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Abstract—In this paper we study the queue-overflow prob-
ability of wireless scheduling algorithms. In wireless neworks
operated under queue-length-based scheduling algorithmshere
often exists a tight coupling between the service-rate prass, the
system backlog process, the arrival process, and the stocsta

(or equivalently, the delay experienced by the packetshnesn
finite. Conversely, we can ask the question that, in order to
maintain stability, what is the largest offered load thag th
system can carry. For wireless networks, these questiores ha

process governing channel variations. Although one can use led to results orthroughput-optimalscheduling and routing

sample-path large-deviations techniques to form an estima of
the queue-overflow probability, the formulation leads to a difficult
multi-dimensional calculus-of-variations problem. In this paper,
we present a new technique to address this complexity issués-
ing ideas from the Lyapunov function approach in control theory,
this technique maps the complex multi-dimensional calculs-of-
variations problem to a one-dimensional calculus-of-vaations
problem, and the latter is often much easier to solve. Furthe
under appropriate conditions, we show that when a schedulig
algorithm minimizes the drift of a Lyapunov function at each
point of every fluid sample path, the algorithm will be optimal
in the sense that it maximizes the asymptotic decay-rate ohe
probability that the Lyapunov function value exceeds a giva
threshold. We believe that these results can potentially besed
to study the queue-overflow probability of a large class of weless
scheduling algorithms and to design new scheduling algotims
with optimal overflow probabilities.

Index Terms—Drift-minimizing algorithms. Lyapunov func-
tions, multi-dimensional calculus-of-variations, queueoverflow
probabilities, sample-path large deviations, wireless $eduling
algorithms.

I. INTRODUCTION

algorithms for managing wireless network resources. Here,
we use the ternschedulingin the broader sense, i.e., it can
include various control mechanisms at the MAC/PHY layer,
such as link scheduling, power control, and adaptive cod-
ing/modulation. In addition, for multi-hop wireless netiks,
the routing functionality determines the path that eactkegc
traverses, which also plays a key role in determining the
capacity of the network. A scheduling and routing algorithm
is throughput-optimalif, for any offered load under which
any other scheduling and routing algorithm can stabilize th
system, this algorithm can stabilize the system as well. One
example of a throughput-optimal algorithm is the so-called
“maximum-weight” and “back-pressure” algorithm proposed
in the seminal work by Tassiulas and Ephremides in [1]. This
algorithm chooses at each time, among all possible schaguli
and routing decisions, the one that maximizes the sum of the
link rates weighted by the differential backlog. This aigfum
has been shown to be throughput-optimal, and it has been the
basis for many other throughput-optimal algorithms forhbot
cellular and multihop wireless networks.

Once we know about stability, we are then tempted to ask

A wireless network may be modeled as a system of quedesther questions regarding the distribution of queue teng
with time-varying service rates. The variability in sewic (Or delay). For example, at a given offered load, what is

rates is due to a number of factors. First, channel fading alit¢ probability that the queue length at any link exceeds a
mobility can lead to variations in the link capacity evenhiet given threshold (or, that the delay experienced by a packet
transmission power is fixed. Second, the transmission pow@rdreater than a given threshold)? Conversely, what is the
can vary over time according to the power control policyargest offered load that the system can support subject to a
Third, due to radio interference, it is usually preferabde tgiven constraint on the queue-overflow probability or delay
schedule only a subset of links to be active at each time, ayiglation probability? (In other words, what is theffective

to alternate the subset of activated links over time.

capacity regiorof the system under such constraints?) Clearly,

When we study the performance of any system that involv&¥Se question are important for applications that requivee
queues, the first question that we can ask is whether thensys@éringent delay guarantees than just stability.
is stableor not. Here stability means that all queue backlog Such problems for characterizing the queue-overflow prob-

V. J. Venkataramanan is with Qualcomm Inc., 5775 Morehouse $an
Diego, CA 92121 USA (email: venkatar@qti.qualcomm.cont)isTwork was
carried out when he was a Ph.D. student at the School of igaictand
Computer Engineering, Purdue University.

X. Lin is with the School of Electrical and Computer Engiriegr Purdue
University, West Lafayette, IN 47907 USA (email: linx@puededu).

This work has been partially supported by the National SEeRounda-
tion through grants CNS-0643145, CNS-0721484, CNS-081,388d CCF-
0635202, and by Purdue Research Foundation.

ability or delay-violation probability of wireless netwa can

be difficult to solve. Here we draw a comparison to similar
gueueing problems in wireline networks. In wireline netksr
even though the exact queue distribution can be difficult to
obtain, there has been a large body of work, especially those
using large-deviations techniques, to obtain sharp estna
of the queue-overflow probability [2]-[7]. Essentially, wan
compute the asymptotic decay-rate with which the queue-



overflow probability approaches zero as the overflow thrieshalecay-rate under a given wireless control algorithm, we als
approaches infinity. We can then compare the queueing perforovide a useful condition under which a scheduling algo-
mance of different systems by their corresponding asyrtptotithm is optimal in terms of the asymptotic decay-rate of the
decay-rates, and we can ask questions regarding the largestrflow probability. Specifically, we show that under shiea
offered load subject to the constraint that the decay-ratstmconditions, if a scheduling algorithm minimizes the drift o
be no smaller than a given threshold value. Most resulise Lyapunov function at each point in every fluid sample
along this line assume that the service rate of the queuepath, then the algorithm is in fact optimal in maximizing the
fixed (i.e., time-invariant), and the packet arrival pracés asymptotic decay-rate of the probability that the Lyapunov
known. These results have enabled us to define the notionfurfiction value overflows. This is a powerful result that can
effective bandwidtbf the arrival process based on its (knownpe used for both analysis and design of scheduling policies.
statistics [2]—[7], which can then be used to determine th®r example, this result can be immediately used to draw
traffic carrying capability of the system at a given queuehe conclusion that the back-pressure algorithm [1] maz@i
overflow constraint. In contrast, in wireless networks, thine asymptotic decay-rate of the probability that the sum of
service rate is time-varying. If the service rate process tise squares of the per-flow queues exceeds a threshold. In a
again knowna priori, large-deviations techniques can stilrecent work [14], this result has been used to design a class
be used to compute theffective capacityf the service rate of asymptotically decay-rate optimal algorithms for miiap
process [8], [9], which is a notion similar to theffective networks. In another recent work [15], we have used thisltresu
bandwidthof the arrival process. This effective capacity cato design a simple priority-based algorithm that is sumugue
again be used to determine the traffic carrying capability decay-rate optimal for a tree network, which generalized th
the system subject to a given constraint on the decay-ralgorithm of [16] for a tandem network. For a more detailed
of the queue-overflow probability. Unfortunately, undernya discussion of the applications of our main results, pleaferr
wireless resource-allocation algorithms of interest,nettee  to Section IV-B.

service rate process is unknoarpriori. For example, forany  The rest of the paper is organized as follows. We present
queue-length based algorithms such as the throughputiabtithe network model in Section Il and introduce the large-
back-pressure algorithm of [1], the service rates deperti@n deviations preliminaries in Section I1l. For conveniencette
queue lengths, which in turn depend on the past history of theéaders, in Section IV we list all main results and provide
arrival process and the channel state. Hence, the statistic examples for their applications. The detailed technicabfs
the service rate process is unknowpriori. In this case, even gre provided in Sections V-VII. Specifically, in Section V we
the computation of the asymptotic decay-rate of the queysovide a general lower bound for the asymptotic decay-rate
overflow probability becomes a very difficult problem. Fopf the queue-overflow probability using sample-path large-
these systems, although it is still possible to use samplgsviations theory. However, this bound involves a difficult
path large-deviations techniques to form an estimate of thglti-dimensional calculus-of-variations problem. Then
decay-rate of the queue-overflow probability [10]-[12kls@ Section VI, we provide a Lyapunov function based approach
formulation leads to a multi-dimensional calculus-ofig8ions  tg address the complexity issue, which provides a much
problem. Due to the complex coupling between the serviggnpler lower bound on the asymptotic decay-rate of the
rate, the queue length, the arrival process, and the changgbue-overflow probability. In Section VI, we provide aftiri
state, this multi-dimensional calculus-of-variationsflem is  minimizing condition under which this lower bound is tight
known to be very difficult [10]-[13]. and the corresponding drift-minimizing algorithm is decay
Motivated by the Lyapunov function approach for provingate optimal. In Section VIII, we provide a detailed example
stability of complex systems, in this paper we provide atecky show how these results can be applied to a specific network
nique that addresses the complexity of the multi-dimeraiorsetting. Then we conclude.
calculus-of-variations problem that arises in samplédtpage- Throughout the paper, we useto denote a real number

deviations studies. In essence, through the use of a LyapunQ 1 denote a vector. For convenience, when we refer to

function, we map the multi-dimensional calculus-of-véidas | o tor-valued stochastic proces@) over a certain time-
problem into a one-dimensional calculus-of-variationshpr interval, we often drop the indexand denote it by a bold-
lem, and the latter is often much easier to solve. The salutig, .. S);mb0|x In other words,Z(t) denotes the value of

to the one-dimensional calculus-of-variations probleml Withe stochastic process at time ¢. Unless stated otherwise,

then provide us with a Iower—boun_d_ estimate of the deca\xl—e use right derivatives throughout this paper, i.—aéx(t) _
rate of the queue-overflow probability, and consequently, ?m 2 (t46)—x(t)

lower-bound estimate of the effective capacity region af ths o+
system. For many practical applications, the resultingatife
capacity region is useful because the queue-overflow anstr
is known to be satisfied (in the large-deviations sense). We
emphasize that, unlike most prior large-deviations work on
wireless systems that has focused on single-hop systems (e.
the cellular downlink), the results described in this paagpsly We assume the following model for a wireless system with
to both single-hop and multi-hop settings. N nodes andl links. A diagram that illustrates some of the
In addition to the above lower-bound on the asymptotiey variables is provided in Fig. 1.

Il. THE SYSTEM MODEL



X queue — for all nodesi ¢ D*, where R; denotes the connectivity
of class-k P - matrix. i.e
ackets at e o e .
godei Elk:service for / I 1, if 1= b(l)
AF: class-k class-k packets ,’ R = -1 if 1 = e(l)
arrivals at —> ~. 4 Node e(l) ’ .
node i e TTe-- ’ 0, otherwise

E);: total service
offered by link [

Let B,(j, X) = ZkK:lEf (7, X), which denotes the aggregate
service offered by linkl. We assume that, for each state
D*:setof destination  the service-rate vectd;(j, X),l = 1, ..., L] must belong to
nodes for class-k . .
a set&; of feasible service-rate vectors. We assume that for
all j, the convex hull of;, denoted Con{£;), is closed and
bounded, and contains the intersection of a neighborhood of

the origin and the positive quadrant.

Node i=b(1)

Fig. 1. The system model.

A. The Channel D. The Performance Measure

We assume that time is divided into time-slots of unit length Assume that the offered loal = [\f,i = 1,...,N,k =
In order to model channel fading, we assume that at any time--, K| is such that the system is stationary and ergodic. In
slot 7 the state of the wireless channel, denoted’ify), can this paper, we will focus on the stationary probability that
be in one ofS (channel) stateg = 1,2, ..., S. We assume that Some chosen norm of the system backlog exceeds a certain
the channel stateS(7), 7 = 1,2, ... arei.i.d. across time. Let thresholdB. In particular, lete denote our target value of the

pj =P[C(1) =j],j =1,2,..., 5. andp = [p1, ..., ps]- overflow probability, we would like to ensure that
_ P||X(co)l| > B <, @
B. The Arrival where|| - || is an appropriately chosen norm, aftlis the

The system serves packets from multiple clasées=  oyerflow threshold. Note that we have uskdo) to represent
1,..., K. Each class: corresponds to a s@" of destination he stationary distribution of the stochastic proceggr).
nodes. In other words, once the cldspackets arrive at any ynfortunately, the problem of calculating the exact praliigh
node inD*, they will leave the system. Let(r) denote the p(|| ¥ (o0)|| > B] is often mathematically intractable. Instead,

number of class: packets arriving at node at time-slot7. \ye will be interested in the decay rate of the queue-overflow
We assume thgtA¥(r)] is i.i.d. across time and independentyopapility, which is defined by

across arriving nodes and across classes. In addition, we 1
assume that¥(r) is bounded byM for all i,k and . Let Io(X) 2 — lim = logP[||X(c0)|| > B, ©))
N = B[AK(T)]. B B
whenever the limit on the right-hand-side exists. Note that
(3) holds, then wherB is large, the overflow probability can

be approximated by
Let X*(7) denote the backlog of clagspackets at node o -
at timer, and letX (r) = [X¥(r),i = 1,... N,k =1, ..., K]. P[l|X(c0)ll 2 B] ~ g(B) exp(~Blo(})).-
Let b(1) and e(l) denote the source-node and end-node, retere, g(B) captures the terms that may grow sub-
spectively, of linki. Each linki then corresponds to a servelexponentially a3 — co. We refer toIo(X) as the asymptotic
with time-varying service rate, which serves packets atenogecay-rate of the queue-overflow probability. Using thevabo

b(l) and transfers them to nodg!). The service offered by approximation, in order to approximately satisfy the coaist
link I is determined by the scheduling and routing algorithn2), we only need to ensure that
log e

In general, this service rate may depend on the global system log g(B)
backlog and the global channel state, and hence may carelat ]O(X) _ 089\7) >02 - )
with the service at other links/nodes. LBE (j, X) denote the B B
service offered by link to classk packets at nod&(l), when For a fixedd, assumindog g(B)/B = 0, we approximate the
the state of the system jsand the global backlog i&. We @above expression by:

impose the additional constraint thay (j, X) < Xiy- (In
other words, the service offered by lirikto classk packets (4)

is no greater than the backlokg of claspackets at the SOUrce\ye ¢an then define theffective capacity regioas the set of
nodeb(l).) By definition of D" (the set of destination nodesy iy q) rates) such that the above inequality holds. In more

k _ : k q
of Cli‘SSk)' X;(r) = 0 for all nodesi € D". For a node not  yanera| settings, the limit in (3) may not exist or may not be
in D", the evolution of the class-backlog is given by easily computed. Still, we may be able to find a lower bound

XF(r 4+ 1) = XF(r) + A¥(7) I{J()\h) t(;1n ;[he asymptotic decay-rate of the overflow probability
such tha

C. The Queue

[I>

- log e
(%) =62 -2,

S L
ki: v N -
= Liew=pn Y RaBl (. X (), (1) lim sup — log P[|| X (c0)|| = B] < ~I)(X). (5)
j=1 =1

B—oo



Thenexp(—BIj(X)) provides an (approximate) upper bound € [0, 7). Similarly, let @3 (t) = [af’B(t),z' =1,..N,k =
on the overflow probabilityP[|| X (c0)|| > B], and we can 1,..., K] and f2(t) = £a5(t).
find a lower bound on the effective capacity region as the setRemark:We make a few remarks before we proceed. First,

of X such thatlj(X) > § & — 'z, for any fixed T, as B — oo, we have BT — oco. Hence,
when B is large (as in the large-deviations study below),
E. Generalizing the Channel and Arrival Processes we aim to capture the infinite-time behavior of the original

%ochastic processes. (The same intuition also applieeeto t

For ease of exposition, throughout this paper we ha _ ) . .
assumed that the channels and the arrival processdg.dre scaled backlog proces¥’ () defined shortly in Section Ill-B.)
econd, for any fixed, when B — oo, by a Law of Large

across time. We now briefly comment on how the resul . .
y n_@umbers argument, we would expect thth probability 1

of this paper can also be generalized to the case with ti 1B val 55 (1) wil ton: (i.6. th bability that
correlated channel fluctuations and time-correlated@sias - '© V&Ue O(b.ﬂ' (.) Wit converge top; Q.e., € probabiiity that
6he channel is in stat§). However, since we are interested in

readers will see, the key requirement for these results kd hth I deviati q te of th f| babilie
is that the channel and arrival processes satisfy a sangie-p c ?‘r%e't?"'ta |ontsde_cay-ra? 0 'the OVGE: g}’l‘_’tpro b hi
large-deviations principle as will be described in Sectibi aré in fact interested in events with probability approagni

(although with different expressions for the integrandshaf 0 af] ftg h_t> got Hdence, wte have to attlsp _Sl_t#dy. sampl_e p|>aths
rate functionsI7(-) and I7(-) there). Note that finite-state SU" M2 ¢; (t) does not converge tp;. This is precisely

irreducible Markov chains also satisfy a sample-path farg € dlffe_rence_ betwee_n Buid sample path (FSP:)n(_j afluid
deviations principle [17, Exercise 5.1.27]. Hence, ouwulitss imit, which will be _defm_ed shor_tly. Th_|rd, noj[e that_ln both (6)
are valid even if we assume that the channel stéater), and (7)_we scale time ".”?a”y I This scaling 'S |mportant
does not behave in dr.d. fashion from time-slot to time-slot ' obtain the Ia.rge—dgwanons decax rate. Eor |nstaqcme|f
but behaves according to a Markov chain. Similarly, we cayere to scale time differently than linearly i, e.g., if we

also assume that each arrival procei$gr),i — 1,..., N, k — were to replace the upper limits of the summationsBAT
’ L or VBT, as B — oo the corresponding expressions will

1,..., K, evolves over time-slots according to a Markov chair. h eith 0 with hiah babilitv. Thus. th
The proof of Theorem 4 in Section V will have to be modifiedPProach eitheso or u:wi “very 19N probabiiity. us,” ey
gl not correspond to the “most likely path to overflow” from

since now the evolution of the queue depends not only on e i int of vi 5o the di . th
current state of the queue but also on the underlying state?ofieca.y'ra € point ot view ,(,S.ee aiso the discussions on the
ost likely path to overflow” in Section IV-A2).

the channel and arrival processes. Please see the beg'un‘ninggnIt i -k that th led ch | stat q
the Appendix for details. is well-known that the scaled channel state process an

the scaled arrival process satisfy large-deviations fpies
(LDPs). First, we describe the LDP for the scaled channel
state process. For any = [¢;,j = 1,..,5] > 0 and

In this section we will introduce some large-deviationg~s : Y s b;
. ¢; = 1, defineH =>"_, ¢;log L. (Here we
preliminaries that are used in the rest of the paper, whi%J_1 0 (¢l17) j=1 ¢slo8 L (

. - . e the convention thatlog0 = 0.) Let ®4[0, 7] denote the
include sample-path large deviations of the channel ariggrr space of functionsi(t) on [0, 7] that satisfy the following
processes, fluid sample paths, and fluid limits. :

conditions:3(t) is component-wise non-decreasing ©On7],

o _ §(0) = 0, and Zle sj(t) = t for all ¢t. Let this space be

A. Large Deviations of Channel and Arrival Processes equipped with the essential supremum norm [17, p176, p352],
For a fixed B, define the scaled channel state process addnoted here by| - |2 . The sequence of scaled channel-

the scaled arrival process on the time interval [0, 7] as state processes® = (55(t),t € [0,T]) is known to satisfy a

sample-path large deviations principle [17, p176] wittg&r

IIl. PRELIMINARIES

Bt

sf(t) — éz ()= (6) deviations rate-functiod? (s) given by:
7=0 T d
b 1) = [ (Ga0ls) a
B = 53k ™) o\t
7=0

if s € ®,[0,7] is absolutely continuous, anff'(s) = +oc
fort = %, m = 0,..,[BT], and by linear interpolation otherwise. (Note tha%g’(t) is well defined almost everywhere
otherwise. The parametds is a scaling factor: in (6) and on|[0,7] whens = (5(t),t € [0,T]) is absolutely continuous.)
(7) we have compressed both time and magnitudeBbyfo Such a large-deviations principle means that, for any'set
see this, note that (6) and (7) are of the fo%’rf(Bt). trajectories in®,[0, 7], the probability that the sequence of
The quantitstB(t) can be interpreted as the sum of thecaled channel state processésfall into I' must satisfy
(scaled) time in[0,¢] that the system is in channel state

: 1
It is easy to check thaEf:1 sP(t) =t forall t e [0,T). — inf I7(s) < liminf — log P[s® € T (8)
B B B B i B sele B—oo B
Let 57(t) = [sy (t),...s5(t)]. Further, let¢ (t) = 557 (t). 1
(Note again that we use right-derivatives, and that thetrigh < limsup — logP[s” € T < —inf I (s),
derivative ofs?(¢) is well defined almost everywhere ¢ 7’| Byeo sel
except whent = m/B for some integenn.) Let $(t) = wherel’ andT denote the interior and closure, respectively,

[P (1), ..., ¥B (1)]. Note thatzf:1 ¢P(t) = 1 for almost all of the setl. In addition, if I" is a continuity set [17, p5],



equality is achieved and we then have,

— T
-

LS ©

1
B log P[s? €T

Next, we describe the LDP for the scaled arrival process.

We need to first define a few terms. Define
Li(f) = sup {0 — log Blexp(647 (0))]} .

Note that this form of rate-function, i.e., as the Legendnas-
form of the cumulant generating functidog E[exp(6 A% (0)],
is standard in large-deviations theory [17, p176]. In gaitr,
we have LF(f) > 0 for all f, and L¥(f) = 0 when
f =E[A*0)]. Foranyf = [fFi=1,..,N,k =1,.... K],
let L(f) = SN, ST | LE(fF). Further, letd,[0,T] be the
space of component-wise non-decreasing functiéfi$ on

[0, T] with @(0) = 0. Let this space also be equipped with thé%a
essential supremum norm [17, p176, p352], denoted here by
||-]|Z . Since the arrivalA¥ (¢)] arei.i.d. in time, the sequence

of scaled arrival-processes® = (@?(t),t € [0,7]) also
satisfies a sample-path large-deviations principle [176p1
with large-deviations rate-functioff (a) given as follows:

IT(a) = /OTL <%5(t)> dt,

if a € ®,[0,7] is absolutely continuous, antf (a) = +oc
otherwise. (Note thag a(t)
on[0,T] whena = (d(t),t € [0,T])

IT(.) as well.

Remark:The large-deviations rate-function$(-) and’” (-
characterize how rare the occurrence of trajectarfeanda®”
are, respectively. Note thdf (s) > 0 for all trajectoriess and
IT(a) > 0 for all trajectoriesa. The larger the value of’'(s)
is, the further the “empirical probability distributionl%s”(t)
deviates from the underlying probability distributiphHence,

scaled backlog process® = (#2(t),t € [0,T)) is related to
the scaled channel-state proce$s= (52(t),t € [0,T]) and
the scaled arrival process® = (aZ(t),t € [0,T]) by

z; P (t+1/B) — 2" (1)

1/B (11)
_ e ) —af Pt - 5)
1/B
S B 5 )
O () — sP(t — %
=N RaBl (. BE" (1) [SJ” 55 ( B)]’
j 1/B
j=11l=1
for i ¢ DF, t = 2, m = 1,..,[BT] and by linear

interpolation otherwise. Thus, given arfy and any initial
condition 22 (0), Equation (11) defines a mapping from the
led channel-state proceg$ and the scaled arrival process
to the scaled backlog proces® over the time-interval
[0777].

As B — oo, take any sequence ef anda®” (which may
come fromdifferent sample paths). They map to a sequence
of scaled backlog processa®. Note thats®?, a? and x”
are all Lipschitz-continuous. Hence, for any such sequence
(sB,aP,xP), there must exist a subsequence that converges to
a limiting procesgs, a, x) uniformly over compact intervals.
We define any such limiting process as-laid Sample Path
or an FSP, which we denote &s a, x)r, where the subscript

is well-defined almost everywheredenotes the ending tim&. Such an FSP often satisfies the

is absolutely continuous.) following differential equation obtained by letting — oo on

A similar interpretation as in Equations (8) and (9) holds fQEquation (12):

L

S
(t) = %af(t) — Z %Sj(f) Z Rileéc(ja f(t)) (12)
j=1

=1

d
ar’

wheree! (4, Z(t)) is some appropriately-chosen limiting value
of EF(j, B&B(t)) (an example is given later in Equation
(58)). In the rest of the paper, we sometimes denote FSPs

it is less likely that trajectorg will occur. Likewise, the larger as(s,a, x), i.e., without the time subscriff. In doing so, we
the value ofI1'(a) is, the further the “empirical arrival rate” mean that there is some finite tinfé such that(s, a, x)7 is

fF deviates from the mean arrival ratg. Equation (9) reflects an FSP.

the well-known large-deviations philosophy that “rare rege
occur in the most-likely way.” Precisely, wheh is large, the
probability that the scaled channel-state proegédalls into

a setl’ is determined by the trajectory in that is most likely
to occur, i.e., with the smallest’ (s).

C. Fluid Limits

Related to the notion of fluid-sample-paths is the notion
of fluid limits [18], [19]. Take the scaled queue-evolution
equation (11), and take a sequence (ef,a”,x?) with
_ B — +oco. For a large class of dynamic systems, one can
B. Fluid Sample Path show thatwith probability 1, there must exist a subsequence

Similar to the scaling used in (6) and (7), define the scalgg?» a®» xB-) such thats®~(t) — pt,a’(t) — At and
backlog process as, #Bn(t) — #(t) uniformly over compact intervals. Any such
1 limit Z(¢) is called thefluid limit of the system [18]. This fluid

w P (1) = EXik(Bt)v (10)  limit can often be written in the form
. . . S L
fort = 2, m = 0,..,[BT], and by linear interpolation d . & bre o
i B PR —a(t) = \¥ — : i t)). 13
otherwise. LetzB(t) = [xf"B(t),i =1,.,.Nk=1,..,K] dtIZ( J=A ij ZRlel (,#(®)) (13)

j=1 I=1

Again, note that for any fixed’, by taking B — oo (see
below) we will in fact look at the infinite-time behavior of¢h whereef(j, #(t)) is some appropriate limit of}* (G, X (t)).
original backlog procesg(r) asT — oo. Remark: Readers may note the similarity between Equa-
We define the notion of &luid Sample Path(FSP). Note tion (13) and Equation (12). We now briefly comment on the
that according to (1), given an initial condition ai¥(0), the difference between a fluid limit in (13) and a fluid sample



path (FSP) in (12). In essence, a fluid limit is a fluid sampl&. A List of Main Assumptions and Results

path with 5(t) = 7 and ga(t) = A for all ¢, which is 1) Main AssumptionsThe first set of assumptions basically
why in Equation (13\f andp; replaceg;af(t) and §s;(t), assume that the system has a Lyapunov function with negative
respectively, from (12). This is the case because the flmd li gyift, and thus must be stable. Note that these assumptions
is the almost surelimit of the scaled process, and hence @re mild because most wireless control algorithms that can
“Law of Large Numbers” type of argument can be invokedychieve provable capacity regions have well-known Lyaguno
In other words, the fluid limit dynamics can be viewed as thgnctions.

meanbehavior of the system. In contrast, for an FSP we are Assumption 1:For the system being studied, there exists a
interested in rare events, and hence the valueg@ft) and | yapunov functionV’(7), defined forz > 0, that satisfies the

—

(t) can deviate from their mean values. following:
Readers may also note that the definitions of the scale D) v
processes and the FSP are both over a finite time horizo )V
[0,7], and we allow them to start from some given initial ©) V
conditionz?(0). This formulation may seem contradictory to )
our initial goal of studying thetationaryoverflow probability
of X (co). It turns out that such constructions are common(e)
in sample-path large-deviations theory for studying stedry
overflow probabilities (see [23, Chapter 6] and [13]). Such a
sample-path LDP analysis typically takes the following two |V (%) — V(Z)| < L]|Z1 — 22
steps. In the first step, for a finité, we start the system ¢
empty at time), and study the probability thaf (BT") exceeds ®
the thresholdB. We will find the large-deviations decay rate o
of this overflow probability whenB — oo (see Proposi- system model). For all fluid limitx,
tions 1 and 2 in Section V-A). Note that the corresponding d. A [OV T gz o
scaled version of the stochastic processéss? andx” will Ev(x(t)) - (%) = @) @14
be over a finite interval0, 7] as we defined earlier. Then, in
the second step, we increageand take the infimum of the
decay-rate over all’ (see Theorems 3 and 4 in Secton V-B).

d
ES

(Z) is a continuous function af.

(Z) >0 for all Z and V(&) = 0 if and only if Z = 0.
(Z) = oo if ||Z]| = 0.

min z>1 V(¥) > 1. Further, there exists a numbér
such thatmaxHiHSl V(f) < é

For anyB > 0, there exists a constadtthat may depend
on B, such that for any|#|| < B and||Zz|| < B,

Either of the following holds (for a fixed arrival rate
and a fixed channel state distributiprassumed in the

for almost allt such thatl’(#(¢)) > 0, where0 < o < 1
andn is a positive constant. Or, for all fluid limits,

The intuition that this two-step process may work is as fefo d ov\ " dz

. . = . - A 4 €
For any fixedB, the largerT is, the lessX (BT') will depend V@) = 5=) =0 (15)
on the initial condition at time) (provided that the system . )
is stable). Hence, by taking — co, we hope to capture the for almost all such thatV (Z(t)) > 0, wherer) is a
stationary overflow probability ok (cc). However, we caution positive constant.

that it requires additional technical conditions and staps Remark:Parts (a)-(c) and (f) of the assumption are typical
order to establish this intuition rigorously. For examplehe when one uses Lyapunov functions to establish stability.
system was not stable, such passing of the liffiit> oo Although Parts (d) and (e) are not standard, with a proper
would not produce the right results (see the example at thealing of the Lyapunov function they will hold for many
beginning of Section V-B). Technically speaking, a switchyapunov functions that have been used for wireless sys-
of limit is involved here: To study the stationary overflonfems. Specifically, Part (d) holds (after proper scalingewh
probability, we need to takd — oo first, and then study maxz<c V(%) is upper bounded for some constait> 0,

the asymptotic decay rate whe® — oo; In contrast, the and Part (e) holds when the Lyapunov function has bounded
above two-step process takés — oo first for a finite 77, gradients in any finite set. To see how these conditions imply
and then takel' — oco. In order to prove that the secondthe stability of the fluid limit, note that starting from anyitial
step is indeed correct, we need to use the Freidlin-Wentz&(0) with |[Z(0)|| = 1, we must have|V (#(0))|| < C from
theory (see [23, Chapter 6] and [13]), which is accomplishdtfrt (d) of the assumption. Then, using the drift conditijn (
by the (rather technical) proof of Theorem 4 in the Appendixve can find a value of” such that for all fluid limits with
Roughly speaking, the key reasons that the argument hatds @F (Z(0))|| < C, we must haveV (#(T)) = 0. Using Part
because (i) the arrivals, the channel, and the service aates (), this then implies tha#(7") = 0. Hence, the fluid limit

all assumed to be bounded, and (i) the system is assumed tdslel of the system is stable. By [18], [19], it implies that
stable. We refer interested readers to more detailed dismss the original system is positive Harris recurrent. Note it

at the beginning of Section V-B and the Appendix. two drift conditions in (14) and (]175) are in fact equivaleffit.
V(-) satisfies (14), thed/ () = L—2) satisfies (15).
IV. MAIN RESULTS AND IMPLICATIONS Remark: For part (f) we would like to point out a small

For the convenience to the readers, in this section we It important difference between Lyapunov functions fa th
our main results along with the assumptions that are negessariginal discrete-time systems and Lyapunov functions for
for the results to hold. We then discuss the applications fiid-limit models. In part (f), we state the negative-diaft-
these main results. The detailed proofs will be presented Samption using Lyapunov functions for the fluid-limit model
Sections V-VII. In the literature, e.g. [1], [20], the negative-drift propeis



often established through a Lyapunov function for the oiadi
discrete-time system. Extra care may be required to prove

2) A General Lower Bound on the Decay-Rate of the
Queue-Overflow Probabilitytn Theorems 3 and 4 (which will

negative-drift property for the fluid limit as needed by parfbe shown in Section V), under the assumption that theresexist

(f). In the example in Section VIII, we will illustrate how to
establish part (f).

a Lyapunov functionV () that satisfies Assumptions 1 and
2, we establish an upper bound on the overflow probabilities

The second set of assumptions, which slightly strengthed’d hence a lower bound on their large deviations decay
Assumption 1, is needed to establish the large deviationsrete. The bound is expressed in terms of a multi-dimensional

the stationary overflow probability (in particular, the -
Wentzell construction in the Appendix.)

Assumption 2:If the Lyapunov functiorV/(-) satisfies (14),
then we further assume that

(a) There existg > 0 such that for all FSR, a,x)r and
for all time ¢ such that// (£(t)) > 0, if || 5(¢) —pl| < €
and|| 4a(t) — X|| < e, the following holds:

d

ZVI(E() < —JV(E(W), (16)

where0 < o < 1 andn > 0 are the same constants as

in (14).

For anyd > 0, there existsM; > 0 such that for all
FSRs,a,x)r and for all timet such thatV (Z(¢)) > 0,
if ||-45(t) —p|| > 6 or || La(t) — X|| > 6, the following
holds,

(b)

d
—V

V(@) < MLV (F(1)).

17)
On the other hand, if the Lyapunov functiéf(-) satisfies
(15), then we further assume that

(a) There existg > 0 such that for all FSR, a,x)r and
for all time ¢ such thati/ (#(t)) > 0, if ||£5(t) —pl| <€
and||4£d(t) — A|| < e, the following holds:

do i n

V(ED) < -3, (18)
wheren > 0 is the same constant as in (15).

(b) For anydé > 0, there existsM; > 0 such that for all
FSRs,a,x)r and for all timet such thatV (Z(¢)) > 0,
if ||-45(t) —p|| > 6 or || La(t) — X|| > 6, the following
holds,

d
—V

P (@(t)) < M.

(19)

Remark:We will need these assumptions when we study t 41

large-deviations properties of the stationary queueftoxer
probability. Essentially, they imply that the drift behavdcely
not only for the fluid limits but also for FSPSpecifically,

(a) even if we perturbed the channel distribution and the

distribution of the arrival process slightly frory, X), the
drift of the Lyapunov function still remains negative; (H) i

the perturbation is large, although the drift could become

positive, it is upper-bounded by a constaiif (or this constant

multiplied by V*(Z(¢))). Again, note that the two parts of

Assumption 2 are also equivalent. ¥(-) satisfies the first

part of the assumption, theti(z) = V]:f) satisfies the

calculus-of-variations problem of finding the minimum-tos
to-overflow. Recall thafX (o) denotes the stationary distribu-
tion of the stochastic process(-).

Theorem 3Assume that there exists a Lyapunov functiog)

that satisfies Assumptions 1 and 2. Then the following holds,

1 .
lim sup vl log P[|| X (00)/B]| > 1]

B—oc0

< inf /T i ( Lawns) + o (Law )| a
- Tzlol,ls,a,x 0 dts p dta
subjectto  (s,a,x)r is an FSP

2(0) = 0, [[Z(T)[| = 1. (20)

Note that the right-hand-side of (20) takes the infimum not
only over all FSP’s(s, a, x)r, but also over alll’ > 0.

The result again reflects the large deviations philosophy
that “rare events occur in the most likely way”. The FSP
that attains the infimum on the right-hand-side of (20) (if
such an FSP exists) is usually called the “most-likely path
to overflow,” and the corresponding infimum is called the
“minimum cost to overflow.” Theorem 3 states that the decay-
rate of the queue-overflow probability is lower bounded by
the cost of the most-likely path to overflow. In the standard
large-deviations literature, a technique called the “cactton
principle” is often used to establish a result like this. Hoer,
to apply the contraction principle one must first establisdt t
the mapping froms(¢) and d(t) to Z(t) is continuous with
respect to properly-chosen topologies for the correspandi
functional spaces. Unfortunately, for the general modéls o
wireless networks and control algorithms that we are irstect
in, it seems difficult to establish the required continuitire
significance of Theorem 3 is that, as far as a lower bound on
the decay-rate is concerned, one does not even need coyntinui
of the above mapping. We note that Theorem 3 is comparable
to Theorem 7.1 of [13] for a refined LDP.

The next theorem is similar to Theorem 3 except that the
overflow metric is changed fromi - || to V().
pdheorem 4Assume that there exists a Lyapunov functiof)
that satisfies both Assumption 1 and Assumption 2. Then the
following holds,

lim sup % log P[V (X (¢)/B) > 1]

B—oc0

< inf /T i ( Lawnp) + o (Law )| a
- Tzlol,ls,a,x 0 dts p dta
subjectto  (s,a,x)r is an FSP

#(0) =0,V (#(T)) > 1. (21)

3) A Much Simpler Lower Bound on the Decay Rate of
the Queue Overflow ProbabilityUnfortunately, solving the

latter part. We will provide an example in Section VIII howminimum-cost-to-overflow in (20) and (21) is a difficult miult

these conditions can be easily verified.

dimensional calculus-of-variations problem. The follogi



Theorem 5, which is the first main result of the paper and Under Assumption 3, we will show that
will be shown in Section VI, provides a much simpler lower 1 . .
bound on the large-deviations decay-rate. The key idea is to b = mf —|H(lP)+L(f) (23
use the Lyapunov functiol (&) to map the multi-dimensional T

I . subject to (s,a,x) is an FSP
calculus-of-variations problem with respect) to a one-
dimensional calculus-of-variations problem with respést S;Ch that for some
V(t) = V(Z(t)). Specifically, let Eg(t) =4
d ~
. . . ch(t) =f
lv(’U, w) - s{gi{ H((b”ﬁ) + L(f) V(f(t)) =1
subject to (s,a,x) is an FSP dV(Z(t)) w
such that for some dt '
i,?(t) — 3 The details are provided in Section VI-A. The lower bound
dt 0o is even simpler because, unlike the calculus-of-variation
d_ .\ 7 problems in (20) and (21) where one must search for the path
dt (=1 t i ini [
o overflow with theglobal minimum cost, infy, we only
V(Z(t)) =v focus on theocal cost and the dynamics of the path at some
iv(f(t)) o arbitrary timet.
dt 4) A Condition for the Minimum-Cost-to-Overflow to be

Exact: Our second set of main results concern with the
conditions under which the above lower bounds become tight.
Note that many scheduling and routing policies are designed
to minimize the drift of the respective Lyapunov functios, a
stated in the following assumption. For arfy¢ and é, let

Note that the quantityy (v, w) can be viewed as the smalles
local cost (among all FSPs) for the Lyapunov functidit) =
V(Z(t)) to pass the valu¥ (t) = v with the slopew at a given
time ¢. Readers can refer to Section VI for details.

L
kE_ kNS ) ok ;
The following one-dimensional calculus-of-variationslpr 0 = fi =2 5-1 4 z; Riep;. Define
lem then finds a lower bound on the minimum cost ¥o(t)
to overflow. Define

—

V(r ez, ¢, ) 2 V(E+rh). (24)

Then 2V (r,élZ, 6, f) can be viewed as the drift of the

) T d Lyapunov function frorTrﬁ:O(t) = & if the service-rate vector

0o = %r;fo /0 (V) Ev(t))dt is chosen ag, conditioned on that the channel state process
subjectto  V(¢) is continuous and sgtisfies%g(t) = ¢ and the arrival process satisfigsi(t) =

almost-everywhere differentiable f. Recall that throughout this paper, we use right-deriegtiv

’ unless otherwise stated.
V(0) =0andV(T) > 1. (22)  Assumption 4:For any FSBs, a, x), the following holds for
all ¢:
d_ . . 0 - U TN
Theorem 5Assume that there exists a Lyapunov functiof) EV(w(t)) = n - V(7. €lZ(t), ¢(1), f(1))

ok, N OT
that satisfies Assumption 1 and Assumption 2. Tli#gnin feconve;)

(22) is a lower bound on the decay-rate of the queue-overfl
probability. In other words,

7=0
. ) (25)
Whered(t) = L5(¢), ft) = La(t).

This assumption states that at any paiof an FSPs, a, x),
the scheduling and routing algorithm minimizes the driftted
Lyapunov function over all possible decisions.

In addition, we assume the following for the Lyapunov
function.

Assumption 5:V (Z) is increasing in each component

Assumption 6:V (Zy + ¥2) < V(1) + V(¥2) for any two
vectorsz; > 0 and @y > 0,
, o Note that Assumptions 3 and 6 combined imply that the
The lower boundj, in (22) is simpler than (21) because yanynov functionV/(#) almost behaves as a norm except

we now only need to solve ane-dimensionatalculus-of- 4t it may not be defined for negative values of the variable
variations problem. This lower bound can be further simgudifi

under the following scale-linearity assumption on the Lya-
punov function.

1 S
lim sup v log P[|| X (00)/B|| > 1]

B—oo

< limsup é log P[V(X (0)/B) = 1] < 0.

B—oo

In the next main result Theorem 8 (which will be shown in

Section VII), we prove that if the Lyapunov functidn(-) sat-
Assumption 3:The Lyapunov functionV (-) is linear in isfies Assumptions 1, 2, 3, 4, 5 and 6, then the scheduling and

scale, i.e..V(cZ) = ¢V (Z) for all ¢ > 0. routing algorithm achieves the best possible large-dieviat



decay rate of the overflow probabilif§(V (X (c0)) > B) as Note that this equation is a simplified version of (1).
B — oo, and the lower bound, is tight. When the channel state js let r;; denote the capacity of
Theorem 8 Suppose that a scheduling and routing policlink [ if it is selected for transmission. Then for each state
satisfies Assumptions 1, 2, 3, 4, 5 and 6. Then under thige service-rate vectd#;(j, X),! = 1, ..., L] must belong to
policy the value off, (given in (23)) is the exact decay-ratethe set€; given by
of the overflow probability according to the Lyapunov fuocti
metric, i.e., E =A{ltim;,l=1,...,L]: ; € [0,1]
ma %logP[V()?(oo)/B) > 1] = 6, (26) for all I, and only one element df;] is non-zerg.

—00

Further, this drift-minimizing policy (according to Assym Max-Weight Scheduling Policy: One important policy for

tion 4) is optimal in maximizing this decay-rate. In oththOOSingEl(j’X) (often referred to as thmgx-weightpolicy
words, for any policyr we must have in the literature [1], [21]), is to serve the linksuch that the
' weighted queue-length;; X; is the largest among all users
lim inf 1 log P™[V (X (c0)/B) > 1] > —6,, (27) (ties can be broken arbitrarily). Lét = argmax; r;; X;. The
B~ B policy can then be written as:
whereP™ denote the stationary distribution under the policy
T B, X) { min{ry, X;}, i L= 10"
Remark:Although the conclusion of Theorem 8 may seem n 0, otherwise,
very intuitive, we emphasize that it is not an obvious resu
Minimizing the drift of the Lyapunov function at a given
time instantt is a local and myopic property. Minimizing . )
the probability that the Lyapunov function overflows is 56t of offered loads [21]. Further, if we instead chodse=

global property. It is not uncommon for a myopic policy to? ™% 71; X[, a > 0 (note that the queue length is raised
only attain suboptimal global performance. Hence, the fa@[ the powerc), the corresponding policy (referred to as the
i ' algorithms in [22]) is also throughput-optimal.

that Theorem 8 holds is in fact quite remarkable. A maifi” _ .
contribution of this paper is to quantify the precise coiogis |t Can beé shown that any-algorithm @ > 0) minimizes
for Theorem 8 to hold. As readers can see from Assumptioﬂ? drift of the Lyapunov functiof, (X) = [|X[[a+1 at every

3 and 6, the shape of the Lyapunov function is very importar1€ in @1 FSP, wherg- ||, denotes thé¢a +1)-norm [22].
Using Theorem 8, we can immediately draw the conclusion

o ] that, for anya > 0, the a-algorithm is large-deviations
B. Applications of the Main Results decay-rate optimal for minimizing the overflow probability
Before we present the proofs of these results, we wWoulR{(|| X (co)||as1 > B) (As a special case, the standard max-
like to use some examples to illustrate their significance weight algorithm, i.e.« = 1, is large-deviations decay-rate
applications. We will focus on Theorem 8 since it is the mosiptimal for the overflow probabilityP (|| X (c0)||2 > B)). We
convenient result to use. can see how easily Theorem 8 can be used to analyze large-
1) Analysis: Firstly, Theorem 8 can be very useful fordeviations optimality of known algorithms. In Section VI
analyzing the overflow probabilities of known schedulingve will provide another detailed example where we show
and routing algorithms because many known scheduling atiét the max-weight algorithm is large deviations decdg-ra
routing algorithms are designed by minimizing the drift of @ptimal in terms of the overflow probability of the max-queue
Lyapunov function (in the fluid limit). For example, conside (P (||X (c0)||oc > B)) when we consider a special case with
a single cell in a cellular network or an access-point based-off channels. We will further show how to use this result
network. Each user communicates directly with the base characterize the effective capacity of the system.
station. Further, only one user can be selected for sentice aTheorem 8 is not only useful for single-hop networks, it also
a time. Let us focus on the downlink from the base-station tpplies to multihop networks. Note that unlike the previous
the users (the uplink can be treated analogously). Sinedghi cellular example where only one user/link can be selected at
a single-hop model, to map to the system model in Sectiondhch time, in multi-hop wireless networks it is often poksib
we can identify each link with a particular user/class, andto activate multiple links simultaneously. Depending oe th
hence we can drop the indéxfor traffic class. In other words, interference and transmission model, the activated linkstm
we use A;(7) to denote the packets generated for the usestisfy certain interference constraints, and their retgsend
associated with linK at time slotr, and useX;(7) to denote on the power and interference levels. We give two speci@sas
the backlog of link/ at time 7. Let El(j,X) be the service of the model in Section II.
offered to link/ when the channel state jsand the global  Case 1:Assume that the scheduling policy can decide
backlog isX = [X;,1 =1, ..., L]. Imposing the constraint thatwhether to activate or inactivate a link, but cannot chamge t
Ei(j,X) < Xj, the evolution of the queue-length is then giveransmission power of a link. Let; = 1 if link  is activated,
by andm, = 0, otherwise. Let? = [m;,l = 1,..,L], and let
s IT denote the set of feasible activation vectatsLet r;; ()
Xi(t4+1) = Xz(T)-FAz(T)—Z 1{0(7):j}El(j,X(T)). (28) denote the rate of link if the activation vectorr is applied
= at statej. Then at each channel statethe set€; of feasible

II[t is well-known that this class of policies are throughput-
optimal, i.e., they can stabilize the system under the krge
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service-rate vectors can be written as: that we need. The detailed example in Section VIl falls

B B _ . into this category. Secondly, even ff{-) is not a Lyapunov

€ ={lny,1=1,....L]: there emst&r-e 1 function of the system, we can use other Lyapunov functions
such thatry; < r;(7) for all links 1}.(29) to approximate it. Then the corresponding drift-minimgin

Case 2:Assume that the scheduling policy can decide bof{90rithm is approximately the algorithm that we need. For
the activation pattern and the power assignmentsrLéenote example, suppose that we are interested in the overflow prob-

the power assignment of link 7, — 0 if the link is not ability P(max; X; > B) in the cellular downlink gxample in
activated. Let? = [m, = 1,..., L], and letII denote the set Section IV-B1. For non-ON-OFF modelsjax; X; is usually

of feasible power-assignment vectatsThen at each channel"0t @ Lyapunov_function of the system. We can instead

statej, each vector? can again be mapped to a rate-vectdfS€ Va(X) = [[X[[a+1 with a large o to approximate it.
[ri;(7),1 = 1, ..., L]. The set; of feasible service-rate vectorsSince each of thev-algorithms is large-deviations decay-rate
can also be written as in (29). optimal for the overflow probability? (|| X||.+1 > B), and

The Back-Pressure Algorithm: For both cases, the [ X[|at1 — max; X; asa — oo, we can draw the conclusion
scheduling and routing algorithm proposed in [1], [20], ahi that asa — oo, the a-algorithm asymptotically achieves the
is often referred to as the “back-pressure” algorithm, igvin optimal large-deviations decay-rate of the overflow proalitgb

to be throughput-optimal. At each time-siot for each link P (max; X; > B). This conclusion recovers the result in [22],
1, first find the classkf(r) with the maximum differential where we also demonstrate how to use the insight to develop

backlog, i.e., algorithms with low overflow-probablilities in praptice.rﬁl!y,
i i the above methodology also applies to multi-hop wireless
ki (1) = argglaX(Xb(z)(T) = Xy (7). networks. We refer the readers to our more recent work [14],

[15] for further detalils.
Let the corresponding differential backlog be

kl*(f)(r) - Xkl*(”(r)}. V. A GENERAL LOWERBOUND ON THE DECAY-RATE OF

b(1) e(l)
L THE QUEUE-OVERFLOW PROBABILITY
Then, when the channel state at timeis j, compute the Q

schedulet; (7) that maximizes the sum of the rates weighted In this section, we first prove Theorems 3 and 4, which
by w;(7), I.e., provide a lower bound(\) on the decay-rate of the queue-
overflow probability as defined in (5). Prior work [10], [11]
has derived the decay-rate of the queue-overflow probgh#it

. . L . the cost of the most-likely-path to overflow. As we discussed
The scheduling and routing decision is then given by the gqion IV-A, the approach there requires that the limgjti

following: if the channel state at time-slotis j, mapping from the scaled channel-state process to the scaled

wy(7) = max{0, X

75 (1) = argmax w; (7)1 (7).

J
well

. Sche_dullnguse th_e activation vectat; (7). ~ gueue-backlog process be unique and continuous with respec
« Routing:on each linkl, only serve the packets belongingg g suitably chosen topological space, so that the cordract
to classk; (7). principle [17, p131] can be invoked to establish a sample-
In other words, the service rate vector is given by path LDP for the queue-backlog process. However, for génera

[N wireless systems, the mapping from the channel-state gsoce
Br(j, X) = to the - i
. i . , . gueue-backlog process may not be continuous, and
{ min{ Xy (1), 75 (75 (1))}, if k= ki (7) hence the approach in [10], [11] can not be applied. Nonethe-
0 otherwise less, in this section we show that, for a large class of wésele
It can be shown that the Back-Pressure algorithm minimizegstems, the cost of the most-likely-path to overflow turas o
the drift of the Lyapunov functioW (&) = ||Z||, at every time tO be a lower bound on the decay-rate of the queue-overflow
in an FSP [14]. Hence, using Theorem 8, we can immediatdlyobability. Specifically, let
draw the conclusion that the Back-Pressure algorithm gelar  , -
deviations decay-rate optimal for the overflow probability L(A) =

= . . T
P(||X(c0)|]z > B). Similarly, if we replaceX} by (XF)?, inf / [H (ié’(t)”ﬁ) s (ic‘i(t))] it
a > 0, in the definition of the differential backlog, the T>0,s,a,% 0 dt dt
modified Back-Pressure algorithm with parameteis large- subjectto  (s,a,x)r is an FSP
deviations decay-rate optimal for the overflow probability #(0) = 0,|[Z(T)|| > 1. (30)

P(||X(c0)[lat1 = B).

2) Design: Theorem 8 is not only useful for analysis,The FSP that attains the infimum on the right-hand-side of
it is also useful for designing new large-deviations optim430), if such an FSP exists, is usually called the “mosthike
scheduling algorithms. Suppose that we are interested path to overflow.” Our goal in this section to establish that
minimizing the probability thafP(f(X') > B). First, if the I{J(X) satisfies (5), i.e., it is a lower-bound on the decay rate
function f(-) can be shown to be a Lyapunov function obf the stationary queue-overflow probability. Recall thatts
the system, and we can find an algorithm that minimizes igslower bound implies that we can then LBQ)(—BIé(X))
drift at every time in fluid-sample-paths, then this aldurit as an (approximate) upper bound on the overflow probability

is exactly the large-deviations decay-rate optimal atgati P[|| X (c0)|| > B].
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We will derive the result in two steps. First, in Section V-AProof: Note thatx? is related tos” and a” according to
we consider a system that starts at titheand derive a lower Equation (11). LefC” denote the set of alls”,a”) on the
bound on the decay rate of the overflow probability at timeterval [0, 7] such that there exist§y, € X with which
BT. Then, in Section V-B we lefl’ — oo and derive a (s”,a”) maps to a backlog process” that starts from
lower bound for the stationary distribution. In the litenat, #”(0) = %, and satisfiex”? € T. Then for everyi, € X,
such a limiting argument is usually carried out using the so- BT -
called Freidlin-Wentzell theory (see [23, Chapter 6] angf]1 P [x” e T} < P[(s”,a") e T7].

Often, to apply the Freidlin-Wentzell theory, one will needNote that the right-hand-side does not depend:pnFurther,
to impose additional restrictions on the system model [2f&r any fixedn, I'5 ¢ U%O,:nfB’ when B > n. Hence, we
p133]. One of our contributions in this section is to provale have, for any fixed,

fairly general condition for this result to hold. As readend

1
see soon, our condition essentially requires that thergtseai lim sup — log sup P?(;T[XB eT]
Lyapunov function that satisfies Assumptions 1 and 2, which B—oc To€X )
are introduced in Section IV-A. < liglsup — log P[(s?,a®) e UoBo,:nfB’]_
—00

Using the sample-path LDP & anda®” (see (8)) and the

fact that they are independent, we have
As a step towards proving the result on the stationary over-

A. Bounds for a Finite Time System

flow probability, we first consider the probability of ovenrito lim sup % log P[(s?,a?) ¢ UOB‘%:nfB']
at time BT, P(||X(BT)|| > B), for a system that starts B;“’O

from X (0) = 0. Note that according to the transformation ~ _ ¢ / [H (ig(t)llﬁ) + L <id(t)>] dt
#B(t) = £X(Bt), we have#?(0) = 0 and the above ~ (sa) 0 dt dt ’
overflow probability can be rewritten aR[||z2(T)|| > 1]. subjectto (s, a) € m

Let Pf’T denote the probability distribution conditioned on _ .
#8(0) = 0. We have the following bound on the probabilitywhereuss_, I'? denotes the closure of the sefy_, I'Z. Note

of overflow. that this inequality holds for allh. Further, since the set
Proposition 1: Fix 7' > 0. The following holds, uss_ T'B is decreasing im, the right-hand-side is decreasing
1 in n as well. Therefore, we can tighten the bound by letting
lim sup — log Pf’T[HfB (]| > 1] n — oo as follows. To simplify notation, for anfs, a), define
Boo B its cost by

A R E ) EO HINE AT

subjectto  (s,a,x)p is an FSP

#(0) = 0 and||Z(T)|| > 1. (31) We then have,
. 1 BT B
Instead of proving Proposition 1, we will prove a general- hgl_f;lop — log ;g{ Py x7 €Tl
ized version in Proposition 2. The extra effort will servefus < _ ;im inf (s, a)
in proving the stationary overflow probability. ~  nooo TS, &)

) . . (sa)euy_,I'7
Fix #,. For the more general version, consider a system

that starts withX (0) = B, at time 0 (i.e., Z8(0) = ).

Let P27 denote the probability distribution conditioned on
#B(0) = %. Let ®,[0,T] denote the space of non-negative .
Lipschitz-continuous functions on the interyal 7], equipped It remains to show that

Let
Y = lim inf Jr(s,a). (33)

nreo (s,a)eus_, I'B

with the essential supremum norm. We can then show the Y > inf Jr(s, a)

following result, which is comparable to Theorem 7.1 of [13] s.a,x

for a refined LDP. subjectto  (s,a,x)p is an FSP
Proposition 2: Fix 7' > 0. Let X denote a closed set in xel.

the N K-dimensional real spacR™V . Let I denote a closed _ _
set of trajectoriesc = (#(1), ¢ < [0,T]) from the topological To see this, note that by (33), there must exist a sequence

spaced, [0, 7] that satisfies?(0) € X. The following holds, ~(Sn>@n),n = 1,2, ... such that
1 Sn,a,) € Ux_ T8 for all n,
lim sup — log sup P?T[XB eI ( ) p=
B—roo Zoex ° and

T : _
d d 1 J S’n.7 an - Y
< — inf / {H (—E(t)||ﬁ> +L <—6(t))} dt A1, 7 (S, 2n)
s,a,x 0 dt dt . . . .
. ) Since boths,, and a, are non-decreasing and Lipschitz-
subjectto  (s,a,x)r is an FSP

continuous, there must exist a further subsequence that con
xel. (32) verges uniformly over compact intervals. Without loss of
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generality, we can abuse notation and denote this subsegueh) the system must be stable and hence the above scenario

also as(s,,a,), and let(s,a) be the corresponding limit. cannot occur.

Then, due to the lower-semicontinuity of the large-dewiati ~ Specifically, we now use the Freidlin-Wentzell theory (see

rate functionJr(-,-) [17, p4], we must have [23, Chapter 6] and [13]) to derive a lower bound on the

decay-rate of the stationary queue-overflow probabilitye T
Jr(s,a) < Y. following are the main results of the section.

We now show that we must then be able to find an Theorem 3:Assume that there exists a Lyapunov function

FSRs, a,x)r with x € I". To see this, note that by definition? () that satisfies Assumptions 1 and 2. Then the following
each (s,,a,) also corresponds to a sequen@g .., a,,m) holds,
such that(s, ;m, an,m) € U¥_, I'B for all m = 1,2,..., and

. 1 =
(Sn.m>an.m) CoOnverges ta(s,,a,) uniformly over compact lim sup B log P[[|X (00)/B]| = 1]

B—oo

intervals. Assign any sequeneg > 0,n = 1,2, ..., such that T d d

lim,, ,. €, = 0. For eachn, we can then find an element < — _inf / H|=350|p)+L|=d))|dt
~B ~B T>0,s,a,x 0 dt dt

(87, a,;~) from the sequencés,, ,,a, ») such that ) )

' o ’ subjectto  (s,a,x)r is an FSP

1527 (t) = Za(B)l oo + 1F2" (1) = Gn (D)l < en, (0) = 0, ||F(T)|| > 1. (34)

and (sF,af») € I'P» for some B, > n. Since the  This theorem provides a result similar to Proposition 1 but
sequencesy, a,) converges tds, a) uniformly over compact now is for the stationary overflow probability. Note thatcsin
intervals, we must have thdg,a’") also converges to Proposition 1 provides a lower bound for a finite time intérva

(s,a) uniformly over compact intervals. Further, since eacfhe infimum in (31) is for a fixed” while the infimum in (34)
(88» aBn) € TP~ there must exists a corresponding backlog taken over alll’ > 0.

n

PVOC%SSEE?; such thatx;» € T'. Take a further subsequence The proof of Theorem 3 is very similar to the proof of
of (s;",a,;") such that the corresponding subsequence Pheorem 4 that follows. Hence, in order to avoid repetition
xB» converges uniformly over compact intervals to a limitingye omit its proof.

backlog process. Then, since the sétis closed, this limiting  Theorem 4:Assume that there exists a Lyapunov function

procesx must also satisfx € I'. Hence(s, a, x)7 is an FSP, /() that satisfies both Assumption 1 and Assumption 2. Then
and it satisfies the constraints used to define the right hided sthe following holds,

of (32). We then have 1
lim sup — log P[V (X (c0)/B) > 1]

Y > Jr(s,a) > inf  Jr(s,a) Booo B
s,a,x
S ] T
subjectto  (s,a,x)r is an FSP < —  inf / H i§(t)||ﬁ + 7 ia(t) dt
. T>0,s,a,x 0 dt dt
' subjectto  (s,a,x)r is an FSP
The result then follows. Q.E.D. #(0) = 0, V(Z(T)) > 1. (35)

Note that the statements of the two theorems are very

By settingX' = {0}, and similar. The difference is that Theorem 3 considers the-over

I={x:4(0)=0and||Z(T)|| > 1}, flow event||X(oo)/B||42 1, whereas Theorem 4 considers
N the overflow eventV (X (c0)/B) > 1. The importance of
we then recover the result of Proposition 1. Theorem 4 will become clear in the later sections. Spedigical
it is needed in the proof of Theorem 8.
B. The Stationary Overflow Probability The proof of Theorem 4 uses the Freidlin-Wentzell Theory.

It is fairly technical and is provided in the Appendix. We
emphasize that Theorems 3 and 4 provide a lower bound on the

then be tempted to IeT" — oo, and claim a lower bound ) .
o . decay-rate of the stationary queue-overflow probabilitgern
on the large-deviations decay-rate of the stationary awerfl )
very general assumptions.

probability P(|| X (c0)|| > B). This argument, however, does
not always hold. For example, consider a queueing system in

which ||X(t)|| grows sub-linearly (e.g.I,IX(t)II = V). For V1. COMBINING LARGE DEVIATIONS WITH LYAPUNOV
any finiteT > 0, the probability of overflovxP(||)?(BT)|| > FUNCTIONS: A MUCH-SIMPLER LOWERBOUND ON THE

Since Propositions 1 and 2 hold for afiy> 0, one may

B) will be 0 for B > T. Hence, the large-deviations DECAY-RATE
decay-rate (asB — oc) for any finite 7' > 0 is oo, i.e., In the previous section, we have derived a lower bound
limp_, o 5 log P T[||#B(T)|| > 1] = —oc. However, since (Theorems 3 and 4) on the decay-rate of the stationary queue-

the system is clearly unstable, the “stationary” overflowtpr overflow probability for a wireless system under fairly geaie
ability is 1, and hence its decay-rate (Bs— o) is 0. Clearly, assumptions. The infimum on the right-hand-side of (34) and
passing limit asl" — oo would not produce the correct large<(35) is often referred to as the “minimum-cost-to-overflow,
deviations decay-rate of the stationary overflow probgbili and the fluid sample path (FSP) that attains the infimum (if
Fortunately, for our system model, due to Assumptions 1 asdch an FSP exists) is referred to as the “most-likely path to
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overflow.” As we discussed in Section IV-A, searching for th& (Z) > 1. For anyv > 0 andw, define
most-likely path to overflow is a multi-dimensional calcsdu A 2 2
of-variations problem, which is unfortunately very difficto by (v, w) = slgf;c H(@llp) + L)

solve. To view this difficulty in another way, suppose now subject to (s,a,x) is an FSP
we want to verify thatd lower-bounds the minimum-cost- such that for some
to-overflow (or, equivalently, the probability of overflovs i _ -
approximately upper bounded byp(—B#) whenB is large). Es(t) =¢
We then need to ensure that d
E@'(t) =f
V(Z(t) =v
T Ay =
/ {H <i§(t)||ﬁ> ) (i”(t))} it>0  (36) a’ )= 40
0 dt dt According to (14) (or (15), correspondingly), for any >

—nV(Z(t)) (or w > —n, correspondingly), the trajectory with
4V (#(t)) = w becomes a “rare” event. The function(v, w)
provides a lower bound on thlecal rate-function[23, p71]

for all FSPS(S’a’.X)T that go froma(0) :.O 0 ||f(.T)|| = 1 for V(Z(t)), i.e., it bounds howarely that, givenV (Z(t)) =
For advanced wireless resource-allocation algorithrres tite v at some timet, the trajectoryV (#(¢)) will move in the

max-weight algorithm [1], the complexity of enumeratingyi o fion %V(f(t)) = w immediately aftert. Note that the

all s_uqh paths soon becomes prohibitive except for SOMtimum in (37) is taken over all possible FSPs such that the
restrictive cases [101-[12]. corresponding trajectory (Z(t)) passes through with slope

In this section, we develop a new technique to addre®s
this difficulty. Our new technique combines the large-déeia ~ For any FSRs, a,x)r, since both the arrival rate and the
lower bound in Theorem 4 with Lyapunov functions to derivéervice rate are bounded, the functigt) must be Lipschitz-
another even-simpler lower-bound on the decay-rate of th@ntinuous. Furtherz(t) must be bounded over any finite
queue-overflow probability. The reason that we seek hdlferval. Hence, due to Part (e) of Assumption 1, the fumctio
from a Lyapunov function approach is actually very simpl& (Z(t)) must also be Lipschitz-continuous over any finite
and intuitive. Note that the above-mentioned difficulty ofnterval, and thus it must be differentiable almost evergreh
evaluating all FSPs is in fact not unique. A similar scenaridsing the definition ofly(-,-), we then have the following
also arises when we want to prove stability of a dynamigequality for any FSB, a,x)r:
system. For example, recall that in the fluid limit approach T d d
[18], [19], in order to show that the fluid limit model of a / H (EE'(t)IIﬁ) +L (Eﬁ(t)) dt (38)
system is stable, we need to show that there exists>a0, T
such that forall fluid limits with ||Z(0)|]| = 1, we must 2/ Iy (V(Z(t)),
have Z(T') = 0. Again, it would have been very difficult if 0
one attempts to evaluate all possible multi-dimensionadi fluLet
limits. The Lyapunov function approach is indeed developed . T d
to address this complexity issue. The basic idea of a Lyapuno o = inf /0 v(V(t), 2V (#))dt
function ap.proach is to map each multi-dimensional pih subjectto  V/(#) is continuous and
to a one-dimensional path'(Z(¢)). Recall from part (d) of . .
Assumption 1 that such a function mapg’(0)|| = 1 to almost-everywhere differentiable,
V(#(0)) < C. By establishing that/((t)) has a negative V(0)=0andV(T) > 1. (39)
drift, we can show that’ (z(t)) must go fromV(#(0)) < C' Note that in (39) we are optimizing over all possible trajec-
to V(Z(T)) = 0, wh_lch then implies thati(T") =0 N tories that the Lyapunov function can take. Hence, we abuse
other words, the key idea of the Lyapunov function approagiation and usé (¢) to represent any continuous and almost-
is this mapping from amulti-dimensionalspace to aone- gy erywhere differentiable function that satisfies the tairsts
dlm(a_n3|onal§pace, which greatly reduces the complexity foXs mentioned above.
proving stability. We then obtain a lower bound for the calculus-of-variations

Can we use a similar Lyapunov function approach to chaffoblem in (35), as stated in the following Theorem. .
acterize the decay-rate of the queue-overflow probability u__'"€orem S:Assume that there exists a Lyapunov function
der wireless resource-allocation algorithms? Indeedpupay ¥ () that satisfies Assumption 1 and Assumption 2. Téeim
functions have been used to solve other calculus-of-vaniat (39) is @ lower bound on the decay-rate of the queue-overflow
problems in the control literature. We next demonstrate hdiebability. In other words,
such an approach can be used to derive an even simpler lower ,. 1 >
bound on the minimum-cost-to-overflow (i.e., the infimum hgl_f;lopﬁlongX(OO)/BH > 1]
given in Theorem 4). Recall that in Assumption 1, part (dg, th
Lyapunov functionV (-) is chosen such thatz|| > 1 implies

d.
ZV(#(t)))dt.

< lim sup % log P[V (X (c0)/B) > 1] < —0. (40)

B—oc0
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[Ix(MII=1

function for stability automatically becomes the suitabja-
punov function for the calculus-of-variations problem.nde,

for any scheduling and routing algorithm that is provably
stable, which usually means that there exists a Lyapunov
function for stability, we may then apply the above tech-
nigues to characterize the queue-overflow probability.theo
words, the difficulty level of characterizing the queuefiosv
probability is reduced to that of a stability problem. Since
(42) is a sufficient condition to (36), we can obtain an upper
bound on the overflow probability, and correspondingly, if a
constraint on the overflow probability is imposed, we obtin
lower bound on the effective capacity region. The hope &f thi

V(T)=1 : . . . :
- o approach is that, if the functioW (-) is appropriately chosen,
we may recover a large fraction of, or even the entire effecti
V(0)=0 capacity region.
d T Time

Fig. 2. Top: The overflow probability[|| X (c0)|| > B] is related to the A. Scale-Linear Lyapunov Functions

most likely path to overflow. Bottom: The technique that wegented maps . . . .
any multi-dimensional pati#(t) to a one-dimensional path (t). In this section, we consider the special case when the Lya-

punov function is linear in scale as defined in Assumption 3
in Section IV-A. In this case, we can show that the solution to
0o in (39) can be further simplified. This is possible because
the functioniy (v, w) turns out to be independent of We
need the following simple lemma.

P[||X (c0)/B|| > 1] < P[V(X(c0)/B) > 1]. Lemma 6:If (s,a,x)r is an FSP, then for any givehe

. S ) [0, 7] and for anyc > 0, there exists another FSB, a, x).r
This proves the first inequality. To show the second ing,ch that

equality, by Theorem 4, we only need to show that, for all

Proof:
First, by Assumption 1, the following is true

FSPs(s,a,x)r that go from#(0) = 0 to V(Z(T)) > 1, the enl — 2z 43
following must hold, dtﬁ( ) i dts( ) ; (43)
T ord, d dam| =2z
/ H(Zst)5) + L ( <=a(t) ) dt = 6. el Ol (44)
T dt o A ]
Using (38), it suffices to show that, for all such FSPs , I(ct) = cE(1), Ei(t) = Ef(t) K (45)
ct t
T
" d
/0 v(V(Z(®)), ZV(@(®))) = bo. (41)  proof: Let §B(t),aB(t),#5(t) be the sequence of scaled

. processes that converge to the FSPa, x)7. Then for each
Note that, for all FSBs, a,x)7 that goes fromi(0) = 0 to B, the *unscaled” processes [i.e., before taking the scaling

of 0y in (39). The result of the Theorem then follow€).E.D. gpg Bi#P(%). Consider the new sequencBcs®c (L),
BeaP¢(£) and BezP¢(). In other words, we are choosing

It is also easy to see that a sufficient condition for all flui@ Sub-sequence from the original “unscaled” sequence.,Then

sample paths to satisfy the constraint (36) is to ensure thaperform the scaling in (6), (7) and (10) again on this sub-
sequence. The corresponding scaled processesggféﬁ),

/T Iy (V(#), iv(t))dt >0 (42) ca”e({) andciPe({). Taking the limit asB — co, we get
0 dt the FSP (s,a,x).r = (c5(L),cd(L),cZ(L)). It is easy to
holds for allone-dimensiongbathsV/ (¢) that go fromV/(0) = verify that this FSP satisfies the conditions in (43), (449 an
0 to V(T) = 1. Again, we have successfully reduced thé45)- QED.

original multi-dimensional calculus-of-variations pteim to

a one-dimensional calculus-of-variations problem. The-on Next we prove that under Assumption 13,(v, w) is inde-
dimensional calculus-of-variations problem in (39) an®)(¥ pendent of.

usually much easier to solve (Fig. 2). Proposition 7: When Assumption 3 holds, the function
Remark:Lyapunov functions have been used in the contr|, (,, ) is independent of;, i.e.,

literature to solve other calculus-of-variations probde@ften,

the key to success of such an approach is to find the right v (v, w) = ly (cv,w)

Lyapunov function. The unique feature of the scheduling and

routing problem studied in this paper is that the Lyapunder all ¢ > 0.



Proof: Consider a fixed: > 0. According to definition (37),

lv(ev,w) = inf  H(dl[p) + L(f)

s,a,x

subjectto  (s,a,x) is an FSP
such that for some
d
ES(L‘) =¢
d S
%a(t) =
V(Z(t)) = cv

For any FSPs, a, x)r andi € [0, 7] such that% 5(t)|. = ¢,

t

Lat)|, = f, V(@@#) = v, LV(Z(t))|; = w, according to
Lemma 6, tbere must exi§t another KSR, x).r such that
5(t)] 5 = &0 Fa(t)| 5 = F. Z(c) = (D), and Fi(t)| ; =

d
dt
4(t)| ;. Using Assumption 3, we then have

V(Z(ct)) = cv.

According to Assumption 3, the first term is equal to

v (&(el) + 2| ) = V(@)

lim

T—0 T
v (@) + G0| 2) - v)
= lim L
70 T/c
d
= —V(Zt .
FVen)|

According to Assumption 1, the second term satisfies,

’V @(cf) + 7') -V (j(cf) + d%(ﬁt) ’05 T)‘

lim
T—0 T
=07 =07 dI(t)
EHg(ct—i—T) —Z(ct) — =5 TH
< lim ct
T—0 T
= 0.
Hence, we have,
d d
—V(Z(t = —V(Z(t = w.
7V ED) = FVEw) =

This implies that the FSB, a, x).r satisfies the constraint in i

the definition ofly (cv, w). Hence,

Iy (cv,w) < ly(v,w)

15

A similar argument proves the opposite direction that
ly(cv,w) > ly(v,w). Sincec > 0 is arbitrary, the result
then follows. Q.E.D.

When the functiory (v, w) is independent of, the trajec-
tory V() that attains the infimum in (39) is in fact very easy to
solve [23, p520], and the infimum is equaliidf,,~q W
ie.,

. 1 2 2
b = _inf —IH(¢|[p)+L(f)| (46)

w>0,s,a,x W

subject to (s,a,x) is an FSP
such that for some
d Y —
Es(t) =9
d_,.. =
Ea(t) =f
V(Z(t) =1
av(ED) _
dt

The value oy has an intuitive interpretation. If we interpret
w as the rate of increase of the value of the Lyapunov function,
then the objective function in (46) can be viewed as the
minimum per-unit cost to increase the Lyapunov function,
where the minimization is taken over all backlog levé(s),
channel states(t), and arrivalsd(t). In order to overflow,
we must lift the value oft/(Z(¢)) from zero to one. Hence,
0y becomes a lower bound on the minimum cost to overflow.
According to Theorem ), then corresponds to a lower bound
on the decay rate of the overflow probability.

VII. A CONDITION FOR THE
MINIMUM -COST-TO-OVERFLOW TO BE EXACT

In the previous section, we have shown thgtis a lower
bound on the decay rate of the queue overflow probability
(see Theorem 5). In this section, we provide a condition unde
which a drift-minimizing algorithm is large-deviations asy-
rate optimal and the value @f, becomes thexactdecay-rate
of the overflow probability.

We are ready for the following Theorem.

Theorem 8:Suppose that a scheduling and routing policy
satisfies Assumptions 1, 2, 3, 4, 5 and 6. Then under this
policy the value off, is the exact decay-rate of the overflow
probability according to the Lyapunov function metric,.i.e

Jim é log P[V(X(c0)/B) > 1] = 8. (47)

Further, this drift-minimizing policy (according to Assym
tion 4) is optimal in maximizing this decay-rate. In other
words, for any policyr we must have

liminf — log P™[V (X (0c)/B) > 1] > —0o,  (48)
B—oo B
whereP™ denote the stationary distribution under the policy

The proof of Theorem 8 contains two parts. First, we show
that the decay rate of the probability of overflow, in terms of
the Lyapunov metric, is bounded from above for all schedyplin
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policies. Then we show that under the assumptions on tivbere we have useﬁlfj to denote
Lyapunov function, this bound matches with the lower bound

b o El@,BB<1>>[sf<i>—sf<o>}+.-.

Consider the following optimization problem: B B
I . BT| -1
w(¢, f) =min V() +EF(j, B (%))
s L |BT| -1 |BT| — 2
. B B
subjectto  af = [fF = " ¢; > Ruef]" X {Sj (g ) 57 (—F )|
j= =1
lef;] € Conv(&;) for all 5. We make the following observations to simplify (52).
The functioni (¢, f) can be viewed as the minimum rate of P8 (T) = B LBTJ) _ O(l)
increase of the Lyapunov function if the channel state Bsce ! ! B B
satisfiess(t) = t¢ and the arrival process satisfigg) = ¢ f. xf’B(O) _ :C?B(l) — O(i)
! pri 1 0
3 k,B k,B —
do= inf — [H@ID + L] @9) 0 (1) = () = 0(g)
(8.7 (6.F)>0} (6, f) —
B 5/ BT| -1 1
We first show the following. sy (T) =55 ( B ) = O(E)
Proposition 9: For any policyr we must have
lim inf E logP™[V (X (00)/B) > 1] > —fp,  (50) Further, we can writed}, = {sf(%) — sP(0)] ef;
—00 - - -
where [eF.] € Conv&;). This follows because
hereP™ denotes the stationary distribution under the polic L . /
;’TV onary distribution U pol P}El :E’B( 9)] is in the set & and the terms
st B |BT]—1 _sB |BT] -2
Proof: BX the definition ofd,, for anyo € (0, 1) there exists T LB(TJ) iy (OB)(O),..., Z (SB(IBLBTJ)*list(g) ) can be
¢o and fo such that thought of as weights that sum ta Since §8(0) = 0, we
1 [H(Q;OH@ i L(fo)} < +6. haveAlJ =s; (LB:;,J Le {3 Equation (52) then simplifies to
’l[}(¢0, fO) B s I
Further, itis easy to show that the functiaf, ) iscontinuous kB (y _ 2P0) = oP(T) - Z Z Ras?(T)ef,
with respect top and f. Hence, there exists such that for it ' '
any |¢p — ¢o| < e and|f — fo| < ¢, the following holds ( 1 )
R - +0(=).
(¢, f) = w(do, fo)(1 —9). (51) B
Let v > 0 be a small number and l&t = m. Sincez"?(0) > 0 andz™?(T) > 0, we can show that
Define a channel-state process(-) and an arrival process n
do(-) on the intervall0, T'] as follows: 1
o) B | l B . PP = a1 =0 RasP(D)ef;| +0(5).
S0(t) = tpo anddy(t) = tfo. j=11=1 B
Let Br(5y(-)) denote are-ball aroundsy(-), i.e., it contains N _ R oSBT
all 5(-) such thats(0) = 0 and Rewriting the equation using = ST() andf £ ¢ :ﬁ ), we

have

15() — So(t)I|%, <.

Similarly, define ane-ball Br(d,(-)) arounddy(-). Consider xfaB(T) + 0( > Z@ ZR”% ,
that the queue process has reached stationarity atitimien =1 =1

the queue is evolving according to its stationary distidiut

at any timeT > 0 and we haveP™[V (X ( )/B) > where [el] € Conv&;). Using Assumption 5 and Assump-
1] = P*[V(ZB(T)) > 1]. We will now show that, as tion 6 on this inequality, we obtain

long ase is sufficiently small, anys®(-) € Br(5(-)) and 1

aP(-) € Br(do(-)) imply that V(ZB(T)) > 1, regardless of V(#2(T)) +V(0(=)) > V(T%)

the scheduling and routing poliey used. B

Towards this end, consider ar§f(-) and @”(-) in these Where Z¢ ZRze
e-balls. From the mapping in (11), we have, = ! L

BT 1
i B(%) —fff’B(E) This provides a bound of (#Z(T')). However, this bound
BT s L depends on the particular value@jj, which in turn depends
_ ak,B(%) — ZZRUAZ" (52) on the.scheduling and routing policy. To obtain a bqund
J=11=1 that is independent of the policy used, we take the minimum



on the right-hand-side over e{ldzfj] € Conv¢&;). Therefore,

(1)) + V(O())

> T 'min

V(zB
V(&)

subjectto  z¥

Z ; Z Rllelj
Jj=1 =1

[elj] € Conv¢;) for all j.
This implies that

V@ (T) +V(O(5) = T, /) > 1+,

where in the last step we have used the definitior{'aéind
the fact that (51) holds by choosing sufficiently small
Therefore, under any policy, there exists3, such that for
all B > B, if §2(-) € Br(50(-)) and@®(:) € Br(ao(-))
then
V(@B (T)) > 1.

Now, using the LDP fors”(.) and @”

proof as follows,

(1), we complete the

lim inf L log P™ [V (X (c0)/B) > 1]
B—co B

fn 1 T —=B
— V >
lim inf log P [ (.CC (T)) 1]

> %niiogfé {log P57 () € Br(5(-))]
+logP[a® (- ) € BT(JO('))]}
B s()eériﬁsm)/ HCg sl
d
- >eérif<ao<>>/o K
T
> / H(2:50(0)][7)dt — /0 L(%ﬁo(t))dt
= (?ollﬁ) + L(fo)]
_ _#
= ey Gl + L)
> 1+g(90+6)

Sinceod andw can be arbitrarily small, we conclude that

lim inf E log P™[V (X (00

B—oc0

)/B) > 1] >~y (53)

Q.E.D.

We are now ready to prove Theorem 8.
Proof of Theorem 8: By Theorem 5,

lim sup E log P[V (X (o0

B—oo

wheref, is given by (46). By Proposition 9, we have

)/B) 2 1] < —bo,

Jim inf — log PT[V (X (00)/B) > 1] > —f,  (54)
B—co B
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show thatd, > 6,. Consider any FSRB, a, x) that satisfies the
constraint in the definition oy (see Equation (46)). Define
¢2 431), 2 d5(t) andw £ W) By Assumption 4
in Section IV-A, we must have

—

oV (1, 8i(t), 6, f)
or

w < (55)
7=0
for any feasiblee.

Defined = [6F,i = 1,..,N,k = 1,..., K], whereéF =
L
£ - Zle ¢; . Raef;. We have
=1

—

V (7, &i(t), 6, f) = V (0, (), 6, f)
V([Z(t) + 57] )= V(Z(t)).

Further, using Assumptions 3, 5 and 6, we have

V([#(t) + 7)) = V(&(t)) V(&) + [0]F7) = V(&)
V([8]tr) = rV([3]).
Hence, for any feasibl€, by (55), we must have

w < V()

<

IN |

Minimizing the right-hand-side as in the definition@f, ),
we have o

w < w(¢, f),
from which we can conclude thdtw > 0} C {@(g, f) > 0}.
This leads to the following inequality

|Hl1p) + L(f)]

1

inf  ——=— |H (@7 + L()] .
(30061150} D, ) [ }

Hence, by the definitions @k, in (46) andd, in (49), we have

o

inf —
{w>0,s,a,x} W

>

> .

Thus, 6, = 6, and the result of the Theorem then follows.
Q.E.D.

VIII. AN EXAMPLE

We have presented a set of powerful results (in particular
Theorem 8) that can be applied to very general wireless
systems. As we discussed in Section IV-B, these resultsean b
very useful for both analyzing and designing wireless aantr
algorithms with low overflow-probability. A delicate detad
use these results is to establish that an algorithm minsrtlze
drift of a Lyapunov function in every fluid sample path (i.e.,
it satisfies Assumption 4). This is related but differentnfro
showing that an algorithm minimizes the drift of a Lyapunov
function in every step in the original discrete-time system
Specifically, an infinitesimal interval of length in the fluid
sample path will correspond to an interval®é in the original
system. Hence, one needs to be careful in analyzing the drift
of the Lyapunov function in fluid sample paths. In this settio

for any policy 7. The two inequalities combined imply thatwe present a detailed example to illustrate this point (see

0o < 0.

Hence, to show Theorem 8, it only remains t&roposition 10).
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A ON-OFF (p)-~ thresholdB, i.e., the decay-rate of the probability
A2 —m T ser

— P max_Xi(00) > B] (57)
e B (il S =l N

. when B — oo.

. Define 58 (t),a?(t),#2(t) as in (6), (7) and (10), and

define the fluid sample path (FSP) accordingly. For any

W] FSRs,a,x), let 7, (Z(t)) = {ilz;(t) = maxzax(t)} be

the set of users with the (identically) largest queue at time
t. Further, letZy(2(t), 7' (t)) = {i € T(F(t))|Lxi(t) =
d . - ) .

ke%l%((t)) Zirx(t)}. Thatis, Zo(#(t), 2’ (t)) is the set of users
) . ) that, among those users with the largest queue at tjraéso

Consider the following model for a base-station servMg have the largest queue growth rate. In other words, these
users (See Fig. 3). We recall here the assumptions mades@p of users will have the largest queiremediately after
the arrival process and the channel model from Section {fime ¢. Then, immediately after time, as long as one user
and list some additional simplifying assumptions needed fgy 7, (z(¢), #/(¢)) is ON, according to the QLB-policy this
our current purposed,(t) denotes the number of packetgroup of users collectively must receive the full servictera
generated by usel. We assume that};(t) is i.i.d. across p Therefore, we must have

time and independent across users. Aet= E[A;(¢)]. Only

Fig. 3. The scheduling problem in cellular networks undelirfg channel.

one user can be scheduled for transmission at any time. We Z izi(t) = Z iai(t) (58)
assume an ON-OFF channel fading model between the basez, z(t),# (1)) i€To(Z(t), 7 (1))

station and the userg€!(¢) denotes the channel state at time d

slot ¢ and S denotes the set of all possible channel states. -F Z Esj(t)'
Each possible valug € S of the channel state€’(t) can JES(Z2((1),7" (1))

be thought of as mapping to a vector, each component (&femark:Note that this is an example of Equation (12).)
which represents whether the channel of a particular user idet V(&) = max;—;,... n 2;. Note that we have chosen the
ON or OFF. We assume that the channel state) is i.i.d. Lyapunov function to be the same as the norm for the overflow
across time. However, the channel may be correlated acrosatric (57). We now show the following properties 6{z).
users. The probability that the channel statg) is equal to  Proposition 10: The function V() satisfies Assumptions

j at timet is p;. For any subsetd c {1,2,..N}, S(A) 1,2, 3,4,5and6.

denotes the set of statg¢ssuch that the channel of some useProof: Most of the conditions in the assumptions are easy to
I € Ais ON. We also us&(l) as the short-hand notation forverify. Hence, we only provide proofs of Assumption 1 part
S({1}). Let F denote the bandwidth of the system. Hence, {f), Assumption 2 and Assumption 4.

a user's channel is ON and it is scheduled for transmission,We first show Assumption 2 part (a). Consider an
its service rate ig". (Remark:The above model is similar to FSRs, a,x). Let ¢(t) = £5(t) and let f(t) = ZLa(t).

the one in [11] although we do not assume identical arrivAiccording to the definition ofZy(Z(t), #'(t)), the Lyapunov
rates and.i.d. channel state distribution across the users.) Tlkift for the QLB policy is given by

throughput-optimal Tassiulas-Ephremides algorithm fighis

case reduces to the QLB (Queue-Length Based) algorithm as d__
follows. EV(I@)

QLB-scheduling policyAt each time-slot, the base-station _ 1 Z ix 0)
schedules the ON user with the largest backlog. If there are |Zo(Z(¢), & (t))| T () et
multiple ON-users that all have the largest backlog, thebas 2
station can schedule any one of these users. 1

We assume that the system is stable, which requires that (&), 7 (1)) lezz(i%):f,(t))ﬁ(t)

there existse;; > 0,1 =1,...,N,j = 1,...,5, such that
Zf\il e;; = F for all j, and that the following holds for some

e>0, -F > o). (59)

JES(Z2(2(1), 7 (1))

MN(1+é) < Y pje forallusersi=1,...,N. (56) Lete < ¢miti=tx M Assyme thaf|<5(t) — §]| < € and

‘ _2(N+FS)
ses) |La(t) — X|| < e Then
The interpretation ok;; is the long-term fraction of system d 1
bandwidth given to usel in channel statgj. Note that the %V(f(t)) < IAGORAO] Z Al

summation on the right-hand-side is only over those states
such that the channel is ON for user

In this section, we would like to characterize the decag-rat -F Z pj| +e(N+ FS). (60)
of the tail probability of any user’s backlog exceeding aegiv FES(T(Z(1),7 ()))

1eTr(Z(t),2" (t))
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By the stability condition (56), we have Now, note that

> (L + @) > > bi(t)e

LTy (RB.2 (1)) 1E€Z2(Z(t),& (1)) F€S(1)

< 3 S pres = > o) > ey

- L T JES(T2(Z(), (1)) 1ETH(2(t), 7 (1))
€T (Z(t),7(t)) j7€S(1) _

< Z ;i F. < F Z ¢j(t)'

JES(T2(Z(1),7 (1))
Therefore, inequality (61) reduces to

JES(Z2(Z(1), 2 (1))

Therefore, Equation (60) becomes

—

0 (e, 60, 710)

d —€ 9 =0
—V(E(t) £ ———a A
7’ < TEmeor,, 2, ™ 1
1ET(5(t), & (t)) > ()
+e(N + FS) — @O T |, e dmaw
—€minl:1,,,,7N /\l
— 2 .
D DO
This shows Assumption 2 part (a). Note that Assumption 1 JES(T2(Z(t),7(t)))
part (f) can be shown with a similar proof. ~ where the right-hand-side is exactly equal to the drift @& th
Now we show Assumption 2 part (b): By (59), and using)LB scheduler (59). The inequality (25) then follows.
the fact that the arrival process is boundedMy we have The other assumptions are easily verified. Q.E.D.
d i 1 By Theorem 8 and Proposition 10, we then h
—VEZt) < ————— Ml = M. Yy positon , we then nave
A AT ONID)] [@%m) }

lim B log P[V(X(oo)/B) > 1] = —by.
B—oco B

To show Assumption 4, we will first bound the Lyapunoynereg, is given by
drift for any scheduling policy and then show that the bound

is in fact the drift for the QLB policy (59). Oy = 0y = __inf - 1 _ |H($||p) + LS|, (62)
Fix any feasible value of, i.e.,e;; >0,1=1,...,N,j = {6.f:0(8.1)>0} w(¢, f)
1,...,5; e;; > 0 only if the channel for uset is ON at where
.. N . . oL
channel statej; and lel_el_j_ < F for all j. Define o, = (3, f) = min max
Ji— Zjesu) ¢jel;. By definition in Equation (24), [e1;] I=1,..N
s
V(ra7,6,f) = V(F+5dh subjectto @ = [fi =) deyl”
= st =1
z:ql,?i(zv[xl + 7] [e;] € Conv(&;) for all 5.
We must then have, Unfortunately, (62) is not a convex program and thus

is not easy to solve. To derive a simpler characterization
of 6y, we first introduce a decomposition. For any subset

9 5 (e, a3 (1), 600, F1))

or 0 M cC{1,2,.., N}, define
2, (0= 2, 4 M) = i L [H@D LGP (63)
JES(l) w>0,4,f W
Further, sinceZy(Z(t), ¥ (t)) C Z1(Z(t)), we have subject to w— 1 Z foF Z b1
= il
. |M| leM JES(M)

%mﬂam,%@, ()

We then have the following results.

7=0
Lemma 11:
2 max (fi(t) - > di(t)er)
€L(F(1),7' (1)) jes) 0y = min Oo(M).
Mc{12,...N}
> % S () Proof: Fix a setM. For anyé, f, andw > 0 that satisfy the
[T (Z(t), (1)) 1€ To (20,7 (1)) constraints in (63), we automatically have

- Z ¢j(t)elj)]- (61) ﬁ [Z h—F Z ¢j] = w.

JES() leM jES(M)
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Now, for any feasible¢ € Conv&;), we must have Towards this end, note that for any fixed, the sub-
Zs_lelj < F for all j ande;; > 0 only if the channel optimization problem of the one defined in (63) corresponds t

for userl is ON at channel statg. Thus, we have, a convex program. (The value 6§(,M) will then correspond
g to the minimum overv among all of these sub-optimization
max_[f; — Z¢jelj]+ problems.) Associate a Lagrange multiplierfor the con-
I=1,...N = straint of (63), and a Lagrange multipligrfor the constraint
. - s Zle ¢; = 1. Ignoring the termL(f) and letting f; = \;,
o+ we can then construct the Lagrangian of the sub-optimimatio
= |M| l;;[fl ;%e“] ] problem for a fixedw as

S

lemM

i

> g | BT X @} )
l j _ _

. | 1eMm JjES(M) _ Z¢ pj nl

Jj=1

Hence,w(¢, f) > w and s
—F Y g —wMl| +v > ¢ -1
1 . . J J
bo < — {H(¢||I7) + L(f)} - JES(M) =1
- s
Since this is true for allp, f and w > 0 that satisfy the B
constraints in (63), we then havg < 6y(M). o [Z 2 1Og D; -+ F SX:M i+ Wﬂ]
To show the other direction, it is sufficient to show that h es(M)

satisfies the constraint (63). Let= ﬁ)(gg, f). By the definition

f 5 and f, there i for which w = @(¢, f'
or every ¢ and f, there is someM for which w = w(¢, f) ) lz A — w|M|] .
of w(-, ), there must exis€ € Con&;) such that

leM

il It is easy to verify that, in order to minimize the Lagrangian
l}{l_’?_?‘fN[fl - 2; ¢>j€lj]+ = w. over all ¢, we must have
J:
R iexp|—(1+nF + if j € S(M),
Let M be the set ofl such thatf, — Zle die; = w. ¢.7. B pg. p| (1 7 : 7)] SJM (M)
Note that we must have , ,,e;; = [ for any state ¢; = pjexp[—(1+7)]if j ¢ SM)

j € S(M) because otherwise we should be able to furth
reducemax;—1, . n[fi — Zle pje;]T. Hence, we have

Dh=F ) ¢ =uwM|

el’rhe optimaln and~ are such that the constraint of (63) and
Zg 1 ®; = 1 are both satisfied. Hence, we must have

fenm JESIM) > ¢ = ep[-(L+nF+7)] Y p;
This equation implies thazb,f and w satisfies the constraint Jes) 5 A — w M| JeSM)
in (63). Hence, we must hawy > 0,(M). The result of the — lem N W .
lemma then follows. Q.E.D. F

_ _ Letu = M We then have,
Next, consider the case when the arrivals are at a constant

rate \;. In other words,L;(f;) = +oo except whenf; = ). _ - U
In this case, we can use Lemma 11 to obtain the following exp[=(1+nf +7)] = p(S(M))’
characterization ofy. For any subset of the possible channel
states, lep(C) = >, cc pj- and
Proposition 12: When the arrivals are at a constant rate b; = p; u if j € S(M)
S(M
L IMID(ullp) (5(M)
0y = min inf o
ML N 0<u<S o 3E (D iem Ai) —uF Similarly, we must have
where
u Zdy:eXp (1+7)] ij
Dm(ullp) = ulog s JES(M) igS(M)
p(S(M))
(1 ) (1 —u) _ 1_ZZGM w|/\/l|_1_
+(1 —u)log ————F——. B B
(1= p(SM)) E
Proof: According to Lemma 11, it suffices to show that Hence,
(M) = inf M| (1—u)

Dau(ullp). b =n;

0<usy o0 (e M) —uF m if j ¢ S(M).
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We thus have, for any fixea, the minimum value of the wherew = Liem flif;\/tz‘j“w) % To see this, note that

sub-optimization problem of (63) is equal to

Inequality (65)
& Ow < H(¢||p) + L(f) for all ¢, f and

s
1 . _ . .
LS erios oo DS F Eson
Wiz Pj M|
= l[ulog#—l—(l—u)log& PN H((5||17)+L(f)>i Zfl_F Z y
w [ (S M) (1= p(S(M))) M| 2+, 2 0
_ Zemhoul Jes(M)
= M m(ullp), for all ¢, f
0 = OF -
< WZfl—L()Sﬁ Z ¢; + H(¢lIp)
where in the last step we have used the definitioP@f (u/|p) feM jesM -
and the assignment that= M Taking a minimum for all ¢, f
overw, or equivalently ovew, the result follows. Q.E.D. & sup 0 Z fi— L *)
Remark:Readers can verify that when the channel states are 7 M| Py
i.i.d. across users and when the arrivals from all users are at a s
constant rate\, Proposition 12 reduces to Theorem 5 in [11]. < —sup _W Z b; — H($| 1P) | -
jeS(M)

Now by definition,L;(f;) = supy[6 i — M;(0)]. Using proper-
ties of Legendre transforms (Lemma 4.5.8 in [24, p152]), we

A. Effective Capacity have ) )
_ _ o _ SLEPWZﬁ_L(f):ZMl(W)'
When the arrivals are time-varying, it is no longer possible f leM lem
to derive a simpler characterization &f as in Proposition 12. Similarly, by definition
Instead, we can concentrate on the effective capacity megio
Note that for anyy > 0, if we would like to ensure that

J=1 J=1

S S
H(¢||p) = sup {Z 0;¢; — log Elexp(> 9.7"1’3‘)]} :
0

. 1

Jim — log P[max Xi(co) > B] < —9, where[®,] is a random vector such thé@; = 1;¢(;)—;;. Note
that [®,] must have exactly one non-zero component and the

. _ _ non-zero component must be equal to 1, ahdtakes the

it is equivalent to require thaf# < 6. We then have the value 1 with probabilityp;. Hence, using the properties of

following result. LetM;(¢) = logE[exp(64;(0))], and let | egendre transforms again, we have
a(f) = Msz) The quantityc;(0) is typically referred to as

the effective bandwidth of the arrival process to user OF -
- : - - - sup | == > ¢ — H(@||p)
Proposition 13:0 < 6, is equivalent to the following = (M| ST
condition: J€S(M)
0F
= logEfexp(— »_ Wq)j)]
M| 0 M| OF jeSM)
—M(—) < ——log[p(S(M))exp(—+—— OF
2.0 M) e e AT = ogS(M) exp( ) + (1~ pSM))]
+1—p(S(M))], (64)
(SM))] Hence, (65) is equivalent to
M 0 —|M 0F
for all M c {1,2,...,N}. 3 %Ml(m) < |9 | IOg[p(S(M))eXp(—W)
Remark: Given 6, Proposition 13 provides a necessary and<
sufficient condition on the arrival proceds(t) for it to belong +(1 = p(S(M)))]-

to the effective capacity region. Combining these conditions over alM, the result then
Proof: According to Lemma 11, we only need to show thafollows. Q.E.D.
(64) is equivalent to

The quantityMlT(e)

1 - . bandwidth of the arrival process to userThe quantity on
0 < inf — | H(¢llp) + L(f) (65)  the right-hand-side of (64) can be interpreted as the éfect

is typically referred to as the effective
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v@B (1)

capacity available to the users.w(. Proposition 13 then car-
ries the intuitive explanation that the total effective daidth
of users inM must be no greater than the effective capacity
available to them. Note that both the effective bandwidtti an
effective capacity can be computed independently from each .
other for any given set\.

Remark:Readers can verify that, when the channel states s —
arei.i.d. across users and when arrivals from all users are at a
constant rate\, Proposition 13 reduces to Corollary 6 in [11].
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IX. CONCLUSIONS ) ) ) )
Fig. 4. An example of the trajectory &f (#Z (¢)) and the different stopping

In this paper we study the problem of characterizing thines.
gueue-overflow probability of complex wireless scheduling
and routing algorithms. We present a new technique to agdres
the complexity issue of the multi-dimensional calculus-okiopping times defined on a sample path. (Here we use
variations problem involved in sample-path large-deviadi he notation from [13].)
Our new technique combines sample-path large-deviations
with Lyapunov stability, which may develop into a powerful B 2 [inf {t > 0: V(#®(t)) < §}B]
method to study a large class of scheduling and routing ! B
algorithms. We also show that when a scheduling and routiggq
algorithm minimizes the drift of the Lyapunov function at i .
every time in every fluid-sample-path, it is optimal in max- ;)5 2 [inf {t > 5 : V(F(1)) = E}BW,
imizing the asymptotic decay-rate of the probability thiae t ) B B B
Lyapunov function value exceeds a threshold. We illustitae 55 2 [inf {t 2 nyy - V(EZ(?)) < 0}B] n=23...

)

potential of this approach through examples. B
Fig. 4 provides an example of these stopping times.
ACKNOWLEDGMENT Consider the Markov chaiw”(n) obtained by sampling

=B i i B =B _ »B(,,B —
The authors would like to thank the anonymous reviewels () at the S?"pp'”g t.'meS".’ Le,. 7°(n) = 27 (ny ), n B
i,2, ..., +00. Sincex” is stationary, there must also exist a

feor:htar\]ril::aiﬂzsnlljjglti?/eo???e me;ts and suggestions that lgre Stationary distribution for the Markov chaiﬁB(q). Denote
quaiity paper. this stationary distribution (of the Markov chait®(n)) by
PB. Further, let©? denote the state space of the Markov
APPENDIX chain #B(n). We can then express the stationary distribution
Proof of Theorem 4: of X(c0)/B as (see [25, Lemma 10.1]):

Pick any0 < p < 1. Pick another two positive constarits< =
0 < e < p. Let P denote the stationary probability distribution P[V(f((oo)/B) 2 ﬂ (66)
of the system. We are interested in the following quantity  Jos PP (dD)Ez([)" Livzs@)>1ydt)

- Joon PB(dZ)Ez(nf)

lim sup % log P[V (X (c0)/B) > 1].

B—roo whereE;z(-) denotes the expectation conditioned on the event
Throughput this appendix, we will focus on the scalethatz?(0) = .
version ofX(T) such that Remark on generalizing the proof for Markovian channel
1 and arrival processesAs discussed in Section II-E, the proof
xf’B(t) = EXi’“(Bt), will have to be modified if one wishes to assume that the

) _ ) channel and arrival processes are Markov chains. In thef,proo
fort =4, m=0,1,2,...,, and by linear interpolation other-\e make use of the fact that the queue process is Markovian.
wise. Letz? (t) = [x}"7(t),i = 1,.., N,k = 1,..., K]. Note This enables us to claim that the sampled proc&&sp), is
that this definition is almost identical to (10) in Sectioi®, a Markov chain. This is no longer true if one uses channel
except that nowt” (¢) is defined for infinitely large. Further, and arrival processes that are Markov chains. However, it is
since we are interested in the stationary distributiofeo),  relatively simple to fix the proof by considering the system
we can assume tha () starts with its stationary distribution state as the joint state of the channel, arrival and the queue
at7 = 0. Hence, X (7) will admit its stationary distribution backlog. For instance, ik(t) represents the combined state
at every time instant. As a resultz7” () will also admit its of the channel, arrival and queue backlog processes, one
stationary distribution at everty= %, m = 0,1,2,...,, which can assume that(n?) is a Markov chain. Then, our proof
is the same as the distribution Kf(oo)/B. methodology can still apply by denotifi@? as the stationary

Let [¢] denote the smallest integer that is greater than probability of y(n”) and denotingd? as the state space of
equal tot. For eachB, consider the following sequence ofy(n2).
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A. Bounding the Denominator of (66) Ez[8f — nPNZB (BN, 0BT < BP] = Egsen(BP).
Consider first the denominator in (66). From (1) and thdence,
boundedness of both the arrival-ratef (t) and the service- ne
rate EF(j, X (t)), there exists an upper bound; such that Ez / l{V(i‘B(t))>1}dt‘|
|X(t+1) — X(t)|| < M, for all t. From Assumption 1, we 0
have that/ (8 (n2))—V (&8 (8F)) < L||Z8 (nF)—zB (5F)]]. < Eg [Egs(yen)(B0) "7 < 7] Pa(n®T < BP).
A
DenoteMy = LM, Hence, we must have, Let C' be a number that is slightly larger than 1. Using the
V(fB(nlB)) — V(fB (513)) < £||fB (7713) _ 7B (513)” boundedness of the arrival rates and the service-rates,agai
< (F - 55 My, can findB3 > 0 such that for allB > B3, V(2% (n?1)) < C.
- Hence, we can bound the above quantity by
Further, sincen? is the first timeV (72 (t)) exceedse, we

n
t h
must nave 5B M, Ez / 1{V<£B<t>>21}dt1
V(@ (n)) 2z e~ - 0
Similarly, we haveV (% (5F)) < § + 2o, Therefore, < { vb(ul)o<c} Ez(87)| Pz(n®" < BP).
y:
B B B
Ez(nr) = E@’ —57) LetT be a positive number (which will be chosen later). Recall

> L (6 5 — 2_M0> . that V(&) < p for all # € ©F when B > B,. Hence, for any

- Mo B such# € ©F, we have,
Thus, there exist®3; > 0 such that for allB > B;, the nP
denominator of (66) can be bounded from below by Ez / 1{V(53(t))>1}dt]

0
€—90 - :
Ez(ny’) > (67)
2M,’ < sup  Ez(B7)| [Pe(n™! < T)
{7:V(§) <0} |
B. Bounding the Numerator of (66) +Pz(BF > T)]
We next estimate the asymptotics of the numerator of (66). [ B 1 B4

Recall that, by definition, each? is at most onej; time- =y VS(I;&C} Eg(87) {i_‘;@}g})@} Pz(n™" <T)

unit after V(#5(¢)) just exceeds. Sincee < p, using the -
boundedness of the arrival rates and the service-ratesawe c B
: 7 >
conclude that there exist8; > 0 (which depends om — ¢), + {i;‘fé%)gp} Pz(6r = 1))
such thatV (8 (nB)) < p for all B > Ba.
We next define the following additional stopping time (se§UbSt'“"t'ng (67) and (68) into (66), we then have, for all

(68)

Fig. 4 for an example): B > max{By, By, Bs},
B4 o [if{t>0: V(@) > 1}B] P[V(X(c0)/B) > 1] (69)
= B ' 2 M, 5
< sup  Eg(87)x
Then, for anyz € 67, we must have, €—0 | (gv(@=<cy
B | ("1 dt sup  Pz(n®T <7T)
7, TveEEm=y {#:V(2)<p} B
< Ez [l{nB’TéﬁlB}(ﬁlB - nB’T)} : + sup Pz(BP > T))
{&:V(#)<p}

The above inequality holds because: (a)3ff occurs before
nPT, then both sides will be zero; and (b) #P occurs
after n-1, then the amount of tim& (#Z(¢)) > 1 must be
no greater tham3? — n®1. Let Pz denote the probability

We next study the asymptotics for each term in the above
inequality.
1) Bound forsup,,. V(y)<C}E (B£): We will show that

distribution conditioned om? (0) = #. We then have sup(z.v (7)<cy Eg(51’) is bounded from above and hence does
not affect the asymptotlcs of (69). Due to the continuitylod t
n Lyapunov function and the assumption thatz) = 0 only if
Ez / Liv@e @)=yt [|Z|]| = 0, there exists ay > 0 such that||Z]| < ~ implies
V(&) < . Further, we can find & > 0 such thatV (¥) < C
< Ez [B7 =0T n™T < 7] Pa(n®T < B7) implies ||| < K.
Now, E. [[313 — BBt < BB i equal to Consider the following additional stopping time

E; {Ez[57 - nB’TI:c (™), T < ﬂlB]lnB T <Py 5 a [inf {t>0:[|Z8(t)|| < ~}B]
and, due to the Markovian property of®, we must have py = B :
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Itis easy to see thatip .| 7 <k} E;(47) is an upper bound
on sup .y (y<cy By (B A
We now proceed to show thatip g 7 <x} E;(BP) is

bounded from above. From Assumption 1, the fluid limit of the

system satisfies either (14) or (15). For both cases, itddlo
that there exists a constant such that for all fluid limitsx
with ||Z(0)]| < 1, we must have|Z(t)|| = 0. This not only

implies that the original system is stable (see [18, Theorem

4.2]), but also leads to the following limit:

lim B [X(tollfn)’f(o) = f} =0.

12| =00 ||Z]]

(See the proof of Theorem 4.2 in [18]). Then using the
techniques in the proof of Theorem 3.1 in [18], there must

exist numberss > 0, x > 0, b > 0, and a bounded set
B £ {X : ||X]|| < &} such that for allZ, conditioned on
X (0) = Z, the following holds,

B ()| X(0) = & < 2 (|lzl| + D),

wherers(to) 2 inf{t > to : X(t) € B} is the first time after
to when X (¢) returns to the seB.
Recall the transformationz?(t)
0,%,%,.... For all B >
implies that||Z(t)|| < v and thus3? < t. Hence, for anyy
such that]|y]| < K and for anyB > =, the following holds

X (Bt), t
%, as long as||X(Bt)|| < &, it

—Elra(t0)| X (0) = Bif

to L
—(B b).
(Bl + D)

E;(87)

IN

<

Let Bs = max{Z, %}. Then, for allB > By, we have,

A K
sup  Eg(P) E;(8P) < 2ﬂ

{g:v(m<c}

< sup (70)
{T7:NglI<K}

2) Asymptotics fosup .y (z)<,3 Pz(n”1 < T): Let

I'c, = {x:V(Z0))<pandV(Z(t)

)>1
for somet € (0,71}

Then, by Proposition 2, we have

P:(n?T<T)

li L 1
imsup — lo
B—oo B &

sup
{#:V(£)<p}
1
lim sup — log Pz(x" eT'<))
B—oo

sup
{z:v(#)<p}

T
— inf / [H<
all FSRs,a,x)T:xngp 0

/)
d

W’(t))] dt. (71)

d

S5l

3) Asymptotics foBup .y (7)<, Pz > T]: Let

T<, {x: V(#(0)) < pandV(Z(t)) > 4§

forall ¢t € [0,7 —1]}.

modified by using the Lyapunov functidli (Z) =

Then, by Proposition 2, we have

1
lim sup — log P[P > T]

B—oo

sup

[#V(#)<p)
1

lim sup — log Pz[x% € T<,]

B—oco

sup
{z:v(#)<p}

T-1
- inf / {H ( ﬁ)
all FSRs,a,x)T:XGTSP 0

+L <%d(t)>] dt.  (72)

d
ES(L‘)H

A

For any FSR(s, a, x)r such thatx € T<,, we have

T—1 d

Zy
dt

IN

V(£(0)) —i—/o (Z(t))dt
—V

p+
0

< (Z(t))dt.

dt
We now need to use Assumption 2. Since the two parts
in Assumption 2 are equivalent, in the following we will
assume the latter part holdd et n be defined as in Assump-
tions 1 and 2. Then, according to Assumption 2, there exists
¢’ > 0 such that for all FSP$s, a,x)r, if at any timet we
have || 45(t) — p]| < ¢ and||La(t) — X|| < ¢, then the
following holds

%V(:E’(t)) < —n/2.

Further, there existd/; > 0 suchﬁthat if at any time we have
||45(t) — pl| > € or ||4ad(t) — A|| > €, then the following
holds
d
—V

SV(E) < My,

—

Let M denote the set ofb, f) such thati|¢ — ]| < € and
[lf — Al| < €. We then have,

T—1
n
b < p +/O [—51{(%5*(15),%6@))6/\4}
M sy, gaw)gmy | -
Hence,
n T—1
(2 + 5)/0 L s grawnga @
> (T-1F+5-p. (73)
Let
Jmin = H}H} J((Ea _»)
.7
subject to  [|¢ — 51| > ¢ or [|f — X|| > €.

*If the first part of Assumption 2 holds, the follcleing proofrche easily
vi-o@)
11—« )




It is easy to see thafl,,, is positive. Thus, for any FSPof FSPs(s,,a,,x,)r such that V(Z,(0))

(s,a,x)r such thatx € T<,, we have

/ ' 1 (Gst01s)

(La0)]a o

T-1

> /0 Jminl{(%g(t),%a(t))¢M}dt
T-13+i-p,

> M1_|_/r]/2 min-

where the last inequality follows from (73). Substitutinga
(72), we then have

1
lim sup — log
B—o0

sup  Pg[pf > T
{EV@<p}

_ 1)1 _
< _(T g +6 mein'
My +1n/2
Clearly, for fixedo andp, by choosing largd’, we can make
the right-hand-side arbitrarily small.

(75)

C. Completing the Proof of Theorem 4

We are now ready to prove the statement of Theorem 4.

Pick any FSH(s, a, x)7, such thatz(0) = 0, V(#(Tp)) >
Suppose the cost of this FSP.Js i.e.

[ T (sons) + 2 (Gaw) | ar=1

25

< pn, and
V(#,(T)) > 1 for eachn, and
) T d d .
[ (4s.008) L (Fa0)|a-

Take a further subsequence that converges uniformly over

compact intervals. Without loss of generality, we can denot
this subsequence also Wy, a,,,x,)r, and let(s,a, x)r be
the corresponding limit. Then, using the lower-semicanitin
of the cost function, we must have

[ o (sons) + o (Gaw)a <

Using a similar argument as in the proof of Proposition 2, we

can show thaf(s,a,x)r is also an FSP, and it satisfies the
condition thatx(0) = 0 and V(x(T')) > 1. Hence, it belongs

to the set of FSP in the constraint set in (76). We thus have

Jo < J*. In other words, we have shown that for @ll> T3,

hmbup—logP[V( X (00
B—o0 B
inf

)/B) = 1]
T
d
i (30
all FSPs .« /0 dt
#(0)=0 and v (z(17))>1

o (Law)

Note that the above inequality is for a fixéd> T} . Note that
the infimum on the right-hand-side decreased ascreases.

Clearly, for anyT' > Ty, the right-hand-side of (71) must beHence, taking another infimum over &l > 0, we must then

no smaller than-.J. According to (75), for fixed andp there
must existl} > To (which is independent gf), such that for
all 7' > Ty, the right-hand-side of (75) is smaller than/.

Fix such aT" > T}. Substituting (70), (71) and (75) into (69),

and taking the appropriate limits, we then have,

11m5up§logP[V( X (c0)/B) > 1]

B—oc0

T (d
- inf / H (—E't ")
all FSRs,a,x)T:xeFSP 0 dt ( )||p

+L (jt ()) dt.

Note that the above inequality holds for all> 0. Let J,
denote the infimum on the right-hand-side. As~ 0, let J*
denote the limit, i.e./J* = lim, .o J,. We then have

limsupélogP[V(X(oo) —J".

B—oo

/B)=1] <
Let

Jo = inf
a” FSRs,a,x)T:
£(0)=0,V (Z(T))>1

It only remains to show that/* > J,. To see this,

take a sequence, — 0. There must exist a sequence

have

)/B) 1]
[ o (o)

o (Law)a
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