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Abstract

Caching plays an important role in reducing the backbone traffic when serving high-volume multi-

media content. Recently, a new class of coded caching schemes have received significant interest because

they can exploit coded multi-cast opportunities to further reduce backbone traffic. Without considering

file popularity, prior works have characterized the fundamental performance limits of coded caching

through a deterministic worst-case analysis. However, when heterogeneous file popularity is taken into

account, there remain open questions regarding the fundamental limits of coded caching performance.

In this work, for an arbitrary popularity distribution, we first derive a new information-theoretical lower

bound on the expected transmission rate of any coded caching schemes. We then show that a simple

coded-caching scheme attains an expected transmission rate that is at most a constant factor away from

the lower bound (except a small additive term). Unlike other existing studies, the constant factor that

we derived is independent of the popularity distribution.

I. INTRODUCTION

As the amount of Internet traffic continues to grow, video is expected to dominate 69% of

the overall traffic [2], which will greatly stress the underlying communication infrastructure.

An earlier version of this paper has appeared in Information Theory and Applications Workshop, UCSD, Feb. 2015 [1].
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Historically, caching has played a significant role in reducing the bandwidth requirement for

serving video traffic. By placing contents closer to, or even at the end-users, the bandwidth

requirement at the upstream links can be greatly reduced. Most of such studies of caching have

focused on the case where uncoded video packets were stored and transmitted (see, e.g., [3–6]

and references therein).

Recently, a new class of caching schemes, called coded caching [7–16], have gained significant

interest because it can significantly reduce the upstream bandwidth requirement in systems with

broadcast/multicast capabilities. Consider K users request contents from one server through a

shared communication link with broadcast capability. Each user may request any one of the N

files (N > K), but each user only has a storage with size M < N . In the worst case, each

user may request a distinct file. With conventional (uncoded) caching scheme, it is easy to see

that the worst-case transmission rate on the upstream link must be K(1 − M
N
), because each

user can only cache M
N

fraction of all the contents. [7] refers to this factor (1 − M
N
) as the

local caching gain. Unless M is large (compared to N ), this local caching gain will not differ

significantly from 1 (i.e., the baseline with no-caching). Note that the broadcast capability of

the system is not exploited here because each user requests a different file. In contrast, with the

coded caching scheme in [7], the worst-case transmission rate at the upstream link is reduced

to K(1− M
N
) 1
1+KM/N

. The additional factor 1
1+KM/N

, which is referred to as the global caching

gain in [7], suggests a significant improvement over the uncoded case when the global storage

capability KM of all users is comparable to, or larger than, N . The key idea of [7] is to

transmit coded packets so that multiple users can benefit from the same broadcast packet. Thus,

the broadcast capability in the system can be exploited even if different users request different

files. [7] further shows in an information theoretic sense that the worst-case transmission rate

of the coded caching scheme in [7] is at most a constant factor (specifically, 12 times) away

from the minimum possible. In this sense, the performance of the coded caching scheme of [7]

is close to the fundamental limit for the system studied. The works in [8, 14–16] extend this

idea to decentralized caching, hierarchical networks, multiple group-cast, and online caching,
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respectively.

The studies cited above all focus on the deterministic worst-case, i.e., not only does each user

request distinct files, the performance of the system is studied against the worst-case request

pattern. Arguably, if the popularity of the files are identical, the probability of each request pattern

will vary less significantly. Then, the worst-case performance may not differ significantly from

the average-case performance [9]. In reality, however, the file popularity can differ significantly,

and thus some request patterns will occur much more frequently than other request patterns. As

a result, the average-case performance can differ significantly from the worst-case bound (see

also the discussions at the end of Section II).

While the average-case performance of coded caching under heterogeneous file popularity was

studied in [9–11], the optimality bounds obtained are substantially weaker than the results in [7]

because the gap between the achievable bound and the lower bound depends on various system

parameters. Specifically, in [9], contents are divided into groups with similar popularity. Each

group is assigned a separate portion of the cache and uses the coded caching scheme of [8]. The

gap between the corresponding transmission rate and the lower bound is found to increase with

the total number of groups. Similarly, in [10] the authors study the case when the file popularity

has L different levels. The theoretical gap between the achievable transmission rate and the lower

bound increases as L3. The work in [11] is most related to ours, where the authors study the

special case when file popularity follows a Zipf distribution. Although the authors also show

constant-order gaps between the achievable bound and the lower bound, the gaps estimated by

the theoretical results of [11] depend on the parameters of the Zipf distribution, and may also

become large for certain ranges of the parameter values [12, 13]. Further, the constant factors

are only shown in the asymptotic limit when the number of files and/or the number of users

are large. Therefore, it remains an important open question what is the fundamental limit of the

performance of coded caching for the more practical scenario of heterogeneous file popularity,

and whether one can find a coded-caching scheme whose performance gap from the lower bound

is independent of the popularity distribution even in the non-asymptotic settings.
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In this paper, we make the following contributions to answer the above open question. First,

we show that a simple coded-caching scheme (similar to the one in [11]) can attain an average

transmission rate that is at most 87 times from the optimal (except a small additive term).

Although this factor appears to be large, it is the first result in the literature with a constant-

factor gap that is independent of the popularity distributions and the system size. In contrast, in

earlier studies the performance gap could be arbitrarily large depending on either the number of

groups [9], the number of levels [10], or the parameter of the Zipf distribution [11–13]. Second, a

key step towards this result is to use a new construction to establish a much sharper lower bound

on the achievable transmission rate of any schemes (see Section IV for details). Specifically, we

establish this lower bound by a series of reduction and merging steps that convert the original

system with heterogeneous popularity to other systems with uniform popularity. Using these

techniques, we are able to quantify the impact of both “popular” files and “non-popular” files,

which we believe is the main reason that we can obtain sharp constant-factor characterizations

even in the non-asymptotic settings. (See further discussions at the end of Section IV.D.) These

techniques may be of independent interest for future studies of coded caching performance.

Third, our analysis reveals the important role of the file with a threshold popularity. Specifically,

suppose that the number of users is K and the size of each user’s storage is M . The achievable

scheme caches evenly all files whose popularity is greater than or equal to 1
KM

, and does not

cache the rest of the files. The decentralized coded caching scheme in [8] is then used to serve

the files whose popularity is greater than or equal to 1
KM

. It is quite remarkable that, regardless

of the popularity distribution, this simple coded caching scheme will achieve a transmission rate

that is a constant factor away from the fundamental lower bound (except a small additive term).

Finally, as an immediate corollary, our result implies that the version of Random LFU scheme

in [11] that numerically optimizes the threshold m̃ (which is comparable to N1 in our paper)

also attains an average transmission rate that is away from the optimal by at most a constant

factor, independently of the popularity distribution (even though the theoretical results in [11]

focus only on Zipf distributions and asymptotic settings).
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The remainder of this paper is as follows. We first present the network model in Section II.

Main results are summarized in Section III. Followed is the analysis on the information theoretical

lower bound in Section IV. The achievable scheme is analyzed in Section V. Simulation results

are presented in Section VI. Then, we conclude.

II. NETWORK MODEL

In the following, we present the network model for a video delivery system with both local

caches and broadcast capabilities (see Figure 1).

File

Placement

User 1

File 1 File N...

User 2 User K...

File

Request File

Request

File

Transmission
1

2 3

2

2

2

Server

File

Popularity

...

...1 2 3 N4

Fig. 1: An illustration of the network model.

We assume that there are N distinct files from the set F = {F1, F2, ..., FN}. The popularity

of the file Fi is pi, where
PN

i=1 pi = 1. Without loss of generality, we assume that the file size

is of unit length and the file popularity is decreasing in the index, i.e., pi ≥ pj if i ≤ j.

There is one server who has all N files and who serves these files to K users interested in

these files. Each user has a local cache with size M (again measured with respect to the unit-

length of the files). The K users are connected to the server through a network with broadcast

capability, i.e., each transmission from the server can be received by all users.

Before users request any files, some of the contents are placed in the users’ caches. This

is called cache placement and in practice is usually carried out during off-peak hours of the

network. Then, at each time, a user k will request file Fi with probability pi, independently of

all other users and files. If the user’s local cache already has (some of) the content, the request

can be served locally. Otherwise, the server must transmit (via broadcast) contents not available
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from the local cache. The goal is that every user should be able to reconstruct the file that it

requests with the information received from the server and the cached content in its local cache.

A. Definition of the Expected Transmission Rate

In this subsection, we will define the expected rate needed from the server in serving the

requests. Note that we do not consider the transmission rate for cache placement.

Let Wi = {fi1, fi2, ..., fiK} denote a request pattern, where fij ∈ F is the requested file for

the j-th user, 1 ≤ j ≤ K. Note that there are NK such patterns. Let W be the set of all possible

request patterns from K users, i.e., W = {W1,W2, ...,WNK}. Since each user can request one

file from N files independently, the probability for event Wi is given by

P (Wi) =
KY
j=1

P (fij)

where P (fij) is the probability for a user to request file fij . Note that in our original system, the

probability for a user to request file Fj is pj . However, later in the analysis we will compare to

another system with a different popularity distribution P . Hence, we use the notation W(K,F ,P)

to denote the set W of possible request patterns associated with the corresponding popularity

distribution P .

Obviously, given a set of files F and the files’ corresponding popularity distribution P , there

exists numerous caching and transmission schemes to meet users’ request. For a caching and

transmission scheme F, let rF(K,Wi) denote the amount of broadcast transmission from the

server that is needed to satisfy a request Wi. The expected rate under scheme F is therefore

defined as

RF(K,F ,P) =
NKX
i=1

rF(K,Wi)P (Wi). (1)

We wish to find the schedule F that minimizes RF(K,F ,P). Define the optimal rate as

R(K,F ,P) = min
F

RF(K,F ,P). (2)

Unfortunately, finding the exact optimal schedule that achieves this optimal rate is very difficult
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[7–16]. Like [7–16], our goal is to find a simple scheme F whose achievable rate is as close to

the optimal rate R(K,F ,P) as possible.

Remark: In [7], instead of studying the expected rate (1), the authors focus on the worst-case

rate, i.e.,

max
Wi

rF(K,Wi). (3)

Let F∗ be the optimal scheme that attains the minimum value of (3), and let F be the scheme

proposed in [7]. Then [7] shows that

maxWi
rF(K,Wi)

maxW ′
i
rF∗(K,W ′

i )
≤ 12. (4)

However, in this paper since we are interested in the expected rate given in (2), we would be

interested in the gap PNK

i=1 rF(K,Wi)P (Wi)PNK

i=1 rF∗(K,W ′
i )P (W ′

i )
. (5)

Note that the bound in (4) does not imply that the expression in (5) is bounded by the same

constant, especially when the probability P (Wi) varies significantly. In general, even if the bound

in (4) holds, the expression in (5) can still be arbitrarily large. Thus, quantifying the performance

gap in terms of the expected rate represents a new research problem.

III. MAIN RESULTS

In this section, we provide an overview of our main results. Given an arbitrary popularity

distribution, our first result establishes a fundamental lower bound on the expected transmission

rate for any coded caching scheme. Let [x]+ denote max{0, x}.

Theorem 1: With K users requesting files independently in F according to the corresponding

popularity distribution P , the lower bound on the expected transmission rate is given by

R(K,F ,P) ≥ max

8<: 1

29

�
N1

M
− 1

�
+
,
1

58

2
4X
i>N1

Kpi − 2

3
5
+

9=; , (6)

where M ≥ 2 and N1 is an integer that satisfies KMpN1 ≥ 1 and KMpN1+1 < 1.
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To the best of our knowledge, the lower bound in Theorem 1 has not been reported in

the literature, and this sharper bound is the main reason behind the improved performance

characterization reported in this paper. Thus, this lower bound is one of the main contributions

of the paper. Further, we comment on the index N1, which plays an important role in most of the

results in this paper. Recall that the popularity pi is non-increasing in the file index i. Roughly

speaking, N1 is the index for the file whose popularity is around 1
KM

. We may view all files

i ≤ N1 as the “more popular” files, and all files i > N1 as the “unpopular” files. As readers will

see in the proofs of Theorem 1 in Section IV, the first term 1
29
[N1

M
− 1]+ is a lower bound on the

expected transmission rate for serving the more popular files, while the second term is a lower

bound on the expected transmission rate for serving the unpopular files. Thus, they combine to

produce the lower bound in Theorem 1. This result is shown by carefully constructing a series

of reduced systems whose performance is easier to characterize. Details of the proof will be

presented in Section IV.

We next present an achievable scheme that can attain a corresponding upper bound. Recall

that each file is of unit length. In order to allow a portion of each file to be cached, we refer

to a minimally divisible portion of a file as a “bit”, and assume that each file has F “bits”. We

are most interested in the case of large files, i.e., when the bits are very small compared to the

file size, and hence F → +∞. Our proposed achievable scheme uses the decentralized coded

caching scheme of [8] to serve the “popular” files, and uses uncoded transmissions to serve the

“unpopular” files. Specifically, each user randomly caches an equal number of min{F, MF
N1

} bits

from every file F1, ..., FN1 . The remaining unpopular files are not cached unless there are space

left after all the more popular files are cached (i.e., when M > N1). After the users request

the files according to the popularity distribution p1, ..., pN , the decentralized coded transmission

scheme of [8] is used to serve those users requesting popular files, and an uncoded transmission

scheme is used to serve those users requesting unpopular files. The details will be presented

in Section V. We note that this scheme is similar to the Random LFU scheme studied in [11],

although the rules for choosing the threshold file N1 (which corresponds to m̃ in [11]) are



9

different. The following result summarizes an upper bound on the expected transmission rate of

this simple scheme.

Theorem 2: With K users independently requesting files in F according to the popularity

distribution P , as F → +∞, the optimal achievable rate can be upper bounded by

R(K,F ,P) ≤
�
N1

M
− 1

�
+
+min

�X
i>N1

Kpi,
N −N1

[M −N1]+
− 1

�
. (7)

In (7), the first term [N1

M
− 1]+ is an upper bound on the expected transmission rate to serve

the more popular files (i.e., with index i ≤ N1), and the second minimization term is an upper

bound on the expected transmission rate to serve unpopular files. Assuming that M < N1, note

that increasing N1 by 1 will increase the first term by 1/M , and will reduce the second term by

roughly KpN1 . Thus, by setting pN1 ≈ 1
KM

, this index N1 is chosen such that the net effect to

the upper bound (7) is approximately zero, and thus the sum in (7) is approximately minimized.

Remark: We note that a similar upper bound is also reported in [11], although without the

last term in (7), which captures the case with abundant caches (i.e., M > N1).

From Theorem 1 and Theorem 2, it is easy to show that the gap between the lower bound

Rlb and the upper bound Rup is bounded by

Rup ≤ 87Rlb + 2. (8)

Thus, except a small additive term of 2, the bounds differ by at most a factor of 87. As we

discuss in the introduction, although this factor may appear to be large, it is the first result in

the literature with a constant-factor gap that is independent of the popularity distributions. In

contrast, the gap (between upper- and lower-bounds) estimated by the existing results can be

arbitrarily large depending on either the number of groups [9], the number of levels [10], or

the parameter of the Zipf distribution [11]. It is remarkable that such a simple coded caching

scheme, with a very simple choice of N1, can achieve such a strong performance guarantee,

independently of the popularity distribution.

We briefly discuss the relationship between the above scheme and the Random LFU (RLFU)
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scheme in [11] because they are similar. RLFU also evenly caches files whose popularity is

above a threshold. In RLFU, the file with the threshold popularity is denoted as m̃, which

plays a similar role as N1 in this paper. In this sense, the above simple scheme can also be

viewed as a member within the class of RLFU. However, the details in choosing the threshold

popularity differ. In the theoretical analysis in [11], m̃ is chosen as a function of the exponent α

of the Zipf distribution (assuming that the popularity of the i-th most-popular file is proportional

to 1/iα). Based on this choice of m̃, [11] bounds the gap between the achievable rate and

the lower-bound as a function of α. This theoretical bound on the performance gap roughly

scales as 1/(α− 1), which becomes unbounded as α approaches 1. On the other hand, [11]

also proposes a practical version of RLFU that numerically optimizes an upper bound over all

possible values of m̃. Since the performance of the numerically-optimized RLFU scheme is

always no worse than that with any fixed m̃, the theoretical performance guarantees in [11] for

Zipf distributions also apply to this numerically-optimized RLFU scheme. In contrast, in this

paper the threshold file N1 is chosen to be the one with popularity close to 1/KM . Not only

does this rule apply to all popularity distributions, it also leads to an achievable transmission rate

that is away from the lower bound by at most a constant factor independent of the popularity

distribution. Thus, our results reveal new insights on the choice of this threshold. Further, we

note that the performance of the numerically-optimized RLFU scheme in [11] must also be no

worse than that with our choice of N1. Thus, as an immediate corollary of our result, it implies

that the numerically-optimized RLFU scheme in [11] also attains a constant-factor performance

gap for arbitrary popularity distributions. We also note that, for certain ranges of the exponent

α of the Zipf distributions, the performance characterization in [11] may be tighter than the

87 factor reported in (8). Thus, the results in [11] and in this paper combined provide a more

complete characterization of the performance guarantees for the numerically-optimized RLFU

scheme across both Zipf and non-Zipf distributions.

A. Main Intuition

Before we present the proofs for these main results, we would like to illustrate the main
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intuition behind. First, consider only the “popular files” 1 to N1, i.e., assuming that the unpopular

files N1 + 1 to N are removed. Let us refer to this system as “System 1”. In our proof, we

will consider an alternate system where the popularity of all popular files is reduced to pN1 .

We will refer to this alternate system as “System 2” (see Section IV-A). Intuitively, the average

transmission rate in System 2 is no larger than that in System 1. Further, since all files are

with the same popularity in System 2, the average-case and the worst-case performance will not

differ too much [9]. Thus, one can then use System 2 to derive a lower bound on the average

transmission rate, and compare it with an upper bound attained by an achievable scheme.

However, the potential problem of this argument is that, when we reduce the popularity of all

popular files to pN1 , some popularity values could be reduced by several orders of magnitude.

It is then unclear why the lower bound derived from System 2 is still a reasonable lower bound

for System 1. The intuition behind this insensitivity can be explained as follows. Suppose that

there are K ′ users in System 1 that request any of the popular files. Then, according to the result

in [7], the worst-case transmission rate to serve these K ′ users is no larger than

K ′(1− M

N1

)
1

1 + K′M
N1

. (9)

Now, suppose that the individual cache size M is much smaller than N1, and the global cache

size K ′M is much larger than N1 (note that this is precisely the regime where coded caching will

be most helpful [7]). Then, we have 1− M
N1

≈ 1 and 1+ K′M
N1

≈ K′M
N1

. Thus, the expression in (9)

is approximately equal to N1/M . The significance of this observation is that this approximated

expression is independent of K ′. In other words, in a suitable regime of interest, the exact

popularity of the “popular files” does not seem to matter! It is then plausible to argue that,

even when we reduce the popularity values to pN1 in System 2, there is no substantial change

in the lower-bound performance. Of course, this argument needs to be carefully made. Further,

we have to account for not only popular files, but also unpopular files. The proofs in the next

section will make this intuition precise.
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IV. LOWER BOUND ON THE EXPECTED RATE

In this section, we present the proof of Theorem 1, i.e., the lower bound.

The proof consists of two parts. Subsections A-C focus on popular files 1 to N1, and prove

the part that R(K,F ,P) ≥ 1
29
(N1

M
−1). This proof is composed of 5 steps. From the first step to

the fourth one, we map the original system into a series of reduced systems, whose information-

theoretical rate is strictly smaller than previous ones. Then, we calculate the rate needed for

the system constructed in the fourth step. Finally, Subsection D focuses on the unpopular files

and proves the part that R(K,F ,P) ≥ 1
58
(
P

i>N1
Kpi − 2). As we elaborate further below,

while some of the techniques for quantifying the impact of popular files are similar to [9][13],

our treatment of unpopular files is new and is the key reason for the sharper constant-factor

characterization in our paper.

A. Reduction Steps 1 & 2

Recall that the set of files is given by F = {F1, F2, ..., FN} and their popularity distribution

is given by P = {p1, p2, ..., pN}. Next, we will compare to a series of reduced systems with

different sets of files and popularity distributions. Again, let N1 be the integer defined in Theorem

1.

In the first constructed system, the set of files is given by F1 = {F0, F1, F2, ..., FN1}, where F0

denotes the empty file, which is introduced for ease of presentation. Its corresponding popularity

distribution is P1 = {p0, p1, p2, ..., pN1} and p0 = 1 −PN1
i=1 pi. In other words, we replace all

unpopular files FN1+1, ..., FN in the original system by the empty file F0, and reassign their

popularity all to F0. Intuitively, the new system should require a lower transmission rate than

the original system, which is stated in the following lemma.

Lemma 1: Let R(K,F1,P1) be the minimum expected rate required to meet the requests by

the K users, each of which randomly requests a file in F1 according to the popularity distribution

P1. We have

R(K,F ,P) ≥ R(K,F1,P1). (10)
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We next create another new system by a further adjustment on the tuple (K,F1,P1). Note

that N1 ≤ KM . Otherwise, we will have
PN

i=1 pi > KM · pN1 ≥ 1, which is a contradiction

with
PN

i=1 pi = 1. Define a new popularity distribution P2 = {1 − N1pN1 , pN1 , pN1 , ..., pN1}. In

other words, compared to (K,F1,P1), in this new system, each non-empty file is requested with

a smaller probability pN1 . Intuitively, its expected transmission rate should be even lower, which

is stated below.

Lemma 2: Let R(K,F1,P2) be the minimum expected rate required to meet the requests by

K users, each of which randomly requests a file in F1 according to the popularity distribution

P2. We have

R(K,F1,P1) ≥ R(K,F1,P2). (11)

The proofs of Lemma 1 & 2 use similar coupling idea as in Lemma 5, and are omitted here.

With Lemma 1 and Lemma 2, we have proved that R(K,F ,P) ≥ R(K,F1,P2). In the

following analysis for the first part of Theorem 1, we will focus on R(K,F1,P2). Note that the

system (K,F1,P2) is precisely the “System 2” that we discussed in Section III-A. Next, we

will derive a lower bound on the average transmission rate of System 2, which also provides a

lower bound on R(K,F ,P). We will derive this lower bound on the average transmission rate

of System 2 by relating it to a lower bound on the worst-case transmission rate. Note that since

all files have equal popularity in System 2, the fact that its average transmission rate is at most

a constant factor away from its worst-case transmission rate is in fact known from the results

in [9] and [13]. For example, we can obtain a lower bound on the average transmission rate of

System 2 from Theorem 2 in [9] by choosing c = 1, Nl = N1 there and by choosing Kl in [9]

as the number of users requesting popular files. However, the lower bound derived in this way

involves an expectation over Kl. Since later we will use System 2 again to deal with unpopular

files, we wish to obtain a lower bound that is a function of the total number of users K. The

following derivation accounts for such technical details, and at the same time yields a tighter

characterization (which eventually translates to the factor 1/29 and 1/58 in (6)). We note that

some of the reduction techniques below and in Sections IV-B to IV-C are also similar to [9][13],
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although here we exploit the fact that pN1 ≈ 1
KM

to obtain the tighter characterization.

To proceed, note that in the system (K,F1,P2), it is possible that some file is requested by

multiple users. In Section IV-B, we will reduce it to the third system where every non-empty

requested file is requested exactly once. Towards that end, we first characterize the number of

distinct files requested in system (K,F1,P2).

For a given system setting (K,F1,P2), let Ii = 1 if user i requests a non-empty file, and

let Ii = 0 if user i requests the empty file. Denote Kr =
PK

i=1 Ii. Then, Kr is the number of

users who request non-empty files. All Ii are i.i.d. distributed with mean N1pN1 . The probability

distribution for Kr is given by

P (Kr = K1) = CK1
K (N1pN1)

K1 (1−N1pN1)
K−K1 .

Lemma 3: Define K1 , ⌊N1

M
⌋. Then we have K1 ≤ ⌊KN1pN1⌋, and

P (Kr ≥ K1) ≥
1

2
. (12)

This follows from the result in [17], which shows that any median must lie in the interval

[⌊np⌋, ⌈np⌉], for a binomial distribution B(n, p).

In other words, with probability no less than 0.5, no less than K1 users request non-empty

files. Still, some of these K1 users may request a common file. Next, we are interested in the

number of distinct files that are requested. Denote this number as Kd.

Lemma 4: Given that there are Kr users requesting non-empty files, the probability that the

number of distinct files requested is no smaller than min{⌊1
2
Kr⌋, ⌊1

2
K1⌋} is greater than or equal

to 0.56.

Proof: Clearly, we only need to consider Kr ≤ K1 (because a larger value of Kr only

increases the number of distinct files). When Kr = 1, 2, or 3, we have that ⌊1
2
Kr⌋ equals 0 or

1. In this case, it is easy to see that this lemma holds, since there must be at least one distinct

file requested.

For Kr ≥ 4, consider only those Kr users requesting non-empty files. Each user requests one
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file from the N1 non-empty files uniformly randomly and independently. There are NKr
1 possible

request patterns for the Kr users, each of which is equally likely. For some of these request

patterns, the number of distinct files are smaller than K2 , ⌊1
2
Kr⌋. The number of such request

patterns must be smaller than CK2
N1

·KKr
2 . To see this, note that the first term is the number of

ways to choose K2 files from the N1 non-empty files. The second term is the number of ways

that each user can choose one of the K2 files. We thus have

P (Kd ≤ K2|Kr) <
CK2

N1
KKr

2

NKr
1

≤
e
√
N1(

N1

e
)N1È

2π(N1 −K2)(
N1−K2

e
)N1−K2

· 1√
2πK2(

K2

e
)K2

�
K2

N1

�Kr

≤ e

2π

�
N1

N1 −K2

�N1−K2

· (N1

K2

)K2−Kr .

Here, we have used Stirling’s formula in the third step, i.e.,

√
2πn

�n
e

�n
≤ n! ≤ e

√
n
�n
e

�n
.

In the fourth step, we have used
q

N1

K2(N1−K2)
≤ 1, due to K2 ≥ 2 and K2 ≤ 1

2
N1. It is easy to

prove that (1 + x)
1
x ≤ e for any x > 0. Therefore,

�
N1

N1 −K2

�N1−K2

=
�
1 +

K2

N1 −K2

�N1−K2
K2

·K2

≤ eK2 .

Due to K2 ≤ 1
2
Kr ≤ 1

2
K1 ≤ 1

4
N1 (since M ≥ 2), we have

P (Kd ≤ K2|Kr) <
e

2π
eK2 · eK2−Kr ≤ e

2π
.

Finally, P (Kd > K2|Kr) = 1− P (Kd ≤ Kr

2
|Kr) ≥ 0.56.

B. Reduction Step 3

Combing Lemma 3 and Lemma 4, we can show that, with probability no less than 0.28, the

number of distinct files requested is no smaller than ⌊1
2
K1⌋. We now perform the third reduction.
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For W(K,F1,P2), let π(K1) be the probability that either the number of users requesting non-

empty files, Kr, is less than K1, or the number of distinct non-empty files requested, Kd, is less

than K3 , ⌊K1

2
⌋.

Then, in the third system, with probability π(K1) the users will all request the empty file. With

probability 1 − π(K1), exactly K3 users will request exactly K3 distinct non-empty files from

F1, ..., FN1 , and all other users will request the empty file. Note that there are exactly CK3
K AK3

N1

request patterns where exactly K3 users request K3 distinct non-empty files. We let each such

request pattern occur with equal probability 1−π(K1)

C
K3
K A

K3
N1

.

Let this third system be denoted by W3(K3, K1), and let R(K,W3) be the corresponding

minimum expected transmission rate. Then. we have the following lemma.

Lemma 5:

R(K,F1,P2) ≥ R(K,W3). (13)

Proof: The proof uses coupling [19]. For every Wi ∈ W(K,F1,P2), map it to a random

W
′
i ∈ W3(K3, K1) as follows. If the number of users requesting non-empty files in Wi is less

than K1, or the number of distinct non-empty files requested is less than K3 , ⌊K1

2
⌋, then in

W
′
i all users request the empty file. Otherwise, we perform the mapping described below.

For every remaining Wi with Kd ≥ K3, we conduct the following splitting procedure.

• For each non-empty file that is requested by some users, randomly choose one user request-

ing it. Note that there are Kd such chosen users.

• Among the chosen users, randomly choose K3 of them. These K3 users now request distinct

non-empty files, and we let all other users request the empty file.

It is easy to see that, given any cache placement and transmission scheme F, we have

rF(K,Wi) ≥ rF(K,W
′

i ), (14)

because W
′
i requests a subset of the files in Wi. It remains to show that, if Wi is chosen

according to the distribution of W(K,F1,P2), then the resulting W
′
i has the same distribution
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as W3(K3, K1). To see this, note that the probability with which Wi requests no empty files is

exactly 1− π(K1). Further, due to symmetry on the files and the users in W(K,F1,P2), along

with the symmetry of our mapping, each pattern W
′
i that requests non-empty files must occur

with equal probability. We can then conclude that each W ′
i occurs with the same probability as

in W3(K3, K1).

Thus, with the coupling method [19], we have

RF(K,F1,P2) ≥ RF(K,W3). (15)

and the result then follows.

C. Reduction Step 4 & the Lower Bound

We now consider the 4th system W4. In this system, there are always K3 , ⌊K1

2
⌋ users

requesting K3 distinct non-empty files and all the other users request the empty file. Further,

each such request pattern occurs with equal probability 1

C
K3
K A

K3
N1

. Let R(K,W4) be the minimum

expected transmission rate for the above system W4. The following lemma is easy to show.

Lemma 6: R(K,W3) = (1− π(K1))R(K,W4).

Next we focus on the system W4.

Let Hi, i = 1, 2, ..., CK3
K be the CK3

K choices of picking K3 users out of the K users. In

system W4, if in a request Wj , the users requesting distinct non-empty files are exactly in Hi,

we denote it by Wj ∈ Hi. Note that there are AK3
N1

= N1!
(K−K3)!

such patterns in each Hi. We have

the following result.

Lemma 7: Consider systems W4 where there are always exactly K3 users requesting distinct

files in F1 and the other K −K3 users request the empty file. For any Hi, i = 1, 2, ..., CK3
K , the

following holds, X
Wj∈Hi

rF(K,Wj) ≥ AK3
N1

·
�
N1

K3

�
K3 −K3M�

N1

K3

� . (16)
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Note that Lemma 7 immediately implies that

R(K,W4) ≥
�
N1

K3

�
K3 −K3M�

N1

K3

� . (17)

Proof: Without loss of generality, suppose that Hi = {1, 1, ..., 1, 0, 0, ..., 0}. In other word-

s, user 1, 2,..., K3 are requesting distinct non-empty files. Each user has a cache, labeled

M1,M2, ...,MK3 , each of which has a common storage size M .

There are N1! permutations for the N1 files. For each permutation, we split it into ⌊N1

K3
⌋

subgroups, each with K3 files. Denote r(i, j) as the rate needed to meet the users’ requests if

their request pattern is the same as the j-th subgroup in the i-th permutation, i.e., when the k-th

user requests the k-th file in the subgroup, k = 1, 2, ..., K3.

For each permutation i, consider all the sub-groups (i.e., request patterns) as a whole. Recall

that the cache content is fixed when these request patterns vary. Consider a feasible cache

placement and transmission scheme F. Based on the cached content M1, ...,MK3 , and the trans-

missions from the server for each request pattern (with rates r(i, 1), ..., r(i, ⌊N1

K3
⌋), respectively),

the K3 users together must be able to reconstruct all K3 · ⌊N1

K3
⌋ files. Hence,

�
N1
K3

�X
j=1

rF(i, j) +
K3X
k=1

Mk ≥ K3 ·
�
N1

K3

�
. (18)

Summarizing over all N1! permutations, we have

N1!X
i=1

�
N1
K3

�X
j=1

rF(i, j) ≥
��

N1

K3

�
·K3 −K3M

�
·N1!. (19)

Note that there are AK3
N1

request patterns Wj ∈ Hi, while there are
�
N1

K3

�
·N1! subgroups among

all the N1! permutations. By symmetry, each Wj ∈ Hi appears an equal number of times in these

subgroups. Hence, the number of times each Wj ∈ Hi appears in the summation in Equation
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(19) is

�
N1
K3

�
·N1!

A
K3
N1

. Hence,

P
Wj∈Hi

rF(K,Wj)

AK3
N1

=
1�

N1

K3

�
·N1!

·
N1!X
i=1

�
N1
K3

�X
j=1

rF(i, j)

≥ 1�
N1

K3

�
·N1!

·N1!(
�
N1

K3

�
K3 −K3M)

=

�
N1

K3

�
K3 −K3M�

N1

K3

� .

(20)

We therefore conclude this lemma.

Denote the right hand side of Equation (17) by f(K3). From Lemmas 1, 2, 5 and 6, the

minimum expected rate can be bounded by

R(K,F ,P) ≥ R(K,F1,P2)

≥ R(K,W3)

= (1− π(K1)) ·R(K,W4)

≥ (1− π(K1))f(K3).

(21)

Recall that K1 , ⌊N1

M
⌋ and K3 , ⌊1

2
K1⌋. We now consider two cases.

If N1

M
≤ 6, it is easy to verify that

f(K3) ≥ f(1)

=
M

N1

(
N1

M
− 1)

≥ 1

8
(
N1

M
− 1).

(22)

On the other hand, if N1

M
> 6, we have K3 ≥ N1

2M
−1 ≥ N1

3M
, and

�
N1

K3

�
≥ ⌊2M⌋. Since M ≥ 2,

we have
f(K3) = K3 −

K3M�
N1

K3

�
≥ K3

�
1− M

⌊2M⌋

�

≥ N1

3M
· 3
8

(usingM ≥ 2)

≥ 1

8
(
N1

M
− 1).

(23)
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Using both (22) and (23) into (21), we conclude that the minimum expected rate needed for

W(K,F ,P) is bounded by

R(K,F ,P) ≥ 0.28 · 1
8

�
N1

M
− 1

�
+

≥ 1

29

�
N1

M
− 1

�
+
.

(24)

D. Second Part of Theorem 1

Now we will move our attention to the unpopular files and prove the other part of the lower

bound, i.e., R(K,F ,P) ≥ 1
58
[
P

i>N1
Kpi − 2]+. To the best of our knowledge, this treatment

of unpopular files has not been reported in the literature. Intuitively, depending on the system

setting, the lower bound may be dominated by either the popular files or the unpopular files. Thus,

we believe that our capability to quantify the impact of unpopular files is the key reason that we

can obtain the improved constant-factor characterization in this paper, even in non-asymptotic

settings.

Interestingly, readers will see soon that we will re-apply the results for System 2 constructed

in Section IV.A. Recall that in System 2 all users either request one of the non-empty files with

a common popularity that is no less than 1/KM , or request the empty file. For the unpopular

files, their popularity is lower than 1/KM , and hence we cannot directly use the results for

System 2. However, next we introduce a new “merging” idea that will eventually allow us to

re-apply the results for System 2. Specifically, we will merge several unpopular files into one

file, so that the popularity of the new file is no less than 1/KM . We will show that this merging

step will only lower the achievable rate for serving unpopular files. Thus, in the end we obtain

a new system similar to System 2, from which a lower bound for the achievable rate of the

original system can be derived. The detail analysis is as follows.

Consider another system, where the set of files is F3 = {F0, FN1+1, FN1+2, ..., FN} (recall that

F0 is again an empty file). The corresponding popularity distribution is P3 = {p′
0, pN1+1, pN1+2, ..., pN}

where p
′
0 = 1−PN

i=N1+1 pi. In other words, we replace files F1, F2, ..., FN1 in the original system
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by the empty file and use the corresponding popularity. Similar to Lemma 1, we can prove that

R(K,F ,P) ≥ R(K,F3,P3). (25)

Again, we will perform a series of further reductions and finally construct a system with a

smaller rate, which can utilize the results in previous analysis of “System 2”.

To proceed, we need the lemma below. Denote a file set by T1 = {T1, T2, ..., Tt}. Each element

Ti can either be a regular file or the empty file. Let its corresponding popularity distribution be

Q1 = {q1, q2, ..., qt}, where
Pt

i=1 qi = 1. Denote another file set by T2 = {T1, T2, ..., Tt−2, Tt+1}

with popularity distribution Q2 = {q1, q2, ..., qt−2, qt+1}. Here qt+1 = qt−1 + qt. In other words,

the two files Tt−1 and Tt in the first system are replaced by one file Tt+1 in the second system.

Intuitively, it should be easier (i.e., requiring less cache and lower transmission rate) to serve

the second system because there is less “diversity”. This statement is made precise below.

Lemma 8: Let R(K, T1,Q1) be the minimum expected rate required to meet the requests by

K users, each of which randomly requests a file in T1 according to the popularity distribution

Q1. Let R(K, T2,Q2) be defined similarly for Q2. We have

R(K, T1,Q1) ≥ R(K, T2,Q2). (26)

Proof: The request set for (K, T1,Q1) is W(K, T1,Q1) = {Wi}, where Wi = {fi1, fi2, ..., fiK}

and fij ∈ T1. We first construct a mapping from W(K, T1,Q1) to W(K, T2,Q2).

For every request Wi ∈ W(K, T1,Q1), we map it to a request W ′
i ∈ W(K, T2,Q2) as follows.

If file Tt−1 or Tt in T1 is requested in Wi, we replace it by Tt+1.

For a cache placement and transmission scheme F, suppose that each user can retrieve the

file requested in Wi with rate rF(K,Wi). Using the same F, with the replacement of Tt+1 for

Tt−1 or Tt in both cache placement and transmissions, we can show that the rate rF(K,Wi) can

also satisfy the request of W ′
i . Therefore, we have

rF(K,Wi) ≥ rF(K,W
′

i ). (27)
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Further, if Wi follows the distribution of W(K, T1,Q1), W
′
i must follow the distribution of

W(K, T2,Q2). Thus, by the coupling method [19], we must have

RF(K, T1,Q1) ≥ RF(K, T2,Q2). (28)

The results of this lemma then follows.

Next, we create a new system (K,F4,P4) originated from (K,F3,P3), by merging multiple

files in F3 to a new file in F4 (described below) and combine their popularity (similar to the

mapping from Q1 to Q2). We denote this new file set as F4 = {V0, V1, ..., VN2} and the popularity

distribution as P4 = {v0, v1, v2, ...vN2}. Here, V0 is the empty file and v0 = 1 −PN2
i=1 vi. The

other files V1, ..., VN2 are non-empty files and we pick them in such a way that they all have

similar popularity vi ≈ 1/KM . Specifically, recall that 1
KM

> pN1+1 ≥ pN1+2 ≥ ... ≥ pN .

Let h0 = 0. Pick h1 as the smallest integer such that
PN1+h1

j=N1+1 pj ≥ 1/KM . We then replace

files FN1+1, ..., FN1+h1 by one file V1, whose popularity is v1 =
PN1+h1

j=N1+1 pj . Similarly, for each

i = 2, 3, ..., we pick hi as the smallest integer such that

N1+hiX
j=N1+hi−1+1

pj ≥ 1/KM (29)

and then replace files FN1+hi−1+1, ..., FN1+hi
by one file Vi, whose popularity is vi =

PN1+hi
j=N1+hi−1+1 pj .

In this way, each non-empty file’s popularity satisfies 1/KM ≤ vi ≤ 2/KM for all 1 ≤ i ≤ N2,

and we further have
PN2

i=1 vi =
P

i>N1
pi ≤ 2N2

KM
.

By applying Lemma 8 iteratively, we can show that

R(K,F3,P3) ≥ R(K,F4,P4). (30)

Define P5 = {1− N2

KM
, 1
KM

, ..., 1
KM

}. Similar to Lemma 2, we can prove that

R(K,F4,P4) ≥ R(K,F4,P5). (31)

Now, note that the system (K,F4,P5) is of the same form as the system (K,F1,P2): all non-
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empty files are requested with a common probability that is greater than or equal to 1
KM

(this

is also of the form of the “System 2” that we referred to in Sections III-A and IV-A). Readers

can check that the analysis in Sections IV-B and IV-C also applies to the system (K,F4,P5).

Thus, like Equation (24), we have

R(K,F4,P5) ≥
1

29

�
N2

M
− 1

�
+
≥ 1

58

2
4X
i>N1

Kpi − 2

3
5
+

. (32)

Combining Equations (24) and (32), we have proved Theorem 1.

Remark: We believe that the above characterization for the unpopular files is crucial for

obtaining the improved constant-factor results that hold for arbitrary distributions and system

settings. Take Zipf distribution with α = 1 as an example. Suppose that the number of files N

is large. Then, it is easy to see that pi ≈ 1
i logN

, and thus the threshold is N1 ≈ KM
logN

. From our

earlier results, the lower bound due to popular files is N1

M
≈ K

logN
, while the lower bound due

to unpopular files is about K
logN

· log N logN
KM

. Note that depending on the relationship between N

and K, the term due to unpopular files may be larger or smaller than the term due to popular

files. For instance, if we keep N fixed and let K → ∞, then the term due to unpopular files will

be dominated by the term due to popular files. Such a setting has been studied in Corollary 1 of

[13]. However, in general N/(KM) could be large, and thus the unpopular files may dominate.

In that case, if we did not use the characterization in this subsection, we would be unable to

obtain the sharper results in this paper.

V. UPPER BOUND ON EXPECTED TRANSMISSION RATE

In this section, we will show that the achievable transmission rate of a simple cache-placement

and transmission scheme (similar to the RLFU scheme in [11]) provides an upper bound on

R(K,F ,P). Recall the following statement of Theorem 2,

R(K,F ,P) ≤
�
N1

M
− 1

�
+
+min

�X
i>N1

Kpi,
N −N1

[M −N1]+
− 1

�
. (33)

Proof of Theorem 2: We again divide the whole file set into two subsets F1 = {F1, F2, ..., FN1}
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and F2 = {FN1+1, FN1+2, ..., FN}. The files in F1 are the “more popular” files whose popularity

is larger than 1
KM

. Recall that in our model each file is of unit length. The minimum indivisible

portion of a file is called a “bit”. We have assumed that each file has F such bits. The cache

placement strategy is given as follows.

Algorithm 1 Cache Placement Procedure
for 1 ≤ k ≤ K, 1 ≤ n ≤ N1

User k randomly caches min
�
MF
N1

, F
�

bits of the file Fn

end for

Note that we only cache fractions of the N1 popular files in the users’ storage. On the other

hand, the files requested by the K users may also come from files in F2. Assume that there

are K4 users requesting files in F1 and denote these users as U1. Denote the other K − K4

users requesting files in F2 as U2. For every S that is a subset of U1 and for every k ∈ S, let

Vk,S\{k} represent all the bits that are requested by user k, that are stored in the cache of every

other user of S except user k, and that are not stored in the caches of any other user in U1\S.

Denote ⊕k∈SVk,S\{k} as the XOR across the sets of bits Vk,S\{k}. More precisely, order the bits

in each Vk,S\{k} in some way. Then, each bit of ⊕k∈SVk,S\{k} is the XOR of the corresponding

bits across Vk,S\{k}, k ∈ S. Note that the size of ⊕k∈SVk,S\{k} equals to max{|Vk,S\{k}|, k ∈ S}.

Now we are ready to present the transmission scheme, which econsists of two steps. In the

first step, the server will send coded data (as in the decentralized coded caching scheme of [8])

to meet the requests of users in U1. In the second step, the server sends uncoded data to meet

the requests of users in U2. Recall that the size of U1 is K4.

Algorithm 2 Transmission Procedure
Step 1: for s = K4, K4 − 1, ..., 1

for every S ⊂ U1 such that |S| = s, do
Server sends ⊕k∈SVk,S\{k}

end for
end for

Step 2: for every user k ∈ U2

Sever sends its requested file dk
end for

After both steps, all requests of K users will be satisfied. The reason is as follows. If a user
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is in U2, its request will be immediately satisfied in step 2. If a user k is in U1, a bit b of

its requested file will be in some Vk,Sb\{k}, for a specific set Sb. After step 1, Vk,Sb\{k} will be

retrieved by user k from the transmission received and its local storage. Hence, user K must be

able to decode the bit b.

We now compute the rate required by the transmission scheme. This analysis is similar to [8].

We first calculate the rate R1 sent by the server in step 1. For a subset S ⊂ U1 and |S| = s, a

bit of file dk is in Vk,S\{k} with probability

(
M

N1

)s−1(1− M

N1

)K4−s+1. (34)

The expected number of bits in Vk,S\{k} is F · (M
N1

)s−1(1− M
N1

)K4−s+1. When the file size F is

large, the number of bits in Vk,S\{k} is F · (M
N1

)s−1(1− M
N1

)K4−s+1 + o(F ) with high probability.

Therefore, the rate needed to be sent for a specific subset S is

| ⊕k∈S Vk,S\{k}| = max
k∈S

|Vk,S\{k}|

= F · (M
N1

)s−1(1− M

N1

)K4−s+1 + o(F ).

(35)

In the sequel, we focus on the “large file-size” regime and ignore the factor o(F ). For each s,

there are Cs
K4

subsets S that satisfies S ⊂ U1 and |S| = s. Summing over all possible s and all

subsets S, the rate needed in the first step (in the unit of “bit”) can be bounded by

R1 ≤
K4X
s=1

Cs
K4

· F
�
M

N1

�s−1 �
1− M

N1

�K4−s+1

= F (1− M

N1

)
1− (1− M

N1
)K4

M
N1

< F (
N1

M
− 1).

(36)

Note that this bound does not depend on K4.

Next, we calculate the rate needed for step 2. Since each user requests a file in F2 with

probability
PN

i=N1+1 pi, the expected rate that it needs in step 2 is F
PN

i=N1+1 pi. Summing over
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Fig. 2: N=5000,K=500,α=0.2.
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Fig. 3: N=5000,K=500,α=1.1.
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Fig. 4: N=5000,K=500,α=1.4.
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Fig. 5: N=500,K=5000,α=1.

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

M

A
ch

ie
va

bl
e 

R
at

e

 

 

LFU
Group−caching
Uniform−caching
RLFU
Proposed Scheme

Fig. 6: N=5000,K=500,α=1.4,
r=2.
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Fig. 7: N=5000,K=5,α=1.4.

all K users, the expected rate of R2 (again in the unit of “bit”) can be represented by

R2 ≤ KF
NX

i=N1+1

pi. (37)

Note that it is possible that N1 is smaller than M . In that case, after each user caches all

N1 popular files, there are still some space left for caching unpopular files. Therefore, when

N1 < M , we let the remaining storage to randomly cache a equal portion of files Fi (i > N1).

Similar to the proof of R1, the expected rate of R2 can also be bounded by

R2 ≤ F (
N −N1

M −N1

− 1). (38)

Finally, by a conversion from the unit of “bit” to the unit of “file” (recall that each file is unit

length), the result of Theorem 2 then follows from Equation (36), (37) and (38).
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VI. SIMULATION RESULTS

We next present numerical results that demonstrate the superior performance of the proposed

scheme and discuss the insights from the results.

We will compare with four other schemes. The first one is an uncoded scheme, i.e., least-

frequently used (LFU) caching strategy [18], which caches the M most popular files in all users’

storage. The second scheme is the decentralized uniform coded caching scheme in [8], where a M
N

portion of every file is cached in each user’s storage, regardless of its popularity. The remaining

two are group-caching [9] and RLFU [11], both of which consider heterogenous popularity. In

group-caching [9], files with close popularity (differing by at most a factor of 2) are grouped

together. The scheme in [9] assigns an equal fraction of the cache space to each group, and

performs coded transmission only among users requesting files from the same group. This equal

allocation of cache space is found to perform poorly in our experiments (not reported). Hence, in

our simulation, we further allow group-caching to optimize the allocation of cache space to each

file. However, as we will see shortly, the requirement that coded transmission is only performed

among users requesting files from the same group still becomes a limiting factor, and as a result

the performance of group-caching can be even worse than uniform coded-caching.

Finally, as we discussed earlier, the RLFU scheme proposed in [11] is similar to ours in that

they both evenly cache files whose popularity is above a threshold. Note that [11] presents two

ways for choosing the threshold. One set of thresholds (parameterized by the parameters of the

Zipf-distribution) was used to prove the theoretical results. It turns out these theoretical values

for the thresholds tend to perform poorer in our experiments (not shown). [11] also proposes

another way of setting the threshold, by taking an additional optimization step over all possible

threshold values. In our simulation results below, we compare with this version of RLFU with

optimized threshold values. Since our proposed algorithm (using the simple threshold N1) can

also be viewed as a member in the class of RLFU algorithms, the optimized version of RLFU will

clearly achieve better performance. What is interesting, however, is that in most of the simulation

settings below, our simple choice N1 performs almost as well as the optimized version of RLFU,
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which suggests that the simple choice N1 is in fact quite close-to-optimal.

After the cache placement setting, we simulate the request and transmission processes. The

requests of all users are generated randomly according to the file popularity distribution. The rate

of each scheme is calculated as follows. 1) For files that are not cached at all but are requested,

the rate is calculated as the distinct number of such files. 2) For files that are cached, the rate is

calculated as follows, depending on the scheme. For LFU, a cached file is always cached in its

entirety. Thus, the rate is zero. For other schemes, a file may be partially cached. Specifically,

the rate for uniform caching is (1− M
N
)(1− (1− M

N
)K)/(M

N
), similar to (36). The rate for group

caching is the summation of the rates for each group, with uniform caching applied within each

group. The rate for RLFU and our scheme is calculated by applying uniform caching to only

the popular files. The threshold for popular files in RLFU is optimized according to Eqs. (1)

and (4) in [11].

In the following figures, we present the mean transmission rate calculated from a large number

(> 1000) of request patterns randomly generated according to the popularity distribution. The

confidence intervals are very small and thus not shown.

Comparison under Zipf popularity distribution: The first set of numerical results are for

Zipf popularity distribution, i.e., the popularity of the i-th popular file is pi =
H(α)
iα

, where α

is the Zipf exponent and H(α) is the normalization factor. Note that α > 1 means that the

distribution is heavily skewed to the most popular files, while α < 1 means that the distribution

is “flatter”. We simulate a system with K = 500 users and N = 5000 files. In Figures 2-4, we

plot the achievable transmission rate as a function of users’ storage size M . As readers can see,

our proposed scheme achieves the best performance under all scenarios. Specifically, in Figure

2, α = 0.2 is small, which implies that files have a “flat” popularity distribution. We can observe

that LFU performs poorly because it doesn’t exploit coded transmission opportunities. A deeper

investigation reveals that both RLFU and our scheme turn into uniform coded caching, which

outperform group-caching. In contrast, in Figure 4, α = 1.4 is large, which implies that a small

fraction of files dominate the popularity distribution. Uniform coded-caching performs poorly
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because it neglects the significant popularity difference. On the other hand, by preferably caching

the most popular files, both LFU, RLFU, group-caching and our scheme all perform well.

Finally, from Figures 2-4, we can see that group-caching appears to also exhibit robust

performance, except in Figure 5. On the other hand, our scheme and RLFU consistently performs

better. We do emphasize that the simulation of both RLFU and group-caching involves an extra

step of optimizing cache allocation across groups. In contrast, our scheme is much simpler and

does not involve such an additional optimization step. Thus, our proposed scheme not only

achieves better performance, but also is easy to implement.

Comparison under non-Zipf distribution: Next, we simulate these algorithms under a non-

Zipf distribution, i.e., Zipf-Mandelbrot law distribution, where the i-th popular file is requested

with probability pi = H(α)
(i+r)α

for a constant r = 2 and α = 1.4. The simulation results are

presented in Figure 6. Again, our scheme and RLFU achieve the best performance.

As we mentioned earlier, in most of the simulations (Figs. 2-6), our proposed schedule achieves

the same performance as the optimized version of RLFU [11], even though our choice of

threshold N1 is very simple and does not involve the optimization step in [11]. We note that there

are indeed cases where the optimized version of RLFU performs strictly better. An example is

shown in Fig. 7. Note that in this setting, since K is small, the threshold popularity 1
KM

is large.

Hence, the threshold N1 may be even smaller than M . In contrast, a closer inspection indicates

that RLFU turns into LFU, i.e., the most popular M files are cached in their entirety. What is

interesting is that group-caching turns out to out-perform RLFU. For this setting, it turns out

that group caching scheme divides the files into more than 2 groups. As a result, some of the

most popular files are caching entirely, the less popular files are cached uniformly, and the least

popular files are not cached at all. This simulation result thus suggests that, in some cases, it

may be useful to use 2 thresholds, instead of 1 threshold as in our scheme and RLFU. We leave

the design of such 2-threshold scheme as a topic for future work.
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VII. CONCLUSION

In this work, given an arbitrary popularity distribution, we first derive a new information-

theoretical lower bound on the expected transmission rate of any coded caching schemes. We

then show that a simple coded-caching scheme attains an expected transmission rate that is at

most a constant factor away from the lower bound. Unlike other existing studies, the constant

factor that we derived is independent of the popularity distribution.

There are a number of interesting questions for future studies. First, the complexity of the

transmission scheme in Section V can be high (esp. for enumerating all the subsets S). Thus,

an important question is whether we can develop low-complexity transmission schemes that still

attain similar performance guarantees. Further, it would be interesting to study how the benefits

of coded caching can be extended to wireless environments (in particular heterogeneous wireless

networks).
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