals to every
queue may vary around the mean valueā. In some time-
slots the arrivals to one queue may be higher or lower
than ā. However, when considering a large number of such
independent sources, one would expect that the sources with
large arrivals would balance the sources with small arrivals so
that the sum is close tōan. Hence, the chance that the sum is
far away from the mean̄an is low, especially whenn is large.
Further, when the time correlation of arrivals is short-ranged,
the chance that the sum arrival is far away from the mean in a
large fraction of time-slots also diminishes as the time-interval
increases. These statements can be mathematically proved for
a large number of arrival processes. We provide here the proof
for two special classes i.e., i.i.d. arrivals and arrivals driven by
two-state Markov chains.

Lemma 2: Let a(·) be a packet arrival process such that in
every time-slot,

a(i) =

{

r with probability p,

0 with probability 1 − p.
.

Note that in this casēa = pr. Then, given anyε > 0, and
δ > 0, there existT > 0, N > 0, and a positive function
IB(ε, δ) independent ofn and t such that

P

(

∑t

i=1 1{|A(i)−ān|>εn}

t
> δ

)

< e−ntIB(ε,δ)

for all t > T andn > N .
Proof: Let ε̄ = ε

r
. Then, it is clear that, if at any

time i the fraction of queues that receiver arrivals belongs
to the interval (p − ε̄, p + ε̄), then |A(i) − ān| < εn.
Moreover, the probability of this event is no smaller than
1 − 2e−nmin{DKL(p+ε̄||p),DKL(p−ε̄||p)}, whereDKL(x||y) =
x log x

y
+ (1 − x) log 1−x

1−y
, is the Kullback-Leibler divergence

[7]. We defineS(i) to be a sequence of random variables such
that S(i) = 1 if |A(i) − ān| > εn and S(i) = 0 otherwise.



Then, from Lemma 1 we know that there existsN > 0 such
that

P

(

∑t

i=1 S(i)

t
> δ

)

< e−nt
δ min{DKL(p+ε̄||p),DKL(p−ε̄||p)}

3

for all n > N and t > 0. The result then follows.
The next lemma shows that Assumption 2 also holds for an

arrival process driven by a two-state Markov chain.
Lemma 3: Let a(·) be a packet arrival process driven by a

Markov chain with two states 1 and 2. Assume that whenever
the Markov chain is in statei, ri packets are generated in
each time-slot. State transitions occur at the end of time-
slots. Suppose the transition probability of the chain is given

by the matrix,

[

1 − p1 p1

p2 1 − p2

]

. Note that in this casēa =

p2

p1+p2
r1 + p1

p1+p2
r2.

Then, givenε > 0, andδ > 0, there existsT , N and a positive
function IB(ε, δ) independent ofn and t such that

P

(

∑t
i=1 1{|A(i)−ān|>εn}

t
> δ

)

< e−ntIB(ε,δ)

for all t > T andn > N .
Proof: Please refer to Appendix B of [8].

III. A N UPPER-BOUND ON THE RATE FUNCTION

In this section we derive an upper-bound on the rate function
I(d) of the delay asymptote for all scheduling algorithms.

Theorem 1: Given the system model as described in Section
II, under any scheduling algorithm,

lim sup
n→∞

−
1

n
log P

(

D(0) > d
)

≤ min{(d + 1)IX , min
0≤c≤d

{IA(d − c) + cIX}

whereIX = log( 1
1−q

).
Proof: We consider two eventsE1 andE2 that imply that

D(0) > d.
Event E1: Suppose that there is a packet that arrives to

queue 1 at time 0. Further, suppose that from time0 to d

queue 1 is disconnected from all servers. Then, at the end of
time-slotd this packet is still in the buffer, henceD(0) > d.

P

(

E1

)

= (1 − q)n(d+1) = e−n(d+1)IX . (2)

Event E2: Consider the following sequence of events. Fix
any ε > 0. Chooset such thatIA(t, d − c) < IA(d − c) + ε.
Suppose that from time−t + 1 to 0 there are greater than
nt + n(d − c) arrivals to the system. Let the probability of
this event bep(d−c). Then from Cramer’s Theorem, we know
that limn→∞ − 1

n
log p(d−c) ≤ IA(t, d − c) ≤ IA(d − c) + ε.

The total service at any time cannot exceedn. Hence, at the
end of time 0, there are at leastn(d − c) + 1 packets in the
buffer. Moreover, at the end of timed − c the buffer must
contain at least one packet that arrived before time0. Without
loss of generality, assume that this packet is present in queue
1. Now, assume that queue 1 remains disconnected from all
servers in the nextc time-slots. This occurs with probability
(1 − q)cn = e−nc log 1

1−q independently of all past history.

Hence, at the end of timed, there is still a packet that arrived
before time 0 and that remains in queue 1. Hence,D(0) > d

in this case. In other words, the probabilityP
(

D(0) > d
)

is no smaller thanp(d−c)e
−ncIX . Since this is true for any

0 ≤ c ≤ d, by takingc that maximizes the above quantity, we
have,

P

(

E2

)

≥ max
0≤c≤d

{p(d−c)e
−ncIX}.

Thus,

lim
n→∞

−
1

n
log P

(

E2

)

≤ min
0≤c≤d

{IA(d − c) + ε + cIX}.

Hence, by picking the more probable event fromE1 andE2 ,
we have

lim
n→∞

−
1

n
log P

(

D(0) > d
)

≤ min{ min
c∈{0,1..d}

{IA(d − c) + ε + cIX}, (d + 1)IX}.

As the above equation holds for allε > 0, we have

lim
n→∞

−
1

n
log P

(

D(0) > d
)

≤ min{ min
c∈{0,1..d}

{IA(d − c) + cIX}, (d + 1)IX}.

IV. V ECTOR MATCHING IN BIPARTITE GRAPHS

In section V, we will propose a policy that attains the above
optimal decay rate. Towards this end, we first study under what
conditions a desired allocation of carriers to the users can
be found. This problem can be viewed as a vector matching
problem in bipartite graphs as we describe below.

We first introduce some notations that will be used in this
section. We useG[X ∪ Y, E] to denote a general bipartite
graph, whereX and Y are two disjoint sets of vertices and
E is the set of edges such that every edgee ∈ E connects
a vertex inX to a vertex inY . Let ∂G(z) denote the set of
neighbors of vertexz in G. Suppose thatV is a set of vertices
of G. We define∂G(V ) = ∪z∈V ∂G(z). |∂G(V )| is called the
degree ofV and denotes the number of distinct neighbors of
the vertices ofV . If M is a subset of edges ofG, i.e.,M ⊂ E,
thenG(M) is called the sub-graph induced byM and consists
of all vertices ofG and edges present inM .

The concept of matching is well known in Graph Theory
[10, Chapter 16]. LetG[X ∪ Y, E] be a bipartite graph. Then
a matchingM is a subset of edges such that in the induced
sub-graphG(M) the degree of every vertex is at most one.
A perfect matching is a matching such that in the induced
sub-graph the degree of every vertex is exactly one.

In this section we generalize this idea of matching to vector
matching. LetG[X ∪ Y, E] be a bipartite graph where the
vertices of setX are indexed as{x1, x2, .., xn}. Let v be
a |X |-dimensional vector whose elements are non-negative
integers. IfV is a subset ofX , then v(V ) =

∑

{i:xi∈V } vi.
Then, av-matchingM is a sub-set of edgesM such that:

|∂G(M)(xi)| ≤ vi, for all 1 ≤ i ≤ |X |, and,

|∂G(M)
(y)| ≤ 1, for all y ∈ Y.



In other words each vertexxi in X is matched to at most
vi vertices inY , but each vertex inY is matched to at most
one vertex inX . Note that a graph may have more than one
v-matchings. Aperfect v-matching is a v-matching (M ) such
that |∂G(M)(xi)| = vi for all xi ∈ X . If G admits a perfect
v-matching then it is said to be perfectlyv-matched.

Lemma 4: Let G[X ∪ Y, E] be a bipartite graph. Letv be
a |X | dimensional vector whose components are non-negative
integers. ThenG has a perfectv-matching if and only if for
everyV ⊂ X , |∂G(V )| ≥ v(V ).

Remark: If vi = 1 for all i, then the above result is
equivalent to the well known Hall’s Marriage Theorem in
Graph Theory [10]. For a detailed proof of the result please
refer to Appendix C of [8].

Lemma 5: Let G[X ∪Y, E] be a random bipartite graph, in
which for every pair ofx ∈ X and y ∈ Y there is an edge
betweenx and y with probability q, independently of other
edges. Letv andw be vectors of length|X | with non-negative
integer components such that,

1) w1 ≥ w2 + 2;
2) v1 = w1 − 1; v2 = w2 + 1;
3) vi = wi ∀ 3 ≤ i ≤ |X |.

Then,

P

(

G has a perfectv-matching
)

≥ P

(

G has a perfectw-matching
)

.

Remark: Note thatv andw are the same everywhere except
in the first two components. Moreover,v is more balanced
than w. The above result then says that, if a vector is more
balanced, then the probability of vector matching is higher.
This basic result forms the basis of the next Corollary. For a
detailed proof please refer to Appendix D of [8].

In the following results,H is a given positive integer
independent ofn.

Corollary 1: Let G[X ∪ Y, E] be a random bipartite graph
in which for every pair ofx ∈ X and y ∈ Y there is an
edge betweenx and y with probability q, independently of
other edges. Letv and w be two vectors of length|X | with
non-negative integer components such that,

1) maxi[vi] ≤ H ;
2)

∑|X|
i=1 vi =

∑|X|
i=1 wi ≤ n − H ;

3) wi =











n − (k + 1)H, if i = 1

H, if 2 ≤ i ≤ k + 1

0, if i > k + 1,

;

wherek =
⌈

n
H

⌉

− 2. Then,

P

(

G has a perfectv-matching
)

≥ P

(

G has a perfectw-matching
)

.

Proof: Let Ξ be the set of all|X |-dimensional vectors
with non-negative integer components, such that for any vector
ξ in Ξ,

∑|X|
i=1 ξi = n − H and max{1≤i≤|X|} ξi ≤ H . Then

we claim that out of all these vectors, the vectorw defined

in the assumption is the most unbalanced. Specifically, it can
be shown that any vectorv in the setΞ can be constructed
from w be a series of operations, such that in every step the
new vector becomes more balanced (in the sense of Lemma
5). The result then follows from induction. Further, for any
vectorv with

∑|X|
i=1 vi < n − H and max{1≤i≤|X|} vi ≤ H ,

it is easy to see that there exists a vectorξ′ in Ξ, such thatv
is component-wise no greater thanξ′. Hence,

P

(

G has a perfectv-matching
)

≥ P

(

G has a perfectξ′-matching
)

.

The result then follows. For the details of the proof please
refer to Appendix E of [8].

Lemma 6: Let G[X ∪ Y, E] be a random bipartite graph,
in which for every pair ofx ∈ X and y ∈ Y there is an
edge betweenx and y with probability q, independently of
all other edges. Let|X | = |Y | = n. Let w be a vector with
non-negative integer components with

∑n

i=1 wi ≤ n−H and
max1≤i≤n wi ≤ H , then for some finite value ofNX ,

P

(

G has a perfectw-matching
)

≥ 1−
( n

1 − q

)7H

e−n log 1
1−q

for all n > NX .
Proof: Please refer to Appendix F of [8].

Remark: Let X denote the set of source queues,Y denote
the servers, and use an edge betweenu and s if queueu is
connected to servers. Then according to Lemma 6, with high
probability an allocation of servers to queues can be found
such that each useri will receive wi service, provided that
∑n

i=1 wi ≤ n − H and max1≤i≤n wi ≤ H . Hence, this
system is very similar to a single-server queue with service
rate n − H and intermittent connectivity, provided that the
service requirement of each user is bounded byH . In the next
section, we will use this insight to construct a delay-optimal
policy.

V. SCHEDULING POLICY

In this section we describe two scheduling rules. We assume
that in every time-slot the scheduler has perfect knowledgeof
queue-server connectivity which is represented by the matrix
C(i). Also, it can use the past history of arrival and channel
processes.

A. Intuition behind the proposed delay-based policies

Motivated by Lemma 6, we consider a single-server queue
with intermittent connectivity. Specifically, in every time-slot

the server is connected with probability1 −
(

n
1−q

)7H

e−nIX ,
and disconnected otherwise. Whenever the server is connected
it can serven0 = n − H packets. However, it cannot serve
any packets when disconnected. It is not difficult to see that,
if we serve packets in such a single-server queue in a FCFS
manner, then the delay rate–function is optimal, i.e., it isequal
to the upper bound given in Theorem 1.

Now from Lemma 6, our OFDM system is in fact quite
similar to the single-server queue in the sense that, under



suitable restrictions, the probability thatn0 packets may be

served in a time-slot is no less than1 −
(

n
1−q

)7H

e−nIX .
However, obviously we cannot use a FCFS policy directly,
because it may violate the condition of Lemma 6, which
translates to the restriction that in a frame every user can have
no more thanH packets to be served.

To circumvent the difficulty, we propose two policies
FBS(h) and DWM. The policy FBS(h) approximates the FCFS
policy, while respecting the restrictions mentioned above.
However, the FBS(h) policy is conservative in nature, and
may waste capacity. Hence, it may not be throughput-optimal.
Therefore, we propose another policy DWM, which is more
aggressive in serving packets and does not waste capacity.
We further show that DWM always serves packets ahead of
FBS(h) for every arrival process and every value ofh, and
hence the delay rate-function for DWM must be no smaller
than the delay rate-function for FBS(h). Then, in Section VI
we show that there exists a value ofh such that FBS(h) is
rate-function optimal, which implies that DWM is also rate-
function optimal.

B. Policy FBS(h) (Frame Based Scheduling)

This policy serves packets in units of frames. Suppose that a
positive integerh is given. Recall that no more thanL packets
arrive to any user in a time-slot. Letn0 = n − Lh be the
capacity of each frame. In the policy FBS(h) each frame is
composed of packets that satisfy the following two conditions:

1) The number of packets in the frame is no greater than
n0 (i.e., the capacity of a frame);

2) The difference of arrival times of any two packets in the
frame must be no larger thanh.

As packets arrive in each time-slot, the frames are constructed
by filling in the packets sequentially. Specifically, packets
belonging to queue1 are filled before packets belonging to
queue2, and so on. Further, older packets are added before
newer packets. We fill each frame until the above conditions
cannot be maintained. Then we start a new frame. There might
be a frame that is only partially filled at the end of a time-slot.
In the next time-slot this frame is filled first, before starting a
new frame.
A frame in general may be represented as a vector inZ

n,
where thejth component of the vector represents the number
of packets of userj in the frame. The policy FBS(h) serves
the frames in the same order as they are constructed. Further,
at most one frame is served in a time-slot. Specifically, letv(i)
denote the vector representing the head-of-line frame at timei.
From the construction of frame described above and Assump-
tion 1 on the boundedness of the arrival process, we have
max1≤j≤n vj(i) < Lh. Moreover,

∑

j vj(i) ≤ n0 = n − Lh

for all i. Note that a frame might contain less thann0 packets
if it is the only frame left or if it was full because of condition
2.

In each time-sloti the policy FBS(h) tries to schedule
the head-of-line framev(i) for transmission. LetH = hL.
We know from Section IV on vector matching that, with

probability1−
(

n
1−q

)7H

e−nIX , the scheduler can transmit the
whole frame in a given time-slot. If the policy FBS(h) cannot
transfer the whole frame, then no packets are scheduled in this
time-slot and the scheduler will try again in the next time-slot.
Define the random variableXF (i) = 1 if v(i) is successfully
transmitted at timei, andXF (i) = 0, otherwise.

C. Policy DWM (Delay Weighted Matching)

The policy FBS(h) may not serve any packet in a time-slot,
and may waste up toLh packets in a time-slot when is serves
a packet. The policy DWM, below, is meant to be efficient.

In every time-slot, define the waiting time of every packet
as the time that the packet has spent in the buffer. We assign
a weight to every packet as follows. If a packet has a waiting
time of W and belongs to the queue with indexu, then
its weight is W + u

n+1 . Next, construct a bipartite graph
G[X ∪ Y, E] such that vertices inX correspond to the oldest
n packets of every queue andY is the set of servers. The edge
setE is constructed as follows: ifu is connected tos, then all
vertices that correspond to packets ofu are connected tos. The
packets to transmit are then determined by a maximum-weight
matching algorithm. In the following Lemma we compare
policies DWM and FBS(h).

Lemma 7: For any given sample path and for any value of
h, by the end of time-sloti, Policy DWM has served every
packet that FBS(h) has served.

Proof: Please refer to Appendix G of [8].
By Lemma 7, if we can show that the policy FBS(h) is rate-
function optimal for some value ofh, the the policy DWM
must also be rate-function optimal without the need to know
the exact value ofh. The optimality of FBS(h) is studied next
in section VI.

VI. A NALYSIS OF FBS(h)

We defineF (i) as the number of unserved frames in buffer
at time i. Then, we can write a recursive equation forF (i):

F (i) = max{F (i − 1) +

⌈

A(i) − R(i − 1)

n0

⌉

− XF (i), 0}.

Z(i) =











[Z(i − 1) + 1]mod(h), if A(i) < R(i − 1)

1, if A(i) > R(i − 1)

0, if A(i) = R(i − 1).

R(i) = 1{F (i)>0}1{Z(i)>0}[R(i − 1) − A(i)]mod(n0). (3)

To explain this set of equations, recall that after each time-
slot, the end-of-line frame may be only partially filled and
thus can be filled with new arrivals in the next time-slot. We
use R(i) to represent the remaining available space in the
end-of-line partially-filled frame at the end of timei. Hence,
⌈

A(i)−R(i−1)
n0

⌉

represents the number of new frames that are

created at timei. Note that ifA(i) ≤ R(i−1), i.e., the number
of arrivals at timei is less than the remaining available space
in the end-of-line frame at the end of timei − 1, then no
new frame is added.XF (i) represents the number of frames
served in time-sloti. Notice that a maximum of one frame



and hencen0 packets can be transmitted in a time-slot. The
variableZ(i) counts the number of time-slots for which the
end-of-line frame has been open. It starts at 1 when a new
frame is opened, i.e., whenA(i) > R(i − 1). Then it is
incremented by 1 every time when the number of arrivals
A(i) is less thanR(i − 1). If it reachesh, then this frame is
completed and a new frame is started, in which caseZ(i) = 0
and R(i) = 0. Let v be ann-dimensional vector whoseith

component represents the number of packets of queuei in a
frame. The construction of the frames ensures that for every
frame vi ≤ hL = H and

∑n

i=1 vi ≤ n − H = n0. Hence,
from Lemma 6 we have thatXF (i) = 1 with probability no

smaller than1 −
(

n
1−q

)7H

e−nIX in every time-slot.
Let R0 = R(i − 1) be the empty space in the end-of-line

frame at the end of timei − 1. Then AR0

F (i, k) denotes the
number of new frames created from timei to k, including any
partially-filled frame at timek but excluding any partially-
filled frame at timei. We use the notationAF (i, k) to denote
AR0

F (i, k), if R0 = 0. Hence we can write,

F (k) = F (i − 1) + AR0

F (i, k) − XF (i, k),

whereXF (i, k) denotes the total number of frames departing
from the buffer in the time intervali to k. That is,

XF (i, k) =

k
∑

j=i

XF (j)1{F (j)>0}.

In general the equations in (3) are complicated to analyze.
However, if the arrival process satisfies some special condi-
tions in a time interval(i, k), then we can derive some useful
results as follows.

Lemma 8: Let A(·) be an arrival process. LetR0 be the
empty space in the end-of-line frame at the end of timei− 1.
Let the arrivals in the interval fromi to k be such that

1) The buffer never becomes empty in the interval, i.e.,
F (j) > 0 for all j ∈ {i, i + 1, ...., k}.

2) For anyh− 1 consecutive time-slots in the interval, the
cumulative arrivals are greater than or equal ton0, i.e.,
∑x+h−2

j=x A(j) ≥ n0, for anyx ∈ {i, i+1, ...., k−h+2}.
Then the following holds for policy FBS(h),

AR0

F (i, k) =

⌈

A(i, k) − R0

n0

⌉

,

R(k) = [R0 − A(i, k)]mod(n0). (4)

Remark: The condition of the Lemma implies that every
frame has exactlyn0 packets. The result then follows. For
details, please refer to Appendix H of [8].

Corollary 2: Let A(·) be an arrival process such that
F (j) > 0 for all i ≤ j ≤ k and letB = {x1, ..., x|B|} be
a sequence of time-slots in increasing order, belonging to the
interval fromi to k, such that in every interval(xi +1, xi+1),
i ∈ {1, 2..., |B|− 1}, the condition 2 of Lemma 8 is satisfied.
Then,

AR0

F (x1 + 1, x|B|) ≤

|B|−1
∑

j=1

⌈

A(xj + 1, xj+1)

n0

⌉

Proof: From Lemma 8 we have that

AR0

F (x1 + 1, x|B|) =

|B|−1
∑

j=1

⌈

A(xj + 1, xj+1) − R(xj)

n0

⌉

.

SinceR(·) ≥ 0, it follows that,

AR0

F (x1 + 1, x|B|) ≤

|B|−1
∑

j=1

⌈

A(xj + 1, xj+1)

n0

⌉

.

Theorem 2: If the arrival process satisfies assumptions 1
and 2 and the channel process satisfies assumptions 3, then
there exists a value ofh for which the scheduling policy
FBS(h) is rate-function optimal, that is

lim
n→∞

inf
−1

n
log P

(

D(0) > d
)

≥ I0 := min{ min
c∈{0,1,...d}

IA(d − c) + cIX , (d + 1)IX}

Proof: We first choose the value ofh based on the
statistics of the arrival process. Let the mean of the arrival
process bēa. We fix δ < 2

3 andε < ā
2 . Then, from Assumption

2 on the arrival process, there exists a positive function
IB(ε, δ), such that for alln > NB(ε, δ) and t > TB(ε, δ)
we have,

P

(

∑j+t
i=j+1 1{|A(i)−ān|>εn}

t
> δ

)

< e−ntIB(ε,δ),

for any integerj.
We then choose

h = max

{

TB(ε, δ),

⌈

1

(ā − ε)(1 − 3δ
2 )

⌉

,

⌈

2I0

IB(ε, δ)

⌉

}

+ 1.

(5)

The reason for choosing such a value ofh will become clear
later on. Recall thatL is the maximum number of packets that
can arrive to a queue at any time-sloti and H = hL. Note
thatH is then the maximum number of packets that can arrive
to a queue inh time-slots.

Let L(0) be the last time,−t before0, when the buffer was
empty, i.e.,D(−t) = 0. Then given thatL(0) = −t, the event
D(0) > d occurs if and only if the number of frames that
arrive in the time interval from−t+1 to 0 is greater than the
total number of frames that could be served in−t + 1 to d.
That is,
{

D(0) > d, L(0) = −t
}

=
{

L(0) = −t, AF (−t + 1, 0) − XF (−t + 1, d) > 0
}

.

By taking the union over all possible values ofL(0) we get,

P

(

D(0) > d
)

≤

∞
∑

t=1

P

(

L(0) = −t, AF (−t + 1, 0) − XF (−t + 1, d) > 0
)

.



We now fix any1 > p̂ > ā. Then define,

t∗ := max

{

TB(p̂ − ā,
1 − p̂

6(L + 2)
),

⌈

6

1 − p̂

⌉

,

⌈

I0

min{IB(p̂ − ā, 1−p̂
6(L+2) ), (

1−p̂
9 )IX}

⌉}

(6)

and split the summation as,

P

(

D(0) > d
)

≤
t∗

∑

t=1

P

(

L(0) = −t, AF (−t + 1, 0) − XF (−t + 1, d) > 0
)

+

∞
∑

t=t∗

P

(

L(0) = −t, AF (−t + 1, 0)− XF (−t + 1, d) > 0
)

.

(7)

We divide the proof into two parts. In Part 1 we prove that
there existsN1 > 0 such that for alln > N1

t∗
∑

t=1

P

(

AF (−t + 1, 0)− XF (−t + 1, d) > 0, L(0) = −t
)

< c1t
∗2c2t∗

( n

1 − q

)7H

e−nI0 ,

where c1, c2 are positive constants independent oft and n.
And in Part 2 we prove that there existsN2 > 0 such that for
all n > N2

∞
∑

t=t∗

P

(

AF (−t + 1, 0)− XF (−t + 1, d) > 0, L(0) = −t
)

≤ 4e−nI0 .

Finally, by substituting both parts into equation (7), we have
that there existsN := max{N1, N2} such that for alln > N ,

∞
∑

t=1

P

(

D(0) > d, L(0) = −t
)

≤ (c1t
∗2c2t∗

( n

1 − q

)7H

+ 4)e−nI0 .

By taking logarithm and limit asn tends to infinity, we get
the desired result.

Part 1: Let us denote byEα
t the set of sample paths in

which everyh − 1 time-slots in the interval−t + 1 to 0 see
at leastn arrivals. LetEβ

t be the set of sample paths in which
A(−t+1,0)

n0
−

∑d
j=−t+1 XF (j) > 0. And let Et be the sample

paths such thatL(0) = −t andD(0) > d. Then, the following
can be shown,

Et ⊂ (Eα
t )c ∪ Eβ

t . (8)

To see this, observe thatEt is the set of sample paths in which
L(0) = −t andAF (−t + 1, 0) − XF (−t + 1, d) > 0. For all
sample paths in the setEα

t ∩ Et, Lemma 8 holds and hence,

AF (−t+1, 0) =
⌈

A(−t+1,0)
n0

⌉

. Moreover, it is easy to observe

that, for all sample paths in the setEα
t ∩Et, XF (−t + 1, d) =

∑d

j=−t+1 XF (j). Hence, for a sample path belonging toEα
t ∩

Et, we must haveA(−t+1,0)
n0

−
∑d

j=−t+1 XF (j) > 0. This

implies that,Et ∩ Eα
t ⊂ Eβ

t . Thus we have,Et = (Et ∩ Eα
t ) ∪

(Et∩(Eα
t )c) ⊂ (Eβ

t ∪(Eα
t )c). Hence, (8) holds. It then follows

that,
P(Et)L ≤ P((Eα

t )c) + P(Eβ
t ). (9)

We now give the intuition behind the analysis ofEα
t andEβ

t .
For a detailed proof, please refer to Appendix I of [8].

We note that the eventEα
t implies that every frame formed

in the interval from−t + 1 to 0 will have n0 packets, i.e.
all frames served are completely full. It is then obvious that
P(Eα

t ) depends onh, i.e., it will be large if we increase the
maximum time for which any frame can remain open. By
choosing anh large enough we can ensure that the probability
P((Eα

t )c) is arbitrarily small. In particular, we can ensure that
the rate-function ofP((Eα

t )c) is greater than the rate-function
of P(Eβ

t ). The cost that needs to be paid for having a large
h is the loss in frame-size, which isn0 = n − Lh. But this
decrease in frame-size is independent ofn and does not affect
the performance of the system significantly for largen. Hence,
it does not show up in the rate-function. Specifically, for the
choice ofh in (5), it can be shown that there existsN3, c3 > 0
such that we have

P(Eα
t ) > 1 − c3te

−nI0 . (10)

for all n > N3.
It can be seen that the eventEβ

t is similar to the buffer
overflow event in a single-server queues with intermittent
connectivity as described earlier. Recall that as opposed to
a single-server queue with constant rate, in every time-slot,
with probability approximately1− e−nIX the service is equal
to n0 packets, i.e., one frame. So now there can be two factors
responsible forEβ

t . Firstly, if the arrival process is bursty, then
Eβ

t can be caused by a large burst of arrivals in a few time-
slots. Secondly, ifq is small Eβ

t can be caused by a time
interval of low service as frames get piled up in the buffer.
For moderate values ofq, one can expect that the most likely
way in which Eβ

t occurs is a mixture of bursty arrivals and
sluggish service. From large deviations theory we know that
the rate-function ofEβ

t is determined by the probability of the
most likely sample path leading toEβ

t . More formally, it can
be shown that there existsc2, c4, N4 > 0 such that

P

(

Eβ
t

)

= P

(A(−t + 1, 0)

n0
−

d
∑

j=−t+1

XF (j) > 0
)

=

t+d
∑

a=0

P

(

d
∑

j=−t+1

XF (j) = a
)

P

(

A(−t + 1, 0) > an0

)

≤ (t + d + 1) max
0≤a≤t+d

{

P

(

d
∑

j=−t+1

XF (j) = a
)

× P

(

A(−t + 1, 0) > an0

)}

≤ c42
c2t

( n

1 − q

)7H



× e−n min{(d+1)IX ,mina∈{0,1,2...d}{IA(a)+(d−a)IX}}

≤ c42
c2t

( n

1 − q

)7H

e−nI0 , (11)

for all n > N4.
Let c1 = 2 max{c3, c4}. Substituting (10) and (11) into (9)

we then have

P(Et) ≤ c3te
−nI0 + c42

c2t
( n

1 − q

)7H

e−nI0

≤ c12
c2t

( n

1 − q

)7H

e−nI0

for all n > N1 = max{N3, N4}. Finally, summing overt = 1
to t∗ we have,

t∗
∑

t=1

P

(

D(0) > d, L(0) = −t
)

=
t∗

∑

t=1

P

(

Et

)

≤ c1t
∗2c2t∗

( n

1 − q

)7H

e−nI0 ,

for all n > N1.
Part 2: We would like to show that there existsN2 > 0

such that forn > N2

∞
∑

t=t∗

P

(

AF (−t, 0) − XF (−t, d) > 0
)

< 4e−nI0 .

We noted earlier that the equations for evolution ofAF (−t +
1, 0) are in general complicated. But if an arrival process
satisfies certain conditions then some simple results such as
Lemma 8 and Corollary 2 can be obtained. Hence, to analyze
AF (−t + 1, 0) we first construct an arrival procesŝA(·) that
satisfies the conditions of Lemma 8 and̂AF (−t + 1, 0) >

AF (−t + 1, 0). We do this by adding some extra arrivals to
the processA(·) in some strategic time-slots. The resulting
arrival procesŝA(·) has the property that̂A(i) = p̂n whenever
A(i) ≤ p̂n and Â(i) = Ln wheneverA(i) > p̂n. (Please
refer to Appendix I of [8] for the details of how to construct
Â(·).) Hence, the resulting arrival procesŝA(·) is in fact very
simple. We now get an upper bound on̂AF (−t+1, 0), which,
by construction, is also an upper bound onAF (−t + 1, 0).

Let B = {b1, b2, , b|B|} be the set of time-slots in the
interval−t + 1 to 0 whenA(i) ≥ p̂n. Then from Corollary 2
we have that, givenL(0) = −t,

ÂF (−t + 1, 0)

≤

|B|−1
∑

j=1

⌈

Â(bj + 1, bj+1 − 1)

n0

⌉

+

|B|
∑

j=1

⌈

Â(bj , bj)

n0

⌉

+

⌈

Â(−t + 1, b1 − 1)

n0

⌉

+

⌈

Â(b|B| + 1, 0)

n0

⌉

≤
n

n0
[p̂t + (L + 2)|B| + 1].

From Assumption 2 on the arrival process we know that
for large enoughn and t, |B| can be made less than an
arbitrarily small fraction oft. Further, we can show that for
|B| < 1−p̂

6(L+2) t, n >
H(2+p̂)

1−p̂
and t > 6

1−p̂
, AF (−t + 1, 0) ≤

ÂF (−t + 1, 0) ≤ (2+p̂
3 )t. (Please refer to Appendix I of [8]

for details.) Hence,

P

(

AF (−t + 1, 0) ≥ (
2 + p̂

3
)t, L(0) = −t

)

≤ P

(

|B| >
1 − p̂

6(L + 2)
t

)

≤ e
−ntIB(p̂−ā,

1−p̂

6(L+2)
)
, (12)

for all n > N5 = max{NB(p̂ − ā, 1−p̂
6(L+2)),

H(2+p̂)
1−p̂

} and t >

T1 = max{TB(p̂ − ā, 1−p̂
6(L+2) ),

6
1−p̂

}.
Moreover, we know that for eachi, XF (i) = 1 with

probability greater than1 −
(

n
1−q

)7H

e−nIX for all n > NX .
Hence, using Lemma 1 we have that, there existsN6 > NX

such that,

P

(

XF (−t + 1, d) < (
2 + p̂

3
)t, L(0) = −t

)

≤ P

(

XF (−t + 1, d) ≤ (
2 + p̂

3
)(t + d), L(0) = −t

)

≤ e−n(t+d)( 1−p̂

9 )IX

≤ e−nt
(1−p̂)IX

9 , (13)

for all n > N6 and t > 0. Combining the above two results,
from (12) and (13) we have, for alln > N7 = max{N5, N6}
and t > T1,

P

(

AF (−t + 1, 0)− XF (−t + 1, d) > 0, L(0) = −t
)

≤ 1 − (1 − e−nt
(1+p̂)IX

9 )(1 − e
−ntIB(p̂−ā,

1−p̂

6(L+2)
))

≤ 2e−tnIBX ,

whereIBX is the minimum ofIB(p̂−ā, 1−p̂
6(L+2) ) and (1−p̂)IX

9 .

Recall thatt∗ > max{T1,
I0

IBX
}. Hence, summing over all

t > t∗ we have, for alln > N2 = max{N7,
⌈

log 2
IBX

⌉

}

∞
∑

t=t∗

P

(

AF (−t, 0) − XF (−t, d) > 0, L(0) = −t
)

≤

∞
∑

t=t∗

P

(

AF (−t, 0) − XF (−t, d) > 0, L(0) = −t
)

≤

∞
∑

t=t∗

2e−ntIBX

≤
2e−nt∗IBX

1 − e−nIBX

≤ 4e−nt∗IBX (ase−nIBX <
1

2
)

≤ 4e−nI0 .

The result of the theorem then follows.

VII. S IMULATION RESULTS

In this section, we compare the performance of the proposed
DWM algorithm with the standard Max Weight (MW) [11] and
the recently-proposed Server Side Greedy (SSG) algorithm



in [1] [2]. We simulate these algorithms and compare the
empirical probabilities that the maximum delay at any given
time exceeds a constantd. We consider two settings: (i) when
the arrivals are i.i.d. across time-slots, and (ii) when arrivals
are correlated across time-slots.

In the first setting, the arrivals to every queue are given by
the following distribution:

a(i) =

{

5 with probability 0.167,

0 with probability 0.833,

independently for all time-slotsi. We run the MW, SSG and
DWM algorithms for a system withn = 30, i.e., a system with
30 users and30 carriers/servers. The user-server connection
probability isq = 0.75, so that the system is stable but heavily
loaded, i.e. greater than 83.5 % of the maximum load. We run
the simulation for105 time-slots.

In the second setting, we consider arrivals that are driven
by a Markov chain with two states. When the Markov chain
is in state 1,5 packets are generated in each-time slot, and
when the chain is in state 2, no packets are generated. Further,
state transitions occur at the end of time-slots. The transition

probability of the chain is given by the matrix

[

.5 .5

.1 .9

]

. The

user-server connection probability is chosen asq = 0.75. We
consider a system withn = 30 and run the simulation for105

time-slots.
The results are summarized in figure 2.
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Fig. 2. Performance of DWM, MW and SSG forn = 30, q = 0.75, i.i.d.
and 2-state Markov chain (m.c.) driven arrivals

As can be seen from the plots, the proposed DWM algorithm
performs consistently better than the Max Weight algorithm
and the SSG algorithm.

VIII. C ONCLUSION

We consider the scheduling problem of the down-link of
an OFDM system for supporting a large number of delay-
sensitive users. Assuming an ON-OFF channel model, we
show that when the scale of the system is large, the OFDM
system can be approximated by a Single-Server Queue with
intermittent connectivity. Inspired by this observation,we first
construct the Frame Based Scheduling (FBS(h)) policy that

emulates the single-serve queue by accounting for the restric-
tions placed by the wireless channel in an OFDM system. We
then prove that, for a large class of arrival processes, there
exists a value ofh for which FBS(h) is rate-function delay-
optimal. Since FBS(h) may waste capacity and the suitable
value of h depends on the arrival process, we then design
the Delay Weighted Matching (DWM) scheduling algorithm,
which is both rate-function delay-optimal independently of the
arrival process and achieves high throughput. Our simulations
indicate that DWM can significantly improve the performance
compared to the state-of-art algorithms in the literature.

There are many interesting directions for future work. First,
we plan to use the insight gained from DWM to design
scheduling algorithms for more general channel models. Sec-
ond, although DWM achieves rate-function delay-optimality,
it may have a high computational complexity. It would be
worthwhile to consider scheduling algorithms that achieve
good delay bounds and are of lower complexity. Third, in this
work we consider the case when all users have similar arrival
patterns, channel conditions, and delay requirements. It would
be interesting to see how the DWM algorithm can be extended
to users with different arrival patterns and channel conditions
and with diverse delay requirements.
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