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Abstract—In this paper we study the queue-overflow prob-
ability of wireless scheduling algorithms. In wireless networks
operated under queue-length-based scheduling algorithms, there
often exists a tight coupling between the service-rate process, the
system backlog process, the arrival process, and the stochastic
process governing channel variations. Although one can use
sample-path large-deviations techniques to form an estimate of
the queue-overflow probability, the formulation leads to a difficult
multi-dimensional calculus-of-variations problem. In this paper,
we present a new technique to address this complexity issue.Us-
ing ideas from the Lyapunov function approach in control theory,
this technique maps the complex multi-dimensional calculus-of-
variations problem to a one-dimensional calculus-of-variations
problem, and the latter is often much easier to solve. Further,
under appropriate conditions, we show that when a scheduling
algorithm minimizes the drift of a Lyapunov function at each
point of every fluid sample path, the algorithm will be optimal
in the sense that it maximizes the asymptotic decay-rate of the
probability that the Lyapunov function value exceeds a given
threshold. We believe that these results can potentially beused
to study the queue-overflow probability of a large class of wireless
scheduling algorithms and to design new scheduling algorithms
with optimal overflow probabilities.

Index Terms—Drift-minimizing algorithms. Lyapunov func-
tions, multi-dimensional calculus-of-variations, queue-overflow
probabilities, sample-path large deviations, wireless scheduling
algorithms.

I. I NTRODUCTION

A wireless network may be modeled as a system of queues
with time-varying service rates. The variability in service
rates is due to a number of factors. First, channel fading and
mobility can lead to variations in the link capacity even if the
transmission power is fixed. Second, the transmission power
can vary over time according to the power control policy.
Third, due to radio interference, it is usually preferable to
schedule only a subset of links to be active at each time, and
to alternate the subset of activated links over time.

When we study the performance of any system that involves
queues, the first question that we can ask is whether the system
is stableor not. Here,stability means that all queue backlog
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(or equivalently, the delay experienced by the packets) remains
finite. Conversely, we can ask the question that, in order to
maintain stability, what is the largest offered load that the
system can carry. For wireless networks, these questions have
led to results onthroughput-optimalscheduling and routing
algorithms for managing wireless network resources. Here,
we use the termschedulingin the broader sense, i.e., it can
include various control mechanisms at the MAC/PHY layer,
such as link scheduling, power control, and adaptive cod-
ing/modulation. In addition, for multi-hop wireless networks,
the routing functionality determines the path that each packet
traverses, which also plays a key role in determining the
capacity of the network. A scheduling and routing algorithm
is throughput-optimalif, for any offered load under which
any other scheduling and routing algorithm can stabilize the
system, this algorithm can stabilize the system as well. One
example of a throughput-optimal algorithm is the so-called
“maximum-weight” and “back-pressure” algorithm proposed
in the seminal work by Tassiulas and Ephremides in [1]. This
algorithm chooses at each time, among all possible scheduling
and routing decisions, the one that maximizes the sum of the
link rates weighted by the differential backlog. This algorithm
has been shown to be throughput-optimal, and it has been the
basis for many other throughput-optimal algorithms for both
cellular and multihop wireless networks.

Once we know about stability, we are then tempted to ask
further questions regarding the distribution of queue length
(or delay). For example, at a given offered load, what is
the probability that the queue length at any link exceeds a
given threshold (or, that the delay experienced by a packet
is greater than a given threshold)? Conversely, what is the
largest offered load that the system can support subject to a
given constraint on the queue-overflow probability or delay-
violation probability? (In other words, what is theeffective
capacity regionof the system under such constraints?) Clearly,
these question are important for applications that requiremore
stringent delay guarantees than just stability.

Such problems for characterizing the queue-overflow prob-
ability or delay-violation probability of wireless networks can
be difficult to solve. Here we draw a comparison to similar
queueing problems in wireline networks. In wireline networks,
even though the exact queue distribution can be difficult to
obtain, there has been a large body of work, especially those
using large-deviations techniques, to obtain sharp estimates
of the queue-overflow probability [2]–[7]. Essentially, wecan
compute the asymptotic decay-rate with which the queue-
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overflow probability approaches zero as the overflow threshold
approaches infinity. We can then compare the queueing perfor-
mance of different systems by their corresponding asymptotic
decay-rates, and we can ask questions regarding the largest
offered load subject to the constraint that the decay-rate must
be no smaller than a given threshold value. Most results
along this line assume that the service rate of the queue is
fixed (i.e., time-invariant), and the packet arrival process is
known. These results have enabled us to define the notion of
effective bandwidthof the arrival process based on its (known)
statistics [2]–[7], which can then be used to determine the
traffic carrying capability of the system at a given queue-
overflow constraint. In contrast, in wireless networks, the
service rate is time-varying. If the service rate process is
again knowna priori, large-deviations techniques can still
be used to compute theeffective capacityof the service rate
process [8], [9], which is a notion similar to theeffective
bandwidthof the arrival process. This effective capacity can
again be used to determine the traffic carrying capability of
the system subject to a given constraint on the decay-rate
of the queue-overflow probability. Unfortunately, under many
wireless resource-allocation algorithms of interest, even the
service rate process is unknowna priori. For example, for any
queue-length based algorithms such as the throughput-optimal
back-pressure algorithm of [1], the service rates depend onthe
queue lengths, which in turn depend on the past history of the
arrival process and the channel state. Hence, the statistics of
the service rate process is unknowna priori. In this case, even
the computation of the asymptotic decay-rate of the queue-
overflow probability becomes a very difficult problem. For
these systems, although it is still possible to use sample-
path large-deviations techniques to form an estimate of the
decay-rate of the queue-overflow probability [10]–[12], such a
formulation leads to a multi-dimensional calculus-of-variations
problem. Due to the complex coupling between the service
rate, the queue length, the arrival process, and the channel
state, this multi-dimensional calculus-of-variations problem is
known to be very difficult [10]–[13].

Motivated by the Lyapunov function approach for proving
stability of complex systems, in this paper we provide a tech-
nique that addresses the complexity of the multi-dimensional
calculus-of-variations problem that arises in sample-path large-
deviations studies. In essence, through the use of a Lyapunov
function, we map the multi-dimensional calculus-of-variations
problem into a one-dimensional calculus-of-variations prob-
lem, and the latter is often much easier to solve. The solution
to the one-dimensional calculus-of-variations problem will
then provide us with a lower-bound estimate of the decay-
rate of the queue-overflow probability, and consequently, a
lower-bound estimate of the effective capacity region of the
system. For many practical applications, the resulting effective
capacity region is useful because the queue-overflow constraint
is known to be satisfied (in the large-deviations sense). We
emphasize that, unlike most prior large-deviations work on
wireless systems that has focused on single-hop systems (e.g.
the cellular downlink), the results described in this paperapply
to both single-hop and multi-hop settings.

In addition to the above lower-bound on the asymptotic

decay-rate under a given wireless control algorithm, we also
provide a useful condition under which a scheduling algo-
rithm is optimal in terms of the asymptotic decay-rate of the
overflow probability. Specifically, we show that under suitable
conditions, if a scheduling algorithm minimizes the drift of
the Lyapunov function at each point in every fluid sample
path, then the algorithm is in fact optimal in maximizing the
asymptotic decay-rate of the probability that the Lyapunov
function value overflows. This is a powerful result that can
be used for both analysis and design of scheduling policies.
For example, this result can be immediately used to draw
the conclusion that the back-pressure algorithm [1] maximizes
the asymptotic decay-rate of the probability that the sum of
the squares of the per-flow queues exceeds a threshold. In a
recent work [14], this result has been used to design a class
of asymptotically decay-rate optimal algorithms for multi-hop
networks. In another recent work [15], we have used this result
to design a simple priority-based algorithm that is sum-queue
decay-rate optimal for a tree network, which generalized the
algorithm of [16] for a tandem network. For a more detailed
discussion of the applications of our main results, please refer
to Section IV-B.

The rest of the paper is organized as follows. We present
the network model in Section II and introduce the large-
deviations preliminaries in Section III. For convenience to the
readers, in Section IV we list all main results and provide
examples for their applications. The detailed technical proofs
are provided in Sections V-VII. Specifically, in Section V we
provide a general lower bound for the asymptotic decay-rate
of the queue-overflow probability using sample-path large-
deviations theory. However, this bound involves a difficult
multi-dimensional calculus-of-variations problem. Then, in
Section VI, we provide a Lyapunov function based approach
to address the complexity issue, which provides a much
simpler lower bound on the asymptotic decay-rate of the
queue-overflow probability. In Section VII, we provide a drift-
minimizing condition under which this lower bound is tight
and the corresponding drift-minimizing algorithm is decay-
rate optimal. In Section VIII, we provide a detailed example
to show how these results can be applied to a specific network
setting. Then we conclude.

Throughout the paper, we usex to denote a real number
and~x to denote a vector. For convenience, when we refer to
a vector-valued stochastic process~x(t) over a certain time-
interval, we often drop the indext and denote it by a bold-
face symbolx. In other words,~x(t) denotes the value of
the stochastic processx at time t. Unless stated otherwise,
we use right derivatives throughout this paper, i.e.,d

dtx(t) =

lim
δ↓0+

x(t+δ)−x(t)
δ .

II. T HE SYSTEM MODEL

We assume the following model for a wireless system with
N nodes andL links. A diagram that illustrates some of the
key variables is provided in Fig. 1.
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Fig. 1. The system model.

A. The Channel

We assume that time is divided into time-slots of unit length.
In order to model channel fading, we assume that at any time-
slot τ the state of the wireless channel, denoted byC(τ), can
be in one ofS (channel) statesj = 1, 2, ..., S. We assume that
the channel statesC(τ), τ = 1, 2, ... are i.i.d. across time. Let
pj = P[C(τ) = j], j = 1, 2, ..., S. and~p = [p1, ..., pS ].

B. The Arrival

The system serves packets from multiple classesk =
1, ...,K. Each classk corresponds to a setDk of destination
nodes. In other words, once the class-k packets arrive at any
node inDk, they will leave the system. LetAk

i (τ) denote the
number of class-k packets arriving at nodei at time-slotτ .
We assume that[Ak

i (τ)] is i.i.d. across time and independent
across arriving nodes and across classes. In addition, we
assume thatAk

i (τ) is bounded byM for all i, k and τ . Let
λk
i = E[Ak

i (τ)].

C. The Queue

Let Xk
i (τ) denote the backlog of class-k packets at nodei

at timeτ , and let ~X(τ) = [Xk
i (τ), i = 1, ..., N, k = 1, ...,K].

Let b(l) and e(l) denote the source-node and end-node, re-
spectively, of linkl. Each link l then corresponds to a server
with time-varying service rate, which serves packets at node
b(l) and transfers them to nodee(l). The service offered by
link l is determined by the scheduling and routing algorithm.
In general, this service rate may depend on the global system
backlog and the global channel state, and hence may correlate
with the service at other links/nodes. LetEk

l (j,
~X) denote the

service offered by linkl to class-k packets at nodeb(l), when
the state of the system isj and the global backlog is~X . We
impose the additional constraint thatEk

l (j,
~X) ≤ Xk

b(l). (In
other words, the service offered by linkl to class-k packets
is no greater than the backlog of class-k packets at the source
nodeb(l).) By definition ofDk (the set of destination nodes
of class-k), Xk

i (τ) = 0 for all nodesi ∈ Dk. For a nodei not
in Dk, the evolution of the class-k backlog is given by

Xk
i (τ + 1) = Xk

i (τ) +Ak
i (τ)

−
S
∑

j=1

1{C(τ)=j}

L
∑

l=1

RilE
k
l (j, ~X(τ)), (1)

for all nodesi /∈ Dk, whereRil denotes the connectivity
matrix, i.e.,

Ril =







1, if i = b(l)
−1, if i = e(l)
0, otherwise.

Let El(j, ~X) =
∑K

k=1E
k
l (j,

~X), which denotes the aggregate
service offered by linkl. We assume that, for each statej,
the service-rate vector[El(j, ~X), l = 1, ..., L] must belong to
a setEj of feasible service-rate vectors. We assume that for
all j, the convex hull ofEj, denoted Conv(Ej), is closed and
bounded, and contains the intersection of a neighborhood of
the origin and the positive quadrant.

D. The Performance Measure

Assume that the offered load~λ = [λk
i , i = 1, ..., N, k =

1, ..,K] is such that the system is stationary and ergodic. In
this paper, we will focus on the stationary probability that
some chosen norm of the system backlog exceeds a certain
thresholdB. In particular, letε denote our target value of the
overflow probability, we would like to ensure that

P[|| ~X(∞)|| ≥ B] ≤ ε, (2)

where || · || is an appropriately chosen norm, andB is the
overflow threshold. Note that we have used~X(∞) to represent
the stationary distribution of the stochastic process~X(τ).
Unfortunately, the problem of calculating the exact probability
P[|| ~X(∞)|| ≥ B] is often mathematically intractable. Instead,
we will be interested in the decay rate of the queue-overflow
probability, which is defined by

I0(~λ) , − lim
B→∞

1

B
logP[|| ~X(∞)|| ≥ B], (3)

whenever the limit on the right-hand-side exists. Note thatif
(3) holds, then whenB is large, the overflow probability can
be approximated by

P[|| ~X(∞)|| ≥ B] ≈ g(B) exp(−BI0(~λ)).

Here, g(B) captures the terms that may grow sub-
exponentially asB → ∞. We refer toI0(~λ) as the asymptotic
decay-rate of the queue-overflow probability. Using the above
approximation, in order to approximately satisfy the constraint
(2), we only need to ensure that

I0(~λ)−
log g(B)

B
≥ θ , − log ε

B
.

For a fixedθ, assuminglog g(B)/B ≈ 0, we approximate the
above expression by:

I0(~λ) ≥ θ , − log ε

B
. (4)

We can then define theeffective capacity regionas the set of
arrival rates~λ such that the above inequality holds. In more
general settings, the limit in (3) may not exist or may not be
easily computed. Still, we may be able to find a lower bound
I ′0(

~λ) on the asymptotic decay-rate of the overflow probability
such that

lim sup
B→∞

1

B
logP[|| ~X(∞)|| ≥ B] ≤ −I ′0(

~λ). (5)
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Thenexp(−BI ′0(
~λ)) provides an (approximate) upper bound

on the overflow probabilityP[|| ~X(∞)|| ≥ B], and we can
find a lower bound on the effective capacity region as the set
of ~λ such thatI ′0(~λ) ≥ θ , − log ε

B .

E. Generalizing the Channel and Arrival Processes

For ease of exposition, throughout this paper we have
assumed that the channels and the arrival processes arei.i.d.
across time. We now briefly comment on how the results
of this paper can also be generalized to the case with time-
correlated channel fluctuations and time-correlated arrivals. As
readers will see, the key requirement for these results to hold
is that the channel and arrival processes satisfy a sample-path
large-deviations principle as will be described in SectionIII-A
(although with different expressions for the integrands ofthe
rate functionsITs (·) and ITa (·) there). Note that finite-state
irreducible Markov chains also satisfy a sample-path large-
deviations principle [17, Exercise 5.1.27]. Hence, our results
are valid even if we assume that the channel state,C(τ),
does not behave in ani.i.d. fashion from time-slot to time-slot
but behaves according to a Markov chain. Similarly, we can
also assume that each arrival processAk

i (τ), i = 1, ..., N, k =
1, ...,K, evolves over time-slots according to a Markov chain.
The proof of Theorem 4 in Section V will have to be modified
since now the evolution of the queue depends not only on the
current state of the queue but also on the underlying state of
the channel and arrival processes. Please see the beginningof
the Appendix for details.

III. PRELIMINARIES

In this section we will introduce some large-deviations
preliminaries that are used in the rest of the paper, which
include sample-path large deviations of the channel and arrival
processes, fluid sample paths, and fluid limits.

A. Large Deviations of Channel and Arrival Processes

For a fixedB, define the scaled channel state process and
the scaled arrival process on the time intervalt ∈ [0, T ] as

sBj (t) =
1

B

Bt
∑

τ=0

1{C(τ)=j}, (6)

ak,Bi (t) =
1

B

Bt
∑

τ=0

Ak
i (τ) (7)

for t = m
B , m = 0, ..., dBT e, and by linear interpolation

otherwise. The parameterB is a scaling factor: in (6) and
(7) we have compressed both time and magnitude byB. To
see this, note that (6) and (7) are of the form1B f(Bt).

The quantitysBj (t) can be interpreted as the sum of the
(scaled) time in[0, t] that the system is in channel statej.
It is easy to check that

∑S
j=1 s

B
j (t) = t for all t ∈ [0, T ].

Let ~sB(t) = [sB1 (t), ...s
B
S (t)]. Further, letφB

j (t) = d
dts

B
j (t).

(Note again that we use right-derivatives, and that the right-
derivative ofsBj (t) is well defined almost everywhere on[0, T ]
except whent = m/B for some integerm.) Let ~φB(t) =
[φB

1 (t), ..., φ
B
S (t)]. Note that

∑S
j=1 φ

B
j (t) = 1 for almost all

t ∈ [0, T ]. Similarly, let ~aB(t) = [ak,Bi (t), i = 1, ..., N, k =

1, ...,K] and ~fB(t) = d
dt~a

B(t).
Remark:We make a few remarks before we proceed. First,

for any fixed T , as B → ∞, we haveBT → ∞. Hence,
when B is large (as in the large-deviations study below),
we aim to capture the infinite-time behavior of the original
stochastic processes. (The same intuition also applies to the
scaled backlog process~xB(t) defined shortly in Section III-B.)
Second, for any fixedt, whenB → ∞, by a Law of Large
Numbers argument, we would expect thatwith probability 1
the value ofφB

j (t) will converge topj (i.e., the probability that
the channel is in statej). However, since we are interested in
the large-deviations decay-rate of the overflow probability, we
are in fact interested in events with probability approaching
0 as B → ∞. Hence, we have to also study sample paths
such thatφB

j (t) does not converge topj . This is precisely
the difference between afluid sample path (FSP)and afluid
limit, which will be defined shortly. Third, note that in both (6)
and (7) we scale time linearly inB. This scaling is important
to obtain the large-deviations decay rate. For instance, ifwe
were to scale time differently than linearly inB, e.g., if we
were to replace the upper limits of the summations byB2T
or

√
BT , as B → ∞ the corresponding expressions will

approach either∞ or 0 with very high probability. Thus, they
will not correspond to the “most likely path to overflow” from
a decay-rate point of view (see also the discussions on the
“most likely path to overflow” in Section IV-A2).

It is well-known that the scaled channel state process and
the scaled arrival process satisfy large-deviations principles
(LDPs). First, we describe the LDP for the scaled channel
state process. For any~φ = [φj , j = 1, ..., S] ≥ 0 and
∑S

j=1 φj = 1, defineH(~φ||~p) =
∑S

j=1 φj log
φj

pj
. (Here we

use the convention that0 log 0 = 0.) Let Φs[0, T ] denote the
space of functions~s(t) on [0, T ] that satisfy the following
conditions:~s(t) is component-wise non-decreasing on[0, T ],
~s(0) = 0, and

∑S
j=1 sj(t) = t for all t. Let this space be

equipped with the essential supremum norm [17, p176, p352],
denoted here by|| · ||T∞ . The sequence of scaled channel-
state processessB = (~sB(t), t ∈ [0, T ]) is known to satisfy a
sample-path large deviations principle [17, p176] with large-
deviations rate-functionITs (s) given by:

ITs (s) =

∫ T

0

H

(

d

dt
~s(t)||~p

)

dt,

if s ∈ Φs[0, T ] is absolutely continuous, andITs (s) = +∞
otherwise. (Note thatddt~s(t) is well defined almost everywhere
on [0, T ] whens = (~s(t), t ∈ [0, T ]) is absolutely continuous.)
Such a large-deviations principle means that, for any setΓ of
trajectories inΦs[0, T ], the probability that the sequence of
scaled channel state processess

B fall into Γ must satisfy

− inf
s∈Γo

ITs (s) ≤ lim inf
B→∞

1

B
logP[sB ∈ Γ] (8)

≤ lim sup
B→∞

1

B
logP[sB ∈ Γ] ≤ − inf

s∈Γ
ITs (s),

whereΓo andΓ denote the interior and closure, respectively,
of the setΓ. In addition, if Γ is a continuity set [17, p5],
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equality is achieved and we then have,

lim
B→∞

1

B
logP[sB ∈ Γ] = − inf

s∈Γ
ITs (s). (9)

Next, we describe the LDP for the scaled arrival process.
We need to first define a few terms. Define

Lk
i (f) = sup

θ

{

θf − logE[exp(θAk
i (0))]

}

.

Note that this form of rate-function, i.e., as the Legendre trans-
form of the cumulant generating functionlogE[exp(θAk

i (0)],
is standard in large-deviations theory [17, p176]. In particular,
we have Lk

i (f) ≥ 0 for all f , and Lk
i (f) = 0 when

f = E[Ak
i (0)]. For any ~f = [fk

i , i = 1, ..., N, k = 1, ...,K],
let L(~f) =

∑N
i=1

∑K
k=1 L

k
i (f

k
i ). Further, letΦa[0, T ] be the

space of component-wise non-decreasing functions~a(t) on
[0, T ] with ~a(0) = 0. Let this space also be equipped with the
essential supremum norm [17, p176, p352], denoted here by
||·||T∞. Since the arrivals[Ak

i (t)] arei.i.d. in time, the sequence
of scaled arrival-processesaB = (~aB(t), t ∈ [0, T ]) also
satisfies a sample-path large-deviations principle [17, p176]
with large-deviations rate-functionITa (a) given as follows:

ITa (a) =

∫ T

0

L

(

d

dt
~a(t)

)

dt,

if a ∈ Φa[0, T ] is absolutely continuous, andITa (a) = +∞
otherwise. (Note thatddt~a(t) is well-defined almost everywhere
on [0, T ] whena = (~a(t), t ∈ [0, T ]) is absolutely continuous.)
A similar interpretation as in Equations (8) and (9) holds for
ITa (·) as well.

Remark:The large-deviations rate-functionsITs (·) andITa (·)
characterize how rare the occurrence of trajectoriess

B andaB

are, respectively. Note thatITs (s) ≥ 0 for all trajectoriess and
ITa (a) ≥ 0 for all trajectoriesa. The larger the value ofITs (s)
is, the further the “empirical probability distribution”ddt~s(t)
deviates from the underlying probability distribution~p. Hence,
it is less likely that trajectorys will occur. Likewise, the larger
the value ofITa (a) is, the further the “empirical arrival rate”
fk
i deviates from the mean arrival rateλk

i . Equation (9) reflects
the well-known large-deviations philosophy that “rare events
occur in the most-likely way.” Precisely, whenB is large, the
probability that the scaled channel-state processs

B falls into
a setΓ is determined by the trajectory inΓ that is most likely
to occur, i.e., with the smallestITs (s).

B. Fluid Sample Path

Similar to the scaling used in (6) and (7), define the scaled
backlog process as,

xk,B
i (t) =

1

B
Xk

i (Bt), (10)

for t = m
B , m = 0, ..., dBT e, and by linear interpolation

otherwise. Let~xB(t) = [xk,B
i (t), i = 1, ..., N, k = 1, ...,K].

Again, note that for any fixedT , by taking B → ∞ (see
below) we will in fact look at the infinite-time behavior of the
original backlog process~X(τ) asτ → ∞.

We define the notion of aFluid Sample Path(FSP). Note
that according to (1), given an initial condition on~xB(0), the

scaled backlog processxB = (~xB(t), t ∈ [0, T ]) is related to
the scaled channel-state processs

B = (~sB(t), t ∈ [0, T ]) and
the scaled arrival processaB = (~aB(t), t ∈ [0, T ]) by

xk,B
i (t+ 1/B)− xk,B

i (t)

1/B
(11)

=

[

ak,Bi (t)− ak,Bi (t− 1
B )

1/B

]

−
S
∑

j=1

L
∑

l=1

RilE
k
l (j, B~xB(t))

[

sBj (t)− sBj (t− 1
B )

1/B

]

,

for i /∈ Dk, t = m
B , m = 1, ..., dBT e and by linear

interpolation otherwise. Thus, given anyT and any initial
condition ~xB(0), Equation (11) defines a mapping from the
scaled channel-state processs

B and the scaled arrival process
a
B to the scaled backlog processxB over the time-interval

[0, T ].
As B → ∞, take any sequence ofsB andaB (which may

come fromdifferent sample paths). They map to a sequence
of scaled backlog processesxB. Note thatsB, a

B and x
B

are all Lipschitz-continuous. Hence, for any such sequence
(sB, aB,xB), there must exist a subsequence that converges to
a limiting process(s, a,x) uniformly over compact intervals.
We define any such limiting process as aFluid Sample Path,
or an FSP, which we denote as(s, a,x)T , where the subscript
denotes the ending timeT . Such an FSP often satisfies the
following differential equation obtained by lettingB → ∞ on
Equation (11):

d

dt
xk
i (t) =

d

dt
aki (t)−

S
∑

j=1

d

dt
sj(t)

L
∑

l=1

Rile
k
l (j, ~x(t)). (12)

whereekl (j, ~x(t)) is some appropriately-chosen limiting value
of Ek

l (j, B~xB(t)) (an example is given later in Equation
(58)). In the rest of the paper, we sometimes denote FSPs
as(s, a,x), i.e., without the time subscriptT . In doing so, we
mean that there is some finite timeT such that(s, a,x)T is
an FSP.

C. Fluid Limits

Related to the notion of fluid-sample-paths is the notion
of fluid limits [18], [19]. Take the scaled queue-evolution
equation (11), and take a sequence of(sB, aB,xB) with
B → +∞. For a large class of dynamic systems, one can
show that,with probability 1, there must exist a subsequence
(sBn , aBn ,xBn) such that~sBn(t) → ~pt,~aBn(t) → ~λt and
~xBn(t) → ~x(t) uniformly over compact intervals. Any such
limit ~x(t) is called thefluid limit of the system [18]. This fluid
limit can often be written in the form

d

dt
xk
i (t) = λk

i −
S
∑

j=1

pj

L
∑

l=1

Rile
k
l (j, ~x(t)). (13)

whereekl (j, ~x(t)) is some appropriate limit ofEk
l (j,

~X(t)).
Remark:Readers may note the similarity between Equa-

tion (13) and Equation (12). We now briefly comment on the
difference between a fluid limit in (13) and a fluid sample
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path (FSP) in (12). In essence, a fluid limit is a fluid sample
path with d

dt~s(t) = ~p and d
dt~a(t) = ~λ for all t, which is

why in Equation (13)λk
i andpj replace d

dta
k
i (t) and d

dtsj(t),
respectively, from (12). This is the case because the fluid limit
is the almost surelimit of the scaled process, and hence a
“Law of Large Numbers” type of argument can be invoked.
In other words, the fluid limit dynamics can be viewed as the
meanbehavior of the system. In contrast, for an FSP we are
interested in rare events, and hence the values ofd

dt~a(t) and
d
dt~s(t) can deviate from their mean values.

Readers may also note that the definitions of the scaled
processes and the FSP are both over a finite time horizon
[0, T ], and we allow them to start from some given initial
condition~xB(0). This formulation may seem contradictory to
our initial goal of studying thestationaryoverflow probability
of ~X(∞). It turns out that such constructions are common
in sample-path large-deviations theory for studying stationary
overflow probabilities (see [23, Chapter 6] and [13]). Such a
sample-path LDP analysis typically takes the following two
steps. In the first step, for a finiteT , we start the system
empty at time0, and study the probability that~X(BT ) exceeds
the thresholdB. We will find the large-deviations decay rate
of this overflow probability whenB → ∞ (see Proposi-
tions 1 and 2 in Section V-A). Note that the corresponding
scaled version of the stochastic processesa

B , sB andxB will
be over a finite interval[0, T ] as we defined earlier. Then, in
the second step, we increaseT and take the infimum of the
decay-rate over allT (see Theorems 3 and 4 in Secton V-B).
The intuition that this two-step process may work is as follows.
For any fixedB, the largerT is, the less~X(BT ) will depend
on the initial condition at time0 (provided that the system
is stable). Hence, by takingT → ∞, we hope to capture the
stationary overflow probability of~X(∞). However, we caution
that it requires additional technical conditions and stepsin
order to establish this intuition rigorously. For example,if the
system was not stable, such passing of the limitT → ∞
would not produce the right results (see the example at the
beginning of Section V-B). Technically speaking, a switch
of limit is involved here: To study the stationary overflow
probability, we need to takeT → ∞ first, and then study
the asymptotic decay rate whenB → ∞; In contrast, the
above two-step process takesB → ∞ first for a finite T ,
and then takeT → ∞. In order to prove that the second
step is indeed correct, we need to use the Freidlin-Wentzell
theory (see [23, Chapter 6] and [13]), which is accomplished
by the (rather technical) proof of Theorem 4 in the Appendix.
Roughly speaking, the key reasons that the argument holds are
because (i) the arrivals, the channel, and the service ratesare
all assumed to be bounded, and (ii) the system is assumed to be
stable. We refer interested readers to more detailed discussions
at the beginning of Section V-B and the Appendix.

IV. M AIN RESULTS AND IMPLICATIONS

For the convenience to the readers, in this section we list
our main results along with the assumptions that are necessary
for the results to hold. We then discuss the applications of
these main results. The detailed proofs will be presented in
Sections V-VII.

A. A List of Main Assumptions and Results

1) Main Assumptions:The first set of assumptions basically
assume that the system has a Lyapunov function with negative-
drift, and thus must be stable. Note that these assumptions
are mild because most wireless control algorithms that can
achieve provable capacity regions have well-known Lyapunov
functions.

Assumption 1:For the system being studied, there exists a
Lyapunov functionV (~x), defined for~x ≥ 0, that satisfies the
following:

(a) V (~x) is a continuous function of~x.
(b) V (~x) ≥ 0 for all ~x andV (~x) = 0 if and only if ~x = 0.
(c) V (~x) → ∞ if ||~x|| → ∞.
(d) min||~x||≥1 V (~x) ≥ 1. Further, there exists a number̃C

such thatmax||~x||≤1 V (~x) ≤ C̃.
(e) For anyB > 0, there exists a constantL that may depend

on B, such that for any||~x1|| ≤ B and ||~x2|| ≤ B,

|V (~x1)− V (~x2)| ≤ L||~x1 − ~x2||.

(f) Either of the following holds (for a fixed arrival rate~λ
and a fixed channel state distribution~p assumed in the
system model). For all fluid limitsx,

d

dt
V (~x(t)) ,

(

∂V

∂~x

)T
d~x

dt
≤ −ηV α(~x(t)) (14)

for almost allt such thatV (~x(t)) > 0, where0 < α < 1
andη is a positive constant. Or, for all fluid limitsx,

d

dt
V (~x(t)) ,

(

∂V

∂~x

)T
d~x

dt
≤ −η (15)

for almost all t such thatV (~x(t)) > 0, whereη is a
positive constant.

Remark:Parts (a)-(c) and (f) of the assumption are typical
when one uses Lyapunov functions to establish stability.
Although Parts (d) and (e) are not standard, with a proper
scaling of the Lyapunov function they will hold for many
Lyapunov functions that have been used for wireless sys-
tems. Specifically, Part (d) holds (after proper scaling) when
max||~x||≤C V (~x) is upper bounded for some constantC > 0,
and Part (e) holds when the Lyapunov function has bounded
gradients in any finite set. To see how these conditions imply
the stability of the fluid limit, note that starting from any initial
~x(0) with ||~x(0)|| = 1, we must have||V (~x(0))|| ≤ C̃ from
Part (d) of the assumption. Then, using the drift condition (f),
we can find a value ofT such that for all fluid limits with
||V (~x(0))|| ≤ C̃, we must haveV (~x(T )) = 0. Using Part
(b), this then implies that~x(T ) = 0. Hence, the fluid limit
model of the system is stable. By [18], [19], it implies that
the original system is positive Harris recurrent. Note thatthe
two drift conditions in (14) and (15) are in fact equivalent.If
V (·) satisfies (14), thenU(~x) = V 1−α(~x)

1−α satisfies (15).
Remark:For part (f) we would like to point out a small

but important difference between Lyapunov functions for the
original discrete-time systems and Lyapunov functions for
fluid-limit models. In part (f), we state the negative-driftas-
sumption using Lyapunov functions for the fluid-limit model.
In the literature, e.g. [1], [20], the negative-drift property is



7

often established through a Lyapunov function for the original
discrete-time system. Extra care may be required to prove the
negative-drift property for the fluid limit as needed by part
(f). In the example in Section VIII, we will illustrate how to
establish part (f).

The second set of assumptions, which slightly strengthens
Assumption 1, is needed to establish the large deviations of
the stationary overflow probability (in particular, the Freidlin-
Wentzell construction in the Appendix.)

Assumption 2:If the Lyapunov functionV (·) satisfies (14),
then we further assume that

(a) There existsε > 0 such that for all FSP(s, a,x)T and
for all time t such thatV (~x(t)) > 0, if || ddt~s(t)−~p|| ≤ ε

and || ddt~a(t)− ~λ|| ≤ ε, the following holds:

d

dt
V (~x(t)) ≤ −η

2
V α(~x(t)), (16)

where0 < α < 1 andη > 0 are the same constants as
in (14).

(b) For anyδ > 0, there existsM1 ≥ 0 such that for all
FSP(s, a,x)T and for all timet such thatV (~x(t)) > 0,
if || ddt~s(t)− ~p|| ≥ δ or || ddt~a(t)−~λ|| ≥ δ, the following
holds,

d

dt
V (~x(t)) ≤ M1V

α(~x(t)). (17)

On the other hand, if the Lyapunov functionV (·) satisfies
(15), then we further assume that

(a) There existsε > 0 such that for all FSP(s, a,x)T and
for all time t such thatV (~x(t)) > 0, if || ddt~s(t)−~p|| ≤ ε

and || ddt~a(t)− ~λ|| ≤ ε, the following holds:

d

dt
V (~x(t)) ≤ −η

2
, (18)

whereη > 0 is the same constant as in (15).
(b) For anyδ > 0, there existsM1 ≥ 0 such that for all

FSP(s, a,x)T and for all timet such thatV (~x(t)) > 0,
if || ddt~s(t)− ~p|| ≥ δ or || ddt~a(t)−~λ|| ≥ δ, the following
holds,

d

dt
V (~x(t)) ≤ M1. (19)

Remark:We will need these assumptions when we study the
large-deviations properties of the stationary queue-overflow
probability. Essentially, they imply that the drift behaves nicely
not only for the fluid limits but also for FSP. Specifically,
(a) even if we perturbed the channel distribution and the
distribution of the arrival process slightly from(~p,~λ), the
drift of the Lyapunov function still remains negative; (b) if
the perturbation is large, although the drift could become
positive, it is upper-bounded by a constantM1 (or this constant
multiplied by V α(~x(t))). Again, note that the two parts of
Assumption 2 are also equivalent. IfV (·) satisfies the first
part of the assumption, thenU(~x) = V 1−α(~x)

1−α satisfies the
latter part. We will provide an example in Section VIII how
these conditions can be easily verified.

2) A General Lower Bound on the Decay-Rate of the
Queue-Overflow Probability:In Theorems 3 and 4 (which will
be shown in Section V), under the assumption that there exists
a Lyapunov functionV (·) that satisfies Assumptions 1 and
2, we establish an upper bound on the overflow probabilities
and hence a lower bound on their large deviations decay
rate. The bound is expressed in terms of a multi-dimensional
calculus-of-variations problem of finding the minimum-cost-
to-overflow. Recall that~X(∞) denotes the stationary distribu-
tion of the stochastic process~X(·).
Theorem 3Assume that there exists a Lyapunov functionV (·)
that satisfies Assumptions 1 and 2. Then the following holds,

lim sup
B→∞

1

B
logP[|| ~X(∞)/B|| ≥ 1]

≤ − inf
T≥0,s,a,x

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt

subject to (s, a,x)T is an FSP

~x(0) = 0, ||~x(T )|| ≥ 1. (20)

Note that the right-hand-side of (20) takes the infimum not
only over all FSP’s(s, a,x)T , but also over allT > 0.

The result again reflects the large deviations philosophy
that “rare events occur in the most likely way”. The FSP
that attains the infimum on the right-hand-side of (20) (if
such an FSP exists) is usually called the “most-likely path
to overflow,” and the corresponding infimum is called the
“minimum cost to overflow.” Theorem 3 states that the decay-
rate of the queue-overflow probability is lower bounded by
the cost of the most-likely path to overflow. In the standard
large-deviations literature, a technique called the “contraction
principle” is often used to establish a result like this. However,
to apply the contraction principle one must first establish that
the mapping from~s(t) and ~a(t) to ~x(t) is continuous with
respect to properly-chosen topologies for the corresponding
functional spaces. Unfortunately, for the general models of
wireless networks and control algorithms that we are interested
in, it seems difficult to establish the required continuity.The
significance of Theorem 3 is that, as far as a lower bound on
the decay-rate is concerned, one does not even need continuity
of the above mapping. We note that Theorem 3 is comparable
to Theorem 7.1 of [13] for a refined LDP.

The next theorem is similar to Theorem 3 except that the
overflow metric is changed from|| · || to V (·).
Theorem 4Assume that there exists a Lyapunov functionV (·)
that satisfies both Assumption 1 and Assumption 2. Then the
following holds,

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1]

≤ − inf
T≥0,s,a,x

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt

subject to (s, a,x)T is an FSP

~x(0) = 0, V (~x(T )) ≥ 1. (21)

3) A Much Simpler Lower Bound on the Decay Rate of
the Queue Overflow Probability:Unfortunately, solving the
minimum-cost-to-overflow in (20) and (21) is a difficult multi-
dimensional calculus-of-variations problem. The following
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Theorem 5, which is the first main result of the paper and
will be shown in Section VI, provides a much simpler lower
bound on the large-deviations decay-rate. The key idea is to
use the Lyapunov functionV (~x) to map the multi-dimensional
calculus-of-variations problem with respect to~x(t) to a one-
dimensional calculus-of-variations problem with respectto
V (t) = V (~x(t)). Specifically, let

lV (v, w) , inf
s,a,x

H(~φ||~p) + L(~f)

subject to (s, a,x) is an FSP

such that for somet
d

dt
~s(t) = ~φ

d

dt
~a(t) = ~f

V (~x(t)) = v
d

dt
V (~x(t)) = w.

Note that the quantitylV (v, w) can be viewed as the smallest
local cost (among all FSPs) for the Lyapunov functionV (t) =
V (~x(t)) to pass the valueV (t) = v with the slopew at a given
time t. Readers can refer to Section VI for details.

The following one-dimensional calculus-of-variations prob-
lem then finds a lower bound on the minimum cost forV (t)
to overflow. Define

θ0 = inf
T>0

∫ T

0

lV (V (t),
d

dt
V (t))dt

subject to V (t) is continuous and

almost-everywhere differentiable,

V (0) = 0 andV (T ) ≥ 1. (22)

Theorem 5Assume that there exists a Lyapunov functionV (·)
that satisfies Assumption 1 and Assumption 2. Thenθ0 in
(22) is a lower bound on the decay-rate of the queue-overflow
probability. In other words,

lim sup
B→∞

1

B
logP[|| ~X(∞)/B|| ≥ 1]

≤ lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1] ≤ −θ0.

The lower boundθ0 in (22) is simpler than (21) because
we now only need to solve aone-dimensionalcalculus-of-
variations problem. This lower bound can be further simplified
under the following scale-linearity assumption on the Lya-
punov function.

Assumption 3:The Lyapunov functionV (·) is linear in
scale, i.e.,V (c~x) = cV (~x) for all c ≥ 0.

Under Assumption 3, we will show that

θ0 = inf
w>0,s,a,x

1

w

[

H(~φ||~p) + L(~f)
]

(23)

subject to (s, a,x) is an FSP

such that for somet
d

dt
~s(t) = ~φ

d

dt
~a(t) = ~f

V (~x(t)) = 1

dV (~x(t))

dt
= w.

The details are provided in Section VI-A. The lower bound
θ0 is even simpler because, unlike the calculus-of-variations
problems in (20) and (21) where one must search for the path
to overflow with theglobal minimum cost, inθ0 we only
focus on thelocal cost and the dynamics of the path at some
arbitrary timet.

4) A Condition for the Minimum-Cost-to-Overflow to be
Exact: Our second set of main results concern with the
conditions under which the above lower bounds become tight.
Note that many scheduling and routing policies are designed
to minimize the drift of the respective Lyapunov function, as
stated in the following assumption. For any~f, ~φ and ~e, let

δki = fk
i −

∑S
j=1 φj

L
∑

l=1

Rile
k
lj . Define

Ṽ (τ, ~e|~x, ~φ, ~f) , V ([~x+ ~δτ ]+). (24)

Then ∂
∂τ Ṽ (τ, ~e|~x, ~φ, ~f)

∣

∣

∣

τ=0
can be viewed as the drift of the

Lyapunov function from~x(t) = ~x if the service-rate vector
is chosen as~e, conditioned on that the channel state process
satisfies d

dt~s(t) =
~φ and the arrival process satisfiesddt~a(t) =

~f . Recall that throughout this paper, we use right-derivatives
unless otherwise stated.

Assumption 4:For any FSP(s, a,x), the following holds for
all t:

d

dt
V (~x(t)) = min

ek
lj
∈Conv(Ej)

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t))

∣

∣

∣

∣

τ=0

.

(25)
where~φ(t) = d

dt~s(t),
~f(t) = d

dt~a(t).
This assumption states that at any pointt of an FSP(s, a,x),

the scheduling and routing algorithm minimizes the drift ofthe
Lyapunov function over all possible decisions.

In addition, we assume the following for the Lyapunov
function.

Assumption 5:V (~x) is increasing in each componentxi.
Assumption 6:V (~x1 + ~x2) ≤ V (~x1) + V (~x2) for any two

vectors~x1 ≥ 0 and~x2 ≥ 0,
Note that Assumptions 3 and 6 combined imply that the

Lyapunov functionV (~x) almost behaves as a norm except
that it may not be defined for negative values of the variable
~x.

In the next main result Theorem 8 (which will be shown in
Section VII), we prove that if the Lyapunov functionV (·) sat-
isfies Assumptions 1, 2, 3, 4, 5 and 6, then the scheduling and
routing algorithm achieves the best possible large-deviations
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decay rate of the overflow probabilityP(V ( ~X(∞)) ≥ B) as
B → ∞, and the lower boundθ0 is tight.
Theorem 8 Suppose that a scheduling and routing policy
satisfies Assumptions 1, 2, 3, 4, 5 and 6. Then under this
policy the value ofθ0 (given in (23)) is the exact decay-rate
of the overflow probability according to the Lyapunov function
metric, i.e.,

lim
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1] = −θ0. (26)

Further, this drift-minimizing policy (according to Assump-
tion 4) is optimal in maximizing this decay-rate. In other
words, for any policyπ we must have

lim inf
B→∞

1

B
logPπ[V ( ~X(∞)/B) ≥ 1] ≥ −θ0, (27)

wherePπ denote the stationary distribution under the policy
π.

Remark:Although the conclusion of Theorem 8 may seem
very intuitive, we emphasize that it is not an obvious result.
Minimizing the drift of the Lyapunov function at a given
time instant t is a local and myopic property. Minimizing
the probability that the Lyapunov function overflows is a
global property. It is not uncommon for a myopic policy to
only attain suboptimal global performance. Hence, the fact
that Theorem 8 holds is in fact quite remarkable. A main
contribution of this paper is to quantify the precise conditions
for Theorem 8 to hold. As readers can see from Assumptions
3 and 6, the shape of the Lyapunov function is very important.

B. Applications of the Main Results

Before we present the proofs of these results, we would
like to use some examples to illustrate their significance in
applications. We will focus on Theorem 8 since it is the most
convenient result to use.

1) Analysis: Firstly, Theorem 8 can be very useful for
analyzing the overflow probabilities of known scheduling
and routing algorithms because many known scheduling and
routing algorithms are designed by minimizing the drift of a
Lyapunov function (in the fluid limit). For example, consider
a single cell in a cellular network or an access-point based
network. Each user communicates directly with the base-
station. Further, only one user can be selected for service at
a time. Let us focus on the downlink from the base-station to
the users (the uplink can be treated analogously). Since this is
a single-hop model, to map to the system model in Section II
we can identify each linkl with a particular user/class, and
hence we can drop the indexk for traffic class. In other words,
we useAl(τ) to denote the packets generated for the user
associated with linkl at time slotτ , and useXl(τ) to denote
the backlog of linkl at time τ . Let El(j, ~X) be the service
offered to link l when the channel state isj and the global
backlog is ~X = [Xl, l = 1, ..., L]. Imposing the constraint that
El(j, ~X) ≤ Xl, the evolution of the queue-length is then given
by

Xl(τ+1) = Xl(τ)+Al(τ)−
S
∑

j=1

1{C(τ)=j}El(j, ~X(τ)). (28)

Note that this equation is a simplified version of (1).
When the channel state isj, let rlj denote the capacity of

link l if it is selected for transmission. Then for each statej
the service-rate vector[El(j, ~X), l = 1, ..., L] must belong to
the setEj given by

Ej = {[tlrlj , l = 1, ..., L] : tl ∈ [0, 1]

for all l, and only one element of[tl] is non-zero}.

Max-Weight Scheduling Policy: One important policy for
choosingEl(j, ~X) (often referred to as themax-weightpolicy
in the literature [1], [21]), is to serve the linkl such that the
weighted queue-lengthrljXl is the largest among all users
(ties can be broken arbitrarily). Letl∗ = argmaxl rljXl. The
policy can then be written as:

El(j, ~X) =

{

min{rlj , Xl}, if l = l∗

0, otherwise,

It is well-known that this class of policies are throughput-
optimal, i.e., they can stabilize the system under the largest
set of offered loads [21]. Further, if we instead choosel∗ =
argmaxl rljX

α
l , α > 0 (note that the queue length is raised

to the powerα), the corresponding policy (referred to as the
α-algorithms in [22]) is also throughput-optimal.

It can be shown that anyα-algorithm (α > 0) minimizes
the drift of the Lyapunov functionVα( ~X) = || ~X ||α+1 at every
time in an FSP, where|| · ||α+1 denotes the(α+1)-norm [22].
Using Theorem 8, we can immediately draw the conclusion
that, for any α > 0, the α-algorithm is large-deviations
decay-rate optimal for minimizing the overflow probability
P(|| ~X(∞)||α+1 ≥ B) (As a special case, the standard max-
weight algorithm, i.e.,α = 1, is large-deviations decay-rate
optimal for the overflow probabilityP(|| ~X(∞)||2 ≥ B)). We
can see how easily Theorem 8 can be used to analyze large-
deviations optimality of known algorithms. In Section VIII,
we will provide another detailed example where we show
that the max-weight algorithm is large deviations decay-rate
optimal in terms of the overflow probability of the max-queue
(P(|| ~X(∞)||∞ ≥ B)) when we consider a special case with
on-off channels. We will further show how to use this result
to characterize the effective capacity of the system.

Theorem 8 is not only useful for single-hop networks, it also
applies to multihop networks. Note that unlike the previous
cellular example where only one user/link can be selected at
each time, in multi-hop wireless networks it is often possible
to activate multiple links simultaneously. Depending on the
interference and transmission model, the activated links must
satisfy certain interference constraints, and their ratesdepend
on the power and interference levels. We give two special cases
of the model in Section II.

Case 1: Assume that the scheduling policy can decide
whether to activate or inactivate a link, but cannot change the
transmission power of a link. Letπl = 1 if link l is activated,
and πl = 0, otherwise. Let~π = [πl, l = 1, ..., L], and let
Π denote the set of feasible activation vectors~π. Let rlj(~π)
denote the rate of linkl if the activation vector~π is applied
at statej. Then at each channel statej, the setEj of feasible
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service-rate vectors can be written as:

Ej = {[rlj , l = 1, ..., L] : there exists~π ∈ Π

such thatrlj ≤ rlj(~π) for all links l}. (29)

Case 2:Assume that the scheduling policy can decide both
the activation pattern and the power assignments. Letπl denote
the power assignment of linkl. πl = 0 if the link is not
activated. Let~π = [πl, l = 1, ..., L], and letΠ denote the set
of feasible power-assignment vectors~π. Then at each channel
statej, each vector~π can again be mapped to a rate-vector
[rlj(~π), l = 1, ..., L]. The setEj of feasible service-rate vectors
can also be written as in (29).

The Back-Pressure Algorithm: For both cases, the
scheduling and routing algorithm proposed in [1], [20], which
is often referred to as the “back-pressure” algorithm, is known
to be throughput-optimal. At each time-slotτ , for each link
l, first find the classk∗l (τ) with the maximum differential
backlog, i.e.,

k∗l (τ) = argmax
k

(Xk
b(l)(τ) −Xk

e(l)(τ)).

Let the corresponding differential backlog be

wl(τ) = max{0, Xk∗
l (τ)

b(l) (τ) −X
k∗
l (τ)

e(l) (τ)}.
Then, when the channel state at timeτ is j, compute the
schedule~π∗

j (τ) that maximizes the sum of the rates weighted
by wl(τ), i.e.,

~π∗
j (τ) = argmax

~π∈Π
wl(τ)rlj(~π).

The scheduling and routing decision is then given by the
following: if the channel state at time-slotτ is j,

• Scheduling:use the activation vector~π∗
j (τ).

• Routing:on each linkl, only serve the packets belonging
to classk∗l (τ).

In other words, the service rate vector is given by

Ek
l (j, ~X) =

{

min{Xk
b(l)(τ), rlj(~π

∗
j (τ))}, if k = k∗l (τ)

0 otherwise.

It can be shown that the Back-Pressure algorithm minimizes
the drift of the Lyapunov functionV (~x) = ||~x||2 at every time
in an FSP [14]. Hence, using Theorem 8, we can immediately
draw the conclusion that the Back-Pressure algorithm is large-
deviations decay-rate optimal for the overflow probability
P(|| ~X(∞)||2 ≥ B). Similarly, if we replaceXk

i by (Xk
i )

α,
α > 0, in the definition of the differential backlog, the
modified Back-Pressure algorithm with parameterα is large-
deviations decay-rate optimal for the overflow probability
P(|| ~X(∞)||α+1 ≥ B).

2) Design: Theorem 8 is not only useful for analysis,
it is also useful for designing new large-deviations optimal
scheduling algorithms. Suppose that we are interested in
minimizing the probability thatP(f( ~X) ≥ B). First, if the
function f(·) can be shown to be a Lyapunov function of
the system, and we can find an algorithm that minimizes its
drift at every time in fluid-sample-paths, then this algorithm
is exactly the large-deviations decay-rate optimal algorithm

that we need. The detailed example in Section VIII falls
into this category. Secondly, even iff(·) is not a Lyapunov
function of the system, we can use other Lyapunov functions
to approximate it. Then the corresponding drift-minimizing
algorithm is approximately the algorithm that we need. For
example, suppose that we are interested in the overflow prob-
ability P(maxl Xl ≥ B) in the cellular downlink example in
Section IV-B1. For non-ON-OFF models,maxl Xl is usually
not a Lyapunov function of the system. We can instead
use Vα( ~X) = || ~X||α+1 with a largeα to approximate it.
Since each of theα-algorithms is large-deviations decay-rate
optimal for the overflow probabilityP(|| ~X ||α+1 ≥ B), and
|| ~X||α+1 → maxl Xl asα → ∞, we can draw the conclusion
that asα → ∞, theα-algorithm asymptotically achieves the
optimal large-deviations decay-rate of the overflow probability
P(maxl Xl ≥ B). This conclusion recovers the result in [22],
where we also demonstrate how to use the insight to develop
algorithms with low overflow-probabilities in practice. Finally,
the above methodology also applies to multi-hop wireless
networks. We refer the readers to our more recent work [14],
[15] for further details.

V. A GENERAL LOWER BOUND ON THE DECAY-RATE OF

THE QUEUE-OVERFLOW PROBABILITY

In this section, we first prove Theorems 3 and 4, which
provide a lower boundI ′0(~λ) on the decay-rate of the queue-
overflow probability as defined in (5). Prior work [10], [11]
has derived the decay-rate of the queue-overflow probability as
the cost of the most-likely-path to overflow. As we discussed
in Section IV-A, the approach there requires that the limiting
mapping from the scaled channel-state process to the scaled
queue-backlog process be unique and continuous with respect
to a suitably chosen topological space, so that the contraction
principle [17, p131] can be invoked to establish a sample-
path LDP for the queue-backlog process. However, for general
wireless systems, the mapping from the channel-state process
to the queue-backlog process may not be continuous, and
hence the approach in [10], [11] can not be applied. Nonethe-
less, in this section we show that, for a large class of wireless
systems, the cost of the most-likely-path to overflow turns out
to be a lower bound on the decay-rate of the queue-overflow
probability. Specifically, let

I ′0(
~λ) =

inf
T≥0,s,a,x

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt

subject to (s, a,x)T is an FSP

~x(0) = 0, ||~x(T )|| ≥ 1. (30)

The FSP that attains the infimum on the right-hand-side of
(30), if such an FSP exists, is usually called the “most-likely
path to overflow.” Our goal in this section to establish that
I ′0(

~λ) satisfies (5), i.e., it is a lower-bound on the decay rate
of the stationary queue-overflow probability. Recall that such
a lower bound implies that we can then useexp(−BI ′0(

~λ))
as an (approximate) upper bound on the overflow probability
P[|| ~X(∞)|| ≥ B].
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We will derive the result in two steps. First, in Section V-A
we consider a system that starts at time0, and derive a lower
bound on the decay rate of the overflow probability at time
BT. Then, in Section V-B we letT → ∞ and derive a
lower bound for the stationary distribution. In the literature,
such a limiting argument is usually carried out using the so-
called Freidlin-Wentzell theory (see [23, Chapter 6] and [13]).
Often, to apply the Freidlin-Wentzell theory, one will need
to impose additional restrictions on the system model [23,
p133]. One of our contributions in this section is to providea
fairly general condition for this result to hold. As readerswill
see soon, our condition essentially requires that there exists a
Lyapunov function that satisfies Assumptions 1 and 2, which
are introduced in Section IV-A.

A. Bounds for a Finite Time System

As a step towards proving the result on the stationary over-
flow probability, we first consider the probability of overflow
at time BT , P(|| ~X(BT )|| ≥ B), for a system that starts
from ~X(0) = 0. Note that according to the transformation
~xB(t) = 1

B
~X(Bt), we have~xB(0) = 0 and the above

overflow probability can be rewritten asP[||~xB(T )|| ≥ 1].
Let PB,T

0 denote the probability distribution conditioned on
~xB(0) = 0. We have the following bound on the probability
of overflow.

Proposition 1: Fix T > 0. The following holds,

lim sup
B→∞

1

B
logPB,T

0 [||~xB(T )|| ≥ 1]

≤ − inf
s,a,x

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt

subject to (s, a,x)T is an FSP

~x(0) = 0 and ||~x(T )|| ≥ 1. (31)

Instead of proving Proposition 1, we will prove a general-
ized version in Proposition 2. The extra effort will serve useful
in proving the stationary overflow probability.

Fix ~x0. For the more general version, consider a system
that starts with~X(0) = B~x0 at time 0 (i.e., ~xB(0) = ~x0).
Let PB,T

~x0
denote the probability distribution conditioned on

~xB(0) = ~x0. Let Φx[0, T ] denote the space of non-negative
Lipschitz-continuous functions on the interval[0, T ], equipped
with the essential supremum norm. We can then show the
following result, which is comparable to Theorem 7.1 of [13]
for a refined LDP.

Proposition 2: Fix T > 0. Let X denote a closed set in
theNK-dimensional real space<NK . Let Γ denote a closed
set of trajectoriesx = (~x(t), t ∈ [0, T ]) from the topological
spaceΦx[0, T ] that satisfies~x(0) ∈ X . The following holds,

lim sup
B→∞

1

B
log sup

~x0∈X
P

B,T
~x0

[xB ∈ Γ]

≤ − inf
s,a,x

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt

subject to (s, a,x)T is an FSP

x ∈ Γ. (32)

Proof: Note thatxB is related tosB and a
B according to

Equation (11). Let̃ΓB denote the set of all(sB, aB) on the
interval [0, T ] such that there exists~x0 ∈ X with which
(sB, aB) maps to a backlog processxB that starts from
~xB(0) = ~x0 and satisfiesxB ∈ Γ. Then for every~x0 ∈ X ,

P
B,T
~x0

[xB ∈ Γ] ≤ P[(sB , aB) ∈ Γ̃B].

Note that the right-hand-side does not depend on~x0. Further,
for any fixedn, Γ̃B ⊂ ∪∞

B′=nΓ̃
B′

whenB ≥ n. Hence, we
have, for any fixedn,

lim sup
B→∞

1

B
log sup

~x0∈X
P

B,T
~x0

[xB ∈ Γ]

≤ lim sup
B→∞

1

B
logP[(sB, aB) ∈ ∪∞

B′=nΓ̃
B′

].

Using the sample-path LDP ofsB anda
B (see (8)) and the

fact that they are independent, we have

lim sup
B→∞

1

B
logP[(sB, aB) ∈ ∪∞

B′=nΓ̃
B′

]

≤ − inf
(s,a)

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt,

subject to (s, a) ∈ ∪∞
B=nΓ̃

B

where∪∞
B=nΓ̃

B denotes the closure of the set∪∞
B=nΓ̃

B. Note
that this inequality holds for alln. Further, since the set
∪∞
B=nΓ̃

B is decreasing inn, the right-hand-side is decreasing
in n as well. Therefore, we can tighten the bound by letting
n → ∞ as follows. To simplify notation, for any(s, a), define
its cost by

JT (s, a) ,

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt.

We then have,

lim sup
B→∞

1

B
log sup

~x0∈X
P

B,T
~x0

[xB ∈ Γ]

≤ − lim
n→∞

inf
(s,a)∈∪∞

B=n
Γ̃B

JT (s, a).

Let
Y = lim

n→∞
inf

(s,a)∈∪∞
B=nΓ̃

B

JT (s, a). (33)

It remains to show that

Y ≥ inf
s,a,x

JT (s, a)

subject to (s, a,x)T is an FSP

x ∈ Γ.

To see this, note that by (33), there must exist a sequence
(sn, an), n = 1, 2, ... such that

(sn, an) ∈ ∪∞
B=nΓ̃

B for all n,

and
lim
n→∞

JT (sn, an) = Y.

Since both sn and an are non-decreasing and Lipschitz-
continuous, there must exist a further subsequence that con-
verges uniformly over compact intervals. Without loss of
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generality, we can abuse notation and denote this subsequence
also as(sn, an), and let (s, a) be the corresponding limit.
Then, due to the lower-semicontinuity of the large-deviation
rate functionJT (·, ·) [17, p4], we must have

JT (s, a) ≤ Y.

We now show that we must then be able to find an
FSP(s, a,x)T with x ∈ Γ. To see this, note that by definition
each (sn, an) also corresponds to a sequence(sn,m, an,m)
such that(sn,m, an,m) ∈ ∪∞

B=nΓ̃
B for all m = 1, 2, ..., and

(sn,m, an,m) converges to(sn, an) uniformly over compact
intervals. Assign any sequenceεn > 0, n = 1, 2, ..., such that
limn→∞ εn = 0. For eachn, we can then find an element
(s̃Bn

n , ãBn
n ) from the sequence(sn,m, an,m) such that

||~̃sBn
n (t)− ~sn(t)||∞ + ||~̃aBn

n (t)− ~an(t)||∞ ≤ εn,

and (s̃Bn
n , ãBn

n ) ∈ Γ̃Bn for some Bn ≥ n. Since the
sequence(sn, an) converges to(s, a) uniformly over compact
intervals, we must have that(s̃Bn

n , ãBn
n ) also converges to

(s, a) uniformly over compact intervals. Further, since each
(s̃Bn

n , ãBn
n ) ∈ Γ̃Bn , there must exists a corresponding backlog

process̃xBn
n such thatx̃Bn

n ∈ Γ. Take a further subsequence
of (s̃Bn

n , ãBn
n ) such that the corresponding subsequence of

x̃
Bn
n converges uniformly over compact intervals to a limiting

backlog processx. Then, since the setΓ is closed, this limiting
processx must also satisfyx ∈ Γ. Hence,(s, a,x)T is an FSP,
and it satisfies the constraints used to define the right hand side
of (32). We then have

Y ≥ JT (s, a) ≥ inf
s,a,x

JT (s, a)

subject to (s, a,x)T is an FSP

x ∈ Γ.

The result then follows. Q.E.D.

By settingX = {0}, and

Γ = {x : ~x(0) = 0 and ||~x(T )|| ≥ 1},

we then recover the result of Proposition 1.

B. The Stationary Overflow Probability

Since Propositions 1 and 2 hold for anyT > 0, one may
then be tempted to letT → ∞, and claim a lower bound
on the large-deviations decay-rate of the stationary overflow
probabilityP(|| ~X(∞)|| ≥ B). This argument, however, does
not always hold. For example, consider a queueing system in
which || ~X(t)|| grows sub-linearly (e.g.,|| ~X(t)|| =

√
t). For

any finiteT > 0, the probability of overflowP(|| ~X(BT )|| ≥
B) will be 0 for B > T . Hence, the large-deviations
decay-rate (asB → ∞) for any finite T > 0 is ∞, i.e.,
limB→∞

1
B logPB,T

0 [||~xB(T )|| ≥ 1] = −∞. However, since
the system is clearly unstable, the “stationary” overflow prob-
ability is 1, and hence its decay-rate (asB → ∞) is 0. Clearly,
passing limit asT → ∞ would not produce the correct large-
deviations decay-rate of the stationary overflow probability.
Fortunately, for our system model, due to Assumptions 1 and

2, the system must be stable and hence the above scenario
cannot occur.

Specifically, we now use the Freidlin-Wentzell theory (see
[23, Chapter 6] and [13]) to derive a lower bound on the
decay-rate of the stationary queue-overflow probability. The
following are the main results of the section.

Theorem 3:Assume that there exists a Lyapunov function
V (·) that satisfies Assumptions 1 and 2. Then the following
holds,

lim sup
B→∞

1

B
logP[|| ~X(∞)/B|| ≥ 1]

≤ − inf
T≥0,s,a,x

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt

subject to (s, a,x)T is an FSP

~x(0) = 0, ||~x(T )|| ≥ 1. (34)

This theorem provides a result similar to Proposition 1 but
now is for the stationary overflow probability. Note that since
Proposition 1 provides a lower bound for a finite time interval,
the infimum in (31) is for a fixedT while the infimum in (34)
is taken over allT > 0.

The proof of Theorem 3 is very similar to the proof of
Theorem 4 that follows. Hence, in order to avoid repetition
we omit its proof.

Theorem 4:Assume that there exists a Lyapunov function
V (·) that satisfies both Assumption 1 and Assumption 2. Then
the following holds,

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1]

≤ − inf
T≥0,s,a,x

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt

subject to (s, a,x)T is an FSP

~x(0) = 0, V (~x(T )) ≥ 1. (35)

Note that the statements of the two theorems are very
similar. The difference is that Theorem 3 considers the over-
flow event || ~X(∞)/B|| ≥ 1, whereas Theorem 4 considers
the overflow eventV ( ~X(∞)/B) ≥ 1. The importance of
Theorem 4 will become clear in the later sections. Specifically,
it is needed in the proof of Theorem 8.

The proof of Theorem 4 uses the Freidlin-Wentzell Theory.
It is fairly technical and is provided in the Appendix. We
emphasize that Theorems 3 and 4 provide a lower bound on the
decay-rate of the stationary queue-overflow probability under
very general assumptions.

VI. COMBINING LARGE DEVIATIONS WITH LYAPUNOV

FUNCTIONS: A M UCH-SIMPLER LOWER BOUND ON THE

DECAY-RATE

In the previous section, we have derived a lower bound
(Theorems 3 and 4) on the decay-rate of the stationary queue-
overflow probability for a wireless system under fairly general
assumptions. The infimum on the right-hand-side of (34) and
(35) is often referred to as the “minimum-cost-to-overflow,”
and the fluid sample path (FSP) that attains the infimum (if
such an FSP exists) is referred to as the “most-likely path to
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overflow.” As we discussed in Section IV-A, searching for the
most-likely path to overflow is a multi-dimensional calculus-
of-variations problem, which is unfortunately very difficult to
solve. To view this difficulty in another way, suppose now
we want to verify thatθ lower-bounds the minimum-cost-
to-overflow (or, equivalently, the probability of overflow is
approximately upper bounded byexp(−Bθ) whenB is large).
We then need to ensure that

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt ≥ θ (36)

for all FSPs(s, a,x)T that go from~x(0) = 0 to ||~x(T )|| ≥ 1.
For advanced wireless resource-allocation algorithms like the
max-weight algorithm [1], the complexity of enumerating
all such paths soon becomes prohibitive except for some
restrictive cases [10]–[12].

In this section, we develop a new technique to address
this difficulty. Our new technique combines the large-deviation
lower bound in Theorem 4 with Lyapunov functions to derive
another even-simpler lower-bound on the decay-rate of the
queue-overflow probability. The reason that we seek help
from a Lyapunov function approach is actually very simple
and intuitive. Note that the above-mentioned difficulty of
evaluating all FSPs is in fact not unique. A similar scenario
also arises when we want to prove stability of a dynamic
system. For example, recall that in the fluid limit approach
[18], [19], in order to show that the fluid limit model of a
system is stable, we need to show that there exists aT > 0,
such that forall fluid limits with ||~x(0)|| = 1, we must
have~x(T ) = 0. Again, it would have been very difficult if
one attempts to evaluate all possible multi-dimensional fluid
limits. The Lyapunov function approach is indeed developed
to address this complexity issue. The basic idea of a Lyapunov
function approach is to map each multi-dimensional path~x(t)
to a one-dimensional pathV (~x(t)). Recall from part (d) of
Assumption 1 that such a function maps||~x(0)|| = 1 to
V (~x(0)) ≤ C̃. By establishing thatV (~x(t)) has a negative
drift, we can show thatV (~x(t)) must go fromV (~x(0)) ≤ C̃
to V (~x(T )) = 0, which then implies that~x(T ) = 0. In
other words, the key idea of the Lyapunov function approach
is this mapping from amulti-dimensionalspace to aone-
dimensionalspace, which greatly reduces the complexity for
proving stability.

Can we use a similar Lyapunov function approach to char-
acterize the decay-rate of the queue-overflow probability un-
der wireless resource-allocation algorithms? Indeed, Lyapunov
functions have been used to solve other calculus-of-variations
problems in the control literature. We next demonstrate how
such an approach can be used to derive an even simpler lower
bound on the minimum-cost-to-overflow (i.e., the infimum
given in Theorem 4). Recall that in Assumption 1, part (d), the
Lyapunov functionV (·) is chosen such that||~x|| ≥ 1 implies

V (~x) ≥ 1. For anyv ≥ 0 andw, define

lV (v, w) , inf
s,a,x

H(~φ||~p) + L(~f)

subject to (s, a,x) is an FSP

such that for somet
d

dt
~s(t) = ~φ

d

dt
~a(t) = ~f

V (~x(t)) = v

d

dt
V (~x(t)) = w. (37)

According to (14) (or (15), correspondingly), for anyw >
−ηV (~x(t)) (or w > −η, correspondingly), the trajectory with
d
dtV (~x(t)) = w becomes a “rare” event. The functionlV (v, w)
provides a lower bound on thelocal rate-function[23, p71]
for V (~x(t)), i.e., it bounds howrarely that, givenV (~x(t)) =
v at some timet, the trajectoryV (~x(t)) will move in the
direction d

dtV (~x(t)) = w immediately aftert. Note that the
infimum in (37) is taken over all possible FSPs such that the
corresponding trajectoryV (~x(t)) passes throughv with slope
w.

For any FSP(s, a,x)T , since both the arrival rate and the
service rate are bounded, the function~x(t) must be Lipschitz-
continuous. Further,~x(t) must be bounded over any finite
interval. Hence, due to Part (e) of Assumption 1, the function
V (~x(t)) must also be Lipschitz-continuous over any finite
interval, and thus it must be differentiable almost everywhere.
Using the definition oflV (·, ·), we then have the following
inequality for any FSP(s, a,x)T :

∫ T

0

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)

dt (38)

≥
∫ T

0

lV (V (~x(t)),
d

dt
V (~x(t)))dt.

Let

θ0 = inf
T>0

∫ T

0

lV (V (t),
d

dt
V (t))dt

subject to V (t) is continuous and

almost-everywhere differentiable,

V (0) = 0 andV (T ) ≥ 1. (39)

Note that in (39) we are optimizing over all possible trajec-
tories that the Lyapunov function can take. Hence, we abuse
notation and useV (t) to represent any continuous and almost-
everywhere differentiable function that satisfies the constraints
as mentioned above.

We then obtain a lower bound for the calculus-of-variations
problem in (35), as stated in the following Theorem.

Theorem 5:Assume that there exists a Lyapunov function
V (·) that satisfies Assumption 1 and Assumption 2. Thenθ0 in
(39) is a lower bound on the decay-rate of the queue-overflow
probability. In other words,

lim sup
B→∞

1

B
logP[|| ~X(∞)/B|| ≥ 1]

≤ lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1] ≤ −θ0. (40)
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||x(T)||=1

x(0)=0

1

0

V(T)=1

Time

V(0)=0

0 T

Fig. 2. Top: The overflow probabilityP[|| ~X(∞)|| ≥ B] is related to the
most likely path to overflow. Bottom: The technique that we presented maps
any multi-dimensional path~x(t) to a one-dimensional pathV (t).

Proof:
First, by Assumption 1, the following is true

P[|| ~X(∞)/B|| ≥ 1] ≤ P[V ( ~X(∞)/B) ≥ 1].

This proves the first inequality. To show the second in-
equality, by Theorem 4, we only need to show that, for all
FSPs(s, a,x)T that go from~x(0) = 0 to V (~x(T )) ≥ 1, the
following must hold,

∫ T

0

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)

dt ≥ θ0.

Using (38), it suffices to show that, for all such FSPs ,
∫ T

0

lV (V (~x(t)),
d

dt
V (~x(t))) ≥ θ0. (41)

Note that, for all FSP(s, a,x)T that goes from~x(0) = 0 to
V (~x(T )) ≥ 1, inequality (41) must hold due to the definition
of θ0 in (39). The result of the Theorem then follows.Q.E.D.

It is also easy to see that a sufficient condition for all fluid
sample paths to satisfy the constraint (36) is to ensure that

∫ T

0

lV (V (t),
d

dt
V (t))dt ≥ θ (42)

holds for allone-dimensionalpathsV (t) that go fromV (0) =
0 to V (T ) = 1. Again, we have successfully reduced the
original multi-dimensional calculus-of-variations problem to
a one-dimensional calculus-of-variations problem. The one-
dimensional calculus-of-variations problem in (39) and (42) is
usually much easier to solve (Fig. 2).

Remark:Lyapunov functions have been used in the control
literature to solve other calculus-of-variations problems. Often,
the key to success of such an approach is to find the right
Lyapunov function. The unique feature of the scheduling and
routing problem studied in this paper is that the Lyapunov

function for stability automatically becomes the suitableLya-
punov function for the calculus-of-variations problem. Hence,
for any scheduling and routing algorithm that is provably
stable, which usually means that there exists a Lyapunov
function for stability, we may then apply the above tech-
niques to characterize the queue-overflow probability. In other
words, the difficulty level of characterizing the queue-overflow
probability is reduced to that of a stability problem. Since
(42) is a sufficient condition to (36), we can obtain an upper
bound on the overflow probability, and correspondingly, if a
constraint on the overflow probability is imposed, we obtaina
lower bound on the effective capacity region. The hope of this
approach is that, if the functionV (·) is appropriately chosen,
we may recover a large fraction of, or even the entire effective
capacity region.

A. Scale-Linear Lyapunov Functions

In this section, we consider the special case when the Lya-
punov function is linear in scale as defined in Assumption 3
in Section IV-A. In this case, we can show that the solution to
θ0 in (39) can be further simplified. This is possible because
the functionlV (v, w) turns out to be independent ofv. We
need the following simple lemma.

Lemma 6: If (s, a,x)T is an FSP, then for any given̂t ∈
[0, T ] and for anyc > 0, there exists another FSP(s, a,x)cT
such that

d

dt
~s(t)

∣

∣

∣

∣

ct̂

=
d

dt
~s(t)

∣

∣

∣

∣

t̂

(43)

d

dt
~a(t)

∣

∣

∣

∣

ct̂

=
d

dt
~a(t)

∣

∣

∣

∣

t̂

(44)

~x(ct̂) = c~x(t̂),
d

dt
~x(t)

∣

∣

∣

∣

ct̂

=
d

dt
~x(t)

∣

∣

∣

∣

t̂

. (45)

Proof: Let ~sB(t),~aB(t), ~xB(t) be the sequence of scaled
processes that converge to the FSP(s, a,x)T . Then for each
B, the “unscaled” processes [i.e., before taking the scaling
in (6), (7), and (10)] are correspondinglyB~sB( t

B ), B~aB( t
B )

and B~xB( t
B ). Consider the new sequenceBc~sBc( t

Bc ),
Bc~aBc( t

Bc) andBc~xBc( t
Bc). In other words, we are choosing

a sub-sequence from the original “unscaled” sequence. Then,
perform the scaling in (6), (7) and (10) again on this sub-
sequence. The corresponding scaled processes arec~sBc( tc ),
c~aBc( tc) and c~xBc( tc ). Taking the limit asB → ∞, we get
the FSP (s, a,x)cT = (c~s( tc ), c~a(

t
c ), c~x(

t
c)). It is easy to

verify that this FSP satisfies the conditions in (43), (44) and
(45). Q.E.D.

Next we prove that under Assumption 3,lV (v, w) is inde-
pendent ofv.

Proposition 7: When Assumption 3 holds, the function
lV (v, w) is independent ofv, i.e.,

lV (v, w) = lV (cv, w)

for all c > 0.
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Proof: Consider a fixedc > 0. According to definition (37),

lV (cv, w) = inf
s,a,x

H(~φ||~p) + L(~f)

subject to (s, a,x) is an FSP

such that for somet
d

dt
~s(t) = ~φ

d

dt
~a(t) = ~f

V (~x(t)) = cv
d

dt
V (~x(t)) = w.

For any FSP(s, a,x)T andt̂ ∈ [0, T ] such that ddt~s(t)
∣

∣

t̂
= ~φ,

d
dt~a(t)

∣

∣

t̂
= ~f , V (~x(t̂)) = v, d

dtV (~x(t))
∣

∣

t̂
= w, according to

Lemma 6, there must exist another FSP(s, a,x)cT such that
d
dt~s(t)

∣

∣

ct̂
= ~φ, d

dt~a(t)
∣

∣

ct̂
= ~f , ~x(ct̂) = c~x(t̂), and d

dt~x(t)
∣

∣

ct̂
=

d
dt~x(t)

∣

∣

t̂
. Using Assumption 3, we then have

V (~x(ct̂)) = cv.

Further,

d

dt
V (~x(t))

∣

∣

∣

∣

ct̂

= lim
τ→0

V (~x(ct̂+ τ)) − V (~x(ct̂))

τ

= lim
τ→0





V
(

~x(ct̂) +
d~x(t)
dt

∣

∣

∣

ct̂
τ
)

− V (~x(ct̂))

τ

+
V (~x(ct̂+ τ)) − V

(

~x(ct̂) +
d~x(t)
dt

∣

∣

∣

ct̂
τ
)

τ



 .

According to Assumption 3, the first term is equal to

lim
τ→0

V
(

~x(ct̂) +
d~x(t)
dt

∣

∣

∣

ct̂
τ
)

− V (~x(ct̂))

τ

= lim
τ→0

V
(

~x(t̂) + d~x(t)
dt

∣

∣

∣

t̂

τ
c

)

− V (~x(t̂))

τ/c

=
d

dt
V (~x(t))

∣

∣

∣

∣

t̂

.

According to Assumption 1, the second term satisfies,

lim
τ→0

∣

∣

∣
V
(

~x(ct̂) + τ
)

− V
(

~x(ct̂) +
d~x(t)
dt

∣

∣

∣

ct̂
τ
)∣

∣

∣

τ

≤ lim
τ→0

L
∥

∥

∥
~x(ct̂+ τ) − ~x(ct̂)− d~x(t)

dt

∣

∣

∣

ct̂
τ
∥

∥

∥

τ
= 0.

Hence, we have,

d

dt
V (~x(t))

∣

∣

∣

∣

ct̂

=
d

dt
V (~x(t))

∣

∣

∣

∣

t̂

= w.

This implies that the FSP(s, a,x)cT satisfies the constraint in
the definition oflV (cv, w). Hence,

lV (cv, w) ≤ lV (v, w)

A similar argument proves the opposite direction that
lV (cv, w) ≥ lV (v, w). Since c > 0 is arbitrary, the result
then follows. Q.E.D.

When the functionlV (v, w) is independent ofv, the trajec-
tory V (·) that attains the infimum in (39) is in fact very easy to
solve [23, p520], and the infimum is equal toinfw>0

lV (1,w)
w ,

i.e.,

θ0 = inf
w>0,s,a,x

1

w

[

H(~φ||~p) + L(~f)
]

(46)

subject to (s, a,x) is an FSP

such that for somet
d

dt
~s(t) = ~φ

d

dt
~a(t) = ~f

V (~x(t)) = 1

dV (~x(t))

dt
= w.

The value ofθ0 has an intuitive interpretation. If we interpret
w as the rate of increase of the value of the Lyapunov function,
then the objective function in (46) can be viewed as the
minimum per-unit cost to increase the Lyapunov function,
where the minimization is taken over all backlog levels~x(t),
channel states~s(t), and arrivals~a(t). In order to overflow,
we must lift the value ofV (~x(t)) from zero to one. Hence,
θ0 becomes a lower bound on the minimum cost to overflow.
According to Theorem 5,θ0 then corresponds to a lower bound
on the decay rate of the overflow probability.

VII. A C ONDITION FOR THE

M INIMUM -COST-TO-OVERFLOW TO BE EXACT

In the previous section, we have shown thatθ0 is a lower
bound on the decay rate of the queue overflow probability
(see Theorem 5). In this section, we provide a condition under
which a drift-minimizing algorithm is large-deviations decay-
rate optimal and the value ofθ0 becomes theexactdecay-rate
of the overflow probability.

We are ready for the following Theorem.
Theorem 8:Suppose that a scheduling and routing policy

satisfies Assumptions 1, 2, 3, 4, 5 and 6. Then under this
policy the value ofθ0 is the exact decay-rate of the overflow
probability according to the Lyapunov function metric, i.e.,

lim
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1] = −θ0. (47)

Further, this drift-minimizing policy (according to Assump-
tion 4) is optimal in maximizing this decay-rate. In other
words, for any policyπ we must have

lim inf
B→∞

1

B
logPπ[V ( ~X(∞)/B) ≥ 1] ≥ −θ0, (48)

wherePπ denote the stationary distribution under the policy
π.

The proof of Theorem 8 contains two parts. First, we show
that the decay rate of the probability of overflow, in terms of
the Lyapunov metric, is bounded from above for all scheduling
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policies. Then we show that under the assumptions on the
Lyapunov function, this bound matches with the lower bound
θ0.

Consider the following optimization problem:

w̃(~φ, ~f) = min
~x

V (~x)

subject to xk
i = [fk

i −
S
∑

j=1

φj

L
∑

l=1

Rile
k
lj ]

+

[eklj ] ∈ Conv(Ej) for all j.

The functionw̃(~φ, ~f) can be viewed as the minimum rate of
increase of the Lyapunov function if the channel state process
satisfies~s(t) = t~φ and the arrival process satisfies~a(t) = t ~f .
Let

θ̃0 = inf
{~φ,~f:w̃(~φ,~f)>0}

1

w̃(~φ, ~f)

[

H(~φ||~p) + L(~f)
]

. (49)

We first show the following.
Proposition 9: For any policyπ we must have

lim inf
B→∞

1

B
logPπ[V ( ~X(∞)/B) ≥ 1] ≥ −θ̃0, (50)

wherePπ denotes the stationary distribution under the policy
π.
Proof: By the definition ofθ̃0, for any δ ∈ (0, 1) there exists
~φ0 and ~f0 such that

1

w̃(~φ0, ~f0)

[

H(~φ0||~p) + L(~f0)
]

≤ θ̃0 + δ.

Further, it is easy to show that the functionw̃(·, ·) is continuous
with respect to~φ and ~f . Hence, there existsε such that for
any |~φ− ~φ0| ≤ ε and |~f − ~f0| ≤ ε, the following holds

w̃(~φ, ~f) ≥ w̃(~φ0, ~f0)(1− δ). (51)

Let γ > 0 be a small number and letT = 1+γ

w̃(~φ0, ~f0)(1−δ)
.

Define a channel-state process~s0(·) and an arrival process
~a0(·) on the interval[0, T ] as follows:

~s0(t) = t~φ0 and~a0(t) = t ~f0.

Let BT (~s0(·)) denote anε-ball around~s0(·), i.e., it contains
all ~s(·) such that~s(0) = 0 and

||~s(t)− ~s0(t)||T∞ < ε.

Similarly, define anε-ball BT (~a0(·)) around~a0(·). Consider
that the queue process has reached stationarity at time0. Then
the queue is evolving according to its stationary distribution
at any time T > 0 and we havePπ[V ( ~X(∞)/B) ≥
1] = P

π [V (~xB(T )) ≥ 1]. We will now show that, as
long as ε is sufficiently small, any~sB(·) ∈ BT (~s0(·)) and
~aB(·) ∈ BT (~a0(·)) imply that V (~xB(T )) ≥ 1, regardless of
the scheduling and routing policyπ used.

Towards this end, consider any~sB(·) and ~aB(·) in these
ε-balls. From the mapping in (11), we have,

xk,B
i (

bBT c
B

)− xk,B
i (

1

B
)

= ak,Bi (
bBT c − 1

B
)−

S
∑

j=1

L
∑

l=1

RilAk
lj , (52)

where we have usedAk
lj to denote

Ek
l (j, B~xB(

1

B
))

[

sBj (
1

B
)− sBj (0)

]

+ . . .

+Ek
l (j, B~xB(

bBT c − 1

B
))

×
[

sBj (
bBT c − 1

B
)− sBj (

bBT c − 2

B
)

]

.

We make the following observations to simplify (52).

xk,B
i (T )− xk,B

i (
bBT c
B

) = O(
1

B
)

xk,B
i (0)− xk,B

i (
1

B
) = O(

1

B
)

ak,Bi (T )− ak,Bi (
bBT c − 1

B
) = O(

1

B
)

sBj (T )− sBj (
bBT c − 1

B
) = O(

1

B
).

Further, we can writeAk
lj =

[

sBj (
bBTc−1

B )− sBj (0)
]

eklj
where [eklj ] ∈ Conv(Ej). This follows because
[Ek

l (j, B~xB(·))] is in the set Ej and the terms
sBj ( 1

B
)−sBj (0)

sBj ( bBTc−1
B

)−sBj (0)
, . . . ,

sBj ( bBTc−1
B

)−sBj ( bBTc−2
B

)

sBj ( bBTc−1
B

)−sBj (0)
can be

thought of as weights that sum to1. Since~sB(0) = 0, we
haveAk

lj = sBj (
bBTc−1

B )eklj . Equation (52) then simplifies to

xk,B
i (T )− xk,B

i (0) = ak,Bi (T )−
S
∑

j=1

L
∑

l=1

Rils
B
j (T )e

k
lj

+O(
1

B
).

Sincexk,B
i (0) ≥ 0 andxk,B

i (T ) ≥ 0, we can show that

xk,B
i (T ) ≥



ak,Bi (T )−
S
∑

j=1

L
∑

l=1

Rils
B
j (T )e

k
lj





+

+O(
1

B
).

Rewriting the equation using~φ ,
~sB(T )

T and ~f ,
~aB(T )

T , we
have

xk,B
i (T ) +O(

1

B
) ≥ T [fk

i −
S
∑

j=1

φj

L
∑

l=1

Rile
k
lj ]

+,

where [eklj ] ∈ Conv(Ej). Using Assumption 5 and Assump-
tion 6 on this inequality, we obtain

V (~xB(T )) + V (O(
1

B
)) ≥ V (T~x)

where xk
i = [fk

i −
S
∑

j=1

φj

L
∑

l=1

Rile
k
lj ]

+.

This provides a bound onV (~xB(T )). However, this bound
depends on the particular value ofeklj , which in turn depends
on the scheduling and routing policyπ. To obtain a bound
that is independent of the policy used, we take the minimum
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on the right-hand-side over all[eklj ] ∈ Conv(Ej). Therefore,

V (~xB(T )) + V (O(
1

B
))

≥ T min V (~x)

subject to xk
i = [fk

i −
S
∑

j=1

φj

L
∑

l=1

Rile
k
lj ]

+

[eklj ] ∈ Conv(Ej) for all j.

This implies that

V (~xB(T )) + V (O(
1

B
)) ≥ T w̃(~φ, ~f) ≥ 1 + γ,

where in the last step we have used the definition ofT and
the fact that (51) holds by choosing sufficiently smallε.

Therefore, under any policyπ, there existsBγ such that for
all B > Bγ , if ~sB(·) ∈ BT (~s0(·)) and~aB(·) ∈ BT (~a0(·))
then

V (~xB(T )) ≥ 1.

Now, using the LDP for~sB(·) and ~aB(·), we complete the
proof as follows,

lim inf
B→∞

1

B
logPπ[V ( ~X(∞)/B) ≥ 1]

= lim inf
B→∞

1

B
logPπ[V (~xB(T )) ≥ 1]

≥ lim inf
B→∞

1

B

{

logP[~sB(·) ∈ BT (~s0(·))]

+ logP[~aB(·) ∈ BT (~a0(·))]
}

= − inf
~s(·)∈BT (~s0(·))

∫ T

0

H(
d

dt
~s(t)||~p)dt

− inf
~a(·)∈BT (~a0(·))

∫ T

0

L(
d

dt
~a(t))dt

≥ −
∫ T

0

H(
d

dt
~s0(t)||~p)dt−

∫ T

0

L(
d

dt
~a0(t))dt

= −T [H(~φ0||~p) + L(~f0)]

= − 1 + γ

w̃(~φ0, ~f0)(1 − δ)

[

H(~φ0||~p) + L(~f0)
]

≥ −1 + γ

1− δ
(θ̃0 + δ).

Sinceδ andγ can be arbitrarily small, we conclude that

lim inf
B→∞

1

B
logPπ[V ( ~X(∞)/B) ≥ 1] ≥ −θ̃0. (53)

Q.E.D.

We are now ready to prove Theorem 8.
Proof of Theorem 8 : By Theorem 5,

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1] ≤ −θ0,

whereθ0 is given by (46). By Proposition 9, we have

lim inf
B→∞

1

B
logPπ[V ( ~X(∞)/B) ≥ 1] ≥ −θ̃0, (54)

for any policy π. The two inequalities combined imply that
θ0 ≤ θ̃0. Hence, to show Theorem 8, it only remains to

show thatθ0 ≥ θ̃0. Consider any FSP(s, a,x) that satisfies the
constraint in the definition ofθ0 (see Equation (46)). Define
~φ , d

dt~s(t),
~f , d

dt~a(t) andw ,
dV (~x(t))

dt . By Assumption 4
in Section IV-A, we must have

w ≤ ∂Ṽ (τ, ~e|~x(t), ~φ, ~f)
∂τ

∣

∣

∣

∣

∣

τ=0

(55)

for any feasible~e.
Define ~δ = [δki , i = 1, ..., N, k = 1, ...,K], where δki =

fk
i −∑S

j=1 φj

L
∑

l=1

Rile
k
lj . We have

Ṽ (τ, ~e|~x(t), ~φ, ~f)− Ṽ (0, ~e|~x(t), ~φ, ~f)
= V ([~x(t) + ~δτ ]+)− V (~x(t)).

Further, using Assumptions 3, 5 and 6, we have

V ([~x(t) + ~δτ ]+)− V (~x(t)) ≤ V (~x(t) + [~δ]+τ) − V (~x(t))

≤ V ([~δ]+τ) = τV ([~δ]+).

Hence, for any feasible~e, by (55), we must have

w ≤ V ([~δ]+).

Minimizing the right-hand-side as in the definition ofw̃(~φ, ~f),
we have

w ≤ w̃(~φ, ~f),

from which we can conclude that{w > 0} ⊆ {w̃(~φ, ~f) > 0}.
This leads to the following inequality

inf
{w>0,s,a,x}

1

w

[

H(~φ||~p) + L(~f)
]

≥ inf
{~φ,~f :w̃(~φ,~f)>0}

1

w̃(~φ, ~f)

[

H(~φ||~p) + L(~f)
]

.

Hence, by the definitions ofθ0 in (46) andθ̃0 in (49), we have

θ0 ≥ θ̃0.

Thus,θ0 = θ̃0 and the result of the Theorem then follows.
Q.E.D.

VIII. A N EXAMPLE

We have presented a set of powerful results (in particular
Theorem 8) that can be applied to very general wireless
systems. As we discussed in Section IV-B, these results can be
very useful for both analyzing and designing wireless control
algorithms with low overflow-probability. A delicate detail to
use these results is to establish that an algorithm minimizes the
drift of a Lyapunov function in every fluid sample path (i.e.,
it satisfies Assumption 4). This is related but different from
showing that an algorithm minimizes the drift of a Lyapunov
function in every step in the original discrete-time system.
Specifically, an infinitesimal interval of lengthδ in the fluid
sample path will correspond to an interval ofBδ in the original
system. Hence, one needs to be careful in analyzing the drift
of the Lyapunov function in fluid sample paths. In this section,
we present a detailed example to illustrate this point (see
Proposition 10).
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Fig. 3. The scheduling problem in cellular networks under fading channel.

Consider the following model for a base-station servingN
users (See Fig. 3). We recall here the assumptions made on
the arrival process and the channel model from Section II,
and list some additional simplifying assumptions needed for
our current purpose.Al(t) denotes the number of packets
generated by userl. We assume thatAl(t) is i.i.d. across
time and independent across users. Letλl = E[Al(t)]. Only
one user can be scheduled for transmission at any time. We
assume an ON-OFF channel fading model between the base-
station and the users.C(t) denotes the channel state at time
slot t and S denotes the set of all possible channel states.
Each possible valuej ∈ S of the channel stateC(t) can
be thought of as mapping to a vector, each component of
which represents whether the channel of a particular user is
ON or OFF. We assume that the channel stateC(t) is i.i.d.
across time. However, the channel may be correlated across
users. The probability that the channel stateC(t) is equal to
j at time t is pj . For any subsetA ⊂ {1, 2, ...N}, S(A)
denotes the set of statesj such that the channel of some user
l ∈ A is ON. We also useS(l) as the short-hand notation for
S({l}). Let F denote the bandwidth of the system. Hence, if
a user’s channel is ON and it is scheduled for transmission,
its service rate isF . (Remark:The above model is similar to
the one in [11] although we do not assume identical arrival
rates andi.i.d. channel state distribution across the users.) The
throughput-optimal Tassiulas-Ephremides algorithm [1] in this
case reduces to the QLB (Queue-Length Based) algorithm as
follows.

QLB-scheduling policy:At each time-slott, the base-station
schedules the ON user with the largest backlog. If there are
multiple ON-users that all have the largest backlog, the base-
station can schedule any one of these users.

We assume that the system is stable, which requires that
there existselj ≥ 0, l = 1, . . . , N, j = 1, . . . , S, such that
∑N

l=1 elj = F for all j, and that the following holds for some
ε̂ > 0,

λl(1 + ε̂) <
∑

j∈S(l)

pjelj for all usersl = 1, . . . , N. (56)

The interpretation ofelj is the long-term fraction of system
bandwidth given to userl in channel statej. Note that the
summation on the right-hand-side is only over those statesj
such that the channel is ON for userl.

In this section, we would like to characterize the decay-rate
of the tail probability of any user’s backlog exceeding a given

thresholdB, i.e., the decay-rate of the probability

P[ max
l=1,...,N

Xl(∞) ≥ B] (57)

whenB → ∞.
Define ~sB(t),~aB(t), ~xB(t) as in (6), (7) and (10), and

define the fluid sample path (FSP) accordingly. For any
FSP(s, a,x), let I1(~x(t)) = {i|xi(t) = maxk xk(t)} be
the set of users with the (identically) largest queue at time
t. Further, letI2(~x(t), ~x′(t)) = {i ∈ I1(~x(t))| ddtxi(t) =
max

k∈I1(~x(t))

d
dtxk(t)}. That is,I2(~x(t), ~x′(t)) is the set of users

that, among those users with the largest queue at timet, also
have the largest queue growth rate. In other words, these
set of users will have the largest queueimmediately after
time t. Then, immediately after timet, as long as one user
in I2(~x(t), ~x′(t)) is ON, according to the QLB-policy this
group of users collectively must receive the full service rate
F . Therefore, we must have

∑

i∈I2(~x(t),~x′(t))

d

dt
xi(t) =

∑

i∈I2(~x(t),~x′(t))

d

dt
ai(t) (58)

−F
∑

j∈S(I2(~x(t),~x′(t)))

d

dt
sj(t).

(Remark:Note that this is an example of Equation (12).)
Let V (~x) = maxl=1,...,N xl. Note that we have chosen the

Lyapunov function to be the same as the norm for the overflow
metric (57). We now show the following properties ofV (~x).

Proposition 10: The functionV (~x) satisfies Assumptions
1, 2, 3, 4, 5 and 6.
Proof: Most of the conditions in the assumptions are easy to
verify. Hence, we only provide proofs of Assumption 1 part
(f), Assumption 2 and Assumption 4.

We first show Assumption 2 part (a). Consider an
FSP(s, a,x). Let ~φ(t) = d

dt~s(t) and let ~f(t) = d
dt~a(t).

According to the definition ofI2(~x(t), ~x′(t)), the Lyapunov
drift for the QLB policy is given by

d

dt
V (~x(t))

=
1

|I2(~x(t), ~x′(t))|
∑

l∈I2(~x(t),~x′(t))

d

dt
xl(t)

=
1

|I2(~x(t), ~x′(t))|





∑

l∈I2(~x(t),~x′(t))

fl(t)

−F
∑

j∈S(I2(~x(t),~x′(t)))

φj(t)



 . (59)

Let ε ≤ ε̂
minl=1,...,N λl

2(N+FS) . Assume that|| ddt~s(t) − ~p|| < ε and

|| ddt~a(t)− ~λ|| < ε. Then

d

dt
V (~x(t)) ≤ 1

|I2(~x(t), ~x′(t))|





∑

l∈I2(~x(t),~x′(t))

λl

−F
∑

j∈S(I2(~x(t),~x′(t)))

pj



+ ε(N + FS). (60)
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By the stability condition (56), we have

∑

l∈I2(~x(t),~x′(t))

λl(1 + ε̂)

≤
∑

l∈I2(~x(t),~x′(t))

∑

j∈S(l)

pjelj

≤
∑

j∈S(I2(~x(t),~x′(t)))

pjF.

Therefore, Equation (60) becomes

d

dt
V (~x(t)) ≤ −ε̂

|I2(~x(t), ~x′(t))|
∑

l∈I2(~x(t),~x′(t))

λl

+ε(N + FS)

≤ −ε̂minl=1,...,N λl

2
.

This shows Assumption 2 part (a). Note that Assumption 1
part (f) can be shown with a similar proof.

Now we show Assumption 2 part (b): By (59), and using
the fact that the arrival process is bounded byM , we have

d

dt
V (~x(t)) ≤ 1

|I2(~x(t), ~x′(t))|





∑

l∈I2(~x(t),~x′(t))

M



 = M.

To show Assumption 4, we will first bound the Lyapunov
drift for any scheduling policy and then show that the bound
is in fact the drift for the QLB policy (59).

Fix any feasible value of~e, i.e., elj ≥ 0, l = 1, . . . , N, j =
1, . . . , S; elj > 0 only if the channel for userl is ON at
channel statej; and

∑N
l=1 elj ≤ F for all j. Define δl =

fl −
∑

j∈S(l) φjelj . By definition in Equation (24),

Ṽ (τ, ~e|~x, ~φ, ~f) = V ([~x+ ~δτ ]+)

= max
l=1,...,N

[xl + δlτ ]
+.

We must then have,

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t))

∣

∣

∣

∣

τ=0

≥ max
l∈I1(~x(t))

(fl(t)−
∑

j∈S(l)

φj(t)elj).

Further, sinceI2(~x(t), ~x′(t)) ⊂ I1(~x(t)), we have

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t))

∣

∣

∣

∣

τ=0

≥ max
l∈I2(~x(t),~x′(t))

(fl(t)−
∑

j∈S(l)

φj(t)elj)

≥ 1

|I2(~x(t), ~x′(t))|





∑

l∈I2(~x(t),~x′(t))

(fl(t)

−
∑

j∈S(l)

φj(t)elj)



 . (61)

Now, note that
∑

l∈I2(~x(t),~x′(t))

∑

j∈S(l)

φj(t)elj

=
∑

j∈S(I2(~x(t),~x′(t)))

φj(t)
∑

l∈I2(~x(t),~x′(t))

elj

≤ F
∑

j∈S(I2(~x(t),~x′(t)))

φj(t).

Therefore, inequality (61) reduces to

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t))

∣

∣

∣

∣

τ=0

≥ 1

|I2(~x(t), ~x′(t))|





∑

l∈I2(~x(t),~x′(t))

fl(t)

−F
∑

j∈S(I2(~x(t),~x′(t)))

φj(t)



 ,

where the right-hand-side is exactly equal to the drift of the
QLB scheduler (59). The inequality (25) then follows.

The other assumptions are easily verified. Q.E.D.

By Theorem 8 and Proposition 10, we then have

lim
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1] = −θ0.

whereθ0 is given by

θ0 = θ̃0 = inf
{~φ,~f :w̃(~φ,~f)>0}

1

w̃(~φ, ~f)

[

H(~φ||~p) + L(~f)
]

, (62)

where

w̃(~φ, ~f) = min
[elj ]

max
l=1,...,N

xl

subject to xl = [fl −
S
∑

j=1

φjelj ]
+

[elj ] ∈ Conv(Ej) for all j.

Unfortunately, (62) is not a convex program and thus
is not easy to solve. To derive a simpler characterization
of θ0, we first introduce a decomposition. For any subset
M ⊂ {1, 2, ..., N}, define

θ0(M) = inf
w>0,~φ, ~f

1

w

[

H(~φ||~p) + L(~f)
]

(63)

subject to w =
1

|M|





∑

l∈M

fl − F
∑

j∈S(M)

φj



 .

We then have the following results.
Lemma 11:

θ0 = min
M⊂{1,2,...,N}

θ0(M).

Proof: Fix a setM. For any~φ, ~f , andw > 0 that satisfy the
constraints in (63), we automatically have

1

|M|





∑

l∈M

fl − F
∑

j∈S(M)

φj



 = w.
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Now, for any feasible~e ∈ Conv(Ej), we must have
∑S

j=1 elj ≤ F for all j and elj > 0 only if the channel
for userl is ON at channel statej. Thus, we have,

max
l=1,...,N

[fl −
S
∑

j=1

φjelj ]
+

≥ 1

|M|





∑

l∈M

[fl −
S
∑

j=1

φjelj ]
+





≥ 1

|M|





∑

l∈M

fl − F
∑

j∈S(M)

φj





= w.

Hence,w̃(~φ, ~f) ≥ w and

θ0 ≤ 1

w

[

H(~φ||~p) + L(~f)
]

.

Since this is true for all~φ, ~f and w > 0 that satisfy the
constraints in (63), we then haveθ0 ≤ θ0(M).

To show the other direction, it is sufficient to show that
for every ~φ and ~f , there is someM for which w = w̃(~φ, ~f)
satisfies the constraint (63). Letw = w̃(~φ, ~f). By the definition
of w̃(·, ·), there must exist~e ∈ Conv(Ej) such that

max
l=1,...,N

[fl −
S
∑

j=1

φjelj ]
+ = w.

Let M be the set ofl such thatfl −
∑S

j=1 φjelj = w.
Note that we must have

∑

l∈M elj = F for any state
j ∈ S(M) because otherwise we should be able to further
reducemaxl=1,...,N [fl −

∑S
j=1 φjelj ]

+. Hence, we have
∑

l∈M

fl − F
∑

j∈S(M)

φj = w|M|.

This equation implies that~φ, ~f andw satisfies the constraint
in (63). Hence, we must haveθ0 ≥ θ0(M). The result of the
lemma then follows. Q.E.D.

Next, consider the case when the arrivals are at a constant
rateλl. In other words,Ll(fl) = +∞ except whenfl = λl.
In this case, we can use Lemma 11 to obtain the following
characterization ofθ0. For any subsetC of the possible channel
states, letp(C) =∑j∈C pj .

Proposition 12: When the arrivals are at a constant rateλl,

θ0 = min
M⊂{1,...,N}

inf
0≤u≤

∑
i∈M

λi
F

|M|DM(u||p)
(
∑

i∈M λi)− uF

where

DM(u||p) = u log
u

p(S(M))

+(1− u) log
(1− u)

(1− p(S(M)))
.

Proof: According to Lemma 11, it suffices to show that

θ0(M) = inf
0≤u≤

∑
i∈M

λi
F

|M|
(
∑

i∈M λi)− uF
DM(u||p).

Towards this end, note that for any fixedw, the sub-
optimization problem of the one defined in (63) corresponds to
a convex program. (The value ofθ0(M) will then correspond
to the minimum overw among all of these sub-optimization
problems.) Associate a Lagrange multiplierη for the con-
straint of (63), and a Lagrange multiplierγ for the constraint
∑S

j=1 φj = 1. Ignoring the termL(~f) and lettingfl = λl,
we can then construct the Lagrangian of the sub-optimization
problem for a fixedw as

L(~φ, ~f, w, η, γ)

=
S
∑

j=1

φj log
φj

pj
− η

[

∑

l∈M

λl

−F
∑

j∈S(M)

φj − w|M|



 + γ





S
∑

j=1

φj − 1





=





S
∑

j=1

φj log
φj

pj
+ ηF

∑

j∈S(M)

φj + γφj





−η

[

∑

l∈M

λl − w|M|
]

.

It is easy to verify that, in order to minimize the Lagrangian
over all ~φ, we must have

φj = pj exp[−(1 + ηF + γ)] if j ∈ S(M),

φj = pj exp[−(1 + γ)] if j /∈ S(M).

The optimalη andγ are such that the constraint of (63) and
∑S

j=1 φj = 1 are both satisfied. Hence, we must have

∑

j∈S(M)

φj = exp[−(1 + ηF + γ)]
∑

j∈S(M)

pj

=

∑

l∈M λl − w|M|
F

.

Let u =
∑

l∈M λl−w|M|

F . We then have,

exp[−(1 + ηF + γ)] =
u

p(S(M))
,

and

φj = pj
u

p(S(M))
if j ∈ S(M).

Similarly, we must have

∑

j /∈S(M)

φj = exp[−(1 + γ)]
∑

j /∈S(M)

pj

= 1−
∑

l∈M λl − w|M|
F

= 1− u.

Hence,

φj = pj
(1− u)

(1− p(S(M)))
if j /∈ S(M).
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We thus have, for any fixedw, the minimum value of the
sub-optimization problem of (63) is equal to

1

w

S
∑

j=1

φj log
φj

pj

=
1

w

[

u log
u

p(S(M))
+ (1 − u) log

(1− u)

(1 − p(S(M)))

]

=

∑

l∈M λl − uF

|M| DM(u||p),

where in the last step we have used the definition ofDM(u||p)
and the assignment thatu =

∑
l∈M λl−wM

F . Taking a minimum
overw, or equivalently overu, the result follows. Q.E.D.
Remark:Readers can verify that when the channel states are

i.i.d. across users and when the arrivals from all users are at a
constant rateλ, Proposition 12 reduces to Theorem 5 in [11].

A. Effective Capacity

When the arrivals are time-varying, it is no longer possible
to derive a simpler characterization ofθ0 as in Proposition 12.
Instead, we can concentrate on the effective capacity region.
Note that for anyθ > 0, if we would like to ensure that

lim
B→∞

1

B
logP[max

l
Xl(∞) ≥ B] ≤ −θ,

it is equivalent to require thatθ ≤ θ0. We then have the
following result. LetMl(θ) = logE[exp(θAl(0))], and let
cl(θ) = Ml(θ)

θ . The quantitycl(θ) is typically referred to as
the effective bandwidth of the arrival process to userl.

Proposition 13: θ ≤ θ0 is equivalent to the following
condition:

∑

l∈M

|M|
θ

Ml(
θ

|M| ) ≤ −|M|
θ

log[p(S(M)) exp(− θF

|M| )

+1− p(S(M))], (64)

for all M ⊂ {1, 2, ..., N}.

Remark:Given θ, Proposition 13 provides a necessary and
sufficient condition on the arrival processAl(t) for it to belong
to the effective capacity region.

Proof: According to Lemma 11, we only need to show that
(64) is equivalent to

θ ≤ inf
w>0

1

w

[

H(~φ||~p) + L(~f)
]

(65)

wherew =
∑

l∈M fl−F
∑

j∈S(M) φj

|M| . To see this, note that

Inequality (65)

⇔ θw ≤ H(~φ||~p) + L(~f) for all ~φ, ~f and

w =

∑

l∈M fl − F
∑

j∈S(M) φj

|M|

⇔ H(~φ||~p) + L(~f) ≥ θ

|M|





∑

l∈M

fl − F
∑

j∈S(M)

φj





for all ~φ, ~f

⇔ θ

|M|
∑

l∈M

fl − L(~f) ≤ θF

|M|
∑

j∈S(M)

φj +H(~φ||~p)

for all ~φ, ~f

⇔ sup
~f

θ

|M|
∑

l∈M

fl − L(~f)

≤ − sup
~φ



− θF

|M|
∑

j∈S(M)

φj −H(~φ||~p)



 .

Now by definition,Ll(fl) = supθ[θfl−Ml(θ)]. Using proper-
ties of Legendre transforms (Lemma 4.5.8 in [24, p152]), we
have

sup
~f

θ

|M|
∑

l∈M

fl − L(~f) =
∑

l∈M

Ml(
θ

|M| ).

Similarly, by definition

H(~φ||~p) = sup
~θ







S
∑

j=1

θjφj − logE[exp(

S
∑

j=1

θjΦj)]







,

where[Φj ] is a random vector such thatΦj = 1{C(t)=j}. Note
that [Φj ] must have exactly one non-zero component and the
non-zero component must be equal to 1, andΦj takes the
value 1 with probabilitypj. Hence, using the properties of
Legendre transforms again, we have

sup
~φ



− θF

|M|
∑

j∈S(M)

φj −H(~φ||~p)





= logE[exp(−
∑

j∈S(M)

θF

|M|Φj)]

= log[p(S(M)) exp(− θF

|M|) + (1− p(S(M)))].

Hence, (65) is equivalent to

∑

l∈M

|M|
θ

Ml(
θ

|M| ) ≤ −|M|
θ

log[p(S(M)) exp(− θF

|M|)

+(1− p(S(M)))].

Combining these conditions over allM, the result then
follows. Q.E.D.

The quantityMl(θ)
θ is typically referred to as the effective

bandwidth of the arrival process to userl. The quantity on
the right-hand-side of (64) can be interpreted as the effective
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capacity available to the users inM. Proposition 13 then car-
ries the intuitive explanation that the total effective bandwidth
of users inM must be no greater than the effective capacity
available to them. Note that both the effective bandwidth and
effective capacity can be computed independently from each
other for any given setM.

Remark:Readers can verify that, when the channel states
are i.i.d. across users and when arrivals from all users are at a
constant rateλ, Proposition 13 reduces to Corollary 6 in [11].

IX. CONCLUSIONS

In this paper we study the problem of characterizing the
queue-overflow probability of complex wireless scheduling
and routing algorithms. We present a new technique to address
the complexity issue of the multi-dimensional calculus-of-
variations problem involved in sample-path large-deviations.
Our new technique combines sample-path large-deviations
with Lyapunov stability, which may develop into a powerful
method to study a large class of scheduling and routing
algorithms. We also show that when a scheduling and routing
algorithm minimizes the drift of the Lyapunov function at
every time in every fluid-sample-path, it is optimal in max-
imizing the asymptotic decay-rate of the probability that the
Lyapunov function value exceeds a threshold. We illustratethe
potential of this approach through examples.
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APPENDIX

Proof of Theorem 4:
Pick any0 < ρ < 1. Pick another two positive constants0 <

δ < ε < ρ. LetP denote the stationary probability distribution
of the system. We are interested in the following quantity

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1].

Throughput this appendix, we will focus on the scaled
version of ~X(τ) such that

xk,B
i (t) =

1

B
Xk

i (Bt),

for t = m
B , m = 0, 1, 2, ...,, and by linear interpolation other-

wise. Let~xB(t) = [xk,B
i (t), i = 1, ..., N, k = 1, ...,K]. Note

that this definition is almost identical to (10) in Section III-B,
except that now~xB(t) is defined for infinitely larget. Further,
since we are interested in the stationary distribution~X(∞),
we can assume that~X(τ) starts with its stationary distribution
at τ = 0. Hence, ~X(τ) will admit its stationary distribution
at every time instantτ . As a result,~xB(t) will also admit its
stationary distribution at everyt = m

B , m = 0, 1, 2, ...,, which
is the same as the distribution of~X(∞)/B.

Let dte denote the smallest integer that is greater than or
equal to t. For eachB, consider the following sequence of

2
B

3
B

4
B

5
B

6
B

7
B

8
B

9
B

10
B

12
B

13
B

δ

ρ

βB
2

ηB
1

βB
1

ηB
2

ηB,↑

V (~xB(t))

1

1
B

11
B

t

ε

Fig. 4. An example of the trajectory ofV (~xB(t)) and the different stopping
times.

stopping times defined on a sample pathx
B . (Here we use

the notation from [13].)

βB
1 ,

dinf {t ≥ 0 : V (~xB(t)) ≤ δ}Be
B

,

and

ηBn ,
dinf {t ≥ βB

n : V (~xB(t)) ≥ ε}Be
B

, n = 1, 2, . . .

βB
n ,

dinf {t ≥ ηBn−1 : V (~xB(t)) ≤ δ}Be
B

, n = 2, 3, . . .

Fig. 4 provides an example of these stopping times.
Consider the Markov chain̂~xB(n) obtained by sampling

~xB(t) at the stopping timesηBn , i.e,. ~̂xB(n) = ~xB(ηBn ), n =
1, 2, ...,+∞. SincexB is stationary, there must also exist a
stationary distribution for the Markov chain̂~xB(n). Denote
this stationary distribution (of the Markov chain̂~xB(n)) by
P̂

B. Further, letΘB denote the state space of the Markov
chain ~̂xB(n). We can then express the stationary distribution
of ~X(∞)/B as (see [25, Lemma 10.1]):

P[V ( ~X(∞)/B) ≥ 1] (66)

=

∫

ΘB P̂
B(d~x)E~x(

∫ ηB
1

0 1{V (~xB(t))≥1}dt)
∫

ΘB P̂B(d~x)E~x(η
B
1 )

whereE~x(·) denotes the expectation conditioned on the event
that ~xB(0) = ~x.

Remark on generalizing the proof for Markovian channel
and arrival processes:As discussed in Section II-E, the proof
will have to be modified if one wishes to assume that the
channel and arrival processes are Markov chains. In the proof,
we make use of the fact that the queue process is Markovian.
This enables us to claim that the sampled process,~̂xB(n), is
a Markov chain. This is no longer true if one uses channel
and arrival processes that are Markov chains. However, it is
relatively simple to fix the proof by considering the system
state as the joint state of the channel, arrival and the queue
backlog. For instance, ifχ(t) represents the combined state
of the channel, arrival and queue backlog processes, one
can assume thatχ(ηBn ) is a Markov chain. Then, our proof
methodology can still apply by denotinĝPB as the stationary
probability of χ(ηBn ) and denotingΘB as the state space of
χ(ηBn ).
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A. Bounding the Denominator of (66)

Consider first the denominator in (66). From (1) and the
boundedness of both the arrival-rateAk

i (t) and the service-
rateEk

l (j,
~X(t)), there exists an upper boundM1 such that

|| ~X(t + 1)− ~X(t)|| ≤ M1 for all t. From Assumption 1, we
have thatV (~xB(ηB1 ))−V (~xB(βB

1 )) ≤ L||~xB(ηB1 )−~xB(βB
1 )||.

DenoteM0 , LM1. Hence, we must have,

V (~xB(ηB1 ))− V (~xB(βB
1 )) ≤ L||~xB(ηB1 )− ~xB(βB

1 )||
≤ (ηB1 − βB

1 )M0.

Further, sinceηB1 is the first timeV (~xB(t)) exceedsε, we
must have

V (~xB(ηB1 )) ≥ ε − M0

B
.

Similarly, we haveV (~xB(βB
1 )) ≤ δ + M0

B . Therefore,

E~x(η
B
1 ) ≥ E(ηB1 − βB

1 )

≥ 1

M0

(

ε− δ − 2M0

B

)

.

Thus, there existsB1 > 0 such that for allB ≥ B1, the
denominator of (66) can be bounded from below by

E~x(η
B
1 ) ≥ ε− δ

2M0
. (67)

B. Bounding the Numerator of (66)

We next estimate the asymptotics of the numerator of (66).
Recall that, by definition, eachηBn is at most one1

B time-
unit after V (~xB(t)) just exceedsε. Since ε < ρ, using the
boundedness of the arrival rates and the service-rates, we can
conclude that there existsB2 > 0 (which depends onρ− ε),
such thatV (~xB(ηBn )) ≤ ρ for all B ≥ B2.

We next define the following additional stopping time (see
Fig. 4 for an example):

ηB,↑ ,
dinf {t ≥ 0 : V (~xB(t)) ≥ 1}Be

B
.

Then, for any~x ∈ ΘB, we must have,

E~x

[

∫ ηB
1

0

1{V (~xB(t))≥1}dt

]

≤ E~x

[

1{ηB,↑≤βB
1 }(β

B
1 − ηB,↑)

]

.

The above inequality holds because: (a) ifβB
1 occurs before

ηB,↑, then both sides will be zero; and (b) ifβB
1 occurs

after ηB,↑, then the amount of timeV (~xB(t)) ≥ 1 must be
no greater thanβB

1 − ηB,↑. Let P~x denote the probability
distribution conditioned on~xB(0) = ~x. We then have

E~x

[

∫ ηB
1

0

1{V (~xB(t))≥1}dt

]

≤ E~x

[

βB
1 − ηB,↑|ηB,↑ ≤ βB

1

]

P~x(η
B,↑ ≤ βB

1 )

Now, E~x

[

βB
1 − ηB,↑|ηB,↑ ≤ βB

1

]

is equal to
E~x

{

E~x[β
B
1 − ηB,↑|~xB(ηB,↑), ηB,↑ ≤ βB

1 ]|ηB,↑ ≤ βB
1

}

and, due to the Markovian property ofxB , we must have

E~x[β
B
1 − ηB,↑|~xB(ηB,↑), ηB,↑ ≤ βB

1 ] = E~xB(ηB,↑)(β
B
1 ).

Hence,

E~x

[

∫ ηB
1

0

1{V (~xB(t))≥1}dt

]

≤ E~x

[

E~xB(ηB,↑)(β
B
1 )|ηB,↑ ≤ βB

1

]

P~x(η
B,↑ ≤ βB

1 ).

Let C be a number that is slightly larger than 1. Using the
boundedness of the arrival rates and the service-rates again, we
can findB3 > 0 such that for allB ≥ B3, V (~xB(ηB,↑)) ≤ C.
Hence, we can bound the above quantity by

E~x

[

∫ ηB
1

0

1{V (~xB(t))≥1}dt

]

≤
[

sup
{~y:V (~y)≤C}

E~y(β
B
1 )

]

P~x(η
B,↑ ≤ βB

1 ).

LetT be a positive number (which will be chosen later). Recall
thatV (~x) ≤ ρ for all ~x ∈ ΘB whenB ≥ B2. Hence, for any
such~x ∈ ΘB, we have,

E~x

[

∫ ηB
1

0

1{V (~xB(t))≥1}dt

]

≤
[

sup
{~y:V (~y)≤C}

E~y(β
B
1 )

]

[

P~x(η
B,↑ ≤ T )

+P~x(β
B
1 ≥ T )

]

≤
[

sup
{~y:V (~y)≤C}

E~y(β
B
1 )

][

sup
{~x:V (~x)≤ρ}

P~x(η
B,↑ ≤ T )

+ sup
{~x:V (~x)≤ρ}

P~x(β
B
1 ≥ T ))

]

. (68)

Substituting (67) and (68) into (66), we then have, for all
B ≥ max{B1, B2, B3},

P[V ( ~X(∞)/B) ≥ 1] (69)

≤ 2M0

ε− δ

[

sup
{~y:V (~y)≤C}

E~y(β
B
1 )×

(

sup
{~x:V (~x)≤ρ}

P~x(η
B,↑ ≤ T )

+ sup
{~x:V (~x)≤ρ}

P~x(β
B
1 ≥ T )

)]

.

We next study the asymptotics for each term in the above
inequality.

1) Bound forsup{~y:V (~y)≤C}E~y(β
B
1 ): We will show that

sup{~y:V (~y)≤C}E~y(β
B
1 ) is bounded from above and hence does

not affect the asymptotics of (69). Due to the continuity of the
Lyapunov function and the assumption thatV (~x) = 0 only if
||~x|| = 0, there exists aγ > 0 such that||~x|| < γ implies
V (~x) < δ. Further, we can find aK > 0 such thatV (~x) < C
implies ||~x|| < K.

Consider the following additional stopping time

β̂B
1 ,

dinf {t ≥ 0 : ||~xB(t)|| ≤ γ}Be
B

.



24

It is easy to see thatsup{~y:||~y||≤K}E~y(β̂
B
1 ) is an upper bound

on sup{~y:V (~y)≤C}E~y(β
B
1 ).

We now proceed to show thatsup{~y:||~y||≤K} E~y(β̂
B
1 ) is

bounded from above. From Assumption 1, the fluid limit of the
system satisfies either (14) or (15). For both cases, it follows
that there exists a constantt0 such that for all fluid limitsx
with ||~x(0)|| ≤ 1, we must have||~x(t0)|| = 0. This not only
implies that the original system is stable (see [18, Theorem
4.2]), but also leads to the following limit:

lim
||~x||→∞

1

||~x||E
[

~X(t0||~x||)
∣

∣

∣

~X(0) = ~x
]

= 0.

(See the proof of Theorem 4.2 in [18]). Then using the
techniques in the proof of Theorem 3.1 in [18], there must
exist numbers̃ε > 0, κ > 0, b̃ ≥ 0, and a bounded set
B , { ~X : || ~X || ≤ κ} such that for all~x, conditioned on
~X(0) = ~x, the following holds,

E[τB(t0)| ~X(0) = ~x] ≤ t0
ε̃
(||~x||+ b̃),

whereτB(t0) , inf{t ≥ t0 : ~X(t) ∈ B} is the first time after
t0 when ~X(t) returns to the setB.

Recall the transformation~xB(t) = 1
B
~X(Bt), t =

0, 1
B , 2

B , .... For all B ≥ κ
γ , as long as|| ~X(Bt)|| ≤ κ, it

implies that||~x(t)|| ≤ γ and thusβ̂B
1 ≤ t. Hence, for any~y

such that||~y|| ≤ K and for anyB ≥ κ
γ , the following holds

E~y(β̂
B
1 ) ≤ 1

B
E[τB(t0)| ~X(0) = B~y]

≤ t0
ε̃B

(B||~y||+ b̃).

Let B5 = max{κ
γ ,

b̃
K }. Then, for allB ≥ B5, we have,

sup
{~y:V (~y)≤C}

E~y(β
B
1 ) ≤ sup

{~y:||~y||≤K}

E~y(β̂
B
1 ) ≤ 2

Kt0
ε̃

. (70)

2) Asymptotics forsup{~x:V (~x)≤ρ} P~x(η
B,↑ ≤ T ): Let

Γ≤ρ , {x : V (~x(0)) ≤ ρ andV (~x(t)) ≥ 1

for somet ∈ (0, T ]}

Then, by Proposition 2, we have

lim sup
B→∞

1

B
log sup

{~x:V (~x)≤ρ}

P~x(η
B,↑ ≤ T )

= lim sup
B→∞

1

B
log sup

{~x:V (~x)≤ρ}

P~x(x
B ∈ Γ≤ρ)

≤ − inf
all FSP(s,a,x)T :x∈Γ≤ρ

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt. (71)

3) Asymptotics forsup{~x:V (~x)≤ρ} P~x[β
B
1 ≥ T ]: Let

Υ≤ρ , {x : V (~x(0)) ≤ ρ andV (~x(t)) > δ

for all t ∈ [0, T − 1]}.

Then, by Proposition 2, we have

lim sup
B→∞

1

B
log sup

{~x:V (~x)≤ρ}

P~x[β
B
1 ≥ T ]

≤ lim sup
B→∞

1

B
log sup

{~x:V (~x)≤ρ}

P~x[x
B ∈ Υ≤ρ]

≤ − inf
all FSP(s,a,x)T :x∈Υ≤ρ

∫ T−1

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt. (72)

For any FSP(s, a,x)T such thatx ∈ Υ≤ρ, we have

δ ≤ V (~x(0)) +

∫ T−1

0

d

dt
V (~x(t))dt

≤ ρ+

∫ T−1

0

d

dt
V (~x(t))dt.

We now need to use Assumption 2. Since the two parts
in Assumption 2 are equivalent, in the following we will
assume the latter part holds∗. Let η be defined as in Assump-
tions 1 and 2. Then, according to Assumption 2, there exists
ε′ > 0 such that for all FSPs(s, a,x)T , if at any timet we
have || ddt~s(t) − ~p|| ≤ ε′ and || ddt~a(t) − ~λ|| ≤ ε′, then the
following holds

d

dt
V (~x(t)) ≤ −η/2.

Further, there existsM1 ≥ 0 such that if at any timet we have
|| ddt~s(t) − ~p|| ≥ ε′ or || ddt~a(t) − ~λ|| ≥ ε′, then the following
holds

d

dt
V (~x(t)) ≤ M1.

Let M denote the set of(~φ, ~f) such that||~φ− ~p|| ≤ ε′ and
||~f − ~λ|| ≤ ε′. We then have,

δ ≤ ρ+

∫ T−1

0

[

−η

2
1{( d

dt
~s(t), d

dt
~a(t))∈M}

+M11{( d
dt

~s(t), d
dt

~a(t))/∈M}

]

dt.

Hence,

(

M1 +
η

2

)

∫ T−1

0

1{( d
dt

~s(t), d
dt

~a(t))/∈M}dt

≥ (T − 1)
η

2
+ δ − ρ. (73)

Let

Jmin = min
~φ,~f

J(~φ, ~f)

subject to ||~φ− ~p|| ≥ ε′ or ||~f − ~λ|| ≥ ε′.

∗If the first part of Assumption 2 holds, the following proof can be easily

modified by using the Lyapunov functionU(~x) = V
1−α(~x)
1−α

.
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It is easy to see thatJmin is positive. Thus, for any FSP
(s, a,x)T such thatx ∈ Υ≤ρ, we have

∫ T

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt (74)

≥
∫ T−1

0

Jmin1{( d
dt

~s(t), d
dt

~a(t))/∈M}dt

≥ (T − 1)η2 + δ − ρ

M1 + η/2
Jmin.

where the last inequality follows from (73). Substituting into
(72), we then have

lim sup
B→∞

1

B
log sup

{~x:V (~x)≤ρ}

P~x[β
B
1 ≥ T ] (75)

≤ − (T − 1)η2 + δ − ρ

M1 + η/2
Jmin.

Clearly, for fixedδ andρ, by choosing largeT , we can make
the right-hand-side arbitrarily small.

C. Completing the Proof of Theorem 4

We are now ready to prove the statement of Theorem 4.
Pick any FSP(s, a,x)T0 such that~x(0) = 0, V (~x(T0)) ≥ 1.
Suppose the cost of this FSP is̃J , i.e.

∫ T0

0

[

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)]

dt = J̃ .

Clearly, for anyT ≥ T0, the right-hand-side of (71) must be
no smaller than−J̃ . According to (75), for fixedδ andρ there
must existT1 > T0 (which is independent ofρ), such that for
all T ≥ T1, the right-hand-side of (75) is smaller than−J̃ .
Fix such aT ≥ T1. Substituting (70), (71) and (75) into (69),
and taking the appropriate limits, we then have,

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1]

≤ − inf
all FSP(s,a,x)T :x∈Γ≤ρ

∫ T

0

H

(

d

dt
~s(t)||~p

)

+L

(

d

dt
~a(t)

)

dt.

Note that the above inequality holds for allρ > 0. Let Jρ
denote the infimum on the right-hand-side. Asρ → 0, let J∗

denote the limit, i.e.,J∗ = limρ→0 Jρ. We then have

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1] ≤ −J∗.

Let

J0 = inf
all FSP(s,a,x)T :

~x(0)=0,V (~x(T ))≥1

∫ T

0

H

(

d

dt
~s(t)||~p

)

+L

(

d

dt
~a(t)

)

dt.

It only remains to show thatJ∗ ≥ J0. To see this,
take a sequenceρn → 0. There must exist a sequence

of FSPs(sn, an,xn)T such that V (~xn(0)) ≤ ρn and
V (~xn(T )) ≥ 1 for eachn, and

lim
n→∞

∫ T

0

[

H

(

d

dt
~sn(t)||~p

)

+ L

(

d

dt
~an(t)

)]

dt = J∗.

Take a further subsequence that converges uniformly over
compact intervals. Without loss of generality, we can denote
this subsequence also by(sn, an,xn)T , and let(s, a,x)T be
the corresponding limit. Then, using the lower-semicontinuity
of the cost function, we must have

∫ T

0

H

(

d

dt
~s(t)||~p

)

+ L

(

d

dt
~a(t)

)

dt ≤ J∗.

Using a similar argument as in the proof of Proposition 2, we
can show that(s, a,x)T is also an FSP, and it satisfies the
condition thatx(0) = 0 andV (x(T )) ≥ 1. Hence, it belongs
to the set of FSP in the constraint set in (76). We thus have
J0 ≤ J∗. In other words, we have shown that for allT ≥ T1,

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1]

≤ − inf
all FSP(s,a,x)T :

~x(0)=0 andV (~x(T ))≥1

∫ T

0

H

(

d

dt
~s(t)||~p

)

+L

(

d

dt
~a(t)

)

dt.

Note that the above inequality is for a fixedT ≥ T1. Note that
the infimum on the right-hand-side decreases asT increases.
Hence, taking another infimum over allT > 0, we must then
have

lim sup
B→∞

1

B
logP[V ( ~X(∞)/B) ≥ 1]

≤ − inf
all FSP(s,a,x)T ,T>0:

~x(0)=0 andV (~x(T ))≥1

∫ T

0

H

(

d

dt
~s(t)||~p

)

+L

(

d

dt
~a(t)

)

dt.
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